
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

Towards understanding of orthogonalization in Muon

Anonymous Authors1

Abstract
Muon is a recent optimizer that relies on matrix
orthogonalization of updates and has been shown
to improve large language model (LLM) train-
ing. It does so by introducing additional momen-
tum and Newton-Schulz iteration to the stochas-
tic spectral descent method (SSD). However, it
incurs higher communication cost if tensor paral-
lelism is enabled, and its hyperparameter transfer
properties are not yet fully explored. We first
introduce block-wise orthogonalization, splitting
weight matrices into independent tiles that are
orthogonalized separately and recombined and
empirically analyze its influence on training. This
retains the validation loss while allowing up to
16x tensor parallel splits of weight matrices. Sec-
ond, we show that under spectral regularization a
single learning rate transfers when depth, width
of the model, and token count are co-scaled under
Chinchilla guidelines. Finally, we show that a
higher weight decay value of 0.1 underperforms
during the first 80% of the training but outper-
forms lower values after that, which can be at-
tributed to the tighter spectral norm constraint.
Based on this, we propose weight decay clipping
and scheduling to capture both regimes. Over-
all, we demonstrate experimentally for nanoGPT
models from 124M to 1.4B parameters that spec-
tral regularization, both with block-wise and full-
matrix orthogonalization, allows for learning rate
transfer across multiple scaling dimensions and
better generalization with weight decay due to
the tighter spectral norm constraint. The code
is available at https://anonymous.4open.
science/r/MuonSBW-23A2.

1. Introduction
Optimization is one of the driving forces behind the rapid
development of deep learning – and LLMs in particular.
It is closely connected to the scaling laws through feature
learning: with specific parameterization and learning-rate
scaling (maximal update parameterization, µP) (Yang et al.,
2021; 2023), training remains stable, and hyperparameters,

such as learning rate, transfer when scaling model size (e.g.,
width (Yang & Hu, 2021) or depth (Yang et al., 2024)).

Adam (Kingma & Ba, 2015) – augmented with decoupled
weight decay (AdamW) (Loshchilov & Hutter, 2019) – is
the default LLM optimizer, yet it has some disadvantages.
First, it is heuristically derived with the need of bias correc-
tion and storing running statistics for every parameter, which
as the consequence increases its complexity and memory
footprint. More importantly, it is known to have instabilities
during the training, known as “loss spikes” (Molybog et al.,
2023), which is especially problematic when training larger
models and requires regular re-starts during the training
from the latest checkpoints (Chowdhery et al., 2022). Hy-
perparameters also fail to transfer across width unless one
uses µP scaling (Littwin & Yang, 2023).

Recently, an alternative, Muon, was proposed in (Jordan
et al., 2024; Bernstein & Newhouse, 2024). It enjoys a
faster convergence compared to AdamW during NanoGPT
speed-runs (Jordan et al., 2024) and is designed for more
stable training using the spectral update condition for feature
learning (Yang et al., 2023; Pethick et al., 2025).

Nevertheless, both Muon and Scion have limitations. First,
if a weight matrix is split among several devices, it should
be gathered on one to compute at every iteration. This leads
to higher communication costs. Moreover, Muon optimizes
layers 1 and L with AdamW, while Scion proposes to use
a different norm for layers 1 and L, leading to a costly hy-
perparameter search. Lastly, while there has been evidence
of learning rate transfer when scaling models in width in
(Pethick et al., 2025; Bernstein, 2025), it is not clear if there
is learning transfer when scaling in depth or even more real-
istically – co-scale in depth, width and the number of tokens
(depth-width-token co-scaling).

The latter scaling is known as the Chinchilla scaling
law (Hoffmann et al., 2022). This is a widely used ap-
proach to scale the number of tokens during the pre-training
proportional to the number of the parameters in the model.
The transfer of learning rate when scaling the number of
tokens has been a long-standing challenge with a recent
attempt in (Bjorck et al., 2025), which gave a rule-of-thumb
to transfer the learning rate across token horizon. Learning
rate transfer during the depth-width-token co-scaling is an
even more challenging open problem (Everett et al., 2024).

1

https://anonymous.4open.science/r/MuonSBW-23A2
https://anonymous.4open.science/r/MuonSBW-23A2

055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

Submission and Formatting Instructions for ICML 2025

2
0

2
1

2
2

2
3

2
4

Tensor Parallel Splits (TP)

3.6

3.8

4.0

4.2

4.4

Va
lid

at
io

n
Lo

ss

OpenWebText

2
0

2
1

2
2

2
3

2
4

Tensor Parallel Splits (TP)

3.8

4.0

4.2

4.4

4.6

C4

H = W
H = 1
W = 1
AdamW
Scion(sign)

Figure 1. MuonSBW is more parallelizable than MuonS with comparable performance. Here, for two datasets - OpenWebText
(Gokaslan et al., 2019) and C4 (Raffel et al., 2019) – we investigate for 124M nanoGPT model (Karpathy, 2022) with 1x Chinchilla
scaling (Hoffmann et al., 2022) the influence of splitting the momentum gradient matrix introduced in Section 3 into smaller blocks
of equal size before the orthogonalization in three ways: i) square blocks (H = W); ii) column splits (H = 1); iii) row splits (W = 1).
Increasing the number of blocks initially improves loss (row split, TP = 4), and eventually leads to worsening of the loss, which might be
explained by the increasing spectral norm of the weights as we discuss in Appendix F.

In this work, we empirically show how we can attempt to
solve all of the aforementioned limitations, by combining
the scaling update rule suggested by Muon and Scion to-
gether with the spectral norm constraint on all layers and
block-wise orthogonalization. We name these approaches
MuonS and MuonSBW respectively.

1.1. Our Contributions

Our contributions are as follows.

• MuonSBW. In Section 4 and Section 5.1, we propose
MuonSBW, a more parallelizable version of MuonS, and
show in Figure 1 that it is stable in validation loss up to
16x tensor parallelism when training on OpenWebText
as well as C4. Moreover, we see that the 4x parallelism
slightly outperforms the MuonS baseline discussed in
Appendix C in more detail.

• Joint scaling transfer. Next, in Section 5.2, we show
that by only relying on the scaling of updates which are
known to enable feature learning and allow for learning
rate transfer only in width, we observe that surprisingly
learning rate transfers when scaling width, depth of the
model and the number of tokens simultaneously. We also
confirm the finding on the C4 dataset in Appendix H.1.

• Static weight decay. We further investigate in Sec-
tion 5.3 the influence of weight decay for MuonSBW
and in Appendix E for other optimizers. We see that for
5x Chinchilla and bigger models, higher weight decay
consistently outperforms lower weight decay values after
around 80% of the training run, while being worse than
other weight decay values before that.

• Dynamic weight decay. We attribute the aforementioned
behavior to a lower spectral norm as discussed in Fig-
ure 15 and Appendix F. In Section 5.4, we further pro-
pose weight decay schedules to improve the performance.

2. Related Work
Throughout this paper, we are interested in solving the un-
constrained optimization problem

min
X∈X

F (X) (1)

for a non-convex F : X → R . During the training of a
neural network, we search for weights X that solve (1). The
compositional structure of neural networks with layers of
matrices has spurred research on the non-Euclidean norms
used during the optimization (Yang et al., 2023; Jordan et al.,
2024; Bernstein & Newhouse, 2024; Pethick et al., 2025;
Carlson et al., 2015b;a; 2016; Large et al., 2024), which
we discuss in more detail in the following. By minimizing
quadratic upper bound at the current iterate Xt we can solve
(1) by the steepest descent update for general norms (Nes-
terov, 2010; Mądry, 2015; Carlson et al., 2016) (for more
details see Appendix A)

Xt+1 = Xt −
∥∇F (Xt)∥∗

L

(
∇F (Xt)

)#
∥·∥,(

∇F (Xt)
)#
∥·∥ ∈ argmax

∥H∥=1

⟨∇F (Xt), H⟩.
(2)

Stochastic Spectral Descent (SSD). In (Carlson et al.,
2015b;a; 2016), the authors applied gradient descent for gen-
eral norms to neural networks. Concretely, they proposed

2

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

Submission and Formatting Instructions for ICML 2025

Table 1. Optimizers difference. Muon (Jordan et al., 2024) and
Scion (Pethick et al., 2025) use SSD for some of the layers of
the network, while for others they suggest to use an equivalent
of AdamW (for Muon) or Signum (Bernstein et al., 2018) (for
Scion). We suggest using spectral descent for all layers, which
we abbreviate as MuonS together with its block-wise version as
MuonSBW, which effectively requires only one learning rate to
tune.

Method First layer Middle layers Last layer

Scion Signum Spectral Signum
Muon AdamW Spectral AdamW

MuonSBW (ours) Spectral Spectral Spectral

to replace the gradient oracle ∇F (·) with the stochastic
gradient oracle ∇f(·, ξ) and perform the update (2) with
respect to the matrix norm, namely the spectral norm, since
for the neural networks the iterates are structured as weight
matrices. This led to significant speed-ups when training
smaller feedforward and convolutional neural networks as
well as Restricted Boltzmann Machines (RBMs) and other
probabilistic models.

Muon. When using the spectral norm (largest singular value
of a matrix) σmax(·) in (2), the sharp operator (X)#σmax(·) is
a semi-orthogonal matrix closest to X , which can be com-
puted using singular value decomposition (SVD). In (Jor-
dan et al., 2024), however, the authors replaced SVD with
Newton-Schulz iteration (NS), which is more efficient on
modern GPUs. Moreover, they incorporated an additional
momentum term in SSD. This allowed for speed-ups com-
pared with AdamW during both nanoGPT (Karpathy, 2022)
and CIFAR-10 (Krizhevsky & Hinton, 2009) speed-runs.
However, their algorithm does not apply SSD for each layer.
Instead, it still uses AdamW for the first and last layers of a
neural network (see Table 1).

Distributed Shampoo As discussed in (Bernstein & New-
house, 2024), Shampoo (Gupta et al., 2018) without accu-
mulation can be viewed as SSD. It is therefore interesting
to understand approaches for distributed optimization with
it. In (Shi et al., 2023a), the authors propose in Section 4.2
to allow for tensor parallelism by strategy called “block-
ing”, which effectively applies Shampoo on each of the
blocks. This served as an inspiration for our approach that
we introduce in Section 4 and investigate in more detail in
Section 5.1.

Scion. The Stochastic Conditional Gradient with Opera-
tor Norms (Scion) optimizer introduced in (Pethick et al.,
2025) is a concurrent work based on the Stochastic Condi-
tional Gradient method (SCG) that provides a control over
the norm in each layer of a neural network. The authors
proposed using the ∥ · ∥∞ norm in SCG for the first and
last layers, effectively applying the Signum optimizer for

them. For the other layers, they follow propose to use spec-
tral norm as in Muon and SSD. Learning rates for these
two different norms (spectral and ∥ · ∥∞) should be tuned
separately. Because our first aim is to speed up the hyper-
parameter search by simplifying the algorithm, we instead
use SSD with spectral norm constraint for all layers (see
Table 1).

Moonlight. In (Liu et al., 2025), the authors have trained
big Mixture-of-Experts models (MoE) with 3B and 16B
parameters for longer than 17x Chinchilla using both Muon
and AdamW. Muon improves the Pareto frontier achiev-
ing a lower loss with much less training FLOPs. They
further compare it with AdamW and show that Muon is ap-
proximately 2x more computationally efficient compared to
AdamW. On this big scale, they show, among other findings,
that a higher weight decay of 0.1 for most of the training
run performs worse for Muon while starting to outperform
less and no weight decay at the end of the training. Because
this scale is not out of reach for many academic labs, in Sec-
tion 5.3 we investigate if this phenomenon is happening at a
smaller scale, for models with up to 758M parameters and
with 1x and 5x Chinchilla scaling. Moreover, in Figure 15
and Appendix F, we show that better generalization occurs
when spectral norm is constrained more tightly.

3. Muon
In this section we introduce the Muon algorithm with weight
decay and its main properties. We discuss it in more detail
in Appendix B.

Norm. In (Bernstein & Newhouse, 2024), the authors show
that algorithms, such as SGD, Adam, and Shampoo (Gupta
et al., 2018) are all related to each other via the steepest
descent problem (8) discussed in Appendix A by the choice
of the norm || · || – l2, l∞, and σmax(·) – respectively. Muon,
similarly to Shampoo, uses on the steepest descent updates
with respect to the spectral norm.

Algorithm. For ηt, λ ≥ 0 and a neural network with L
layers, Muon is orthogonalizing updates to weight matrices
W l

t for layers l ∈ {2, . . . , L − 1} at each time step t to
compute the steepest descent direction (X)#||·||RMS→RMS

=√
dl
out

dl
in

Ortho(Gl
t) with respect to the RMS-to-RMS opera-

tor norm (more details are in Appendix B):

W l
t+1 = W l

t − ηt

(√dlout
dlin

Ortho(Gl
t) + λW l

t

)
, (3)

where Gl
t ∈ Rdl

out×dl
in is the momentum stochastic gradient

Gl
t = (1− αt)G

l
t−1 + αt∇f(W l

t , ξt). (4)

3

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

Submission and Formatting Instructions for ICML 2025

500 1000 1500 2000 2500 3000 3500 4000

2.50

2.75

3.00

3.25

3.50

3.75

Va
lid

at
io

n
Lo

ss

Model Size = 124M

0 2000 4000 6000 8000 10000 12000 14000

Model Size = 345M

0 5000 10000 15000 20000
Step

2.50

2.75

3.00

3.25

3.50

3.75

Va
lid

at
io

n
Lo

ss

Model Size = 524M

0 5000 10000 15000 20000 25000 30000
Step

Model Size = 758M

Weight Decay
0.0
0.001
0.01
0.1

Figure 2. Higher weight decay of 0.1 consistently outperforms
only at the end of the training. Here, for MuonSBW, we vary
weight decay for 5x Chinchilla. Similar observation was already
made in (Liu et al., 2025), however only for one training run
at a much larger scale and only for the MoE architecture. In
Appendix E, we observe similar trend for 1x Chinchilla scaling
and in Appendix H.2 - for models trained on C4.

Ortho(Gl
t) returns the closest semi-orthogonal matrix:

Ortho(Gl
t) = argminO∈Oml×nl

∥O −Gl
t∥F , (5)

where one minimizes over semi-orthogonal matrices.

Om×n := {A ∈ Rm×n | AA⊤ = Im×m or A⊤A = In×n}.

4. Block-wise Orthogonalization
Inspired by (Shi et al., 2023b), we propose to i) split the
momentum gradient matrix before orthogonalization into
tensor parallel splits (TP) row-, column-, or block-wise, do-
ing so in sub-matrices of equal dimensions; ii) compute with
NS orthogonalized sub-matrices; iii) concatenate later it as
one matrix. The influence of this varying granularity can
be seen in Figure 1, showing how we interpolate between
the two modes of orthogonalizing the whole matrix on the
left (TP = 20) and orthogonalizing an increasing number of
sub-blocks separately until TP = 24.

5. Experiments
We train the original nanoGPT (Karpathy, 2022), without
changing its initialization, on OpenWebText (Gokaslan et al.,
2019) and C4 (Raffel et al., 2019) datasets. In all exper-
iments, we increase the size of the model by increasing
the number of its layers (depth scaling); set the number of
attention heads to be equal to the number of layers, while
increasing the embedding dimension proportionally by the
factor 64 (width scaling); moreover, for each experiment
we use 1x or 5x Chinchilla scaling for the number of tokens
depending on the setting (token number scaling). In the

Table 2. For MuonS and MuonSBW we observe learning
rate transfer during depth-width-token co-scaling. We train
nanoGPT models on OpenWebText with 1x Chinchilla scaling. We
plot validation losses for all tested learning rate values in Figure 2.

Size AdamW MuonS MuonSBW

LR Loss LR Loss LR Loss

124M 5.0e-04 4.2912 0.05 3.5668 0.01 3.5557
215M 5.0e-04 3.5657 0.05 3.1932 0.01 3.1743
345M 0.002 3.1019 0.02 2.9692 0.01 2.9522
524M 0.002 2.8785 0.02 2.7876 0.01 2.7892
758M 0.002 2.7271 0.02 2.6839 0.02 2.6885
1.43B 0.001 2.5435 0.05 2.5377 0.01 2.5377

experiments, we train and analyze models of different sizes,
from 124M up to 1.43B parameters, more precisely (we
include the number of layers in the brackets): 124M (12),
215M (15), 345M (18), 524M (21), 758M (24), 1.43B (30).
For more details, see Appendix I.

5.1. Analyzing Block-wise Orthogonalization

One of the downsides of the Muon optimizer is the need to
gather the update matrix Gl

t on one device, which incurs ad-
ditional communication costs during tensor parallel training.
For a naive implementation, it can save communication cost
during Allgather operation of dout×din orthogonalizing the
update matrix for each layer. To understand the influence of
block-wise orthogonalization on the validation loss achieved
by the model, we compare in Figure 1 several different ways
of splitting (sharding) the update matrix Gl

t. We find that
doing row-wise orthogonalization even improves the loss at
4x tensor parallelism and stays stable in validation loss up to
16x tensor parallelism. Degradation in validation loss can be
attributed to the increase of the spectral norm as we discuss
in Appendix 5.1. As for row-wise 4x tensor parallelism we
observed a better performance than the baseline MuonS, we
use it as our default setting for MuonSBW in the rest of the
experiments. In the next Section, we show the transfer of
learning rate during depth-width-token co-scaling.

5.2. Learning Rate Transfer

Next, in Figure 3, we increase the number of layers and thus
the size of the network and observe that, unlike AdamW,
our suggested optimizers MuonS and MuonSBW, together
with the block-wise versions, transfer well. We also report
the best validation losses and the learning rates achieving it
in Table 2. Surprisingly, for MuonSBW the same learning
rate 0.01 is the best for all model sizes, but one, with 24
layers. However, there the learning rate 0.01 is second best
and achieves a loss of 2.6896, close to the best.

4

220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

Submission and Formatting Instructions for ICML 2025

2
12

2
10

2
8

2
6

2
4

Learning Rate

3

4

5

6

7

8

Va
lid

at
io

n
Lo

ss
AdamW

2
12

2
10

2
8

2
6

2
4

Learning Rate

MuonS

2
12

2
10

2
8

2
6

2
4

Learning Rate

MuonSBW
Layers

12
15
18
21
24
30

Figure 3. MuonS and MuonSBW enjoy learning rate transfer during depth-width-token co-scaling. We are training nanoGPT on
OpenWebText with 1x Chinchilla scaling. For both MuonS and MuonSBW learning rate transfers well, unlike for AdamW. Moreover,
MuonSBW enjoys a better transfer: the same learning rate of 0.01 is the best across all sizes (see Table 2), staying the best also for another
dataset, C4, in Figure 20 in Appendix. We report optimal learning rate values together with achieved validation loss in Table 2.

5.3. Influence of Static Weight Decay

Further, we investigate the influence of weight decay by
training models with 5x Chinchilla scaling. We can ob-
serve in Figure 2 that throughout most of the training for
all model sizes, the higher weight decay 0.1 has a higher
validation loss than the lower weight decay values. In the
end, roughly at the last 80% of the training (more details
are in Appendix E), the value of 0.1 results in significantly
lower validation loss. This can be attributed to the spectral
norm, which we discuss in Appendix F.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Cutoff proportion

2.65

2.66

2.67

2.68

2.69

2.70

2.71

Va
lid

at
io

n
Lo

ss

Cutoff Schedule

Constant wd = 0.1
Constant wd = 0.0

Figure 4. Clipping weight decay at the end improves the val-
idation loss. For the 345M model and 5x Chinchilla scaling,
clipping at the 80% of the training improves the validation loss.
See Appendix E for more experiments and details.

5.4. Dynamic Weight Decay

We observed in Section 5.3 that the weight decay of 0.1
outperforms at the end of training, likely due to the tighter
constraints on the spectral norm throughout the training, as
we discus in Appendix F. Here, we investigate whether the
spectral norm constraint should be relaxed by decreasing
weight decay towards the end of the training. For this, we
try three weight decay schedules:

Cutoff: wc(t) = 0.1 ·χt≤tmax·tc , where weight decay is 0.1
up until the cutoff proportion tc ∈ [0, 1] and 0 after that;

Polynomial, wp(t) = 0.1 · tk

tkmax
;

Inverse Polynomial, wp(t) = 0.1 · (1− tk

tkmax
).

For the 124M model, we show in Figure 4 that decreas-
ing weight decay towards the end of the training reduces
validation loss - both using Cutoff and Inverse Polynomial
schedules. Thus, we take the simpler schedule, Cutoff, and
train a larger 345M model, with the results in Figure 4. We
confirm that the Cutoff schedule achieves a lower validation
loss than the baseline. More details are in the Appendix E.

6. Conclusion.
For the Muon optimizer, we propose using the spectral
norm constraint for all layers to speed up the hyperparame-
ter search, perform block-wise orthogonalization to improve
communication efficiency when using tensor parallelism,
and observe learning rate transfer across model sizes when
co-scaling depth, width, and the number of tokens. Addi-
tionally, we investigate in more detail the weight decay and
CBS of the proposed optimizers.

5

275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

Submission and Formatting Instructions for ICML 2025

References
Arora, S., Li, Z., and Panigrahi, A. Understanding gradient

descent on the edge of stability in deep learning. In ICML,
2022.

Bernstein, J. Deriving muon, 2025. URL
https://jeremybernste.in/writing/
deriving-muon.

Bernstein, J. and Newhouse, L. Old optimizer, new norm:
An anthology. arXiv preprint arXiv:2409.20325, 2024.

Bernstein, J., Wang, Y.-X., Azizzadenesheli, K., and Anand-
kumar, A. signSGD: Compressed optimisation for non-
convex problems. In ICML, 2018.

Bjorck, J., Benhaim, A., Chaudhary, V., Wei, F., and Song,
X. Scaling optimal LR across token horizons. In ICLR,
2025.

Carlson, D., Cevher, V., and Carin, L. Stochastic spectral
descent for restricted boltzmann machines. In AISTATS,
2015a.

Carlson, D., Hsieh, Y.-P., Collins, E., Carin, L., and Cevher,
V. Stochastic spectral descent for discrete graphical mod-
els. Selected Topics in Signal Processing, 2016.

Carlson, D. E., Collins, E., Hsieh, Y.-P., Carin, L., and
Cevher, V. Preconditioned spectral descent for deep learn-
ing. In NeurIPS, 2015b.

Chowdhery, A., Narang, S., Devlin, J., Bosma, M., Mishra,
G., Roberts, A., Barham, P., Chung, H. W., Sutton,
C., Gehrmann, S., Schuh, P., Shi, K., Tsvyashchenko,
S., Maynez, J., Rao, A., Barnes, P., Tay, Y., Shazeer,
N., Prabhakaran, V., Reif, E., Du, N., Hutchinson, B.,
Pope, R., Bradbury, J., Austin, J., Isard, M., Gur-Ari, G.,
Yin, P., Duke, T., Levskaya, A., Ghemawat, S., Dev, S.,
Michalewski, H., Garcia, X., Misra, V., Robinson, K., Fe-
dus, L., Zhou, D., Ippolito, D., Luan, D., Lim, H., Zoph,
B., Spiridonov, A., Sepassi, R., Dohan, D., Agrawal,
S., Omernick, M., Dai, A. M., Pillai, T. S., Pellat, M.,
Lewkowycz, A., Moreira, E., Child, R., Polozov, O., Lee,
K., Zhou, Z., Wang, X., Saeta, B., Diaz, M., Firat, O.,
Catasta, M., Wei, J., Meier-Hellstern, K., Eck, D., Dean,
J., Petrov, S., and Fiedel, N. Palm: Scaling language mod-
eling with pathways. arXiv preprint arXiv:2204.02311,
2022.

Cohen, J., Kaur, S., Li, Y., Kolter, J. Z., and Talwalkar, A.
Gradient descent on neural networks typically occurs at
the edge of stability. In ICLR, 2021.

Everett, K., Xiao, L., Wortsman, M., Alemi, A. A., Novak,
R., Liu, P. J., Gur, I., Sohl-Dickstein, J., Kaelbling, L. P.,
Lee, J., and Pennington, J. Scaling exponents across
parameterizations and optimizers. In ICML, 2024.

for AI, T. A. I. C4 corpus. https://huggingface.
co/datasets/allenai/c4, 2019.

Gokaslan, A., Cohen, V., Pavlick, E., and Tellex, S. Open-
webtext corpus. http://Skylion007.github.
io/OpenWebTextCorpus, 2019.

Gupta, V., Koren, T., and Singer, Y. Shampoo: Precondi-
tioned stochastic tensor optimization. In ICML, 2018.

Hoffmann, J., Borgeaud, S., Mensch, A., Buchatskaya, E.,
Cai, T., Rutherford, E., de las Casas, D., Hendricks, L. A.,
Welbl, J., Clark, A., Hennigan, T., Noland, E., Millican,
K., van den Driessche, G., Damoc, B., Guy, A., Osindero,
S., Simonyan, K., Elsen, E., Vinyals, O., Rae, J. W., and
Sifre, L. An empirical analysis of compute-optimal large
language model training. In NeurIPS, 2022.

Jordan, K., Jin, Y., Boza, V., You, J., Cesista, F., New-
house, L., and Bernstein, J. Muon: An optimizer for
hidden layers in neural networks, 2024. URL https:
//kellerjordan.github.io/posts/muon/.

Karpathy, A. NanoGPT. https://github.com/
karpathy/nanoGPT, 2022.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. In ICLR, 2015.

Krizhevsky, A. and Hinton, G. Learning multiple layers of
features from tiny images. Master’s thesis, Department
of Computer Science, University of Toronto, 2009.

Large, T., Liu, Y., Huh, M., Bahng, H., Isola, P., and Bern-
stein, J. Scalable optimization in the modular norm. In
NeurIPS, 2024.

Littwin, E. and Yang, G. Tensor programs ivb: Adaptive
optimization in the infinite-width limit. In ICLR, 2023.

Liu, J., Su, J., Yao, X., Jiang, Z., Lai, G., Du, Y., Qin, Y.,
Xu, W., Lu, E., Yan, J., Chen, Y., Zheng, H., Liu, Y., Liu,
S., Yin, B., He, W., Zhu, H., Wang, Y., Wang, J., Dong,
M., Zhang, Z., Kang, Y., Zhang, H., Xu, X., Zhang, Y.,
Wu, Y., Zhou, X., and Yang, Z. Muon is scalable for llm
training. arXiv preprint arXiv:2502.16982, 2025.

Loshchilov, I. and Hutter, F. Decoupled weight decay regu-
larization. In ICLR, 2019.

Mądry, P. Lecture 13: Mirror descent. https:
//people.csail.mit.edu/madry/6S978/
files/lecture_13.pdf, 2015. MIT Course
6.S978/18.S997, “Optimization for Theoretical Com-
puter Science”.

Mokhtari, A., Hassani, H., and Karbasi, A. Stochastic
conditional gradient methods: from convex minimization
to submodular maximization. JMLR, 2020.

6

https://jeremybernste.in/writing/deriving-muon
https://jeremybernste.in/writing/deriving-muon
https://huggingface.co/datasets/allenai/c4
https://huggingface.co/datasets/allenai/c4
http://Skylion007.github.io/OpenWebTextCorpus
http://Skylion007.github.io/OpenWebTextCorpus
https://kellerjordan.github.io/posts/muon/
https://kellerjordan.github.io/posts/muon/
https://github.com/karpathy/nanoGPT
https://github.com/karpathy/nanoGPT
https://people.csail.mit.edu/madry/6S978/files/lecture_13.pdf
https://people.csail.mit.edu/madry/6S978/files/lecture_13.pdf
https://people.csail.mit.edu/madry/6S978/files/lecture_13.pdf

330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

Submission and Formatting Instructions for ICML 2025

Molybog, I., Albert, P., Chen, M., DeVito, Z., Esiobu, D.,
Goyal, N., Koura, P. S., Narang, S., Poulton, A., Silva,
R., Tang, B., Liskovich, D., Xu, P., Zhang, Y., Kambadur,
M., Roller, S., and Zhang, S. A theory on adam insta-
bility in large-scale machine learning. arXiv preprint
arXiv:2304.09871, 2023.

Nesterov, Y. Efficiency of coordinate descent methods on
huge-scale optimization problems. Discussion paper,
2010.

Nesterov, Y. Lectures on Convex Optimization. Springer
Publishing Company, Incorporated, 2nd edition, 2018.

Pethick, T., Xie, W., Antonakopoulos, K., Zhu, Z., Silveti-
Falls, A., and Cevher, V. Training deep learning
models with norm-constrained lmos. arXiv preprint
arXiv:2502.07529, 2025.

Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S.,
Matena, M., Zhou, Y., Li, W., and Liu, P. J. Exploring
the limits of transfer learning with a unified text-to-text
transformer. arXiv preprint arXiv:1910.10683, 2019.

Shi, H.-J. M., Lee, T.-H., Iwasaki, S., Gallego-Posada, J.,
Li, Z., Rangadurai, K., Mudigere, D., and Rabbat, M. A
distributed data-parallel pytorch implementation of the
distributed shampoo optimizer for training neural net-
works at-scale. arXiv preprint arXiv:2309.06497, 2023a.

Shi, H.-J. M., Lee, T.-H., Iwasaki, S., Gallego-Posada, J.,
Li, Z., Rangadurai, K., Mudigere, D., and Rabbat, M.
A distributed data-parallel pytorch implementation of
the distributed shampoo optimizer for training neural
networks at-scale, 2023b.

Yang, G. and Hu, E. J. Tensor programs iv: Feature learning
in infinite-width neural networks. In ICML, 2021.

Yang, G., Hu, E. J., Babuschkin, I., Sidor, S., Liu, X., Farhi,
D., Ryder, N., Pachocki, J., Chen, W., and Gao, J. Tensor
programs v: Tuning large neural networks via zero-shot
hyperparameter transfer. In NeurIPS, 2021.

Yang, G., Simon, J. B., and Bernstein, J. A spec-
tral condition for feature learning. arXiv preprint
arXiv:2310.17813, 2023.

Yang, G., Yu, D., Zhu, C., and Hayou, S. Tensor programs
VI: Feature learning in infinite depth neural networks. In
ICLR, 2024.

Zhang, H., Morwani, D., Vyas, N., Wu, J., Zou, D., Ghai,
U., Foster, D., and Kakade, S. M. How does critical batch
size scale in pre-training? In ICLR, 2025.

Zhang, J., He, T., Sra, S., and Jadbabaie, A. Why gradient
clipping accelerates training: A theoretical justification
for adaptivity. In ICLR, 2020.

7

385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

Submission and Formatting Instructions for ICML 2025

A. Steepest Descent for General Norms
L-smoothness. Assume that F is differentiable with L-Lipschitz gradient with respect to a general norm ∥ · ∥ (that is F is
L-smooth with respect to ∥ · ∥),

∥∇F (X)−∇F (Y)∥∗ ≤ L ∥X − Y ∥, ∀X,Y ∈ X , (6)

where ∥ · ∥∗ is the dual norm
∥G∥∗ = sup

∥X∥≤1

⟨G,X⟩, (7)

Then for X = Rn by descent lemma (Nesterov, 2018) for all X,Y this implies (and for F convex it is equivalent
by (Nesterov, 2018))

F (Y) ≤ F (X) + ⟨∇F (X), Y −X⟩+ L

2
∥Y −X∥2. (8)

Inequality (8) provides a quadratic upper bound (majoriser) of F around X . Minimizing this surrogate at the current iterate
Xt allows to solve (1) by the steepest descent update for general norms (Nesterov, 2010; Mądry, 2015; Carlson et al., 2016)

Xt+1 = Xt −
∥∇F (Xt)∥∗

L

(
∇F (Xt)

)#
∥·∥

(
∇F (Xt)

)#
∥·∥ ∈ argmax

∥H∥=1

⟨∇F (Xt), H⟩. (9)

For the Euclidean ℓ2 norm,
(
∇F (Xt)

)#
∥·∥2

= ∇F (Xt)
∥∇F (Xt)∥2

, so the steepest descent step in (2) reduces to gradient descent
(GD) with step size 1/L. The standard GD Xt+1 = Xt − ηt∇F (Xt) with an arbitrary ηt is therefore not the steepest
descent update unless ηt = 1/L. Note as well that for the standard GD L-smoothness is a sufficient descent condition,
guaranteeing that F (Xt+1) < F (Xt), as long as ηt < 2

L .

Neural Networks. It is well known that neural networks do not admit L-smoothness with respect to the Euclidean
norm (Cohen et al., 2021; Zhang et al., 2020; Large et al., 2024). On the other hand, while global (or even local) L-
smoothness is sufficient for monotone descent, neural network training can succeed without it: full-batch GD stabilizes at
λmax ≈ 2/η – hovering right at or just above the strict upper bound for the sufficient descent condition – yet still converges
(Cohen et al., 2021; Arora et al., 2022). In such cases, we can interpret L not as a Lipschitz constant, but as the “sharpness”
(Bernstein & Newhouse, 2024) – by decreasing sharpness, we increase the step size.

B. More Details on Muon
B.1. Feature learning.

The spectral norm is motivated by recent work (Yang et al., 2023), where feature learning condition is derived for MLP with
weight matrices W l

t ∈ Rdl
out×dl

in . It requires that for each step t and each layer l the following holds:

σmax(W
l
t) = Θ

(√ dlin
dlout

)
,

σmax(W
l
t+1−W l

t) = Θ
(√ dlin

dlout

)
.

It holds for (2) with the norm ||W l
t ||RMS→RMS =

√
dl
in

dl
out

σmax(W
l
t), ||x||RMS :=

√
1
dl
in

∑dl
in

i=1 x
2
i .

B.2. Constrained Optimization via Weight Decay.

By explicitly choosing different norms for each layer, the concurrent work of (Pethick et al., 2025) builds on the Stochastic
Conditional Gradient method (SCG), introduced in (Mokhtari et al., 2020). Concretely, in (Pethick et al., 2025), the authors
rewrite Muon update (3) by constraining ηt ∈ (0, 1) and λ ∈ [0, 1] as follows

W l
t+1 = (1− ηtλ)W

l
t + ηt lmo||·||RMS→RMS

(Gl
t). (10)

8

440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494

Submission and Formatting Instructions for ICML 2025

Here, lmo stands for linear minimization oracle defined as

lmo∥·∥,r(X) ∈ argmin
{S∈X | ∥S∥≤r}

⟨X,S⟩.

and can be expressed via sharp operator: lmo∥·∥,r(X) = −r(X)#∥·∥.

The formulation in (10) makes it clear that when ηt ∈ (0, 1) and λ = 1, we recover SCG, which minimizes our main
objective (1) in the norm-ball of radius D := {X ∈ X | ∥X∥ ≤ r}.

C. Orthogonalizing All Layers

2
12

2
10

2
8

2
6

2
4

Learning Rate

3

4

5

6

7

8

Va
lid

at
io

n
Lo

ss

Layers
12
15
18
21
24
Optimizers
MuonS
Muon

Figure 5. By tuning only one hyperparameter, MuonS is bet-
ter than Muon. We train nanoGPT on OpenWebText with 1x
Chinchilla. We increase the size of the model by simultaneously
increasing its depth and width, represented by the number of
layers in the legend. We can also observe that for both algo-
rithms there is a transfer of learning rate.

In the original Muon implementation, AdamW was chosen for
the first and last layers. However, to speed up hyperparameter
training, stabilize the training, and simplify the optimizer, we
choose to use the spectral norm constraint for all layers, which
we name MuonS. When optimizing one learning rate and keep-
ing the rest of the hyperparameters fixed (more details are in
Appendix I), it outperforms Muon and AdamW for all model
sizes, as can be seen in Figure 5 and Figure 3.

Tuning additional hyperparameters can, of course, lead to
better performance, as we demonstrate in the next section.

9

495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549

Submission and Formatting Instructions for ICML 2025

D. Tuning more hyperparameters
In this paper, we focus on MuonS and its parallelizable version, MuonSBW, that require tuning only one hyperparameter.
However, in this section, we want to understand the performance of optimizers when tuning more hyperparameters. As this
requires expensive testing of all combinations of hyperparameters, we focus on varying two hyperparameters for 124M
nanoGPT model with 1x Chinchilla scaling. For this, we train it on OpenWebText.

Table 3. Optimal learning rates and valida-
tion losses for MuonS and Scion optimizers.
Here, we train nanoGPT models on OpenWeb-
Text. Best and second-best validation losses per
model size are highlighted.

Layers MuonS Scion

LR Loss LR Loss

12 0.05 3.5668 0.05 3.4342
15 0.05 3.1932 0.05 3.1311
18 0.02 2.9692 0.02 2.9305
21 0.02 2.7876 0.02 2.7798
24 0.02 2.6839 0.02 2.6826
30 0.05 2.5377 0.02 2.5214

Muon optimizer uses two optimizers depending on the layer: for the first,
last layers, and 1D tensors AdamW is used, while for all others – optimizers
based on SSD with momentum and NS iteration. By tuning a separate
learning rate for the AdamW-optimized tensors for Muon optimizer in
Table 4 and our proposed MuonS (AdamW is used only for 1D tensors) in
Table 5, we see that we can achieve a better loss in both cases. While the best
performance is achieved with the Muon in this full sweep, note in the case of
MuonS that the influence of the second learning rate is not as strong as it is
used only for 1D tensors – a property we would like to have in the optimizer
that requires tuning only one hyperparameter. For completeness, in Table 6
we have additionally analyzed the performance of MuonS with normalized
momentum SGD for 1D tensors. Because performance in validation loss is
worse than that of MuonS when using AdamW for 1D tensors in Table 5.

Next, in Figure 6 and Table 3 we observe that following the optimizer
suggested in Scion (Pethick et al., 2025) that uses a different norm constraint for the input and output layers can also improve
performance. Concretely, in Scion (Pethick et al., 2025), the authors propose to enforce the ℓ∞ norm for the input and
output layers, while keeping the spectral norm for the rest of the layers. Thus, we separately tune the learning rate for the
spectral norm-constrained layers and ℓ∞ norm-constrained ones.

2
12

2
10

2
8

2
6

2
4

Learning Rate

3

4

5

6

7

8

Va
lid

at
io

n
Lo

ss

Layers
12
15
18
21
24
30
Optimizers
Scion
MuonS

Figure 6. By tuning additional hyperparameter, Scion opti-
mizer can outperform MuonS. Here, we show that by tuning
an additional hyperparameter for first and last layers, we can
achieve a better performance than MuonS. This becomes less
evident for larger models. See Table 3 for the optimal learning
rate and validation loss values.

Because it has been shown in Scion (Pethick et al., 2025)
that such an optimizer enjoys the learning rate transfer when
scaling the width, we are interested in both tuning two hyper-
parameters and testing the learning rate transfer when doing
depth-width-token co-scaling, which was the case for Muon,
MuonS and MuonSBW (see Section 5.2 and Figure 5), with
MuonSBW and MuonS having more consistent behavior of
the validation loss when varying learning rate (optimal learn-
ing rate is the same for the smallest and the largest models)
during such co-scaling. For Scion, we observe in Figure 6
that up-scaling the learning rate by factor 10 for the input and
output layers leads to better performance in validation loss and
learning rate transfer during depth-width-token co-scaling. We
see, however, that MuonS has more consistent behavior of the
validation loss and the difference in the achieved validation
loss decreases with model scale. This might imply that tuning
this additional hyperparameter is less relevant at bigger model
scales.

10

550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604

Submission and Formatting Instructions for ICML 2025

Table 4. Muon validation losses for 124M nanoGPT model trained on OpenWebText. Here, A stands for the learning rate used for tensors
optimized with AdamW - first and last layers, together with 1D tensors. M stands for the learning rate used for all the other tensors
optimized with Muon. Here, blue cells denote the best validation loss achieved when using the same learning rate during the optimization
(faster search), and green - best validation loss achieved when using different learning rates during the optimization (longer search).

M
A

1e-04 2e-04 5e-04 1e-03 2e-03 5e-03 1e-02 2e-02 5e-02 1e-01 2e-01 5e-01

1e-04 5.9390 5.7853 5.6063 5.5068 5.4671 5.4352 5.4355 5.4525 5.4670 5.5710 5.8037 7.2642
2e-04 5.9344 5.7719 5.5703 5.4461 5.3390 5.2956 5.3305 5.3804 5.4107 5.5289 5.7673 7.0563
5e-04 5.7813 5.6212 5.4087 5.2653 5.1457 5.0251 5.0733 5.2154 5.2319 5.3614 5.6518 6.6242
1e-03 5.5489 5.3877 5.1773 5.0298 4.8968 4.7512 4.7525 4.9443 4.9166 5.0906 5.5074 6.4771
2e-03 5.1832 5.0178 4.8000 4.6233 4.4614 4.3365 4.3910 4.5600 4.5663 4.7187 5.3250 6.5286
5e-03 4.5376 4.3326 4.0997 3.9685 3.8631 3.8181 3.9197 4.0588 4.0772 4.1451 4.9531 6.7412
1e-02 4.2066 4.0190 3.7967 3.6850 3.6212 3.6203 3.7142 3.8321 3.8488 3.9396 4.5877 6.6117
2e-02 4.0653 3.8872 3.6785 3.5718 3.5327 3.5427 3.6310 3.7162 3.7234 3.8101 4.4429 7.4264
5e-02 3.9382 3.7602 3.5800 3.5127 3.4983 3.5136 3.6266 3.6957 3.7353 3.8357 5.2475 6.6402
1e-01 4.2107 3.9947 3.8332 3.7574 3.7060 3.7826 3.8502 3.8895 3.7817 3.9937 5.0316 8.2968
2e-01 6.6563 6.4079 6.1657 6.0540 6.0091 6.0897 6.2917 6.2566 6.4390 6.4332 6.7816 10.9911
5e-01 7.4857 7.0731 6.8243 6.6584 6.5182 6.6184 6.7522 6.9997 6.9901 7.1735 7.2850 10.9911

Table 5. MuonS validation losses for 124M NanoGPT model trained on OpenWebText. Here, A stands for the learning rate used for
tensors optimized with AdamW - only 1D tensors. M stands for the learning rate used for all the other tensors optimized with Muon. Here,
blue cells denote the best validation loss achieved when using the same learning rate during the optimization (faster search), and green -
best validation loss achieved when using different learning rates during the optimization (longer search).

M
A

1e-04 2e-04 5e-04 1e-03 2e-03 5e-03 1e-02 2e-02 5e-02 1e-01 2e-01 5e-01

1e-04 7.4393 7.3879 7.2704 7.1551 7.0565 6.9783 6.9340 6.9035 6.8836 6.8830 6.8920 6.9085
2e-04 6.7325 6.6915 6.5970 6.5000 6.4076 6.3227 6.2774 6.2477 6.2320 6.2371 6.2522 6.2887
5e-04 5.7924 5.7705 5.7127 5.6501 5.5853 5.5140 5.4755 5.4517 5.4398 5.4456 5.4601 5.4903
1e-03 5.1101 5.0963 5.0629 5.0259 4.9886 4.9470 4.9251 4.9049 4.8959 4.9077 4.9602 5.0222
2e-03 4.4332 4.4351 4.4122 4.3942 4.3753 4.3543 4.3387 4.3267 4.3178 4.3099 4.3175 4.3879
5e-03 3.8076 3.8017 3.7966 3.7913 3.7880 3.7827 3.7728 3.7644 3.7581 3.7715 3.7981 3.8709
1e-02 3.6474 3.6429 3.6366 3.6465 3.6345 3.6426 3.6259 3.6264 3.6227 3.6148 3.6449 3.7259
2e-02 3.8047 3.7775 3.7681 3.7593 3.7375 3.7167 3.6623 3.6181 3.5622 3.5577 3.5773 3.6933
5e-02 4.8114 4.8270 4.8160 4.7428 4.6636 4.4013 3.9651 3.7402 3.5668 3.5463 3.6068 5.4322
1e-01 5.4238 5.4633 5.6575 5.5914 5.4680 5.2629 4.8798 4.0335 3.8014 3.8496 4.9753 7.1162
2e-01 6.1991 6.2095 6.1799 6.1810 6.1312 5.9375 5.4313 5.2340 4.9602 5.4483 6.8416 10.9911
5e-01 10.9911 10.9911 10.9911 10.9911 10.9911 8.6015 6.6321 6.3084 6.3822 9.0017 10.9911 10.9911

Table 6. MuonS validation losses for 124M nanoGPT model trained on OpenWebText. Here, S stands for the learning rate used for tensors
optimized with normalized momentum SGD - only 1D tensors. M stands for the learning rate used for all the other tensors optimized with
Muon. Here, blue cells denote the best validation loss achieved when using the same learning rate during the optimization (faster search),
and green - best validation loss achieved when using different learning rates during the optimization (longer search).

M
S

1e-04 2e-04 5e-04 1e-03 2e-03 5e-03 1e-02 2e-02 5e-02 1e-01 2e-01 5e-01

1e-04 7.4963 7.4931 7.4829 7.4684 7.4390 7.3606 7.2610 7.1347 6.9964 6.9355 6.9013 6.8954
2e-04 6.7780 6.7749 6.7684 6.7567 6.7337 6.6738 6.5937 6.4869 6.3559 6.2962 6.2648 6.2522
5e-04 5.8165 5.8144 5.8109 5.8027 5.7872 5.7440 5.6818 5.5949 5.4850 5.4250 5.3693 5.3035
1e-03 5.1273 5.1253 5.1207 5.1127 5.0986 5.0580 5.0080 4.9378 4.8401 4.7620 4.7015 4.6365
2e-03 4.4485 4.4444 4.4424 4.4397 4.4303 4.4018 4.3694 4.3194 4.2404 4.1591 4.0989 4.0658
5e-03 3.8122 3.8069 3.8047 3.8057 3.8024 3.7889 3.7795 3.7649 3.7386 3.7246 3.7150 3.7245
1e-02 3.6490 3.6450 3.6458 3.6449 3.6563 3.6417 3.6248 3.6292 3.6189 3.6148 3.6112 3.6230
2e-02 3.8423 3.7921 3.7862 3.7783 3.7711 3.7764 3.7556 3.7265 3.6867 3.6416 3.6111 3.5986
5e-02 4.8113 4.8326 4.7843 4.8653 4.7846 4.7352 4.5963 4.1807 3.9549 3.8951 3.9050 3.8143
1e-01 5.5294 5.6321 5.5654 5.7361 5.4144 5.3642 5.3437 5.2497 4.7069 4.6061 4.8194 5.6131
2e-01 6.2283 6.2298 5.9690 6.0936 6.1978 5.9463 6.1157 5.7292 5.3737 5.5721 6.3683 7.7045
5e-01 10.9911 10.9911 10.9911 10.9911 10.9911 10.9911 10.9911 9.2089 6.7458 7.5215 10.9911 10.9911

11

605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659

Submission and Formatting Instructions for ICML 2025

100 200 300 400 500 600 700 800
2.5

3.0

3.5

4.0

4.5

5.0

5.5
Va

lid
at

io
n

Lo
ss

Model Size = 124M

0 500 1000 1500 2000 2500

Model Size = 345M

0 1000 2000 3000 4000
Step

2.5

3.0

3.5

4.0

4.5

5.0

5.5

Va
lid

at
io

n
Lo

ss

Model Size = 524M

0 1000 2000 3000 4000 5000 6000
Step

Model Size = 758M

Weight Decay
0.0
0.001
0.01
0.1

Figure 7. For MuonSBW, higher weight decay of 0.1 consistently outperforms only at the end of the training. Here, for MuonSBW,
we vary weight decay for 1x Chinchilla. One can see that with 1x Chinchilla scaling it is still visible that at the end of the training higher
weight decay of 0.1 consistently outperforms lower weight decay values while being significantly worse before. However, this occurs at
the earlier proportion of the training run than using 5x scaling (see Figure 2).

E. Extended Weight Decay Evaluation
In Section 5.3 and Figure 2 for MuonSBW overtrained with 5x Chinchilla scaling, we investigated the influence of weight
decay on validation loss. There, the weight decay of 0.1 started to perform better than the lower weight decay values only
after 70% of the training run for the 124M model, 78% for the 345M model, 82% for the 524M model, and 84% for the
758M model with a mean of 77%. That is, the bigger the model is and the longer we train (because we co-scale tokens when
scaling model size), the later 0.1 weight decay value improves the validation loss.

In this section, we continue training nanoGPT on OpenWebText and do it for additional optimizers, Muon, MuonS, AdamW,
as well as for 1x Chinchilla and 5x Chinchilla scaling.

MuonSBW. First, we train using MuonSBW introduced in Section 4, but with fewer tokens, using 1x Chinchilla scaling. In
this setting, as we observe in Figure 7 that a similar trend holds – MuonSBW with the weight decay of 0.1 outperforms in
validation loss only at the end of the training, however it starts outperforming at the earlier proportion of the training run
than with 5x Chinchilla scaling: the weight decay of 0.1 started to perform better than the lower weight decay values only
after 32% of the training run for the 124M model, 64% for the 345M model, 68% for the 524M model, and 71% for the
758M model with a mean of 59%.

AdamW. Next, to understand if similar behavior happens for AdamW, we first train it with 5x and then 1x Chinchilla scaling.
In both settings, as we observe in Figure 8 for the 5x Chinchilla scaling and in Figure 9 for the 1x Chinchilla scaling, the
weight decay of 0.1 outperforms in validation loss only at the end of the training, similar to MuonSBW. However, for both
5x and 1x Chinchilla scaling we observe it only for models of larger sizes – with 524M and 758M parameters, and the
difference of performance with higher weight decay is less prominent. Concretely, with the 5x Chinchilla scaling, AdamW
with a weight decay of 0.1 started to perform better than the lower weight decay values only after 14% of the training run
for the 124M model, 9% for the 345M model, 68% for the 524M model, and 68% for the 758M model with a mean of 40%.
For 1x Chinchilla scaling, it starts outperforming already early in the training: after 20% of the training run for the 124M
model, 5% for the 345M model, 3% for the 524M model, and 3% for the 758M model with a mean of 8%.

12

660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714

Submission and Formatting Instructions for ICML 2025

500 1000 1500 2000 2500 3000 3500 4000

3 × 100

4 × 100
Va

lid
at

io
n

Lo
ss

Model Size = 124M

0 2000 4000 6000 8000 10000 12000 14000

3 × 100

4 × 100

Model Size = 345M

0 5000 10000 15000 20000
Step

3 × 100

4 × 100

Va
lid

at
io

n
Lo

ss

Model Size = 524M

0 5000 10000 15000 20000 25000 30000
Step

3 × 100

4 × 100

Model Size = 758M

weight_decay
0.0
0.001
0.01
0.1

Figure 8. For AdamW, higher weight decay of 0.1 outperforms at the end of the training only for bigger models. When varying
weight decay values for AdamW, for 5x Chinchilla, we can see that higher weight decay of 0.1 outperforms lower weight decay values at
the end of the training only for larger models, 524M and 758M ones.

100 200 300 400 500 600 700 800

3 × 100

4 × 100

6 × 100

Va
lid

at
io

n
Lo

ss

Model Size = 124M

0 500 1000 1500 2000 2500

3 × 100

4 × 100

6 × 100

Model Size = 345M

0 1000 2000 3000 4000
Step

3 × 100

4 × 100

6 × 100

Va
lid

at
io

n
Lo

ss

Model Size = 524M

0 1000 2000 3000 4000 5000 6000
Step

3 × 100

4 × 100

6 × 100

Model Size = 758M

weight_decay
0.0
0.001
0.01
0.1

Figure 9. For AdamW, higher weight decay of 0.1 outperforms at the end of the training only for bigger models. When varying
weight decay values for AdamW, for 1x Chinchilla, we can see that, similarly to 5x Chinchilla (see Figure 8), higher weight decay of 0.1
outperforms lower weight decay values at the end of the training only for larger models, 524M and 758M ones. The difference becomes
less visible however.

13

715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769

Submission and Formatting Instructions for ICML 2025

MuonS. Similarly, we train with MuonS first with a 5x and then 1x Chinchilla scaling. In both settings, as we observe in
Figure 10 for the 5x Chinchilla scaling and in Figure 11 for the 1x Chinchilla scaling, the weight decay of 0.1 outperforms
in validation loss only at the end of the training, similar to MuonSBW. Concretely, with the 5x Chinchilla scaling, MuonS
with a weight decay of 0.1 started to perform better than the lower weight decay values after 82% of the training run for the
124M model, 89% for the 345M model, 93% for the 524M model, and 99% for the 758M model with a mean of 91%. Thus,
this improvement occurs later than for MuonSBW. For 1x Chinchilla scaling, it also occurs later in the training: after 66% of
the training run for the 124M model, 79% for the 345M model, 81% for the 524M model, and 84% for the 758M model
with a mean of 78%.

Muon. Similarly for Muon, we first train nanoGPT on OpenWebText with 5x and then 1x Chinchilla scaling. In both
settings, as we observe in Figure 12 for the 5x Chinchilla scaling and in Figure 13 for the 1x Chinchilla scaling, the weight
decay of 0.1 outperforms in validation loss only at the end of the training, similar to MuonSBW. However, for the case of
the 5x Chinchilla, we observe a “loss spike” at the end of training. Such “loss spikes” have been observed when training
models with AdamW (Molybog et al., 2023), which might be relevant here since Muon uses AdamW to optimize the first
and the last layers. In our experiments, with the 5x Chinchilla scaling, Muon with a weight decay of 0.1 started to perform
better than the lower weight decay values after 61% of the training run for the 124M model, 77% for the 345M model, 84%
for the 524M model, and 89% for the 758M model with a mean of 78%. For 1x Chinchilla scaling, it starts outperforming
after 37% of the training run for the 124M model, 53% for the 345M model, 63% for the 524M model, and 68% for the
758M model with a mean of 55%. In both cases, it is similar to MuonSBW.

14

770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824

Submission and Formatting Instructions for ICML 2025

500 1000 1500 2000 2500 3000 3500 4000

2.6

2.8

3.0

3.2

3.4

3.6

3.8

4.0

Va
lid

at
io

n
Lo

ss

Model Size = 124M

0 2000 4000 6000 8000 10000 12000 14000

Model Size = 345M

0 5000 10000 15000 20000
Step

2.6

2.8

3.0

3.2

3.4

3.6

3.8

4.0

Va
lid

at
io

n
Lo

ss

Model Size = 524M

0 5000 10000 15000 20000 25000 30000
Step

Model Size = 758M

Weight Decay
0.0
0.001
0.01
0.1

Figure 10. For MuonS, higher weight decay of 0.1 consistently outperforms only at the end of the training. Here, we vary weight
decay for 5x Chinchilla. In this setting, at the end of the training higher weight decay of 0.1 consistently outperforms lower weight decay
values while being significantly worse before. This behavior is similar to using MuonSBW (see Figure 2).

100 200 300 400 500 600 700 800
2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

Va
lid

at
io

n
Lo

ss

Model Size = 124M

0 500 1000 1500 2000 2500

Model Size = 345M

0 1000 2000 3000 4000
Step

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

Va
lid

at
io

n
Lo

ss

Model Size = 524M

0 1000 2000 3000 4000 5000 6000
Step

Model Size = 758M

Weight Decay
0.0
0.001
0.01
0.1

Figure 11. For MuonS, only at the end of the training higher weight decay of 0.1 consistently outperforms. Here, for MuonS, we
vary weight decay for 1x Chinchilla. In this setting, it is still visible that at the end of the training higher weight decay of 0.1 consistently
outperforms lower weight decay values while being significantly worse before. However, this occurs at the earlier proportion of the
training run than using 5x scaling (see Figure 10).

15

825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879

Submission and Formatting Instructions for ICML 2025

500 1000 1500 2000 2500 3000 3500 4000

2.6

2.8

3.0

3.2

3.4

3.6

3.8

4.0
Va

lid
at

io
n

Lo
ss

Model Size = 124M

0 2000 4000 6000 8000 10000 12000 14000

Model Size = 345M

0 5000 10000 15000 20000
Step

2.6

2.8

3.0

3.2

3.4

3.6

3.8

4.0

Va
lid

at
io

n
Lo

ss

Model Size = 524M

0 5000 10000 15000 20000 25000 30000
Step

Model Size = 758M

Weight Decay
0.0
0.001
0.01
0.1

Figure 12. For Muon, higher weight decay of 0.1 consistently outperforms only at the end of the training. Here, we vary weight
decay for 5x Chinchilla. In this setting, at the end of the training higher weight decay of 0.1 consistently outperforms lower weight decay
values while being significantly worse before. This behavior is similar to using MuonSBW (see Figure 2). For the largest model we see a
“loss spike” – an undesired artefact, which sometimes occurs for AdamW (Molybog et al., 2023).

300 400 500 600 700 800

3.0

3.5

4.0

4.5

5.0

Va
lid

at
io

n
Lo

ss

Model Size = 124M

500 1000 1500 2000 2500

Model Size = 345M

500 1000 1500 2000 2500 3000 3500 4000 4500
Step

3.0

3.5

4.0

4.5

5.0

Va
lid

at
io

n
Lo

ss

Model Size = 524M

1000 2000 3000 4000 5000 6000
Step

Model Size = 758M

Weight Decay
0.0
0.001
0.01
0.1

Figure 13. For Muon, higher weight decay of 0.1 consistently outperforms only at the end of the training. For 1x Chinchilla, this
occurs at the earlier proportion of the training run than using 5x scaling (see Figure 12).

16

880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934

Submission and Formatting Instructions for ICML 2025

E.1. Weight Decay Schedule

In Section 5.3, we show that for the larger model with 345M parameters, the Cutoff schedule outperforms the baseline
(constant weight decay of 0.1) at 80% of the data. Here, for the smaller model with 124M parameters, we do ablation for
different schedules introduced in Section 5.3. For it, we observe in Figure 14 that decreasing weight decay with the Inverse
Polynomial Schedule leads to similar gains. This, together with the observations in Section 5.3, might indicate that the
weight decay becomes less important at the end of the training. We analyze it further from the perspective of a spectral norm
in the next section.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Cutoff proportion

3.03

3.04

3.05

3.06

3.07

3.08

Va
lid

at
io

n
Lo

ss

Cutoff Schedule

20 21 22 23 24

Polynomial degree

Polynomial Schedule

20 21 22 23 24

Inverse Polynomial degree

Inverse Polynomial Schedule

Constant wd = 0.1
Constant wd = 0.0

Figure 14. Clipping weight decay at 80% of the training and Inverse Polynomial Schedule helps. For MuonSBW, with weight decay
clipping (Cutoff Schedule), we can improve compared to the fixed weight decay by turning the weight decay off at the last 80% of the
training. We observe similar gains for the Inverse Polynomial Schedule.

F. Investigating Spectral Norms
To better understand the reason behind the suddenly better performance of the higher weight decay at the end of the training,
we analyze the spectral norm of the 124M model for the LM head. We observe in Figure 15 the following: i) (on the left) a
higher weight decay value of 0.1 has a significantly lower spectral norm, in line with the optimization constrained to the
spectral norm-ball that it induces, as we discuss in Appendix B.2; ii) (in the middle) increasing the number of splits of the
gradient update matrix for MuonSBW leads to a higher spectral norm that indicates a gradually worse approximation of the
orthogonalization due to a higher number of splits, which still works well in practice as we can see in Figure 1; iii) (on the
right) MuonSBW has the lowest spectral norm, likely due to the spectral norm being enforced on the first and last layers
additionally, compared to Muon, which uses AdamW for them. In addition, we computed the spectral norm for each of
the layers: our 124M model has 12 layers or transformer blocks, each containing 4 weight matrices: 2 in MLP and 2 in
self-attention. For each layer/block, we take the maximal spectral norm across 4 weight matrices, computed with singular
value decomposition (SVD) for higher precision, and report it across training steps. We discuss it in the following sections.

0 100 200 300 400 500 600 700 800
Step

10

20

30

40

50

60

70

S
pe

ct
ra

l N
ro

m

Weight Decay
0.0
0.001
0.01
0.1

0 100 200 300 400 500 600 700 800
Step

TP
1
2
4
8
16

0 100 200 300 400 500 600 700 800
Step

Optimizer
MuonSBW
AdamW
Muon

Figure 15. Higher weight decay of leads to a significantly lower spectral norm. For the 124M model, we compute the spectral norm of
the last layer, LM head, while varying weight decay, number of tensor parallel splits for MuonSBW, and optimizer. We see that a higher
weight decay of 0.1, on the left, leads to a significantly lower spectral norm, which might explain its better generalization properties.

17

935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989

Submission and Formatting Instructions for ICML 2025

F.1. Influence of the Number of Splits

0 200 400 600 800
Step

2

4

6

8

10

M
ax

im
al

 S
pe

ct
ra

l N
or

m

TP = 1

0 200 400 600 800
Step

TP = 2

0 200 400 600 800
Step

TP = 4

0 200 400 600 800
Step

TP = 8

0 200 400 600 800
Step

TP = 16 Layer number
Layer 1
Layer 2
Layer 3
Layer 4
Layer 5
Layer 6
Layer 7
Layer 8
Layer 9
Layer 10
Layer 11
Layer 12

Figure 16. Increasing the number of tensor parallel splits (TP) in MuonSBW leads to higher spectral norms across all layers. For
the 124M model, we compute the maximal spectral norms across weight matrices in one layer (block of the transformer) varying the
number of row-wise splits.

First, in Figure 16, we observe that increasing the number of row-wise tensor parallel splits (TP) for MuonSBW, introduced
in Section 4, consistently increases the spectral norms for all layers. We take row-wise splits, as they had the lowest
validation loss, close to the MuonS baseline (no block-wise orthogonalization is used) as we could see in Figure 1.

F.2. Influence of the Weight Decay

0 200 400 600 800
Step

2

3

4

5

6

M
ax

im
al

 S
pe

ct
ra

l N
or

m

Weight Decay = 0.0

0 200 400 600 800
Step

Weight Decay = 0.001

0 200 400 600 800
Step

Weight Decay = 0.01

0 200 400 600 800
Step

Weight Decay = 0.1 Layer number
Layer 1
Layer 2
Layer 3
Layer 4
Layer 5
Layer 6
Layer 7
Layer 8
Layer 9
Layer 10
Layer 11
Layer 12

Figure 17. Increasing the weight decay value in MuonSBW leads to lower spectral norms across all layers. For the 124M model, we
compute the maximal spectral norms across weight matrices in one layer (block of the transformer) varying the number of row-wise splits.

Next, in Figure 17, we see that for MuonSBW we also have a consistent decrease of the spectral norms for all layers when
increasing the weight decay value.

F.3. Influence of the Optimizer

0 200 400 600 800
Step

2

3

4

5

6

M
ax

im
al

 S
pe

ct
ra

l N
or

m

AdamW

0 200 400 600 800
Step

Muon

0 200 400 600 800
Step

MuonSBW Layer number
Layer 1
Layer 2
Layer 3
Layer 4
Layer 5
Layer 6
Layer 7
Layer 8
Layer 9
Layer 10
Layer 11
Layer 12

Figure 18. MuonSBW obtains lower spectral norms than Muon. For the 124M model, we compute the maximal spectral norms across
weight matrices in one layer (block of the transformer) varying the number of row-wise splits.

Lastly, in Figure 18, we can notice a consistent decrease in the spectral norm for all layers, when using MuonSBW, compared
to Muon, which in turn attains lower spectral norms compared to AdamW.

18

990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044

Submission and Formatting Instructions for ICML 2025

G. Critical Batch Size
For a better understanding of MuonS and MuonSBW, we analyze its critical batch size introduced in (Zhang et al., 2025) on
the OpenWebText dataset and compare it to AdamW. For this, we use 1x Chinchilla scaling and achieve a loss of 3.2 with a
baseline optimizer, AdamW, with the smallest batch size of 27 to ensure that we can also achieve it in other settings. We
choose the 345M model as this is the smallest model, which does not have big differences in the best validation loss obtained
when comparing AdamW, MuonS and MuonSBW (see Figure 3). In addition, for each batch size, we vary 5 learning rates
and choose the best. The maximum number of steps for each batch size is such that it preserves the 1x Chinchilla scaling. In
this setting, in Figure 19, we observe that CBS for AdamW is higher; however, it requires more steps for each batch size and
scales much worse for higher batch sizes. Moreover, it does not achieve the target loss for the largest batch size of 212.

2
7

2
8

2
9

2
10

2
11

Batch Size

2
8

2
9

2
10

2
11

2
12

2
13

2
14

S
te

ps
 to

 T
ar

ge
t L

os
s

3.
2

2
7

2
8

2
9

2
10

2
11

2
12

Batch Size
2

7
2

8
2

9
2

10
2

11
2

12

Batch Size

Linear steps scaling
30% overhead
Critical Batch Size

Optimizer
AdamW
MuonS
MuonSBW

Figure 19. While CBS for AdamW is higher, it requires more steps for each batch size and scales much worse for higher batch sizes.
For 345M nanoGPT model, we vary batch size during the training using 1x Chinchilla scaling (thus the number of optimization steps is
changed accordingly) to understand, how optimizers influence CBS. Note that for batch size 212 AdamW does not reach the target loss.

H. Results for C4 Dataset

2
12

2
10

2
8

2
6

2
4

Step

3

4

5

6

7

8

Va
lid

at
io

n
Lo

ss

Layers
12
15
18
21
24
Optimizers
MuonSBW
AdamW

Figure 20. MuonSBW enjoys learning rate transfer during
depth-width-token co-scaling for C4 dataset. Similar to ob-
servations in Figure 3 for OpenWebText, we observe for another
dataset, C4, that the MuonSBW learning rate transfers when
simultaneously scaling model depth, width, and number of to-
kens, while for AdamW it does not.

In this section, we investigate how some of the properties
of MuonSBW observed with nanoGPT on the OpenWebText
dataset transfer to the C4 dataset. We already saw in Figure 1
that MuonSBW has a similar scaling behavior when increasing
the number of tensor parallel splits (TP) for OpenWebText and
C4. Here, we further compare its learning rate transfer and
weight decay influence in the following sections.

H.1. Learning rate transfer

First, we compare the learning rate transfer of MuonSBW and
AdamW. We can see in Figure 20 a behavior similar to that
we already observed for OpenWebText in Figure 3 – there
is learning rate transfer for MuonSBW during depth-width-
token co-scaling, unlike for AdamW. Furthermore, the optimal
learning rate for OpenWebText of 0.01 is also the best here.
Due to the time and compute constraints we train the models
here up to 24 layers, while for the experiment in Figure 20 we
trained one more size of the model, with 30 layers.

19

1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099

Submission and Formatting Instructions for ICML 2025

H.2. Static Weight Decay

In addition, for two model sizes, 124M and 345M, in Figure 22 we show the behavior of static weight decay when training
with MuonSBW and 5x Chinchilla scaling. Similarly to models trained on OpenWebText (see Section 5.3), we observe that
a higher weight decay value of 0.1 outperforms other weight decay values only at the end of the training run.

500 1000 1500 2000 2500 3000 3500 4000
Step

2.8

3.0

3.2

3.4

3.6

3.8

4.0

Va
lid

at
io

n
Lo

ss

Model Size = 124M

0 2000 4000 6000 8000 10000 12000 14000
Step

Model Size = 345M
Weight Decay

0.0
0.001
0.01
0.1

Figure 21. Higher weight decay of 0.1 consistently outperforms only at the end of the training. Similar to previous observations in
Section 5.3, we observe for MuonSBW additionally on C4 dataset, that a higher weight decay value of 0.1 initially performs worse and
then, at the end of the training, better than lower constant values in validation loss.

H.3. Dynamic Weight Decay

Finally, we try the weight decay schedules proposed in Section 5.4 for MuonSBW trained on C4. We see that similarly to
OpenWebText (see Appendix E.1), increasing Cutoff proportion and the degree in Inverse Polynomial schedule decreases
the validation loss. However, it remains comparable to the baseline with the constant weight decay value of 0.1, while on
OpenWebText we observe improvement in the validation loss for these both schedules.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Cutoff proportion

3.19

3.20

3.21

3.22

3.23

3.24

Va
lid

at
io

n
Lo

ss

Cutoff Schedule

20 21 22 23 24

Polynomial degree

Polynomial Schedule

20 21 22 23 24

Inverse Polynomial degree

Inverse Polynomial Schedule

Constant wd = 0.1
Constant wd = 0.0

Figure 22. Clipping weight decay at 80% of the training and Inverse Polynomial Schedule. Motivated by previous observations in
Section 5.3, we investigate for MuonSBW additionally on C4 dataset, if clipping weight decay or varying it throughout the training has
influence on the performance of the model. We see that clipping it at 90% of the training outperforms the baseline weight decay slightly.

20

1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154

Submission and Formatting Instructions for ICML 2025

I. Experimental Details
Here, we provide more details of our experimental setting used throughout the paper. They remain consistent across all
experiments in the paper, unless we specify otherwise.

I.1. Model Hyperparameters

We used the original nanoGPT model (Karpathy, 2022) without changing its initialization with a block size of 1024 and
vocabulary size of 50304 (GPT-2 vocabulary size of 50257, padded up to the nearest multiple of 64 for efficiency). When
we increase the number of layers, we consider the following model sizes, together with the number of layers in brackets:
124M (12), 215M (15), 345M (18), 524M (21), 758M (24), 1.43B (30). We do depth-width-token co-scaling, by setting the
number of heads in the nanoGPT to be the same as the number of layers, and additionally setting the embedding dimension
to be four times the number of heads (and thus layers).

I.2. Optimizer Hyperparameters

For all optimizers, we use the cosine learning rate schedule with the linear warm-up until 2% of the training and decay it
until the end of the training. By default, we use 1x Chinchilla scaling, that is, the number of tokens used is twenty times the
number of model parameters. Following the nanoGPT codebase, we also use gradient clipping of the global norm at 1.0.

AdamW. By default, we set the weight decay to 0.1 and β1 with β2 to 0.9 and 0.95, respectively.

Muon. Spectral norm constraint is used for all layers, but the 1D tensors, together with the first and last layers, are optimized
with AdamW. By default, we set the Nesterov momentum to 0.9, AdamW β1 and β2 to 0.9 and 0.95, and AdamW weight
decay to 0.01. The orthogonalization is approximated with the quintic NS iteration using 6 steps. If not explicitly specified,
we use the same learning rate for the layers optimized with the spectral norm constraint and AdamW.

MuonS. We use the same setting as for Muon, with the difference that we use the spectral norm constraint for all layers, and
we use AdamW for 1D tensors, unless specified otherwise.

MuonSBW. We use the same setting as for MuonS, however, we perform NS iteration on either row-, column-, or block-wise
splits as described in Section 4 and concatenate them afterwards.

Scion. We use the same setting as for MuonS; however, for the first and last layers, we use ℓ∞ norm constraint, which
implies sign updates. Unless otherwise specified, we increase the learning rate for the first and last layers with the ℓ∞ norm
constraint by a factor 10.

I.3. Details About Datasets

OpenWebText (Gokaslan et al., 2019). Train split contains 9B tokens and validation split – 4M tokens.

C4 (Raffel et al., 2019; for AI, 2019). We use the “en” part of the dataset. The train split contains 175B tokens, and the
validation split – 87M tokens.

I.4. Details About the Compute

For all our experiments, we were training models using three types of nodes with 8 NVIDIA GPUs each: A100, L40S, and
A10G. Each training run was done on one full node, depending on the RAM required.

21

