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Abstract
Understanding the mechanisms through which neural networks extract statistics from input-label
pairs is one of the most important unsolved problems in supervised learning. Prior works have iden-
tified that the gram matrices of the weights in trained neural networks of general architectures are
proportional to the average gradient outer product of the model, in a statement known as the Neural
Feature Ansatz (NFA). However, the reason these quantities become correlated during training is
poorly understood. In this work, we clarify the nature of this correlation and explain its emergence
at early training times. We identify that the NFA is equivalent to alignment between the left singular
structure of the weight matrices and the newly defined pre-activation tangent kernel. We identify
a centering of the NFA that isolates this alignment and is robust to initialization scale. We show
that, through this centering, the speed of NFA development can be predicted analytically in terms
of simple statistics of the inputs and labels.

1. Introduction

Neural networks have emerged as the state-of-the-art machine learning methods for seemingly com-
plex tasks, such as language generation [5], image classification [7], and visual rendering [8]. The
precise reasons why neural networks generalize well have been the subject of intensive exploration,
beginning with the observation that standard generalization bounds from statistical learning theory
fall short of explaining their performance [16].

Instead, the success of neural networks has been largely attributed to feature learning - the
ability of neural networks to learn statistics, measurements, and representations of data which are
useful for downstream tasks. However, the specific mechanism through which features are learned
is an important unsolved problem in deep learning theory. A number of works have studied the
abilities of neural networks to learn features in structured settings [1–3, 6, 9, 11, 12]. Some of that
work proves strict separation in terms of sample complexity between neural networks trained with
stochastic gradient descent and kernels [10].

The work above studies simple structure, such as learning from low-rank data or functions that
are hierarchical compositions of simple elements. Recent work makes a big step towards general-
izing these assumptions by proposing the neural feature ansatz (NFA) [4, 13], a general structure
that emerges in the weights of trained neural networks. The NFA states that the gram matrix of the
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EGOP W>W (NFM) W>KW (AGOP) W>QW

Figure 1: Various feature learning measures for target function y(x) =
∑r

k=1 xk mod r · x(k+1) mod r

with r = 5 and inputs drawn from standard normal. The EGOP Ex∼µ
[
∂y
∂x

∂y
∂x

>]
(first plot) captures

the low-rank structure of the task. The NFM
(
W>W

)
(second plot) and AGOP

(
W>KW

)
(third

plot) of a fully-connected network are similar to each other and the EGOP. Replacing K with a
symmetric matrix Q with the same spectrum but independent eigenvectors obscures the low rank
structure (fourth plot), and reduces the correlation from ρ

(
F, Ḡ

)
= 0.93 to ρ

(
F,W>QW

)
= 0.53.

weights at a given layer (known as the neural feature matrix (NFM)) is aligned with the average
gradient outer product (AGOP) of the network with respect to the input to that layer. In particu-
lar, the NFM and AGOP are highly correlated in all layers of trained neural networks of general
architectures, including practical models such as AlexNet [7] and VGG [14].

A major missing element of this theory is the reason the AGOP and NFM become correlated
during training. In this paper, we clarify the nature of this correlation and explain its emergence at
early training times. We establish that the NFA is equivalent to alignment between the left singular
structure of the weight matrices and the pre-activation neural tangent kernel (Section 2). We intro-
duce a centering of the NFA that isolates this particular alignment and is robust to initialization scale
(Section 2). Further, we show that, through this centering, the alignment speed can be understood
analytically through the centered NFA in terms of the statistics of the data and labels, and can be
manipulated theoretically (Section 3).

2. Alignment between the weight matrices and the pre-activation tangent kernel

2.1. Preliminaries

We consider fully-connected neural networks with a single output of depth L ≥ 1, where L is the
number of hidden layers, written f : Rd → R. We write the input to layer ` ∈ {0, . . . , L − 1} as
x`, where x0 ≡ x is the original datapoint, and the pre-activation as h`(x). Then,

h`(x) = W (`)x`, x`+1 = φ(h`(x)) ,

where φ is an element-wise nonlinearity, W (`) ∈ Rk`+1×k` is a weight matrix, and k` is the hidden
dimension at layer `. We restrict kL+1 to be the number of output logits, and set k0 = d, where d
is the input dimension of the data. Note that f(x) = hL+1(x). We train f by gradient descent on a
loss function L(θ,X), where X is an input dataset, and θ is the collection of weights.

We consider a supervised learning setup where we are provided n input-label pairs (x(1), y(1))
, . . . , (x(n), y(n)) ∈ Rd × R. We denote the inputs X ∈ Rn×d and the labels y ∈ Rn×1. We train a
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fully-connected neural network to learn the mapping from inputs to labels by minimizing a standard
loss function, such as mean-squared-error or cross-entropy, on the dataset.

One can define two objects associated with neural networks that capture learned structure. For
a given layer `, the neural feature matrix (NFM) F` is the gram matrix of the columns of the weight
matrix W (`), i.e. F` ≡ (W (`))>W (`). The second fundamental object we consider is the average

gradient outer product (AGOP) Ḡ`, defined as Ḡ` ≡ 1
n

∑n
α=1

∂f(x
(α)
` )

∂x`

∂f(x
(α)
` )

∂x`

>
. To understand the

structure of these objects, consider the following chain-monomial low-rank task, where the target
features have a closed form:

y(x) =
r∑

k=1

xk mod r · x(k+1) mod r , (1)

where the data inputs are sampled from an isotropic Gaussian distribution µ = N (0, I). In this
case, both objects capture the coordinates on which the target function depends (Figure 1). Prior
work has shown that in trained neural networks, these objects will be approximately correlated to
each other. This notion is formalized in the Neural Feature Ansatz (NFA):

Ansatz 1 (Neural Feature Ansatz [13]) The Neural Feature Ansatz states that, for all layers ` ∈
[L] of a fully-connected neural network with L hidden layers trained on input data x(1), . . . , x(n),
the following correlation holds,

ρ
(
Ḡ`, F`

)
≈ 1 ,

Here, ρ is the cosine similarity, or correlation, with range [−1, 1], and is defined as

ρ (A,B) = tr
(
A>B

)
· tr
(
A>A

)−1/2
· tr
(
B>B

)−1/2
.

for any two matrices A,B ∈ Rd1×d2 , for any d1 and d2.
The first and second arguments to the correlation are the NFM and AGOP with respect to the

input of layer `. Here, ∂f(x)
∂x`

∈ Rk`×1 denotes the gradient of the function f with respect to the
intermediate representation x`. For simplicity, we may concatenate these gradients into a single
matrix ∂f(X)

∂x`
∈ Rn×k` . Note we consider scalar outputs in this work, though the NFA relation

is identical when there are c ≥ 1 outputs, where in this case ∂f(x)
∂x`

∈ Rk`×c is the input-output
Jacobian of the model f .

We note that while the NFA states the correlation is approximately 1, in practice, the NFM
and AGOP are highly correlated with correlation less than 1 (see e.g. Figure 2), where the final
correlation depends on many aspects of training and architecture choice. For example, the final
value of the NFA can be sensitive to the magnitude of the initial weights (e.g. first column of
Figure 2). We parameterize this magnitude by the initialization scale, s`, for layer `, where the
initial weights are sampled i.i.d. as W (`)

ij ∼ N
(

0, s`k`

)
.

The relation between the NFM and the AGOP is significant, in part, because the AGOP of a
model with respect to the first-layer inputs will approximate the expected gradient outer product
(EGOP) of the target function [15] for networks that well-approximate the target function. In par-
ticular, as we will see later with the example of a low rank polynomial, the EGOP of the target
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Layer 1

Layer 2

Figure 2: Uncentered and centered NFA correlations for a two hidden layer MLP trained on data
drawn from a standard Normal distribution on the chain monomial task of rank r = 5. Only, the
initialization scale of the first layer weights is varied, while s` = 1 for ` > 0. The top row shows
the values for layer 1, while the bottom row are the values for layer 2. Train (test) losses are scaled
by the maximum train (test) loss achieved so that they are between 0 and 1. Here width is 256, the
input dimension is 32, and the dataset contains 256 points.

function contains task-specific structure that is completely independent of the model used to esti-
mate it. Where the labels are generated from a particular target function y(x) : Rd → R on data
sampled from a distribution µ, the EGOP is equal to,

EGOP(y, µ) = Ex∼µ

[
∂y

∂x

∂y

∂x

>
]
. (2)

If the NFA holds, the correlation of the EGOP and the AGOP at the end of training also implies
high correlation between the NFM of the first layer and the EGOP, so that the NFM has encoded
this task-specific structure.

To demonstrate the significance of the approximate proportionality between the NFM and the
AGOP in successfully trained networks, we return to the chain-monomial low rank task. In this case,
EGOP(y, µ) will be rank r, where r is much less than the ambient dimension (Figure 1). Similarly,
the AGOP of the trained model resembles the EGOP. In this case the NFA implies that the NFM
also resembles the EGOP. Therefore, the neural network has learned the model-independent and
task-specific structure of the chain-monomial task in the right singular values and vectors of the first
layer weight matrix, as these are determined by the NFM. As a demonstration of this fact, the NFM
of a trained neural network can be recovered up to high correlation from the AGOP of a fixed kernel
method on real datasets [13].

2.2. Alignment decomposition

In order to understand the NFA, it is useful to decompose the AGOP. Doing so will allow us to show
that the NFA can be interpreted as an alignment between weight matrices and the pre-activation
tangent kernel (PTK).
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For any layer `, we can re-write the AGOP as,

Ḡ` = (W (`))>K(`)W (`), K(`) ≡ ∂f(X)

∂h`

>∂f(X)

∂h`

This gives us the following proposition:

Proposition 2 (Alignment decomposition of NFA)

ρ
(
F`, Ḡ`

)
= ρ

(
(W (`))>W (`), (W (`))>K(`)W (`)

)
.

This alignment holds trivially and exactly if K(`) is the identity. However, the correlation can
be high in trained networks even with non-trivial K(`). For example, in the chain monomial task
(Figure 1), K(0) is far from identity (standard deviation of its eigenvalues is 5.9 times its average
eigenvalue), but the NFA correlation is 0.93 at the end of training. We also note that if K(`) is in-
dependent of W (`), the alignment is lower than in trained networks; in the same example, replacing
K(0) with a matrix Q with equal spectrum but random eigenvectors greatly reduces the correlation
to 0.53 and qualitatively disrupts the structure relative to the NFM (Figure 1, second row). We show
the same result for neural networks trained on the CelebA dataset (see Appendix I). Therefore, the
NFA has to do with the alignment of the left eigenvectors of W (`) with K(`) in addition to spectral
considerations.

2.3. Centering the NFA isolates weight-PTK alignment

We showed that the NFA is equivalent to PTK-weight alignment (Proposition 2), and that it emerges
during training (Figure 2 and Appendix G). We now ask: is the development of the NFA due to
weights aligning with the current PTK, or the alignment of the PTK to the current weights?

In practice, both effects matter, but numerical evidence suggests that changes in the PTK do
not drive the early dynamics of the NFA (Appendix B). Instead, we focus on the alignment of the
weights to the PTK at early times. We can measure this alignment by considering the change in
weights from their initialization.

Let W (`)
0 , W (`), and K(`) be the initial weight matrix, trained weight matrix, and interior fea-

ture matrix, respectively, at layer `, and let W̄ (`) ≡ W (`) −W (`)
0 . We observe that the covariance

of the NFM and AGOP can be decomposed into quantities that depend on the centered weights.
In particular, substituting the definition of W̄ (`), we can see that the numerator of the NFA corre-
lation (W (`))>W (`)(W (`))>K(`)W (`) contains the term (W̄ (`))>W̄ (`)(W̄ (`))>K(`)W̄ (`). We can
perform a similar decomposition for both terms in the denominator. Hence, the centered NFM,
(W̄ (`))>W̄ (`), and the centered AGOP, (W̄ (`))>K(`)W̄ (`), contribute to the NFA correlation, while
also isolating how the change in weights are aligned with the PTK. We define the correlation be-
tween the centered quantities, ρ

(
(W̄ (`))>W̄ (`), (W̄ (`))>K(`)W̄ (`)

)
as the centered NFA (C-NFA),

while referring to the original correlation as the uncentered NFA (UC-NFA) to distinguish them.
Since W̄ = 0 at initialization, the early dynamics of the C-NFA are dominated by W aligning

with the initial K:

Proposition 3 (Centered NFA dynamics) At initialization, W̄>W̄ = W̄>KW̄ = 0, and,

d

d t
(W̄>W̄ ) = 0,

d2

d t2
(W̄>W̄ ) = 2Ẇ>Ẇ ,

d

d t
(W̄>KW̄ ) = 0,

d2

d t2
(W̄>KW̄ ) = 2Ẇ>KẆ .
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The first non-zero derivatives of the two quantities in the C-NFA give us the change in the gram
matrix of W , as well as the change in the AGOP for fixed PTK K. This makes it a useful object to
study weight-PTK alignment.

We note that the C-NFA correlation remains high throughout training across initialization scale
(Figure 2, second column, and Appendix G), but is especially high and invariant to scale early on
in training. This is in contrast to the UC-NFA, whose final value can be extremely sensitive to the
initialization scale (e.g. second row, Figure 2).
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Figure 3: Predicted versus observed correlation of the second derivatives of centered F and Ḡ on
the alignment reversing dataset. Different shaded color curves correspond to four different seeds
for the dataset. The solid blue curve is the average over all data seeds. The rightmost sub-figure is a
scatter plot of the predicted versus observed correlations of these second derivatives, with one point
for each balance value. We instantiate the dataset in the proportional regime where width, input
dimension, and dataset size are all equal to 1024.

3. Theoretically predicting the centered NFA

3.1. Early time C-NFA dynamics

To understand the dynamics of the weights aligning to the PTK, we compute the time derivatives of
the C-NFA at initialization (Appendix A):

Proposition 4 (Centered NFA decomposition) For a fully-connected neural network at initial-
ization, whose weights are trained with gradient descent on a loss function L,

Ẇ>Ẇ = X>L̇KL̇X, Ẇ>KẆ = X>L̇K2L̇X (3)

where L̇ is the n× n diagonal matrix of logit derivatives

L̇ ≡ diag (∂L/∂f)

We immediately see from these equations how gradient-based training can drive the NFA. Even
though the NFA doesn’t explicitly involve the loss, the gradient descent dynamics of the NFM and
AGOP depend on the labels in a similar way, and differ by a factor of the kernel K - similar to how
the AGOP and NFM differ by a factor of K. The derivatives are perfectly correlated if K ∝ K2,
however even in the general case they have positive correlation.

In order to understand the correlation more quantitatively, we will focus on the case of mean-
squared error (MSE) loss in the rest of this work. Here L̇ corresponds to the diagonal matrix of the
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residuals y−f(x). If the outputs of the network is 0 on the training data, then L̇ = Y ≡ diag (y), the
labels themselves. In that case, the correlation of the time derivatives at initialization is a function
of the input-label covariances as well as the PTK matrix:

ρ
(
Ẇ>Ẇ , Ẇ>KẆ

)
= tr

(
X>YKY XX>YK2Y X

)
· tr
(

(X>YKY X)2
)−1/2

· tr
(

(X>YK2Y X)2
)−1/2 (4)

In general we expect that these quantities can self-average under the appropriate high-dimensional
limits. It is helpful then to write down the average (over initializations) of the covariance. Taking
expectation of the first factor,

E
[
tr
(
X>YKY XX>YK2Y X

)]
=

tr
(
X>Y E [K]Y XX>Y E

[
K2
]
Y X

)
+ tr

(
Cov

(
X>YKY X,X>YK2Y X

)) (5)

Similar decompositions exist for the denominator terms.
The simplest limit is the NTK regime where the width tends to infinity with fixed number of

data points and input dimension. Here the PTK matrix will approach its expectation, and the second,
covariance term above will tend to 0. This suggests that the first (mean) term encodes much of the
interesting phenomenology near initialization for large networks. We use this fact to design a dataset
that interpolates between small and large initial derivatives of the C-NFA, even in the non-NTK
regime, which will help us demonstrate the validity of our random matrix theory approach.

We focus most of our random matrix theory analysis on a one-hidden layer network, as the
calculations quickly become complicated with depth. However, we also show that the mean term
can be used to approximately predict the NFA value for Gaussian data with different spectral decay
rates for more complicated networks (see Appendix C).

3.2. Exact predictions with one hidden layer, quadratic activation

We can capture the behavior of both the mean and covariance terms from Equation (5) in certain
high dimensional settings. In particular for one hidden layer neural networks with quadratic acti-
vations, we can exactly predict the value of Equation (5) in the high dimensional limit. We make
the assumption that X and Y are (asymptotically) freely independent of the parameters at initial-
ization, and that the resulting average is close to the value of any specific network initialization
(self-averaging). For more details on the assumptions, see Appendix E.

To illustrate our analysis, we derive here the numerator of Equation (4). LetM (4)
X|Y = (X>Y X)2,

and M (2)
X = X>X , and Fa = W>diag

(
a2
)
W . Then,

tr
(
X>YKY XX>YK2Y X

)
= tr

(
M

(4)
X|Y FaM

(4)
X|Y FaM

(2)
X Fa

)
.

We can simplify this alternating product using standard results from random matrix theory, and
factor the parameter and data contributions at the cost of increasing the number of terms in the
expression (Appendix E).
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In the simplified case of isotropic data X>X = I , we have:

tr
(
X>YKY XX>YK2Y X

)
= tr

(
M

(4)
X|Y

)2
tr
(
F 3
a

)
+ tr (Fa) tr

(
F 2
a

)
tr
(

(M̄
(4)
X|Y )2

)
.

(6)

From these random matrix calculations, we see that the correlations of the derivatives are deter-
mined by traces of powers of M (4)

X|Y (and M (2)
X by the calculations in Section E), which is specific

to the dataset, and Fa, which is specific to the architecture and initialization.

Manipulating the C-NFA To numerically explore the validity of the random matrix theory cal-
culations, we need a way to generate datasets with different values of ρ

(
Ẇ>Ẇ , Ẇ>KẆ

)
. We

construct a random dataset called the alignment reversing dataset, parameterized by a balance pa-
rameter γ ∈ (0, 1] to adversarially disrupt the NFA near initialization in the regime that width k,
input dimension d, and dataset size n are all equal (n = k = d = 1024). By Proposition 10, for the
aforementioned neural architecture, the expected second derivative of the centered NFM satisfies,
E
[
Ẇ>Ẇ

]
= X>Y E [K]Y X = (X>Y X)2, while the expected second derivative of the centered

AGOP, E
[
Ẇ>KẆ

]
= X>Y E

[
K2
]
Y X , has an additional component X>Y X ·X>X ·X>Y X .

Our construction exploits this difference in that X>X becomes adversarially unaligned to X>Y X
as the balance parameter decreases. In our experiment, we sample multiple random datasets with
this construction and compute the predicted and observed correlation of the second derivatives of
the centered NFA at initialization.

The construction exploits that we can manipulate X>Y X ·X>X ·X>Y X freely of the NFM
using a certain choice of Y (see Appendix F for details of the construction). We design the dataset
such that this AGOP-unique term is close to identity, while the NFM second derivative has many
large off-diagonal entries, leading to low correlation between the second derivatives of the NFM
and AGOP.

The centered NFA correlations predicted with random matrix theory closely match the observed
values (Figure 3), across both individual random seeds as well as the average values across them.
Crucially, a single neural network is used across the datasets, confirming the validity of the self-
averaging assumption. The variation in the plot across seeds come from randomness in the sample
of the data, which cause deviations from the adversarial construction.
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Appendix A. Omitted proofs of propositions in the main text

Proof [Proof of Proposition 4] At initialization, we have, Ẇ = ∂f(X)
∂h1

>
L̇X . Therefore, using that

K ≡ ∂f(X)
∂h1

∂f(X)
∂h1

>
,

Ẇ>Ẇ = X>L̇∂f(X)

∂h1

∂f(X)

∂h1

>
L̇X = X>L̇KL̇X ,

and,

Ẇ>KẆ = X>L̇∂f(X)

∂h1
K
∂f(X)

∂h1

>
L̇X

= X>L̇∂f(X)

∂h1

∂f(X)

∂h1

>∂f(X)

∂h1

∂f(X)

∂h1

>
L̇X

= X>L̇K2L̇X .

Appendix B. Additional centerings of the NFA

Double-centered NFA One may additionally center the PTK feature map to understand the co-
evolution of the PTK feature covariance and the weight matrices. In this work, we consider such a
centering that we refer to as the double-centered NFA.

Ansatz 5 (Double-centered NFA)

(W̄ (`))>W̄ (`) ∝ (W̄ (`))>K̄(`)W̄ (`) ,

where K̄(`) =
(
∂f(X)
∂h`

− ∂f0(X)
∂h`

)> (
∂f(X)
∂h`

− ∂f0(X)
∂h`

)
, and f0 is the neural network at initializa-

tion.

However, the double-centered NFA term corresponds to higher-order dynamics that do not sig-
nificantly contribute the centered and uncentered NFA (Figure 4) when initialization is large or for
early periods of training. Note however this term becomes relevant over longer periods of training.

Isolating alignment of the PTK to the initial weight matrix One may also center just the PTK
feature map, while substituting the initial weights for W to isolate how the PTK feature covariance
aligns to the weight matrices. To measure this alignment, we consider the PTK-centered NFA.

Ansatz 6 (PTK-centered NFA)

(W
(`)
0 )>W

(`)
0 ∝ (W

(`)
0 )>K̄(`)W

(`)
0 ,

where W (`)
0 is the initial weight matrix at layer `.

However, this correlation decreases through training, indicating that the correlation of these quanti-
ties does not drive alignment between the uncentered NFM and AGOP (Figure 5).
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Figure 4: Ratio of the unnormalized double-centered NFA correlation to the centered NFA
correlation throughout neural network training. In particular, we plot tr

(
W̄>W̄W̄>K̄W̄

)
·

tr
(
W̄>W̄W̄>KW̄

)−1 throughout training for both layers of a two-hidden layer MLP with ReLU
activations.

Appendix C. Extending our theoretical predictions to depth and general activations

Precise predictions of the C-NFA become more complicated with additional depth and general ac-
tivation functions. However, we note that the deep C-NFA will remain sensitive to a first-order
approximation in which K is replaced by its expectation. We demonstrate that this term qualita-
tively captures the behavior of the C-NFA for 2 hidden layer architectures with quadratic and, to a
lesser extent, ReLU activation functions in Figure 6. In this experiment, we sample Gaussian data
with mean 0 and covariance with a random eigenbasis. We parameterize the eigenvalue decay of the
covariance matrix by a parameter α, called the data decay rate, so that the eigenvalues have values
λk = 1

1+kα . As α approaches 0 or∞ the data covariance approaches a projector matrix.
In this experiment, we see that the data covariance spectrum will also parameterize the eigen-

value decay of E [K], allowing us to vary how close the expected PTK matrix (and its dual, the PTK
feature covariance) is from a projector, where the NFA holds exactly. We see that for intermediate
values of α, both the observed and the predicted derivatives of the C-NFA decreases in value.

We plot the observed values in two settings corresponding to different asymptotic regimes. One
setting is the proportional regime, where n = k = d = 128. The other is the NTK regime where
n = d = 128 and k = 1024. For the quadratic case, as the network approaches infinite width,
the prediction more closely matches the observed values. Additional terms corresponding to the
nonlinear part of φ′ in ReLU networks, the derivative of the activation function, are required to
capture the correlation more accurately in this case.

Appendix D. Proofs and derivations

Proof [Proof of Proposition 3] Consider the second derivatives of the NFM and the AGOP.

d

d t
(W̄>W̄ ) = Ẇ>W̄ + W̄>Ẇ .

Then,

12
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Figure 5: PTK-centered NFA correlation throughout training for both layers of a two-hidden layer
MLP with ReLU activations on Gaussian data with two different spectra.
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Figure 6: Observed versus the first-order predicted C-NFA for the input to the first layer of a two
hidden layer MLP. The dashed line is neural network width k = n = d = 128, where n and d are
the number of data point and data dimension, respectively, while the solid line uses n = d = 128
and k = 1024.

d2

d t2
(W̄>W̄ ) = 2Ẇ>Ẇ + Ẅ>W̄ + W̄>Ẅ .

At initialization W̄ = 0, therefore,

W̄>W̄ = 0,
d

d t
(W̄>W̄ ) = 0,

d2

d t2
(W̄>W̄ ) = 2Ẇ>Ẇ . (7)

Meanwhile, for the (centered) AGOP,
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d

d t
(W̄>KW̄ ) = Ẇ>KW̄ + W̄>K̇zW̄ + W̄>KẆ .

Then,

d2

d t2
(W̄>KW̄ ) = Ẅ>KW̄ + Ẇ>K̇W̄ + Ẇ>KzẆ

+ Ẇ>KẆ + W̄>K̇Ẇ + W̄>KẄ

+ Ẇ>K̇W̄ + W̄>K̈W̄ + W̄>K̇Ẇ .

At initialization,

W̄>KW̄ = 0,
d

d t
(W̄>KW̄ ) = 0, (8)

d2

d t2
(W̄>KW̄ ) = 2Ẇ>KẆ . (9)

Therefore, the correlation between the centered neural feature matrix and the centered AGOP at
initialization is determined by,

ρ
(
Ẇ>Ẇ , Ẇ>KẆ

)
.

Both sides simplify at initialization:

Ẇ>Ẇ = X>Y KY X, Ẇ>KẆ = X>Y K2Y X ,

where K is its value at initialization.

Appendix E. Free probability calculations of C-NFA

In order to understand the development of the NFA, we analyze the centered NFA in the limit that
learning rate is much smaller than the initialization for a one hidden layer MLP with quadratic
activations. We write this particular network as,

f(x) = a>(Wx)2 ,

where a ∈ R1×k and W ∈ Rk×d, where d is the input dimension and k is the width. In this case,
the NFA has the following form,

ρ
(
F, Ḡ

)
=

tr
(
X>YKY XX>YK2Y X

)
tr ((X>YKY X)2)

−1/2 tr ((X>YK2Y X)2)
−1/2 , (10)

where K = XW>diag (a)2WX>.
We assume three properties hold in the finite dimensional case we consider, that will hold

asymptotically in the infinite dimensional limit.
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Assumption 7 (Self-averaging) We assume that computing the average of the NFA quantities across
initializations is equal to the quantities themselves in the high-dimensional limit.

Assumption 8 (Asymptotic freeness) We assume that the collections {X,Y } and {W,a} are asymp-
totically free with respect to the operator E [tr(·)], where tr[M ] = 1

n

∑n
i=1Mii.

Assumption 9 (Commutativity of expectation) We will also make the approximation that the ex-
pectation commutes with ratio and square root.

E [ρ(A,B)] = E

[
tr(A>B)√

tr(A>A)tr(B>B)

]
≈

E
[
tr(A>B)

]√
E [tr(A>A)]E[tr(B>B)]

(11)

We will compute the expected values of the centered NFA under these assumptions. In the
remainder of the section we will drop the E [·] in the trace for ease of notation.

E.1. Free probability identities

The following lemmas will be useful: let {C̄i} and {Ri} be freely independent of each other with
respect to tr, with tr[C̄i] = 0. Alternating words have the following products:

tr[C̄1R1] = 0 (12)

tr[C̄1R1C̄2R2] = tr[R1]tr[R2]tr[C̄1C̄2] (13)

tr[C̄1R1C̄2R2C̄3R3] = tr[R1]tr[R2]tr[R3]tr[C̄1C̄2C̄3] (14)

tr[C̄1R1C̄2R2C̄3R3C̄4R4] = tr[R1]tr[R2]tr[R3]tr[R4]tr[C̄1C̄2C̄3C̄4]+

tr[R1]tr[R3]tr[R̄2R̄4]tr[C̄1C̄2]tr[C̄3C̄4] + tr[R2]tr[R4]tr[R̄1R̄3]tr[C̄2C̄3]tr[C̄1C̄4]
(15)

where R̄i ≡ Ri − tr[Ri].
Applying these identities to the one hidden layer quadratic case, we use the following defini-

tions:
R = W>diag

(
a2
)
W, A = (X>Y X)2, B = X>X (16)

Crucially, R is freely independent of the set {A,B}. We will also use the notation M̄ to indicated
the centered version of M , M̄ = M − tr[M ].

E.2. Numerator term of NFA

The numerator in Equation (10) is

tr
(
X>YKY XX>YK2Y X

)
= tr (ARARBR) (17)

Re-writing A = Ā+ tr[A] and B = B̄ + tr[B] we have:

tr
(
X>YKY XX>YK2Y X

)
= tr

(
(Ā+ tr[A])R(Ā+ tr[A])R(B̄ + tr[B])R

)
(18)
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This expands to

tr
(
X>YKY XX>YK2Y X

)
= tr

(
ĀRĀRB̄R

)
+ 2tr (A) tr

(
ĀRB̄R2

)
+ tr (B) tr

(
ĀRĀR2

)
tr (A)2 tr

(
B̄R3

)
+ 2tr (A) tr (B) tr

(
ĀR3

)
+ tr (A)2 tr (B) tr (R)3

(19)

Using the identities we arrive at:

tr
(
X>YKY XX>YK2Y X

)
= tr[A]2tr[B]tr

(
R3
)

+ 2tr[A]tr[R2]tr[R]tr
(
ĀB̄
)

+ tr[B]tr[R]tr[R2]tr
(
Ā2
)

+ tr[R]3tr
(
Ā2B̄

)
(20)

E.3. First denominator term of NFA

The first denominator term in Equation (10) is

tr
(
X>YKY XX>YKY X

)
= tr (ARAR) (21)

This is a classic free probability product:

tr
(
X>YKY XX>YKY X

)
= tr[A2]tr[R]2 + tr[A]2tr

(
R2
)
− tr[A]2tr[R]2 (22)

which can be derived from the lemmas.

E.4. Second denominator term of NFA

For the second denominator term of Equation (10) we have

tr
(
X>YK2Y XX>YK2Y X

)
= tr (ARBRARBR) (23)

Expanding the first A we have

tr
(
X>YK2Y XX>YK2Y X

)
= tr

(
ĀRBRARBR

)
+ tr[A]tr

(
R2BRARB

)
(24)

Next we expand the first B:

tr
(
X>YK2Y XX>YK2Y X

)
= tr

(
ĀRB̄RARBR

)
+ tr[B]tr

(
ĀR2ARBR

)
+ tr[A]tr[B]tr

(
R3ARB

)
+ tr[A]tr

(
R2B̄RARB

) (25)

The next A gives us

tr
(
X>YK2Y XX>YK2Y X

)
= tr

(
ĀRB̄RĀRBR

)
+ 2tr[A]tr

(
ĀRB̄R2BR

)
+ tr[B]tr

(
ĀR2ĀRBR

)
+ 2tr[A]tr[B]tr

(
R3ĀRB

)
+ tr[A]2tr[B]tr

(
R4B

)
+ tr[A]2tr

(
R2B̄R2B

)
(26)
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Expanding the final B we have

tr
(
X>YK2Y XX>YK2Y X

)
= tr

(
ĀRB̄RĀRB̄R

)
+ 2tr[B]tr

(
ĀRB̄RĀR2

)
+ 2tr[A]tr

(
ĀRB̄R2B̄R

)
+ 4tr[A]tr[B]tr

(
R3ĀRB̄

)
+ 2tr[A]tr[B]2tr

(
R4Ā

)
+ 2tr[A]2tr[B]tr

(
R4B̄

)
+ tr[A]2tr[B]2tr[R4] + tr[A]2tr[R2B̄R2B̄] + tr[B]2tr[R2ĀR2Ā]

(27)

Now all terms are in the form of alternating products from the lemma. This means we can factor
out the non-zero traces of the other terms. Simplifying we have:

tr
(
X>YK2Y XX>YK2Y X

)
= tr[R]4tr

(
(ĀB̄)2

)
+ 2tr[R]2(tr[R2]− tr[R]2)tr[ĀB̄]2

+ 2tr[R]2tr[R2]
(
tr[B]tr

(
Ā2B̄

)
+ tr[A]tr

(
ĀB̄2

))
+ 4tr[A]tr[B]tr[R3]tr[R]tr

(
ĀB̄
)

+ tr[A]2tr[B]2tr[R4]

+ tr[A]2tr[B̄2]tr[R2]2 + tr[Ā]2tr[B2]tr[R2]2

(28)

All terms of the NFA are now in terms of traces of the matrices A, B, and R and functions
on each term separately. The matrices A and B are determined by the data, while the moments of
the eigenvalues of R are determined by the initialization distribution of the weights in the neural
network, and neither training nor the data.

Appendix F. Alignment reversing dataset

The data consists of a mixture of two distributions from which two subsets of the dataX1 andX2 are
sampled from, and is parametrized by a balance parameter γ ∈ (0, 1] and two variance parameters
ε1, ε2 > 0. The subset X1 which has label y1 = 1 and constitutes a γ fraction of the entire dataset,
is sampled from a multivariate Gaussian distribution with mean 0 and covariance

Σ = 11> + ε1 · I .

Then the second subset, X2, is constructed such that X>2 X2 ≈ (X>1 X1)
−2, and has labels y2 =

0. Then, for balance parameter γ sufficiently small, the AGOP second derivative approximately
satisfies,

E
[
Ẇ>KẆ

]
∼ X>Y XX>XX>Y X

= X>1 X1X
>XX>1 X1

≈ X>1 X1X
>
2 X2X

>
1 X1

≈ I ,

In contrast, the NFM second derivative, E
[
Ẇ>Ẇ

]
= (X>Y X)2 = (X>1 X1)

2 ≈ Σ2, will be
significantly far from identity.

Motivated by this derivation, we construct X2 by the following procedure:

1. Extract singular values S1 and right singular vectors U1 from a singular-value decomposition
(SVD) of X>1 X1.
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2. Extract the left singular vectors V2 from a sample X̃2 that is sampled from the same distribu-
tion as X1.

3. Construct X2 = V2S
−1
1 U>1 .

4. Where X = X1 ⊕X2, Set X ← X + ε2Z, where Z ∼ N (0, I).

5. Set y ← y + 10−5 · 1.

Note that U1S
−1
1 V >2 V2S

−1
1 U>1 = U1S

−2
1 U>1 = (X>1 X1)

−2, therefore, we should set X2 =
V2S

−1
1 U>1 to get X>2 X2 = (X>1 X1)

−2. Regarding the variance parameters, in practice we set
ε1 = 0.5 and ε2 = 10−2.

Proposition 10 (Expected NFM and AGOP) For a one hidden layer quadratic network, f(x) =
a>(Wx)2, with a ∼ N (0, I) and W ∼ 1√

k
· N (0, I),

Ea,W
[
Ẇ>Ẇ

]
= (X>Y X)2 ,

and,

Ea,W
[
Ẇ>KẆ

]
= 3 · tr

(
X>X

)
· (X>Y X)2

+ 6X>Y XX>XX>Y X

Proof [Proof of Proposition 10]

E
[
Ẇ>Ẇ

]
= X>Y XE

[
W>0 diag (a)2W0

]
X>Y X

= (X>Y X)2 .

Further,

E
[
Ẇ>KẆ

]
= X>Y E

[
K2
]
Y X .

We note that,

K2 = W>0 diag (a)2W0X
>XW>0 diag (a)2W0 (29)

=
k∑

s1,s2

n∑
α

d∑
p1,p2

(30)

a2s1a
2
s2Ws1,p1Xα,p1Xα,p2Ws2,p2XWs1W

>
s2X

> . (31)
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Therefore, applying Wick’s theorem, element i, j of K2 satisfies,

E
[
K2
ij

]
=

k∑
s

n∑
α

d∑
p1,p2

E
[
a4sWs,p1Xα,p1Xα,p2Ws,p2X

>
i WsW

>
s Xj

]

=
k∑
s

n∑
α

d∑
p1,p2,q1,q2

E
[
a4sWs,p1Ws,p2Ws,q1Ws,q2Xα,p1Xα,p2Xi,q1Xj,q2

]
= 3

k∑
s

n∑
α

d∑
p1,p2,q1,q2(

E [Ws,p1Ws,p2 ]E [Ws,q1Ws,q2 ] +

E [Ws,p1Ws,q1 ]E [Ws,p2Ws,p2 ] +

E [Ws,p1Ws,q2 ]E [Ws,p2Ws,q1 ]
)

·Xα,p1Xα,p2Xi,q1Xj,q2

= 3

n∑
α

d∑
p1,p2,q1,q2(

δp1p2δq1q2 + δp1q1δp2q2 + δp1q2δp2q1

)
·Xα,p1Xα,p2Xi,q1Xj,q2

= 3
n∑
α

( d∑
p1,q1

Xα,p1Xα,p1Xi,q1Xj,q1

+
d∑

p1,p2

Xα,p1Xα,p2Xi,p1Xj,p2

+

d∑
p1,p2

Xα,p1Xα,p2Xi,p2Xj,p1

)
= 3 · tr

(
X>X

)
·X>i Xj + 3

n∑
α

X>αXiX
>
αXj

+ 3
n∑
α

X>αXjX
>
αXi

= 3 · tr
(
X>X

)
·X>i Xj + 3XiX

>XXj + 3XjX
>XXi .

Finally, we conclude,

E
[
K2
]

= 3
(

tr
(
X>X

)
XX> + 2XX>XX>

)
,

giving the second statement of the proposition.
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Appendix G. Varying the data distribution

We verify that our observations for isotropic Gaussian data hold even when the data covariance has
a significant spectral decay. (Figures 7 and 8). We again consider Gaussian data that is mean 0
and where the covariance is constructed from a random eigenbasis. In Figure 7, we substitute the
eignevalue decay as λk ∼ 1

1+k , while in Figure 8, we use λk ∼ 1
1+k2

. We plot the values of the
UC-NFA, C-NFA, train loss, and test loss throughout training for the first and second layer of a two
hidden layer network with ReLU activations, while additionally varying initialization scale. Similar
to Figure 2, we observe that the C-NFA is more robust to the initialization scale than the UC-NFA,
and UC-NFA value become high through training, while being small at initialization. We see that
the test loss improves for smaller initializations, where the value of the C-NFA and UC-NFA are
higher.
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Figure 7: Centered NFA correlations. Data covariance decay rate λk ∼ 1
1+k . Top row is layer 1,

bottom row is layer 2. Train (test) losses are scaled by the maximum train (test) loss achieved so
that they are between 0 and 1.

Appendix H. Experimental details

We describe the neural network training and architectural hyperparameters in the experiments of
this paper. Biases were not used for any networks. Further, in all polynomial tasks, we scaled the
label vector to have standard deviation 1.

Corrupted AGOP For the experiments in Figure 1, we used n = 384 data points, d = 32, k =
128 as the width in all layers, isotropic Gaussian data, initialization scale 0.01 in the first layer and
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Figure 8: Centered NFA correlations. Data covariance decay rate λk ∼ 1
1+k2

. Top row is layer 1,
bottom row is layer 2. Train (test) losses are scaled by the maximum train (test) loss achieved so
that they are between 0 and 1.

default scale in the second. We used ReLU activations and two hidden layers. For the experiments
in Figure 2,7,8,4, and 5, we used a two hidden layer network with ReLU activations, learning rate
0.05, 800 steps of gradient decent, and took correlation/covariance measurements every 5 steps.

Alignment reversing dataset For the experiments in Figure 3, we used k = n = d = 1024 for
the width, dataset size, and input dimension, respectively. Further, the traces of powers of Fa are
averaged over 30 neural net seeds to decouple these calculated values from the individual neural net
seeds. The mean value plotted in the first two squares of figure is computed over 10 data seeds.

Predictions with depth For the Deep C-NFA predictions (Figure 6), we used n = 128, d = 128,
initialization scale of 1. The low rank task is just the chain monomial of rank r = 5. The high rank
polynomial task is y(x) =

∑d
i=1(Qx)2i , where Q ∈ Rd×d is a matrix with standard normal entries.

Real datasets For the experiments on CelebA, we train a two hidden layer network on a balanced
subset of 7500 points with Adam with learning rate 0.0001 and no weight decay. We use initializa-
tion scale 0.02 in the first layer, and width 128. We train for 500 epochs. We pre-process the dataset
by scaling the pixel values to be between 0 and 1.
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Appendix I. Experiments on real datasets

We replicate Figures 1 on celebrity faces (CelebA). We begin by showing that one can disrupt the
NFA correspondence by replacing the PTK feature covariance with a random matrix of the same
spectral decay. For this example, we measure the Pearson correlation, which subtracts the mean of
the image. I.e. ρ̄(A,B) ≡ ρ (A−m(A), B −m(B)), where m(A),m(B) are the average of the
elements of A and B.

W>W (NFM) W>KW (AGOP) W>QW

Figure 9: Various feature learning measures for the CelebA binary subtask of predicting glasses.
The diagonals of the NFM

(
W>W

)
(first plot) and AGOP

(
W>KW

)
(second plot) of a fully-

connected network are similar to each other. Replacing K with a symmetric matrix Q with
the same spectrum but independent eigenvectors obscures the low rank structure (third plot),
and reduces the Pearson correlation of the diagonal from ρ̄

(
diag (F ) ,diag

(
Ḡ
))

= 0.91 to
ρ̄
(
diag (F ) , diag

(
W>QW

))
= 0.04.
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