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Abstract
Message passing is the dominant paradigm in Graph Neural Networks. Its effi-
ciency, however, can be limited by the graph’s topology, as information is lost
during propagation due to being oversquashed when travelling through bottle-
necks. Recent efforts have therefore focused on rewiring techniques, which
disconnect the input graph originating from the data and the computational graph.
A prominent approach for this is to use discrete graph curvature measures to iden-
tify and rewire around bottlenecks. In this work, we reevaluate the performance
gains that curvature-based rewiring brings to non-synthetic datasets. We show
that edges selected during rewiring do not satisfy theoretical criteria identifying
bottlenecks, implying that they do not necessarily oversquash information. Subse-
quently, we demonstrate that reported accuracies after rewiring on these datasets
are outliers originating from sweeps of training and rewiring hyperparameters,
instead of consistent performance gains. In conclusion, our analysis nuances the
effectiveness of curvature-based rewiring in real-world datasets and brings a new
perspective on the methods to evaluate GNN accuracy improvements.

1 Introduction
The field of Graph Neural Networks (GNNs) has undergone rapid development over the past few
years. Both in terms of architecture variations [1–4] as theoretical understanding [5–8]. Due to
their large flexibility GNNs have been applied in a variety of domains, from physical sciences to
knowledge graphs or social sciences [9, 10]. The basis of the message passing paradigm of GNNs
[11] rests on the idea of information diffusion where messages, namely the node’s feature vector, are
propagated along the edges of the graph to their neighbours.

This approach has been shown to be very successful, as it combines both topological information
(the graph) and specific node information (feature vectors) for predictions. However, this paradigm
can also suffer from drawbacks. Recently, a lot of attention has been drawn to the problem of
oversquashing [12] where structural properties of the graph, called bottlenecks, cause a loss of
information as the messages passing through them get too compressed. Research efforts have
therefore focused on understanding this phenomenon [13, 14] as well as on ways to alleviate it. The
most pragmatic approach consists of rewiring, i.e., a targeted addition or removal of edges.

Contributions. In this work, we investigate the role of rewiring to improve the performance of
GNNs. Discrete notions of curvatures on graphs can be used to detect the location of bottlenecks,
allowing for the development of algorithmic rewiring methods such as Stochastic Discrete Ricci
Flow [15]. While work on synthetic datasets does indicate the occurrence of oversquashing [13, 14],
we here reevaluate performance gains of curvature-based rewiring, specifically Stochastic Discrete
Ricci Flow (SDRF) [15], on non-synthetic, benchmark datasets. First, we show experimentally that
theoretical conditions from Topping et al. [15] to identify edges that cause bottlenecks are not met in
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most cases when rewiring. Second, with this nuanced perspective on the theory underlying rewiring
algorithms, we reevaluate the performance gains they bring. We compare accuracies obtained when
training on the original graphs as well as graphs rewired according to different curvature measures.
Our results show limited measurable improvements when considering results from hyperparameter
sweeps globally. We find that previously reported results correspond to hyperparameter tuning outliers
and that rewiring does not bring a systematic performance improvement on all datasets. Consequently,
our work highlights the importance of bridging theory and experiment beyond synthetic datasets
while reevaluting the current effectiveness of rewiring.

2 Preliminaries
Graph Neural Networks. Given a graph G = (V,E) with a set of nodes V , which are described
by a feature vector xi ∈ Rn0 , and a set of edges E ⊂ V ×V we write the adjacency matrix as A. The
representation of node i at layer l is h(l)

i (h0
i = xi). Given layer dependent, differentiable functions

ϕl : Rnl × Rn′
l → Rnl+1 and ψl : Rnl × Rnl → Rn′

l , we write the message passing function as

h
(l+1)
i = ϕl

(
h
(l)
i ,

n∑
j=1

Âijψ
l
(
h
(l)
i ,h

(l)
j

))
. (1)

Here, Â denotes A augmented by self-loops and then normalised by D̃ = D + I , where D denotes
the diagonal degree matrix. More precisely, we have Â = D̃− 1

2 · Ã · D̃− 1
2 .

Curvature and Oversquashing. Applying discrete curvature notions to detect local bottlenecks in
graphs originally stems from differential geometry. Ricci curvature describes whether two geodesics
which start close to each other, either diverge (negative curvature), stay parallel (zero curvature) or
converge (positive curvature). Prominent examples are respectively the hyperbolic space, Euclidean
space and the sphere. The graph analogues for these spaces are trees, four-cycles and triangles whose
occurrence around a given edge is captured by the discrete curvature notions. The most fundamental
result connecting curvature with oversquashing is given in Topping et al. [15] where theorem 4
identifies edges with a very negative Balanced Forman curvature (BFc) [15] as sources of distorted
information for a large set of nodes in the local neighbourhood of a given edge i ∼ j.

Theorem 4 [15]. Consider a MPNN as in Equation 1. Let i ∼ j with di ≤ dj and assume that:

1. |∇ϕl| ≤ α and |∇ψl| ≤ β with L ≥ 2 the depth of the MPNN.
2. There exists δ > 0 such that1 δ < 1√

(di∨dj)
; δ < 1

γmax
for which BFc(i, j) ≤ −2 + δ.

Then there exists Qj ⊂ S2(i) satisfying |Qj | > 1
δ and for 0 ≤ l0 ≤ L− 2 we have

1

|Qj |
∑
k∈Qj

∣∣∣∣∣∂h(l0+2)
k

∂hl0i

∣∣∣∣∣ < (αβ)2δ
1
4 . (2)

Theorem 4 above gives a reason to rewire the graph around negatively curved edges as it can increase
the δ and therefore soften the bound in Eq. (2). However, we will now look at how well Theorem 4
can be applied to benchmark datasets by seeing if edges selected during rewiring are contributing to
the bottleneck as indicated by condition 2 (and a less stringent but sufficient version we call condition
2b). In the second phase, we take a closer look at the performances that different curvature measures
deliver. We then take a look at the distribution of accuracies obtained when sweeping parameters.

3 Results
3.1 Benchmark datasets have a lack of sufficiently negatively curved edges

In our experiments, we make exclusive use of the Stochastic Discrete Ricci Flow (SDRF) [15]
algorithm for rewiring, which works in two steps. First, it selects the most negatively curved edge

1We write di for the degree of node i. The common neighbours of node i and j are ♯△(i, j). γmax is the
maximum number of 4-cycles containing edge i ∼ j without diagonals inside. We denote by x∨y

.
= max(x, y).
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based on the curvature measure. Around this edge, all edges that can lead to three-cycles and four-
cycles are considered, and for each candidate edge, the potential improvement of the curvature is
computed. The edge to be added is then selected in a stochastic way, regulated by the temperature
parameter τ , where the probability is determined by the improvement the edge brings to the curvature
of the original edge.

Table 1: For each edge selected by SDRF, we
verify if this edge satisfies condition 2 and its softer
variant, condition 2b (Eq. (3)), of Theorem 4.

Dataset Edges rewired Cond. 2 (%) Cond. 2b (%)
Texas 89 0 (0%) 6 (6.7%)
Cornell 126 0 (0%) 15 (11.90%)
Wisconsin 136 0 (0%) 11 (8.09%)
Chameleon 2441 4 (0.16%) 141 (5.78%)
Actor 1000 11 (1.1%) 237 (23.70%)
Squirrel 787 0 (0%) 34 (4.32%)
Cora 100 0 (0%) 68 (68.0%)
Citeseer 84 0 (0%) 24 (28.57%)
Pubmed 166 25 (15.06%) 116 (69.88%)
MUTAG 3497 0 (0%) 1228 (35.16%)
PROTEINS 50936 0 (0%) 5944(11.67%)

Finally, SDRF also allows, at each iteration, the
removal of (very) positively curved edges, deter-
mined by the threshold curvature value C+. Al-
though different algorithms have been proposed
(for example BORF where edges are added in
batches), we only work with SDRF due to the
simplicity of its approach, allowing us to look
at the impact of the added edges more clearly.

Looking at the condition from Theorem 4, we
experimentally check if the edges in benchmark
datasets satisfy the necessary condition 2, which
identifies the edge as an ‘oversquashing’ edge.
For each edge selected to be rewired we com-
pute the upper threshold δmax(i, j) = BFc(i, j) + 2. For these edges, we then verify if δmax

determined by the curvature is compatible with the condition. From our results in Table 1, we see that
these conditions on δ are seldom satisfied by the graphs in the datasets. However, upon examining
the derivation of the theorem, we find that the degree-based condition is too stringent. The inequality
0 < δ < 1/

√
(di ∨ dj) is solely used to guarantee that δ ≤ 1/♯△, and it is this condition that is

subsequently used in the proof. In the second column of Table 1, we display the number of edges that
satisfy the actual modified condition required, namely

δ ≤ 1

♯△
& δ <

1

γmax
(Condition 2b) . (3)

As this bound is looser, we see that more selected edges satisfy condition 2b, especially when looking
at the citation graphs. However, these numbers still imply that most edges selected do not satisfy the
conditions for Theorem 4, limiting their interpretation as bottlenecks during message passing.

Finally, we can analyse the temporal aspect of edges being selected. Figure 1 shows in which step of
SDRF (in % of maximum number of iterations) the edges that do and do not satisfy condition 2b are
selected to be rewired. It also shows that edges that do satisfy the condition are sometimes close to
the upper bound of 1/♯△ again reducing their interpretation as bottlenecks, as the δ bound on the
Jacobian of the features is therefore looser. This temporal information for both types of edges tells us
that this phenomenon occurs at any time, indicating that this is not a saturation-type effect.

3.2 Hyperparameter dependency of rewiring

Graph rewiring depends on several hyperparameters. We have both training and model hyperparame-
ters as well as the rewiring hyperparameters from the SDRF algorithm. While hyperparameter tuning
is an important aspect of optimising models, we argue here that top results in accuracy should not
be the main judge for a new technique’s performance, but one should consider the overall improve-
ment over a wide array of hyperparameter choices. By looking at the distribution obtained when
performing a hyperparameter sweep on various graph benchmark datasets using different curvature
measures2, instead of solely top performers, we aim to explain the gap between previously reported
accuracies due to rewiring and the experimental results we find on the lack of edges being identified
as bottlenecks. Complete details of this experiment can be found in Appendix C.

Results from hyperparameter sweeps. In Appendix C we display the full distributions originating
from the hyperparameter sweep in Figure 3 together with the top 10% of the reported accuracies
given by hyperparameters, which is presented in Table 2. Overall we find that no curvature measure
consistently shifts the distribution of the mean test accuracy away from the None distribution (meaning
no rewiring) over all datasets.

2In this work we analyse three main branches of discrete curvatures, with variations within the Balanced
Forman curvature (BFc) [15], the Jost and Liu curvature (JLc) [16] and the Augmented Forman Curvature (AFc)
[17]. Further details on the curvature notions can be found in appendix A.

3



The Effectiveness of Curvature-Based Rewiring and the Role of Hyperparameters in GNNs Revisited

0 4 8
0

1.7 × 100

tr
ue

a.
Texas

0 4 8

Cornell

0 5 10

Wisconsin

0 15 30

Chameleon

0

20

40

60

80

%

0 8 16
0

6 × 10 1
tr

ue

Squirrel

0 3 6

Actor

0 6 12

Cora

0 3 6

Citeseer

0 2 4
0

3.5 × 10 1

tr
ue

Pubmed

0 2 4
0

100

MUTAG

0 3 6

PROTEINS

0 3 6
0

1.5 × 100

tr
ue

b.
Texas

0 3 6

Cornell

0 3 6

Wisconsin

0 4 8

Chameleon

0

20

40

60

80

%

0 4 8
0

6 × 10 1

tr
ue

Squirrel

0 3 6

Actor

0 4 8

Cora

0 3 6

Citeseer

0 3 6
0

3.5 × 10 1

tr
ue

Pubmed

0 3 6
0

100

MUTAG

0 3 6

PROTEINS

Figure 1: A visualisation of the edges selected during the SDRF rewiring algorithm. Dotted line
shows y = 1/♯△. a. The panels display edges that do not satisfy condition 2b, both due to δ > 1/♯△
(if the edge is situated above the dotted line) or δ > 1/γmax (if the edge is situated below the dotted
line). b. The panels show the opposite, namely the edges that satisfy condition 2b. This means that
the edge is situated below the dotted line and δ < 1/γmax. The color code of the edges indicates at
which step of the rewiring process (in %) the edge is selected.

4 Conclusion

In our work, we have taken a closer look at the effectiveness of graph-rewiring on benchmark graph
datasets. Our results show that the conditions for oversquashing based on theorems proposed from
the literature are not always met when considering these datasets. This could imply that the edges
selected during rewire do not necessarily cause oversquashing during message-passing and that severe
bottlenecks are in fact not present in these datasets. Although one might interpret oversquashing as a
continuous phenomenon, these results suggest that it is limited to specific graph topologies.

Our analysis is further substantiated by examining the role of hyperparameter sweeping when
benchmarking curvature-based graph rewiring methods. We found that most performance gain is due
to finding an optimal hyperparameter configuration rather than a structural shift in the performance.

The message of our work is twofold. First, it serves as a re-evaluation of curvature-based rewiring
methods, and can importantly influence further development in GNN as we argue that theoretical
results and experiments should be more closely checked. Future work could explore the possibility
of theorem-aware rewiring. Secondly, we argue that future rewiring methods should take into
consideration the dependency of their method on hyperparameters, both GNN and rewiring when
evaluating their performance.
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A Curvature definitions
Curvature notions on graphs depend on topological aspects of the graph with the needed ingredients
being the following. For a simple, undirected graph we consider an edge i ∼ j. We denote by di
the degree of node i and by dj the degree of node j. The common neighbours of node i and node j
are denoted by ♯△(i, j). They correspond to the triangles located at edge i ∼ j. The neighbours of
i (resp. j) that form a four-cycle based at i ∼ j without diagonals inside are denoted by ♯i□ (resp.
♯j□) and the maximum number of four-cycles without diagonals inside that share a common node is
denoted by γmax. We denote by x ∨ y .

= max(x, y) (resp. x ∧ y .
= min(x, y)) the maximum (resp.

minimum) of two real numbers.

In this paper we analyse three main branches of discrete curvatures, with variations within.

First, we consider Balanced Forman Curvature (BFc) [15] and variations thereof:

• Balanced Forman Curvature: For an edge i ∼ j we have BFc(i, j) = 0 if min(di, dj) = 1 and
otherwise

BFc(i, j) =
2

di
+

2

dj
− 2 + 2

|♯△(i, j)|
di ∨ dj

+
|♯△(i, j)|
di ∧ dj

+

(
|♯i□|+ |♯j□|

)
γmax(di ∨ dj)

. (4)

• Balanced Forman Curvature (without four-cycles): Determining the number of four-cycles
without diagonals inside is a costly computational effort, especially for dense graphs. We
therefore analyse the rewiring performance of BFc without these four-cycles to evaluate the need
of more intensive computations. For an edge i ∼ j we have BFc3(i, j) = 0 if min(di, dj) = 1
and otherwise

BFc3(i, j) =
2

di
+

2

dj
− 2 + 2

|♯△(i, j)|
di ∨ dj

+
|♯△(i, j)|
di ∧ dj

. (5)

• Modified Balanced Forman Curvature: The original code implementation provided in [15]
contained an error in the counting of four-cycles (See Appendix B for more details). We therefore
implement this version as well for comparison. For an edge i ∼ j we have BFcmod(i, j) = 0 if
min(di, dj) = 1 and otherwise

BFcmod =
2

di
+

2

dj
− 2 + 2

|♯△(i, j)|
di ∨ dj

+
|♯△(i, j)|
di ∧ dj

+O
(
|♯i□|+ |♯j□|

)
. (6)

Secondly, we consider Jost and Liu Curvature (JLc) [16]. For an edge i ∼ j we have, with
s+

.
= max(s, 0),

JLc(i, j) = −
(
1− 1

di
− 1

dj
− |♯△(i, j)|

di ∧ dj

)
+

−
(
1− 1

di
− 1

dj
− |♯△(i, j)|

di ∨ dj

)
+

+
|♯△(i, j)|
di ∨ dj

.

(7)

Finally, we consider the Augmented Forman Curvature used for rewiring in [17]. Originally, the
Forman curvature was introduced in [18] as a discrete analogue of the Ricci curvature that aims to
mimic the Bochner–Weitzenböck decomposition of the Riemannian Laplace operator for quasiconvex
cell complexes (compact regular CW complexes which are quasiconvex, i.e. the boundary of two
cells can at most consist of one lower-dimensional cell). It was then adapted to graphs [19] and
augmented to also include two dimensional cells such as triangles [20, 21]. The Augmented Forman
curvature comes in two variants, similar to BFc.

• A variant where we consider only three-cycle contributions to the curvature. For an edge i ∼ j
we have

AF3(i, j) = 4− di − dj + 3|♯△(i, j)| . (8)

• A variant where we also consider the four-cycle contributions to this curvature. It is important to
note that, unlike the Balanced Forman curvature, the term □(i, j) in AF4—as uniquely used in
[17]—counts all four-cycles located at a given edge i ∼ j without obstructions on diagonals
inside. For an edge i ∼ j we have

AF4(i, j) = 4− di − dj + 3|♯△(i, j)|+ 2□(i, j) . (9)

7
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B On the implementation of the Balanced Forman curvature

Figure 2: Sam-
ple graph pro-
vided in Figure.
3 in [15]

During the setup of our experiment, we noticed that the implementation of
the Balanced Forman curvature provided by the authors of [15] under https:
//github.com/jctops/understanding-oversquashing does not match the
theoretical definition presented in their paper (Definition 1 in [15]). More precisely,
the issue for a given edge i ∼ j evolves around the terms corresponding to the four-
cycle contributions, i.e. |♯i□|, |♯

j
□| and γmax. The degree di and dj of the involved

nodes and the number of triangles |♯△(i, j)| are calculated correctly. However, even
for the sample graph provided in Figure. 3 in [15] (Figure 2 here) the publicly
available implementation produces demonstrably wrong results. The four-cycle
contribution is computed as illustrated in the code below with sharpij = |♯i□|+|♯j□|,
lambdaij = γmax.

If we consider the edge 0 ∼ 1 of the sample graph in Figure 2 and using the definition of the Balanced
Forman curvature, Eq. (4) we find BFc(0, 1) = 0.10. In contrast, when using the publicly available
code we find BFc(0, 1) = 0.08.

To control that our computation of BFc was correct we implemented with the NetworkX library the
set-theoretical definition (evolving around the 1-hop neighbourhoods S1(i) and S1(j) of the involved
nodes) provided in Definition 1 in [15]. These are

1. ♯∆(i, j) := S1(i) ∩ S1(j) are the triangles based at i ∼ j.
2. ♯i□(i, j) := {k ∈ S1(i)\S1(j), k ̸= j : ∃w ∈ (S1(k) ∩ S1(j)) \S1(i)} are the neighbours of i

forming a 4-cycle based at the edge i ∼ j without diagonals inside.
3. γmax(i, j) is the maximal number of four-cycles based at i ∼ j traversing a common node

Additionally, we used Remark 10 from [15] to calculate the four-cycle contribution and in particular
γmax. Our CUDA implementation of BFc was then controlled with the Networkx implementation.
Both our implementations are available in our code.

Listing 1: Code snippet from [15] to compute the 4-cycle contribution of the BFc
// 4-cycle contribution
for k in range(N):

TMP = A[k, j] * (A2[i, k]-A[i, k]) * A[i, j]
if TMP > 0:

sharp_ij += 1
if TMP > lambda_ij:

lambda_ij = TMP
TMP = A[i, k] * (A2[k, j]-A[k, j]) * A[i, j]

if TMP > 0:
sharp_ij += 1
if TMP > lambda_ij:

lambda_ij = TMP

C[i, j] = ((2 / d_max) + (2 / d_min) - 2 + (2 / d_max + 1 / d_min) *
A2[i, j] * A[i, j] )

if lambda_ij > 0:
C[i, j] += sharp_ij / (d_max * lambda_ij)

C Hyperparameter experiment
C.1 Experimental setup

For the node classification tasks, we used 9 datasets to evaluate the different curvature notions:
Texas, Cornell and Wisconsin from WebKB [22], Chameleon and Squirrel [23], Actor [24], Cora
[25], Citeseer [26] and Pubmed [27]. For graph classification, we used MUTAG and PROTEINS
[28]. For each dataset we only use the largest connected component, extracted with the algorithm
provided in https://github.com/jctops/understanding-oversquashing. Directed graphs
were subsequently transformed to undirected.
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If the dataset contains disconnected components we report the statistics for the largest connected
component selected. The homophily index H(G) defined by [29] is defined as

H(G) =
1

|V |
∑
v∈V

Number of v ’s neighbors who have the same label as v
Number of v ’s neighbors

. (10)

Texas Cornell Wisconsin Chameleon Squirrel Actor Cora Citeseer Pubmed

H(G) 0.06 0.11 0.16 0.25 0.24 0.22 0.83 0.72 0.79
Nodes 135 140 184 832 2186 4388 2485 2120 19717
Edges 251 219 1703 12355 65224 21907 5069 3679 44324

Features 1703 1703 1703 2323 2089 931 1433 3703 500
Classes 5 5 5 5 5 5 7 6 3

Directed? Yes Yes Yes Yes Yes Yes No No No

Our hyperparameter grid is defined in line with hyperparameters reported from [15]: learn-
ing rate: [0.0001, 0.5555], number of layers: {1, 2, 3}, layer width: {16, 32, 64, 128}, dropout:
[0.0001, 0.5555], weight decay: [0.0001, 0.9999], C+: [0.2, 21.2], τ : [1, 500] and the max number
of iterations is dataset dependent, where we take the lower and upper boundary to be 20% above and
below the reported best hyperparameters from [15]. We perform a random-grid search with 1000
iterations for all datasets, except for Pubmed and Chameleon where we performed 500 iterations.
Our evaluations follows [30]. Each dataset is split into a development set and a test set with a fixed
seed. The development set is then split 100 times into a validation and training set using the same
seeds as in [15]. Each hyperparameter configuration is then trained and evaluated on each of the 100
training-validation sets. The reported accuracy is then the mean test accuracy over the 100 validation
sets. We train the networks with early stopping, where the patience is 100 epochs of no improvement
on the validation set. We use a GCN [2] for all datasets together with the Adam optimizer [31].

C.2 Hyperparameter accuracy distributions

Figure 3 shows the smoothed distributions (kernel density estimates), together with boxenplots, of the
average accuracy obtained per dataset for each rewiring measure. Next to looking at the distributions,
we can look at the top 10% of the reported accuracies given by hyperparameters, which is presented
in Table 2.

Table 2: For each dataset we take the top 10% results from the hyperparameter sweeps and compute
the average mean test accuracy obtained together with the standard deviation. For some datasets, the
top 10% showed almost no variability which resulted in a standard deviation of (almost) 0.

Texas Cornell Wisconsin Chameleon Cora Citeseer
None 59.95 ± 1.15 53.66 ± 0.14 54.92 ± 0.51 40.76 ± 3.52 58.83 ± 16.36 58.14 ± 7.33
BFc 59.26 ± 0.00 53.61 ± 0.28 54.06 ± 0.01 34.58 ± 3.19 28.39 ± 17.24 35.99 ± 13.82
BFc3 59.26 ± 0.00 53.59 ± 0.12 54.06 ± 0.01 30.93 ± 0.10 21.86 ± 08.75 30.35 ± 12.03
BFcmod 59.26 ± 0.00 53.68 ± 0.43 54.91 ± 1.72 31.60 ± 2.04 27.73 ± 13.08 44.16 ± 12.46
JLc 59.26 ± 0.00 53.57 ± 0.01 54.06 ± 0.02 30.91 ± 0.02 26.83 ± 13.82 42.48 ± 7.83
AFc3 59.58 ± 0.52 54.20 ± 1.57 56.37 ± 1.60 36.93 ± 5.14 59.25 ± 14.83 60.11 ± 6.30
AFc4 59.79 ± 0.54 53.63 ± 0.10 54.60 ± 0.80 31.20 ± 0.62 58.68 ± 16.10 61.67 ± 5.43

Pubmed Actor Squirrel MUTAG PROTEINS
None 41.99 ± 12.58 27.73 ± 0.02 36.73 ± 1.96 55.34 ± 3.67 61.45 ± 1.49
BFc 39.67 ± 8.30 27.73 ± 0.01 35.35 ± 1.00 54.38 ± 1.71 61.36 ± 1.23
BFc3 40.97 ± 12.01 27.73 ± 0.02 34.66 ± 0.54 54.45 ± 2.25 61.16 ± 0.00
BFcmod 41.23 ± 11.30 27.73 ± 0.01 34.89 ± 0.85 54.56 ± 2.32 61.20 ± 0.18
JLc 39.47 ± 8.97 27.73 ± 0.02 34.53 ± 0.26 54.53 ± 2.86 61.20 ± 0.37
AFc3 42.74 ± 12.91 28.00 ± 0.93 35.78 ± 1.83 54.63 ± 2.91 61.22 ± 0.45
AFc4 41.40 ± 12.65 28.14 ± 1.02 35.64 ± 1.40 54.54 ± 2.40 61.27 ± 1.02

A first observation is that no curvature measure consistently shifts the distribution of the mean test
accuracy away from the None distribution (meaning no rewiring) over all datasets. We can notice
interestingly that the curvature measure AFc3 does provide better performance on datasets such as
Cornell and Wisconsin, but it does not do this consistently for the other low homophily datasets
Texas and Chameleon. When looking at the average of the top 10% results we see that AFc based
rewiring does perform better than other variants while having a smaller standard deviation, but does
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not consistently advance the performance with respect to no rewiring, indicating a specific dataset
dependency. It is interesting to note that rewiring can also negatively impact the performance of
a dataset, as seen by the larger spread for the citation networks. Secondly, when comparing the
results from Table 1 with the distribution of BFc in Figure 3, we can see that the datasets with more
edges that satisfy condition 2b do not perform better than others (e.g. Pubmed). Finally, we can note
the similar performance of less-computational intensive curvature measures (BFc3 and AFc3) in
comparison with their more intensive variant (BFc and AFc4).
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Figure 3: Distribution of mean test accuracy over the sweep of hyperparameters for the different
curvature measures and node-classification datasets used. We show boxenplots which first identify
the median, then extend boxes outward, each covering half of the remaining data on which outliers
(circles) are identifiable. For each dataset we also show the smoothed distribution using kernel density
estimates from the seaborn package.
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