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Abstract

Recent studies have determined that the learned001
token embeddings of large-scale neural lan-002
guage models are degenerated to be anisotropic003
with a narrow-cone shape. This phenomenon,004
called the representation degeneration problem,005
facilitates an increase in the overall similarity006
between token embeddings that negatively af-007
fect the performance of the models. Although008
the existing methods that address the degenera-009
tion problem based on observations of the phe-010
nomenon triggered by the problem improves011
the performance of the text generation, the train-012
ing dynamics of token embeddings behind the013
degeneration problem are still not explored. In014
this study, we analyze the training dynamics015
of the token embeddings focusing on rare to-016
ken embedding. We demonstrate that the spe-017
cific part of the gradient for rare token embed-018
dings is the key cause of the degeneration prob-019
lem for all tokens during training stage. Based020
on the analysis, we propose a novel method021
called, adaptive gradient gating (AGG). AGG022
addresses the degeneration problem by gating023
the specific part of the gradient for rare to-024
ken embeddings. Experimental results from lan-025
guage modeling, word similarity, and machine026
translation tasks quantitatively and qualitatively027
verify the effectiveness of AGG.028

1 Introduction029

Neural language models have been developed with030

various architectures during recent years (Graves,031

2013; Bahdanau et al., 2015; Gehring et al., 2017;032

Vaswani et al., 2017). Despite the improvement in033

model architectures, models usually share the same034

process for input and output. They process token035

embeddings as inputs to compute contextualized036

features and subsequently project the features into037

a categorical distribution of tokens at the output038

softmax layer whose weight is token embedding039

matrix (Merity et al., 2017; Yang et al., 2018; Press040

and Wolf, 2017). Recent studies have determined041

that the learned embedding distribution is biased042

in a common direction, thereby resulting in a nar- 043

row cone-shaped anisotropy (Mu et al., 2018; Etha- 044

yarajh, 2019; Gao et al., 2019; Biś et al., 2021). 045

This phenomenon, named the representation degen- 046

eration problem by Gao et al. (2019), increases the 047

overall similarity between embeddings, and leads 048

to a problem in which the expressiveness of the to- 049

ken embeddings decreases. Therefore, it is difficult 050

for the model to learn the semantic relationship be- 051

tween the tokens and to generate high quality texts. 052

Existing studies addressing this problem suggest 053

methods that apply post-processing or regulariza- 054

tion techniques to all token embeddings based on 055

the observed phenomena owing to the degeneration 056

problem (Mu et al., 2018; Gao et al., 2019; Wang 057

et al., 2019; Wang et al., 2020; Biś et al., 2021). 058

Although these works improve the quality of token 059

embeddings and generated texts, it is still not clear 060

how token embeddings become degenerate during 061

training procedure. Also, there exists the problem 062

of over regularization for the token embeddings 063

whose semantic relationships are trained well be- 064

cause the above methods are applied for all token 065

embeddings. 066

In this study, we conduct empirical studies about 067

training dynamics of token embeddings, focusing 068

on rare token embeddings. By observing the initial 069

training dynamics of token embeddings grouped 070

based on appearance frequency, we hypothesize 071

that the degeneration of the rare token embeddings 072

triggers the degeneration of the embeddings of the 073

remaining tokens. We show that the entire degen- 074

eration problem is mitigated by only freezing rare 075

tokens during training, and we demonstrate that 076

the main cause of the entire degeneration problem 077

is the specific part of the gradient for rare token 078

embeddings. This gradient part roles to push away 079

rare token embeddings from the feature vector of 080

the non-rare targets in the current training sample. 081

Based on the analysis, we propose a new method, 082

adaptive gradient gating (AGG). With a dynamic 083
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Figure 1: Visualization of token embeddings of language model trained on WikiText-103. Red, green, and blue
points represent rare, medium, and frequent groups respecively. (a), (b), (c), (d) present a visualization of each
training step.

grouping of rare tokens at each training step, AGG084

solves the entire degeneration problem by gating a085

specific part of the gradient that is solely about rare086

tokens. Because AGG is optimized to target the087

main cause of the degeneration problem, rare token088

embeddings, it can prevent the over regularization089

problem about frequent token embeddings which090

occurs in other methods addressing the degenera-091

tion problem. The proposed method is evaluated092

in three tasks: language modeling, word similarity,093

and machine translation. The AGG outperforms the094

baseline and other existing methods in all tasks. In095

addition, it shows compatibility with other method096

that addresses the neural text degeneration problem.097

Via qualitative studies, we identify a correlation be-098

tween our method and the frequency bias problem099

of learned embeddings (Gong et al., 2018; Ott et al.,100

2018).101

2 Background102

2.1 Text Generation of Neural Language103

Models104

Neural language generative models process text105

generation tasks as conditional language modeling,106

in which the model is typically trained by minimiz-107

ing the negative log likelihood of the training data.108

With a vocabulary of tokens V = {v1, ..., vN} and109

embedding vectors {w1, ...,wN}, where wi cor-110

responds to token vi, at every training step, the111

model obtains a mini-batch input and target text112

corpus pair (x, y), where xi, yi ∈ V , and y ∈ V T .113

The conditional probability for the target token yt,114

Pθ(yt|ht), where ht is a context feature vector of115

the t-th position of the generated text conditioned116

by (x, y<t), and θ denotes model parameters, which117

is defined as follows.118

Pθ(yt|ht) =
exp (htwT

I(yt)
)∑N

l=1 exphtwT
l

, (1)119

where w is the output token embedding which roles 120

the weight of the output softmax layer, and I(yt) 121

represents the index of token yt. The negative log 122

likelihood loss for an input and target pair (x, y), 123

LNLL is expressed as follows. 124

LNLL = −
T∑
t=1

logPθ(yt|ht). (2) 125

2.2 Embedding Problems in Neural Language 126

Models 127

Recent studies on the geometric properties of con- 128

textual embedding space have observed that the dis- 129

tribution of embedding vectors is far from isotropic 130

and occupies a relatively narrow cone space(Mu 131

et al., 2018; Liu et al., 2019; Zhou et al., 2019; Etha- 132

yarajh, 2019;). Gao et al. (2019) named this phe- 133

nomenon the representation degeneration problem. 134

This degeneration problem results in an increase in 135

the overall cosine similarity between token embed- 136

dings, making it difficult for the model to learn se- 137

mantic relationships between tokens. Demeter et al. 138

(2020) demonstrated that the norm information of 139

the token embeddings is so dominant that angle in- 140

formation about the feature vector is ignored when 141

calculating the logits in the output layer. Owing to 142

this structural weakness of the embedding space, 143

embeddings with small norms are always assigned 144

with a low probability, which reduces the diver- 145

sity of the text generated by the model. Anisotropy 146

of the embedding space is still problem for the 147

pre-trained large language models, and language 148

models with improved isotropic embedding space 149

performs well in downstream tasks(Biś et al., 2021; 150

Rajaee and Pilehvar, 2021). 151

Although the problem has been theoretically ana- 152

lyzed in several studies, existing methods are based 153

on the observed phenomena as a result of the prob- 154

lem. To mitigate the phenomena observed from 155
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Methods PPL ↓ I(W) ↑
Freq Med Rare Total Freq Med Rare Total

MLE 16.58 224.24 813.76 20.77 0.426 0.286 0.198 0.293
Freeze 16.48 233.92 3017.53 20.78 0.840 0.651 0.831 0.739

Table 1: Perplexity and I(W) for each token groups. Lower is better for PPL and higher is better for I(W).

(a) freeze until step 7k (b) freeze until step 18k (c) freeze until step 29k

Figure 2: Plot of I(W) for rare and frequent groups and average cosine similarity between rare and frequent
embeddings when freezing the training of rare tokens until specific training steps.

the problem, the post-processing of the embedding156

vectors(Mu et al., 2018; Biś et al., 2021) or regu-157

larization terms about the phenomena(Gao et al.,158

2019; Wang et al., 2019; Wang et al., 2020; Zhang159

et al., 2020) were introduced. These methods are160

applied to all token embeddings, so there is the161

problem of over regularization for the embeddings162

whose semantic relationship is trained well. Also,163

methodologies based on the training dynamics of164

the token embeddings concerning the degeneration165

problem remain subject to study.166

Frequency bias in embedding space is another167

problem. Ott et al. (2018) conducted a comprehen-168

sive study on the under-estimation of rare tokens169

in neural machine translation. Gong et al. (2018)170

observed that embeddings in the language model171

were biased towards frequency and proposed an ad-172

versarial training scheme to address this problem.173

3 Empirical Study: Token Embedding174

Training Dynamics led by Rare Tokens175

3.1 Initial Training Dynamics of Embeddings176

To analyze the training procedure of token em-177

beddings, we train a Transformer language model178

at the WikiText-103 dataset from scratch. Whole179

vocabulary tokens are divided into three groups:180

frequent, medium, and rare groups. Based on the181

appearance frequency in the training corpus, the182

30%, 50%, and 20% tokens are assigned to the fre-183

quent, medium, and rare group. We visualize the184

initial training dynamics of these groups via the185

projection of the embeddings into 2D, using sin- 186

gular value decomposition (SVD) projection. As 187

illustrated in Figure 1, rare groups degenerate first, 188

as they emerge from the entire embedding distribu- 189

tion. Subsequently, other groups also start to degen- 190

erate, following the degeneration of the rare group. 191

Based on this observation, we hypothesize that the 192

degeneration of rare token embeddings induces the 193

degeneration of non-rare token embeddings. 194

3.2 Rare Tokens Degenerate Non-Rare Tokens 195

Because Transformer(Vaswani et al., 2017) is repre- 196

sentative of the current language models, we adopt 197

the 6-layer Transformer decoder model architec- 198

ture for an empirical study on the training dynam- 199

ics of embedding vectors. The model is trained 200

in language modeling task using WikiText-103 201

dataset(Merity et al., 2018). Experimental details 202

regarding the model and training hyperparameter 203

configurations can be found in the Appendix B. To 204

verify the hypothesis of the previous subsection, we 205

train a model while freezing the rare group token 206

embeddings in their initial states during training, 207

and compare it to the baseline model, where all em- 208

beddings are trained with negative log-likelihood 209

loss. In addition, we train the models of various set- 210

tings relative to freezing steps and examine whether 211

the degeneration of rare token embeddings depends 212

on when training of rare embeddings begins. 213

The performance of the models is evaluated 214

in two ways; the likelihood and isotropy of to- 215

ken embeddings. Perplexity(Bengio et al., 2003) is 216
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Methods PPL ↓ I(W) ↑
Freq Med Rare Total Freq Med Rare Total

MLE 16.58 224.24 813.76 20.77 0.426 0.286 0.198 0.293
Freeze (b) & (c) 17.41 247.89 66.41 21.79 0.323 0.693 0.551 0.536
Freeze (b) 16.99 240.72 65.76 21.26 0.495 0.561 0.678 0.748
Freeze (c) 16.61 220.07 645.24 20.76 0.443 0.276 0.15 0.317

Table 2: Perplexity and I(W) for each token group at gradient partial freezing experiment.

adopted to evaluate the performance of the likeli-217

hood of the model. To measure the isotropy of the218

token embedding distribution, we adopt the parti-219

tion function Z(a) =
∑N

i=1 exp (wiaT ) defined in220

Arora et al. (2016), where wi denotes the embed-221

ding vector of token i, and a represents a unit vector.222

Lemma 2.1. in Arora et al. (2016) demonstrate that223

if the embedding vectors are isotropic, Z(a) is ap-224

proximately constant. Based on this property, we225

measure the isotropy of an embedding matrix W226

using I(W), which is defined as follows.227

I(W) =
mina∈X Z(a)
maxa∈X Z(a)

, (3)228

where I(W) ∈ [0, 1] and X represents the set of229

eigenvectors of WTW (Mu et al., 2018; Wang et al.,230

2020; Biś et al., 2021). Furthermore, we measure231

the relatedness between the rare and frequent group232

token embeddings to verify that the degeneration233

of the frequent group follows the degeneration of234

the rare group. We calculate the average cosine235

similarity between the rare and frequent group em-236

beddings to measure the relatedness.237

Table 1 shows the comparison of the baseline238

model and the model with frozen rare tokens. We239

denote the baseline as "MLE" and the freezing240

method as "Freeze". Surprisingly, the PPL of fre-241

quent group tokens and overall I(W) improved by242

simply not training the rare token embeddings. Fig-243

ure 2 illustrates the change in I(W) for the frequent244

and rare token embeddings, including the similar-245

ity between frequent and rare token embeddings at246

various freezing step settings. Whenever the rare247

token embeddings start to be trained, their I(W)248

decreases steeply, followed by decreasing I(W) of249

frequent embeddings and increasing similarities250

between the frequent and rare embeddings. From251

the analysis in this subsection, we demonstrate that252

the entire degeneration problem can be solved by253

solely handling just rare embeddings during the254

entire training procedure.255

3.3 Finding the Primary Cause of the 256

Degeneration Problem: From the 257

Gradient 258

With T context feature vectors hi (i ∈ [1, T ]) from 259

the training sample, the negative log-likelihood loss 260

gradient for the rare token embedding wr is calcu- 261

lated as follows. 262

∇wrLNLL =
∑
yi=vr

(pr|i − 1)hi︸ ︷︷ ︸
(a)

+
∑
yj /∈Vr

pr|jhj︸ ︷︷ ︸
(b)

+
∑
yk∈Vr

pr|khk︸ ︷︷ ︸
(c)

,
(4) 263

where yi denotes the target token for hi, Vr is the 264

rare token vocabulary group, and pr|i represents the 265

conditional probability of token vr given hi, which 266

is calculated as [softmax(hiWT )]r. We divide the 267

gradient for wr to 3 parts in Eq. 4. Part (a) pulls 268

wr close to the feature vectors whose target tokens 269

are vr. Part (b) pushes away wr from the feature 270

vectors whose target tokens are not rare. Part (c) 271

pushes away wr from the feature vectors whose tar- 272

get tokens are rare. As an extension of the analysis 273

in the previous subsection, we freeze these parts of 274

the gradient with various settings during training 275

to identify the key cause of the degeneration prob- 276

lem. In other words, depending on the settings, the 277

specific gradient parts that will not be used for em- 278

bedding training is detached from the computation 279

graph during training stage. This can be easily im- 280

plemented by detach() function of Pytorch 281

(Paszke et al., 2019). All model and training con- 282

figurations are the same as in the previous sections, 283

except those to be frozen. 284

Table 2 presents the results of the experiments in 285

this subsection. We freeze the parts of the gradient 286

for the rare tokens with three settings. Because part 287

(a) is a key component required to train the token 288

embedding to be aligned to the target, all settings 289

activate part (a). We notice that when part (b) is 290
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activated (solely freezing part (c)), I(W) decreases291

and PPL for rare tokens increases almost 10 times292

compared to when part (b) is frozen. Because ac-293

tivating part (c) is not seen to be negative for PPL294

and I(W), we conclude that part (b) of Eq. 4 is the295

bedrock cause for the degeneration problem. From296

the analysis in this section, we demonstrate that297

the entire degeneration problem can be solved by298

mainly addressing the part of the gradient for rare299

embeddings that pushes away rare token embed-300

dings from non-rare feature vectors.301

4 Method302

4.1 Dynamic Rare Token Grouping303

To handle the specific part of the gradient for the304

rare token embeddings studied in the previous sec-305

tion, we need to properly group the rare tokens. A306

naive approach can be used to group rare tokens307

based on the appearance frequency of the training308

corpus, as described in the previous section. How-309

ever, this static grouping method is suboptimal be-310

cause the model is typically trained via mini-batch311

training. The group of rare tokens that appeared312

less frequently in recent batch samples is variable313

in the mini-batch training. Therefore, it is necessary314

to dynamically group rare tokens based on token315

appearances in recent batch samples.316

To consider the token appearances in recent317

batch samples, we introduce the token counter318

memory that remembers the number of the appear-319

ances of each token during the previous K training320

steps. For K memories, [m1, ...,mK], mt ∈ RN321

represents the number of appearances of each token322

of N -size vocabulary at the t-th previous training323

step. Memories are set as zero vectors at the initial324

stage. At each training step, the token appearance,325

a ∈ RN , is calculated as the sum of all K mem-326

ories: a =
∑K

t=1 mt. Based on a, we determine327

whether token i is in the rare token group Vr as328

follows.329

ai
K

< α ⇒ vi ∈ Vr

ai
K

≥ α ⇒ vi /∈ Vr,
(5)330

where ai is the i-th component of a, and α is a331

hyper-parameter in our method that controls the332

proportion of rare tokens in the entire vocabulary.333

In this study, we set K to the number of iteration334

steps during one epoch of training stage.335

4.2 Adaptive Gradient Gating for Rare 336

Tokens 337

After dynamically grouping the rare tokens at each 338

training step, we need to handle a specific part of 339

the gradient for the rare token embeddings to solve 340

the degeneration problem of all embeddings. To 341

solely control the gradient for rare token embed- 342

dings, we introduce a gradient gating method for a 343

parameter x. We define x̃ as a tensor whose value 344

is the same as x, but detached from the current 345

training graph. This implies that x̃ is considered a 346

constant, hence, gradient about x̃ does not exist. In 347

practice, x̃ can be easily obtained from x using the 348

detach() function of Pytorch (Paszke et al., 349

2019). With x̃, we can gate the gradient for x as 350

follows. 351

xgated = g ⊙ x + (1− g)⊙ x̃
∇xf(xgated) = g ⊙∇xf(x),

(6) 352

where xgated is a new parameter whose value is the 353

same as x, and g ∈ [0, 1] is a gate tensor. When 354

the xgated is fed to the function f(·) as input, the 355

gradient for x is gated by g. 356

As we described in section 3, part (b) of Eq. 4 357

should mainly be handled to solve the degenera- 358

tion problem. To address part (b) of Eq. 4, given 359

a context feature vector of the i-th position hi, we 360

introduce a gate vector g1 ∈ RN as follows. 361

g1k =

{
ak/K if vk ∈ Vr, vk ̸= yi

1 else ,
(7) 362

where g1k denotes a k-th component of g1. g1 con- 363

trols the degree to which rare token embeddings 364

move away from non-rare feature vectors whose tar- 365

gets differ from each rare token embedding. Also, 366

each component of g1 is calculated based on the 367

rarity of each rare token, ak, so gradient gating for 368

part (b) of Eq. 4 is adaptive for each rare tokens. 369

Although part (c) of Eq. 4, which pushes embed- 370

dings away from the feature vectors whose targets 371

are other rare tokens, is not to be seen as the cause 372

of the degeneration problem in section 3, this part 373

also induces the degeneration problem for the cer- 374

tain situation when rare tokens degenerate other 375

rare tokens. To address this, we approximate the 376

multiple levels of rarity in the rare token group to 377

two levels in this paper: ’less rare’ and ’very rare’. 378

We define the two rarity levels based on the average 379

number of appearances of the entire rare tokens: if 380

the token appearance ak is smaller than the mean 381
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Methods PPL ↓ Uniq ↑
I(W)↑

Freq Med Rare Total Freq Med Rare Total
MLE 13.30 146.47 438.67 15.51 9107 3945 91 13143 0.377
AGG 13.35 146.44 75.39 15.51 9105 4287 345 13737 0.813
Human − − − − 10844 7146 300 18920 −

Table 3: Experimental results for each token group in WikiText-103 language modeling task comparing MLE
baseline and AGG.

Methods PPL ↓ Uniq ↑
I(W)↑

Freq Med Rare Total Freq Med Rare Total
UL 14.05 125.17 385.6 16.17 9527 4402 97 14026 0.396
UL + AGG 14.17 125.93 71.48 16.25 9625 4884 453 14962 0.654
Human − − − − 10844 7146 300 18920 −

Table 4: Experimental results for each token group in WikiText-103 language modeling task comparing UL and
UL+AGG.

of ar where r ∈ Vr, corresponding token is a very382

rare token. For the very rare token embeddings,383

part (c) of the gradient about embeddings pushes384

them away from the feature vectors whose targets385

are less rare tokens that are relatively frequent com-386

pared to them. This means that part (c) roles like387

part (b) in the above situation, which becomes the388

cause of the degeneration problem. Therefore, we389

need to handle part (c) of Eq. 4 for very rare tokens.390

To address part (c) of Eq. 4 for the very rare to-391

ken embeddings, we introduce another gate vector392

g2 ∈ RN as follows.393

g2k =

{
min(akār , 1) if vk ∈ Vr, vk ̸= yi

1 else,
(8)394

where g2k is the k-th component of g2 and ār is the395

mean of ar where r ∈ Vr. g2 controls the degree396

to which very rare token embeddings move away397

from less rare feature vectors whose targets differ398

from each very rare token embedding. Also, each399

component of g2 is calculated based on the rarity of400

each very rare token, ak, so gradient gating for part401

(c) of Eq. 4 is adaptive for each very rare tokens.402

To calculate the loss of hi, we calculate three403

logits, z0i , z1i , and z2i , as follows.404

z0i = hiW̃
T

zli = gl ⊙ h̃iWT + (1− gl)⊙ h̃iW̃
T
,

(9)405

where W denotes an embedding matrix, and l =406

1, 2. Because our method solely handles the gradi-407

ent for embeddings, we calculate z0i for a gradient408

about hi, which does not need to be gated. Finally, 409

the negative log-likelihood loss for i-th position Li 410

is computed as follows. 411

Li = − log p0I(yi)|i

− 1(yi /∈ Vr) log p
1
I(yi)|i

− 1(yi ∈ Vr) log p
2
I(yi)|i,

(10) 412

where pmI(yi)|i = [softmax(zmi )]I(yi) with m=0, 1, 2 413

and 1(·) denotes the Indicator function. Derivation 414

of the gradient for rare token embeddings, ∇wrLi, 415

is provided in Appendix A. 416

5 Experiments 417

We evaluate our method on various tasks including 418

language modeling, word similarity, and machine 419

translation. In the language modeling task, we fo- 420

cus on verifying the diversity of the generated texts. 421

We test the learning of the semantic relationships 422

between tokens on the word similarity task. Finally, 423

we evaluate the quality of generated texts on the 424

machine translation task. For all the experimental 425

results below, we adopt the state-of-the-art model 426

architecture as a baseline to properly demonstrate 427

the effectiveness of our method. Every detail on the 428

experiment, such as model hyper-parameters and 429

training configurations, regard the reproducibility 430

are provided in Appendix B. 431

5.1 Language Modeling 432

Setting We conduct experiments using WikiText- 433

103 dataset, which is a significantly large dataset 434

for language modeling task with approximately 435
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103M words and 260K vocabulary size (Merity436

et al., 2018). Texts in the dataset are preprocessed437

based on the byte-pair encoding(Sennrich et al.,438

2016). We adopt the GPT-2 medium architec-439

ture(Radford et al., 2019), which comprises 24440

Transformer decoder layers as a baseline model.441

Because our method is about learning token em-442

beddings, we train the models from scratch for443

a maximum of 50k iterations and evaluate them444

based on the perplexity of the validation set.445

For hyper-parameter searching, we select α ∈446

{0.01, 0.02, 0.03, 0.04, 0.05} for AGG method on447

the language modeling task. The hyper-parameter448

sensitivity for the AGG are given in Appendix E.449

We use three quantitative metrics to evaluate our450

method: Perplexity, Uniq, and I(W). Related to451

the likelihood of generated texts, Perplexity quan-452

tifies the prediction difficulty over the next token.453

Uniq (Welleck et al., 2020) quantify the number of454

unique next-token predictions, measuring the token455

diversity. As described in section 3, I(W) measures456

the isotropy of the token embedding space.457

Results We present our results for the testset in458

Table 3. We denote the baseline method as ’MLE’459

and our method as ’AGG’. We measure Perplexity460

and Uniq for each token group defined in Section 3.461

As presented in Table 3, AGG improves the over-462

all metrics for the medium and rare groups while463

maintaining performance for the frequent token464

group. This shows that our method not only im-465

proves the quality of rare token embeddings, but466

also the quality of non-rare token embeddings. In467

particular, for the rare group, the Perplexity score468

decrease significantly and the number of unique469

predictions surpasses the human distribution. The470

I(W) for all token embeddings increased over 2471

times the baseline. Experimental results of I(W)472

for the embeddings of each frequency groups can473

be found in Appendix C. We also show examples474

of generated texts in Appendix G.475

Compatibility Neural text degeneration problem476

is another problem in neural text generative mod-477

els, where the model generates texts that are less478

likely to match human word distributions. Existing479

methods for this problem focus on the diversity of480

the generated texts by adding an auxiliary loss to481

the original negative log-likelihood loss (Welleck482

et al., 2020). Although Welleck et al. (2020) and483

AGG attempts to address the same problem about484

diversity, AGG can be compatible with the existing485

method in the text degeneration problem because486

Datasets MLE AGG
MEN 33.57 55.13
WS353 47.51 56.54
RG65 35.48 65.45
RW 32.13 36.36

Table 5: Performance(Spearman’s γ × 100) of the mod-
els on the four word similarity datasets.

Methods BLEU ↑
Base Big

Transformer (Vaswani et al., 2017) 27.30 28.40
CosReg (Gao et al., 2019) 28.38 28.94
Adv MLE (Wang et al., 2019) 28.43 29.52
SC (Wang et al., 2020) 28.45 29.32
AGG 28.70 29.81

Table 6: Comparison of different methods in terms of
BLEU scores.

AGG does not alter the form of the loss function 487

in MLE training. Table 4 presents the results of 488

the experiments about fusion of unlikelihood train- 489

ing(Welleck et al., 2020) and AGG. We denote the 490

unlikelihood training as UL. From table 4, we no- 491

tice that when UL and AGG are fused, it produces 492

a synergistic effect that exceeds the gain of each for 493

the baseline. This indicates that AGG is compatible 494

with methods that address other problems in text 495

generation. 496

5.2 Word Similarity 497

Setting We evaluate the semantic relationship be- 498

tween tokens for AGG and the baseline with four 499

word similarity datasets: MEN, WS353, RG65, and 500

RW(Bruni et al., 2014; Agirre et al., 2009; Ruben- 501

stein and Goodenough, 1965; Luong et al., 2013). 502

Methods are tested whether the similarity between 503

the given two words in the embedding space is 504

consistent with the ground truth, in terms of Spear- 505

man’s rank correlation. We adopt cosine distance 506

to compute the similarity between embeddings. We 507

use the same models trained on language modeling 508

tasks with the WikiText-103 dataset for the word 509

similarity task. 510

Results Table 5 presents the result obtained from 511

the evaluation of the word similarity task. From 512

this table, it can be observed that our method out- 513

performs the baseline on overall datasets. Although 514

AGG handles only training of rare tokens, the se- 515

mantic relationships between all tokens are also 516

well learned. Qualitative studies on semantic align- 517
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(a) MLE (b) AGG (c) Singular value decay

Figure 3: (a), (b) Token embedding visualization for the baseline model and AGG on the language modeling task
with WikiText-103; (c) Normalized singular value for MLE and AGG.

ment between tokens are provided in Appendix F.518

5.3 Machine Translation519

Setting We utilize a dataset from standard WMT520

2014 containing 4.5M English→German sentence521

pairs. The source and target sentences are encoded522

by 37K shared tokens based on byte-pair encod-523

ing(Sennrich et al., 2016). We adopt the two ver-524

sion of Transformer(Vaswani et al., 2017) as the525

baseline model for applying our method: base and526

big. The model configuration is the same as that527

proposed in Vaswani et al. (2017). To evaluate the528

quality of the generated texts, we measure BLEU529

score (Papineni et al., 2002), which is standard530

metric for machine translation task.531

Results Table 6 presents a comparison of our532

method and other methods in terms of the BLEU533

score. Our method achieves 1.4 and 1.41 BLEU534

score improvements on the machine translation task535

for the base and big baseline models. In addi-536

tion, our method is better than all other previous537

works in handling the representation degeneration538

problem that reported BLEU scores in the same539

tasks. These results demonstrate the effectiveness540

of AGG in the quality of the generated texts. While541

other methods addressing the degeneration prob-542

lem targets all token embeddings, target of AGG,543

rare token embeddings, are optimized based on544

the analysis about the training dynamics of token545

embeddings. Due to this difference, our method546

can prevent the over regularization problem for fre-547

quent token embeddings, which is the main advan-548

tage of AGG compared to other works. Qualitative549

study about cross-lingual semantic alignment be-550

tween tokens of the source and target languages is551

provided in Appendix F.552

6 Analysis of AGG 553

Figure 3 (a) and (b) present the visualizations of the 554

embedding space of baseline MLE and our method. 555

In the figure, applying the AGG method restores the 556

isotropy of the token embedding space. In addition, 557

we observe that the regions occupied by each token 558

group are not disjoint when applying AGG. For 559

baseline, the regions occupied by rare group and 560

the frequent group are disjoint, which is refered as 561

the frequency bias problem of embeddings (Gong 562

et al., 2018). From the analysis of the visualization 563

of the embedding space, we notice that the manipu- 564

lating the training of the rare token embeddings can 565

alleviate the frequency bias problem. Figure 3 (c) 566

presents the plot of the normalized singular value 567

of embedding matrix for MLE and AGG. Slowly 568

decaying singular values of AGG demonstrate an 569

isotropic distribution of the embedding space. Ab- 570

lation studies about the gating terms and dynamic 571

rare token grouping can be found in Appendix D. 572

7 Conclusion 573

In this study, we analyzed the training dynamics of 574

the token embeddings concerning the representa- 575

tion degeneration problem of the learned embed- 576

dings, focusing on the rare tokens. Based on the 577

analysis, we propose an adaptive gradient gating 578

method that solves the problem by solely handling 579

the training for rare token embeddings. Experi- 580

ments and qualitative studies in various tasks of 581

text generation demonstrate the effectiveness of 582

our method. Beyond the two-level approximation 583

of rarity of rare tokens which is applied to our 584

study, addressing multiple levels of rarity can be an 585

interesting region to study for the future work. 586
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A Derivation of the gradient of AGG loss725

w.r.t. rare token embedding726

We follow the same notation as in the main paper.727

Before we write the derivation of the gradient about728

rare token embedding wr, we write the gradient729

of f(w̃j) and (zli)j about wr, where f(w̃j) is the730

function of w̃j with j = 1, ..., N and (zli)j is a j-th731

component of zli with l = 0, 1, 2 as follows.732

∇wrf(w̃j) = ∇w̃j
f(w̃j)⊙∇wr w̃j

= ∇w̃j
f(w̃j)⊙ 0

= 0 for all j

(∵ w̃j is treated as a constant.)

(11)733

734

∇wr(z
l
i)j = ∇wr [glj · h̃iwT

j + (1− glj · h̃iw̃T
j )]

= glj∇wr h̃iwT
j + 0

=

{
glj h̃i if j = r

0 else

=

{
gljhi if j = r

0 else

(∵ hi = h̃i in terms of value.)
(12)735

Considering the case of yi /∈ Vr, AGG negative736

log-likelihood loss for the i-th position of token737

generation, LAGG
i is written as follows.738

LAGG
i = − log p0I(yi)|i − log p1I(yi)|i (13)739

Then gradient of LAGG
i about wr is written as740

follows.741

∇wrL
AGG
i

= −∇wr log p
0
I(yi)|i −∇wr log p

1
I(yi)|i

= −∇wr log p
1
I(yi)|i − 0

(∵ log p0I(yi)|i is a function of w̃r.)

= − 1

p1I(yi)|i
∇wrp

1
I(yi)|i

= − 1

p1I(yi)|i

N∑
j=1

∇(z1i )j
p1I(yi)|i · ∇wr(z

1
i )j

(∵ p1I(yi)|i is a function of (z1i )j , j = 1, ..., N .)

= − 1

p1I(yi)|i
∇(z1i )r

p1I(yi)|i · ∇wr(z
1
i )r

(By Eq. 12.)
(14)742

As p1I(yi)|i = [softmax(z1i )]I(yi)|i, 743

∇(z1i )r
p1I(yi)|i = −p1I(yi)|ip

1
r|i. (15) 744

Thus, ∇wrL
AGG
i is computed as follows. 745

∇wrL
AGG
i

= − 1

p1I(yi)|i
∇(z1i )r

p1I(yi)|i · ∇wr(z
1
i )r

(By Eq. 14.)

= p1r|i · ∇wr(z
1
i )r

= g1rp
1
r|ihi

(By Eq. 12.)

(16) 746

Considering the case of yi ∈ Vr but yi ̸= vr, 747

LAGG
i is written as follows. 748

LAGG
i = − log p0I(yi)|i − log p2I(yi)|i (17) 749

Then ∇wrL
AGG
i is written as follows. 750

∇wrL
AGG
i

= −∇wr log p
0
I(yi)|i −∇wr log p

2
I(yi)|i

= −∇wr log p
2
I(yi)|i − 0

(∵ log p0I(yi)|i is a function of w̃r.)

= − 1

p2I(yi)|i
∇wrp

2
I(yi)|i

= − 1

p2I(yi)|i

N∑
j=1

∇(z2i )j
p2I(yi)|i · ∇wr(z

2
i )j

(∵ p2I(yi)|i is a function of (z2i )j , j = 1, ..., N .)

= − 1

p2I(yi)|i
∇(z2i )r

p2I(yi)|i · ∇wr(z
2
i )r

(∵ Eq. 12.)
(18) 751

As p2I(yi)|i = [softmax(z2i )]I(yi)|i, 752

∇(z2i )r
p2I(yi)|i = −p2I(yi)|ip

2
r|i. (19) 753

Thus, ∇wrL
AGG
i is computed as follows. 754

∇wrL
AGG
i

= − 1

p2I(yi)|i
∇(z2i )r

p2I(yi)|i · ∇wr(z
2
i )r

(By Eq. 18.)

= p2r|i · ∇wr(z
2
i )r

= g2rp
2
r|ihi

(By Eq. 12.)

(20) 755
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Considering the remained case of yi = vr, since756

yi ∈ Vr, LAGG
i is same as the second case, and757

derivation process of ∇wrL
AGG
i shares the same758

process with Eq. 18. As I(yi) = r,759

∇(z2i )r
p2I(yi)|i = p2I(yi)|i(1− p2I(yi)|i) (21)760

Thus, ∇wrL
AGG
i is computed as follows.761

∇wrL
AGG
i

= − 1

p2I(yi)|i
∇(z2i )r

p2I(yi)|i · ∇wr(z
2
i )r

(By Eq. 21.)

= −(1− p2I(yi)|i) · ∇wr(z
2
i )r

= −g2r(1− p2I(yi)|i)hi

(By Eq. 12.)

= (p2r|i − 1)hi

(∵ I(yi) = r and g2r = 1 if I(yi) = r.)

(22)762

As pr|i = pmr|i with m = 0, 1, 2 in terms of value,763

we finally write ∇wrL
AGG
i as follows.764

∇wrLi =


(pr|i − 1)hi if yi = vr

g1rpr|ihi if yi /∈ Vr

g2rpr|ihi else,

(23)765

B Experimental Details766

In this section, we present the details of the experi-767

ments in main page. All the experiments were con-768

ducted with a single GPU on our machine (GPU:769

NVIDIA A40) and from single run. For each task770

in the experiments, we use the same model architec-771

ture and train it with different objectives(i.e., MLE,772

AGG, UL). The hyper-parameters used for differ-773

ent training methods in the same task are exactly774

same. The detailed hyper-parameters are described775

in Table 11.776

C Experimental Results of I(W) for each777

frequency groups778

In this section, we present the experimental results779

about I(W) for the embeddings of each frequency780

groups. Table 7 shows the I(W) comparing MLE781

baseline and AGG. Table 8 shows the I(W) com-782

paring UL baseline and the fusion of UL and AGG.783

As presented in Table 7 and 8, AGG improves784

isotropy of the embedding space for all frequency785

groups, indicating that our method solves the whole786

degeneration problem.787

Methods I(W)↑
Freq Med Rare

MLE 0.51 0.33 0.278
AGG 0.702 0.714 0.813

Table 7: Experimental results about I(W) for each to-
ken group in WikiText-103 language modeling task com-
paring MLE baseline and AGG.

Methods I(W)↑
Freq Med Rare

UL 0.533 0.351 0.293
UL + AGG 0.731 0.626 0.696

Table 8: Experimental results about I(W) for each to-
ken group in WikiText-103 language modeling task com-
paring UL baseline and UL + AGG.

D Ablation Study about AGG 788

In this section, we present the ablation studies about 789

AGG. In our method, AGG, we introduce two gate 790

vectors, g1, and g2, to handle the gradient for rare 791

and very rare token embeddings. We conduct exper- 792

iments on these gate vectors. Table 9 presents the 793

results of the ablation studies compared with the 794

MLE and AGG. When g1 is excluded from AGG 795

(denoted as ’no g1’), Uniq and I(W) decreased sig- 796

nificantly, because g1 is the key component for the 797

gradient gating. When g2 is excluded from AGG 798

(denoted as ’no g2’), Uniq and I(W) slightly de- 799

crease. Accordingly, we notice that g2 is important 800

for the gating of gradients fort the very rare token 801

embeddings. 802

Also, we present the analysis about rare token 803

grouping method of AGG. Figure 4 presents the 804

size of the rare token group during initial 1k train- 805

ing steps when the model is trained with WikiText- 806

103 dataset. As presented in the figure, rare group 807

size fluctuate wildly at the initial training stage. 808

We expect for this grouping method to determine 809

an optimal rare token group for the current train- 810

ing step. Table 10 presents the results of ablation 811

study about dynamic grouping. To except dynamic 812

grouping from AGG, we fixed the rare token group 813

after 1 epoch. For this static grouping AGG method, 814

Next-token diversity(Uniq) and the isotropy of the 815

token embedding space(I(W) perform worse than 816

dynamic grouping AGG. 817

12



Method PPL↓ Uniq↑ I(W)↑
MLE 15.51 13143 0.377
AGG 15.51 13737 0.813
no g1 15.48 13018 0.367
no g2 15.51 13682 0.701

Table 9: Ablation study on gating vector of AGG.

Method PPL↓ Uniq↑ I(W)↑
MLE 15.51 13143 0.377
AGG 15.51 13737 0.813
static AGG 15.55 13614 0.752

Table 10: Ablation study about dynamic grouping of
AGG.

E Hyperparameter Sensitivity818

In this sections we show how the metrics used on819

language modeling task change with the hyper-820

parameter α in Figure 5. We observed an inter-821

esting phenomenon about the non-rare token group822

when rare token group size increases over a specific823

threshold. For the rare token group, Uniq and I(W)824

metrics have a positive correlation. They increase825

together up to a certain alpha value and decrease826

together as alpha increases over that value. How-827

ever, for the non-rare token group, Uniq increases828

as alpha increases over that certain value while829

there are negative effects where I(W) decreases830

and Ppl increases. Because non-rare tokens are a831

major group, Figure 5 (b) and (c) present the above832

phenomenon about the non-rare token group al-833

though they present metrics for overall tokens. We834

consider this phenomenon to be another degenera-835

tion problem, as the increase of Uniq with negative836

impacts on isotropy and likelihood does not imply837

improvement of text quality, implying just genera-838

tion of unproper tokens. This problem which occurs839

when rare token group size increases over a certain840

threshold can be handled in future work.841

F Qualitative Study about Semantic842

Alignments between Tokens843

In this section, we present qualitative studies about844

semantic alignments between tokens for language845

modeling and machine translation tasks. We select846

three rare token from each datasets: "homepage",847

"Werewolf", and "policymakers" for WikiText-103848

dataset, and "optimum", "criminal", and "happi-849

ness" for WMT14 En→De dataset. For each rare850

Figure 4: Size of the rare token group during initial 1k
steps of training with WikiText-103 dataset.

token, we extract the top-5 nearest neighbor token 851

predicted by the cosine distance between token em- 852

beddings. Compared with baseline MLE method, 853

AGG shows significant improvement to train se- 854

mantic alignments for rare tokens. From Table 12, 855

we notice that the rare tokens trained with AGG 856

are semantically well aligned and not biased about 857

token frequency. Table 13 demonstrates that to- 858

ken embeddings trained with AGG also learn the 859

cross-lingual semantic alignments between target 860

language tokens. 861

G Examples 862

We present additional generated text samples from 863

the model trained on language modeling task in 864

Table 14. From the table, we notice that the model 865

trained with AGG generates more diverse and high 866

quality text than the baseline. 867
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Hyperparameter Empirical Study Language Modeling Machine Translation
Base Big

# of layers 6 24 6-6 6-6
Hidden dimension 512 1024 512 1024
Projection dimension 2048 4096 2048 4096
# of heads 8 16 8 16
Dropout 0.1 0.1 0.1 0.3
Vocabulary size 44256 44256 40624 40624
# of parameters 42M 358M 65M 218M
Learning rate 7 · 10−4 7 · 10−4 1 · 10−3 1 · 10−3

Max tokens per batch 32k 32k 64k 64k
Maximum training steps 40k 50k 190k 190k
Warmup steps 4k 4k 4k 4k
Optimizer Adam Adam Adam Adam
Weight decay 0.01 0.01 0.01 0.01
α for AGG − 0.03 0.08 0.08
α for UL − 1.0 − −

Table 11: Model configurations and training hyper-parameters for all experiments conducted in the main page. For
word similarity task, the model trained on language modeling task are evaluated for word similarity datasets.

(a) Perplexity (b) Uniq (c) I(W)

Figure 5: Hyper-parameter(α) sensitivity of AGG in the language modeling task on Wikitext-103 dataset.
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homepage Werewolf policymakers
MLE AGG MLE AGG MLE AGG
BOX website ASUS Creature Steam politicians
inbox webpage riet Nightmare death environmentalists

livestream blog 480 Bride Venezuel activists
namespace Tumblr nuclear Sneak includ planners

hashes websites ATCH Sniper reason economists

Table 12: Top-5 nearest neighbors of each rare tokens in WikiText-103 dataset. Performance of AGG method is
compared with the baseline MLE method. Red color denotes the rare tokens among neighbors.

optimum criminal happiness
MLE AGG MLE AGG MLE AGG
therto optimal Criminal criminals juries happy
ratory optimale∗ criminals Criminal enness joy

consultan@@ optimalen∗ perpetr@@ krimi@@∗ ocopying happ@@
sofar maximum secution kriminellen∗ ratory Glück∗

protection@@ Optim@@ xious crime sacri@@ pleasure

Table 13: Top-5 nearest neighbors of each rare source tokens in WMT14 En→De dataset. Performance of AGG
method is compared with the baseline MLE method. The symbol @@ stands for sub-word tokenization of the
dataset. The symbol * denotes the synonym token of the target language.
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Method Texts Uniq ↑
Prefix A Company , 2nd Engineer Combat Battalion , moved to the south side of the Yongsan - Naktong

River road ; D Company of the 2nd Engineer Battalion was on the north side of the road .
Approximately 2 miles ( 3

MLE . 2 km ) north of the river , the 2nd Engineer Combat Battalion was on the south side of the road .
The 2nd Engineer Combat Battalion was on the south side of the road .

22

AGG . 2 km ) north of the river , the 2nd Engineer Combat Battalion was attacked by a small force
of North Korean People ’s Volunteer Army ( NK ) troops . The North Koreans were able to
penetrate the UN lines and capture the town .

43

Method Texts Uniq ↑
Prefix The twelve 45 - calibre 35 . 6 cm ( 14 . 0 in ) Type 41 guns of the Ise class were mounted in three

pairs of twin - gun , superfiring turrets . Numbered one through
MLE two , the turrets were placed in superfiring pairs , one ahead of the other . The turrets were placed

in superfiring pairs , with the turrets superfiring over the wing turrets . The turrets were placed in
superfiring pairs , with the turrets superfiring over the wing turrets . The turrets were placed in
superfiring pairs , with the turrets superfiring over the wing turrets . The turrets were placed in
superfiring pairs , with the turrets superfiring over the wing turrets . The turrets were placed in
superfiring

19

AGG five from front to rear , the guns had a firing arc of 260 ° . They fired a 45 . 3 kg ( 99 lb ) projectile
at a muzzle velocity of 835 m / s ( 2 , 740 ft / s ) to a range of 16 , 000 m ( 52 , 000 yd ) . They
had a maximum elevation of 30 degrees and fired a 36 . 3 kg ( 77 lb ) projectile at a muzzle
velocity of 835

55

Method Texts Uniq ↑
Prefix Despite the expensive reconstructions , both vessels were considered obsolete by the eve of the

Pacific War , and neither saw significant action in the early years of the war . Following the loss
of most of the IJN ’s large aircraft carriers during the Battle

MLE of Midway , the IJN was forced to rely on the United States Navy for aircraft carriers and
aircraft carriers to support operations in the Pacific . The IJN ’s aircraft carriers were the first
to be equipped with the new Mark 4 torpedo and the IJN ’s aircraft carriers were the first to be
equipped with the Mark 4 torpedo . The IJN ’s aircraft carriers were the first to be equipped with
the Mark 4 torpedo , and the IJN ’s aircraft carriers

37

AGG of Midway , the IJN decided to modernize its fleet and modernize its fleet . The IJN ’s new ships
were designed to be capable of operating at speeds of up to 30 knots ( 56 km / h ; 35 mph ) , and
were fitted with a new bow section . The ships were designed to carry 1 , 000 t ( 980 long tons ; 1
, 100 short tons ) of fuel oil , and were fitted with a pair of aircraft catap

63

Method Texts Uniq ↑
Prefix Amos was born in Macclesfield , Cheshire and was a member of the Crewe Alexandra academy

until he was released at the age of 10 . While at Crewe , he also played for another local team ,
Bollington United , as a centre

MLE - back . He was a member of the team that won the FA Youth Cup in 1989 , and was a member
of the team that won the FA Youth Cup in 1990 . He was a member of the team that won the FA
Youth Cup in 1990 , and was a member of the team that won the FA Youth Cup in 1992 .

24

AGG - back . He was signed by Crewe Alexandra in July 2006 , and made his debut for the club in a 2
- 1 win over Rotherham United in the League Cup on 18 August 2006 . He was loaned out to
Rotherham for the rest of the 2006 - 07 season , before being released at the end of the season .

52

Table 14: Generated texts on the Wikitext-103 test set and uniq tokens for each texts. 50 bpe tokens are given as
prefix and the models are to generate the continuation of 100 next bpe tokens.
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