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Abstract

Machine Reading Comprehension(MRC) has001
achieved a remarkable result since some power-002
ful models, such as BERT, are proposed. How-003
ever, these models are not robust enough and004
vulnerable to adversarial input perturbation and005
generalization examples. Some works tried to006
improve the performance on adversarial pertur-007
bation by adding related examples into train-008
ing data while it leads to degradation on the009
in-domain dataset, because the shift of data dis-010
tribution makes the answer ranking based on011
the softmax probability of model unreliable. In012
this paper, we propose a method to improve013
the robustness by using a calibrator as the post-014
hoc reranker, which is implemented based on015
XGBoost model. The calibrator combines both016
manual features and representation learning fea-017
tures to rerank candidate results. Experimental018
results on adversarial datasets show that our019
model can achieve performance improvement020
by more than 10% and also make improvement021
on the in-domain and generalization datasets.022

1 Introduction023

Assisted by large pre-trained models, Machine024

Reading Comprehension(MRC) has achieved025

human-comparable results on some existing026

datasets. But even state-of-the-art (SOTA) mod-027

els trained on such datasets are not robust enough.028

These models are not only vulnerable to adversar-029

ial input perturbations, but also perform poorly on030

out-of-domain data.031

Building more challenging MRC datasets may032

improve the robustness, but the whole process is033

expensive. Therefore, there are two directions to ad-034

dress the problem based on existing datasets. One035

is the data level. Using some of adversarial or out-036

of-domain examples as data augmentation can im-037

prove performance on corresponding dataset, but it038

leads to degradation on the in-domain dataset. The039

other is the model level. Adding complex struc-040

tures in models and modifying loss function may041

improve generalization and defend adversarial at- 042

tack, but the new model is time-consuming and 043

memory intensive during training and inference. 044

In this paper, we proposed a simple yet effec- 045

tive method to improve performance on adversarial 046

and generalization datasets without sacrificing in- 047

domain performance in extractive MRC task. We 048

applied several kinds of adversarial examples to 049

explore the vulnerability of SOTA MRC model, 050

and we found that the reason for the performance 051

degradation was not that the model completely lost 052

its ability to predict the range of correct answers, 053

but that the ranking of candidate answers became 054

unreliable. In other words, the model can still pre- 055

dict the correct range, but won’t choose it as final 056

output. Based on the above observation and in- 057

spired by previous work, we proposed a method, in 058

which a calibrator is used as the post-hoc reranker 059

to adjust the ranking of candidates. On account of 060

the time complexity and space consumption, we 061

adopted XGBoost to implement the calibrator. 062

Instead of BERT (Devlin et al., 2019), we use 063

RoBERTa (Liu et al., 2019) as our backbone MRC 064

model, for the latter shows higher level of robust- 065

ness in MRC task. We use SQuAD 2.0 dataset 066

(Rajpurkar et al., 2018) as main dataset and use 067

Natural Questions (Kwiatkowski et al., 2019) to re- 068

veal generalization ability. We employ the methods 069

proposed by Maharana and Bansal (2020) to gen- 070

erate adversarial examples, which is diverse and 071

has been proved aggressive to attack baseline MRC 072

models. And then we utilize our proposed calibra- 073

tor as a post-hoc reranker to improve robustness. 074

Our contributions can be summarized as follows: 075

• We had a thorough research on adversarial 076

examples generation on MRC datasets and 077

made an analysis with statistical data of the 078

influence of these examples on MRC models. 079

• We proposed a simple yet effective method to 080

use calibrator as a reranker to improve perfor- 081
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mance on adversarial datasets without sacri-082

ficing in-domain performance.083

• We expand the feature space of calibrator by084

introducing two new manual features and in-085

tegrating representation learning features to086

characterize model’s states during inference,087

while previous works are limited to focusing088

on shallow manual features only.089

2 Related Work090

Robustness in MRC Robustness is a research091

highlight in NLP because researchers have found092

that models achieved impressive performance on093

particular datasets is too vulnerable for practical094

application (Jin et al., 2020). As for MRC, the re-095

search on robustness of models can be generally096

categorised into two directions: generalization to097

out-of-domain distributions and robustness under098

test-time perturbations (Si et al., 2021a). Both di-099

rections will disturb the data distribution, but they100

have different goals. Adversarial input perturba-101

tions aim to ascertain whether model learns short-102

cut, which means model learns to answer questions103

based on some specific implicit patterns rather than104

reading comprehension ability (Lai et al., 2021).105

Generalization aims to extend application scope of106

the model to out-of-domain data and maintains per-107

formance under domain-shift (Kamath et al., 2020).108

Many previous researches focus on exposing mod-109

els’ vulnerabilities through maliciously designed110

inputs and bringing forward to new challenging111

datasets and tools (Gan and Ng, 2019; Sen and Saf-112

fari, 2020; Jin et al., 2020; Si et al., 2021a; Bartolo113

et al., 2021; Si et al., 2021b). Another perspective114

is to modify the model structure and loss function,115

such as introducing external knowledge and multi-116

task strategy (Wu and Xu, 2020), adding adapters117

(Han et al., 2021), changing loss function to adjust118

bias caused by generalization (Wu et al., 2020; Liu119

et al., 2020) and so on. These models are more120

robust but have more than doubled parameters.121

Adversarial Examples Generation The goal of122

adversarial attack is to mislead the model into giv-123

ing wrong outputs. Due to discrete characteristics124

of Natural Language, some aggressive adversar-125

ial attack methods in Computer Vision may cause126

out-of-distribution(OOD) problem in NLP. As for127

MRC, adversarial input perturbation on contexts128

and questions may have a great effect. There are129

various ways to perturb the text of contexts and130

questions, such as word substitution, heuristics, 131

gradient-based techniques and so on (Zhang et al., 132

2019; Bao et al., 2021). Jia and Liang (2017) first 133

proposed to use distracting sentences that have sig- 134

nificant overlap with the question and insert them 135

into the context to generate adversarial examples. 136

However, the creation of such distracting sentences 137

is based on fixed templates, so the model probably 138

identifies learnable biases and overfits to the tem- 139

plates instead of being robust to attack itself (Maha- 140

rana and Bansal, 2020). Then more researches have 141

tried to address this problem by creating complex 142

templates (Wang and Bansal, 2018), or exploring 143

more challenging generative methods (Gan and Ng, 144

2019; Si et al., 2021b; Bartolo et al., 2021). In ad- 145

dition to adding confusing sentences into contexts, 146

there are several methods that can be aggressive 147

and cause huge performance degradation as well, 148

such as deleting pivotal sentences from contexts 149

(Maharana and Bansal, 2020), using language mod- 150

els to generate new questions with same semantics 151

and different syntactic forms (Iyyer et al., 2018), 152

perturbing word embedding (Lee et al., 2021) and 153

so on. Maharana and Bansal (2020)’s work is com- 154

prehensive by containing inserting distracting sen- 155

tences, deleting crucial sentences and paraphrasing 156

questions, so we apply their method to generate 157

adversarial examples and analyze their influence. 158

Calibration in NLP The question of whether the 159

model’s confidence provides an accurate empirical 160

measure of how likely the model is to be correct has 161

been put forward to examine the reliability of the 162

model (Jung et al., 2020; Jiang et al., 2021). A well- 163

calibrated model should ensure that the confidence 164

of its predictions is consistent with its accuracy, 165

which means it shouldn’t output incorrect predic- 166

tions with high confidence. Previous works have 167

found that the model which gives good confidence 168

estimates on in-domain data is overconfident on 169

OOD data (Desai and Durrett, 2020). In MRC, 170

models tend to choose results with maximal soft- 171

max probability as final outputs. But out-of-domain 172

data leads to the shift of data distribution, which 173

causes overconfident issue (Kamath et al., 2020; 174

Xin et al., 2021). Previous works proposed to apply 175

the calibrator as a threshold to decide whether to 176

abstain the prediction and try to avoid making con- 177

fident yet incorrect predictions in preserved exam- 178

ples (Kamath et al., 2020; Xin et al., 2021; Zhang 179

et al., 2021). Based on the analysis of the impact 180

of adversarial examples, instead of using it as a 181
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threshold, we use the calibrator as a reranker.182

3 Method183

We use the calibrator as a post-hoc reranker to im-184

prove robustness in extractive MRC task. Basic QA185

model feeds outputs and some important model fea-186

tures into the calibrator and then calibrator chooses187

the best answer span from k1 candidates as final188

outputs. We follow prior works (Kamath et al.,189

2020; Zhang et al., 2021), for the idea and ba-190

sic features. But the key differences are that we191

adopt different calibrator architecture and use it for192

reranking rather than as a discard threshold ,and we193

extend the feature space. We categorized features194

into two kinds: manual features that are irrelevant195

to the MRC model, and representation learning196

features that revealed model states.197

3.1 Metrics198

Previous works (Kamath et al., 2020; Zhang et al.,199

2021) use the calibrator to decide whether to ab-200

stain an example, so the metrics to evaluate cali-201

brator performance are associated with accuracy202

of binary classification and performance of the re-203

tained examples. They first plot risk versus cover-204

age graph, where coverage is the fraction of evalua-205

tion data that calibration chooses to retain and risk206

is the error at that coverage. And they calculate207

the area under the curve, i.e. AUROC(Area Under208

the Receiver Operating Characteristics Curve), as209

the metrics.A good calibrator should cover as much210

coverage as possible with a specific given accuracy.211

We propose to use the calibrator to choose the212

best from candidates, so it is a multi-classification213

problem rather than binary classification as previ-214

ous work. And we don’t abstain examples, so we215

use a different metric to evaluate the performance216

of calibrator, which is classification accuracy.217

To measure MRC task performance, we use the218

answers chosen by calibrator as final outputs, and219

measure F1 score as a metric like common extrac-220

tive MRC task.221

3.2 Basic MRC model222

We choose RoBERTa-large (Liu et al., 2019) as223

our backbone model for its superior performance224

and relative robustness. And we use standard span225

prediction architecture for extractive MRC task.226

We remain the architecture of MRC model. The227

model has same input format and training process228

1k is set to 10 in our experiments.

as general MRC models. But we make minor 229

changes to its final outputs. After training, in ad- 230

dition to outputting unique id and text of answer 231

with maximal softmax probability for each exam- 232

ple as usual, the model also needs to output some 233

features generated during inference, which will be 234

described in section 3.4 and 3.5. 235

3.3 Calibrator architecture 236

We apply gradient boosting library XGBoost (Chen 237

and Guestrin, 2016) to train a multi-classifier to 238

chooses one answer from k candidates provided by 239

the baseline MRC model. The calibrator does not 240

share its weights with basic MRC models. Since 241

our target is to prove the effect of calibrator on 242

adversarial datasets, we simply keep most of hyper- 243

parameters as their default values: max depth, sub- 244

sample, colsample by tree and so on. To accelerate 245

the training and inference process, we set the num- 246

ber of estimators to 160 and set the learning rate 247

to 0.1. There may be some space for improvement 248

by tuning these hyperparameters, but we focus on 249

the overall effect of calibrator on adversarial ex- 250

amples, so there is no experiment related to tuning 251

hyperparameters. 252

3.4 Manual features 253

As said before, manual features are completely ir- 254

relevant to the model, but characterize the property 255

of data. 256

We use the following features for each input 257

example i: qi and ci indicate the text length of 258

corresponding question and context respectively, 259

Ki is the collection of its k candidates. For each 260

candidate kij in Ki where j is the original ranking 261

in the candidates, we denote its features with a 262

quadruple: kij = (lij ,pij ,sij ,eij), where lij means 263

the text length, pij indicates corresponding softmax 264

probability, sij and eij refer to start logits and end 265

logits respectively. 266

Inspired by previous work, we proposed two 267

heuristic features based on a small amount of addi- 268

tional calculation on the above features. 269

One is to calculate the entropy according to gen- 270

eral formula based on the softmax probability of 271

top k predictions as the entropy feature Ei: 272

Ei = −

 k∑
j=1

pij log pij +

1 −
k∑

j=1

pij

 log

1 −
k∑

j=1

pij

 (1) 273

The reason we use entropy instead of other trans- 274

formations is that the entropy of distribution over 275
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candidates can inform the calibrator of how uncer-276

tain the model is with respect to the question. This277

statement has been demonstrated on other question278

answering tasks using generative models in Jiang279

et al. (2021), so we assume it is effective in our280

model and test it in our robustness experiments.281

The other is based on the calculation of softmax282

probability. When calculating the softmax proba-283

bility for each candidate prediction, start and end284

logits are added as final score. The MRC model285

then use these softmax probabilities as confidence286

to choose the final answer. But the shift of data287

distribution leads to overconfident problem. In-288

spired by Guo et al. (2017), we use a single scaling289

factor T to alleviate the problem. Temperature scal-290

ing can soften the softmax with T>1. The whole291

calculation is as follows:292

scoreij =
sij + eij

T
(2)293

294

spij =
escoreij∑k
j=1 e

scoreij
(3)295

When the temperature scaling factor T is set to 1,296

spij is equal to pij (sp means "softed probability").297

To address overconfident issue, we set T to 1.3,298

which is acquired through several experiments.299

So we take manual features with a total of 3+5k300

into consideration.301

3.5 Representation learning features302

The other category is based on specific represen-303

tations from models. When the batch size is set304

to 1 during inference process, the states of trained305

model is relevant to the input example and may306

imply information about selecting optimal answer.307

For each input example i containing a question308

and a context, the pipeline will separate them with309

a special token, and generate the embedding and a310

sequence of hidden vectors from different hidden311

layers. The prediction is generated based on the312

final hidden layer. We denote the embedding as vi,313

which is a fixed dimensional vector. And we denote314

the hidden states of model as a sequence of vectors315

hi = (hi,0, hi,1, ..., hi,n), where n is the number316

of layers 2 and hi,m is the corresponding hidden317

vector of m-th hidden layer. The vectors in hi,m318

have the same dimensionality as the embedding319

vector vi, and we denote the dimensionality as l.320

2For RoBERTa-large, n is 24

The large scale of hi may induce slow training 321

and inference. So we only consider the vector hi,n 322

from last hidden layer and the average vector Ai 323

calculated as follows: 324

Ai =
1

n

n∑
m=1

hi,m (4) 325

And we discovered that adding embedding out- 326

put vi is more effective, so we modify the calcula- 327

tion of Ai to: 328

Ai =
1

n+ 1

(
n∑

m=1

hi,m + vi

)
(5) 329

As a conclusion, we get three vectors vi, hi,n 330

and Ai from the extractive MRC model. The three 331

vectors have same dimensionality l, so we take 332

representation learning features with a total of 3l 333

into consideration. 334

4 Experiments 335

4.1 Experiments settings 336

We take RoBERTa-large (Liu et al., 2019) provided 337

by Hugging face transformers as our basic MRC 338

model and use XGBoost (Chen and Guestrin, 2016) 339

provided by python library as the calibrator. 340

We choose SQuAD 2.0 dataset (Rajpurkar et al., 341

2018) as our main dataset, and first fine-tune basic 342

RoBERTa-large model on the training dataset with 343

two epochs. Then we randomly extract 10k sam- 344

ples from the training set and the validation set of 345

SQuAD 2.0 respectively, and use the methods of 346

adversarial examples generation provided in Ma- 347

harana and Bansal (2020) to generate adversarial 348

examples on these data. We use adversarial data 349

generated on samples from validation set as our 350

test set for robustness studies. The adversarial data 351

generated on samples from training set is used to 352

train the calibrator. And we also separate half of 353

SQuAD 2.0 validation set for calibrator training 354

and use the rest for evaluation. 355

We use Natural Questions dataset (Kwiatkowski 356

et al., 2019) to evaluate generalization perfor- 357

mance, because Natural Questions is generated 358

from Wikipedia like SQuAD dataset (Rajpurkar 359

et al., 2018) but with wider coverage. For conve- 360

nience, we follow the setting of Sen and Saffari 361

(2020) and use the provided scripts to convert Nat- 362

ural Questions datasets into a shared SQuAD 2.0 363

JSON format. We also use the same metrics for 364

better comparison with original SQuAD 2.0 dataset. 365

See Appendix A for some data examples. 366
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4.2 Adversarial attack and generalization367

Followed Maharana and Bansal (2020), the meth-368

ods of adversarial examples generation can be di-369

vided into two categories according to whether the370

language model is used in the process: negative371

for those are independent of language models and372

positive for the opposite.373

The negative category contains four methods:374

AddSentDiverse, AddKSentDiverse, AddAnswer-375

Position, and InvalidateAnswer. These methods376

use templates or heuristics to generate distracting377

sentences and then insert them randomly into con-378

text, or apply deletion of crucial sentences to dis-379

turb the model. The positive category is composed380

of two methods: PerturbAnswer and PerturbQues-381

tion. Both methods use language model to rephrase382

sentences into different forms with the same seman-383

tics. The detailed description and examples of these384

methods can refer to Maharana and Bansal (2020).385

Considering that AddKSentDiverse has the same386

principle as AddSentDiverse but is more aggres-387

sive, we only use AddKSentDiverse. PerturbAn-388

swer is not suitable for our experimental scenario389

either, because our main dataset is SQuAD 2.0 that390

contains unanswerable questions. In summary, we391

apply four kinds of methods to generate adversarial392

examples: AddKSentDiverse, AddAnswerPosition,393

InvalidateAnswer, and PerturbQuestion.394

We use adversarial examples generated on sam-395

ples from validation set as parts of test sets, and396

those generated on samples from training set to397

train the calibrator. Table 1 shows sizes of each398

test set and the results of evaluating basic model,399

where the model trained on SQuAD 2.0 merely400

chooses the answer with maximal softmax proba-401

bility as output without using calibrator. The re-402

sults show that adversarial examples are aggressive403

to basic MRC model, among which PerturbQues-404

tion is the most aggressive, resulting in the most405

decline(from 87.39 to 45.27). Due to the impact406

of data amount, the size of adversarial examples407

used to train the calibrator is 5k each. According408

to Maharana and Bansal (2020), adding adversar-409

ial examples to train the basic model makes great410

improvement on adversarial datasets while degra-411

dation on in-domain dataset. And our experiments412

confirmed it by adding adversarial examples 5k413

each kind into training data of model and showing414

results in AD column of table 1. The in-domain per-415

formance drop from 87.39 to 85.88 while general-416

ization performance drop from 53.30 to 51.92. The417

Testset Size F1(base) F1(AD)

SQuAD2.0-dev 5937 87.39 85.88

AddKSentDiverse 4586 53.41 81.81
AddAnswerPosition 4355 68.72 85.08
InvalidateAnswer 5861 65.96 93.82
PerturbQuestion 3923 45.27 64.42

Natural Questions 3369 53.30 51.92

Table 1: Data scale and results without using calibrator
on six test datasets. Base column represents results of
baseline model after training on SQuAD 2.0 dataset. AD
means adversarial training and this column represents
results of baseline model after training on the mixture
of in-domain and adversarial data.

impact of adversarial examples on model trained 418

on in-domain data only is described on section 5.1. 419

4.3 Calibrator 420

A good calibrator should improve the performance 421

on adversarial and generalization dataset, and main- 422

tain even improve the performance on the in- 423

domain dataset. We use data described in section 424

4.1 to train and evaluate the calibrator. 425

We hypothesis that if qualified features are ex- 426

tracted, the calibrator can improve performance on 427

the distribution-shift datasets even trained on in- 428

domain data. But since the calibrator is ignorant 429

of the type of distribution-shift data, it can’t utilize 430

representation learning features and just maintain 431

the baseline result. Manual features can be helpful 432

but its role is limited. So we conclude that calibra- 433

tor is effective with the help of distribution-shift 434

data, while it maintains the baseline when trained 435

only on in-domain data. See Appendix B for result 436

and more details. 437

Therefore, in our main experiments, the calibra- 438

tor is trained in two settings: Single Mixed and 439

All Mixed. Single Mixed means the calibrator is 440

only trained on the mixture of one kind of adversar- 441

ial data and hold-out in-domain data, and evaluate 442

on corresponding test set, in-domain test set and 443

generalization test set. All mixed data means the 444

calibrator is trained on the mixture of all kinds of 445

adversarial data and hold-out in-domain data, and 446

evaluate on all test sets. 447

4.3.1 Single mixed data 448

As said in section 4.1, we train the calibrator on 449

the mixture of in-domain data and 5k training ad- 450

versarial examples, and evaluate on corresponding 451

adversarial test set, in-domain and generalization 452
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Trained on AddKSentDiverse+SQuAD AddKSentDiverse SQuAD 2.0 dev Natural Questions
Feature kind Feature selection Acc F1 Acc F1 Acc F1

Baseline(without calibrator) 55.04 53.41 86.39 87.39 59.75 53.30

Manual ci + qi + li0 56.56 55.55 85.43 86.69 56.93 52.71
+pij 64.33 64.46 83.21 84.51 59.31 54.46
+pij + Ei 64.26 64.54 83.29 84.48 59.51 54.53
+spij 64.48 64.46 83.43 84.74 59.78 54.45
+spij + Ei 64.74 64.74 83.32 84.64 60.14 54.58

Representation +vi 56.56 55.43 85.33 86.58 58.68 52.87
learning +hi,n 65.94 66.99 85.60 86.59 59.84 53.62

+Ai 64.83 65.99 86.14 87.26 59.72 53.41

Manual+ +vi + spij + li 62.87 62.55 85.14 86.28 59.31 53.43
Representation +hi,n + spij + li 67.03 67.84 85.43 87.16 59.54 53.92

learning +Ai + spij + li 67.14 68.24 86.29 87.41 59.75 53.38

Table 2: The results on AddKSentDiverse when calibrator is trained on the mixture of hold-out in-domain data and
5k AddKSentDiverse data. The description of features is in section 3 and details about test data are in section 4.1.

test set. We take manual features and representa-453

tion learning features described in section 3 into454

consideration. Accuracy of calibrator and F1-score455

are the metrics to be evaluated. We take AddKSent-456

Diverse as a representative to demonstrate varying457

results under different selection of features in table458

2. The results of baseline are the same as corre-459

sponding results in table 1.460

Table 2 shows that the access to target exam-461

ples can bring great improvement on target test462

set. When only exploring manual features, the per-463

formance on the target testset can be improved by464

11% on all metrics while degradation on in-domain465

dataset by about 3%. Among manual features,466

Ei and spij we proposed can be most effective467

in improving performance, especially generaliza-468

tion performance. Under the feature combination469

of ci,qi,li0, Eiand spij , the calibrator can improve470

the adversarial performance from 53.41(baseline)471

to 64.74, and improve generalization performance472

from 53.30 to 54.58 on F1 score, while degradation473

on in-domain dataset by less than 3%.474

Representation learning features can be great475

helpful not only to improve the target performance476

by 13% but also to keep in-domain performance477

drop less than 1% on F1 score. The combination478

of manual features and representation learning fea-479

tures can improve the target performance by nearly480

15% on F1 score, and improve in-domain perfor-481

mance. Under the best feature combination of482

ci,qi,li0,Ai,spij and li, the calibrator can improve483

the adversarial performance from 53.41 to 68.24 on 484

F1 score while maintain and even slightly improve 485

the performance on in-domain and generalization 486

dataset. This suggests that representation learning 487

features can be informative for calibrator to adjust 488

ranking problem caused by adversarial examples. 489

Due to the limitation of paper length, we can’t 490

list results of all feature combinations on all ad- 491

versarial test sets, which will be available in our 492

repository. 493

4.3.2 All mixed data 494

Under this setting, we train the calibrator on the 495

mixture of 5k each of all kinds of adversarial data 496

and hold-out in-domain data, and evaluate on all 497

test sets. For a clear representation, we only list 498

the results under the best feature combination of 499

ci,qi,li0,Ai,spij and li for comparison with single 500

mixed setting in table 3. To be more specific, the re- 501

sults on Single Mixed column are obtained through 502

four experiments under best feature selection on 503

four adversarial examples respectively, each with 504

the same setting as described in section 4.3.1. The 505

results of in-domain and generalization test set on 506

Single Mixed column are the average of four ex- 507

periments. And the results on All Mixed column 508

are obtained through one experiment, where the 509

calibrator is trained on the mixture of all adversar- 510

ial and hold-out in-domain examples under best 511

feature selection. The result of all test sets under 512

different feature selections will be available in our 513

repository as well. 514
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Single Mixed All Mixed
Test set Acc F1 Acc F1

AddKSentDiverse 55.04+12.10 53.41+14.83 55.04+9.85 53.41+12.24
AddAnswerPosition 64.73+14.49 68.72+15.09 64.73+7.16 68.72+7.38
InvalidateAnswer 81.78+13.41 65.96+13.62 81.78+3.73 65.96+3.87
PerturbQuestion 29.72+12.08 45.27+7.96 29.72+12.26 45.27+8.40

Natural Questions 59.75+0.30 53.30+0.52 59.75+2.60 53.30+1.29
SQuAD 2.0 dev 86.39+0.10 87.39+0.05 86.39-0.08 87.39-0.03

Table 3: The best results on all datasets. The numbers before ’+’ are the baseline result represented in table 1, and
the numbers after ’+’ are the improvements after using calibrator to reselect final results. The meaning of Single
Mixed, All Mixed, best feature selection and more details are described in section 4.3.2.

Testset Size Better Prop(%)

SQuAD2.0-dev 11873 1530 12.89
AddKSentDiverse 4586 2062 44.96
AddAnswerPosition 4355 1536 35.27
InvalidateAnswer 5861 1068 18.22
PerturbQuestion 3923 2757 70.28
Natural Questions 3369 1356 40.25

Table 4: The result on the number of examples with
better candidates among top k candidates on all datasets.

The improvement on adversarial test sets under515

this setting is not as good as Single Mixed except516

PerturbQuestion. The reason may be the data dis-517

tribution becomes more diverse with the incorpo-518

ration of multiple types of adversarial examples.519

This diversity makes it harder for the calibrator to520

defend against adversarial attacks, but helps im-521

prove generalization ability. As for PerturbQues-522

tion, the test set consists of adversarial examples523

generated through rephrasing questions. So the524

reason may be that model has better ability to un-525

derstand rephrased sentences under All Mixed.526

The results show that the effect of the calibrator527

is not limited to particular dataset. Our calibrator528

can improve performance on adversarial and gener-529

alization test sets without in-domain performance530

sacrificing whether trained on single or all mixed531

data. Previous work using adversarial examples as532

data augmentation to train the basic MRC model533

will lead to degradation on in-domain performance,534

as we give in table 1. We propose to use adver-535

sarial examples to train the calibrator instead, and536

with the help of manual features and representation537

learning features, this method can improve robust-538

ness while maintaining in-domain performance.539

Figure 1: The label of best answers among top k candi-
dates. We must emphasis that top 0 means the answer
with max softmax probability instead of top 1.

5 Analysis 540

5.1 Analysis of baseline bad cases 541

In order to figure out why the performance of fine- 542

tuned model dropped dramatically when applying 543

adversarial or generalization examples, we ana- 544

lyzed the bad cases based on results in table 1. 545

We defined any example whose final prediction has 546

lower F1-score than average as a bad case. Then 547

we explored the top k candidates provided by the 548

model corresponding to this bad case, calculated 549

the F1-score separately, and marked the best of 550

top k candidates. If the answer with max softmax 551

probability is not the best, it means there are bet- 552

ter candidates in topk predictions. We first made 553

statistics on the number of bad cases in all datasets 554

and proportion of examples with better candidates. 555

We found that almost 90% of bad cases can find a 556

better candidate among top k predictions. We also 557

make this analysis on all examples of the whole 558

dataset rather than limited to bad cases. We found 559

that larger proportion of examples with better can- 560

didates in adversarial and generalization dataset 561

7



In-domain AddSent AddOneSent

R.M-Reader(Hu et al., 2018) 86.6 58.5 67.0
KAR(Wang and Jiang, 2019) 83.5 60.1 72.3
BERT+Adv(Yang et al., 2019) 92.4 63.5 72.5
Sub-part Alignment(Chen and Durrett, 2021) 84.7 65.8 72.7

Our BERT-base 88.6 64.8 72.8
+ calibrator 88.5 67.1 76.4

Table 5: Performance of our method compared to previous robust MRC model on both AddSent and AddOneSent.
The results are F1 scores on the full test set. The results show that we don’t trade in-distribution performance to
improve the model’s robustness like previous work. More details are described in section 5.3.

comparing to only less than 13% of in-domain562

dataset. The results are represented in table 4. And563

the more aggressive the adversarial examples are,564

the higher the proportion of examples with better565

candidates(70% for PerturbQuestion).566

So we came to the conclusion that the shift of567

data distribution makes the ranking based on soft-568

max probability of baseline model unreliable. We569

used the labels of best among top k candidates to570

draw a line chart to show the shift in alignment be-571

tween examples of high confidence and empirical572

likelihoods, which is presented in figure 1. Take573

AddKSentDiverse dataset as an example. There574

are more than 1k samples of this dataset with the575

best result ranked at position 1 (which is the sec-576

ond on the original ranking) instead of the top one577

with max softmax probability. From the graph, we578

found that most of best answers are limited to top579

3 answers, which means the shift of data distribu-580

tion didn’t cause huge deviation on the ranking.581

So the calibrator used to rerank the candidates can582

make great improvement on adversarial datasets583

and improve the robustness.584

5.2 Analysis of features selection585

The selection of features is crucial to the effect of586

calibrator no matter which dataset. From section587

4.3, manual features are informative to improve588

generalization performance while representation589

learning features perform better on in-domain and590

adversarial datasets. spij , Ei and Ai can be helpful591

for various adversarial examples, and lij is most592

useful for InvalidateAnswer dataset due to the spe-593

cial way this dataset is constructed.594

When multiple features are selected, the order595

of different features will have a certain impact on596

the results, but the impact is not as much as the597

selection of features. So results we reported are598

based on a random selection of permutations. More 599

kinds of features and their combinations need fur- 600

ther exploration. 601

5.3 Comparison to previous work 602

In Table 5, we compare our model under best fea- 603

ture selection with previous adversarial QA models 604

in the literature. To make a fair comparison, we use 605

BERT-base (Devlin et al., 2019) as our backbone 606

model and use SQuAD 1.1 dataset (Rajpurkar et al., 607

2016) as our main dataset like previous work. We 608

use 10k training examples of SQuAD 1.1 dataset to 609

generate AddSentDiverse examples. We don’t save 610

in-domain examples and only use adversarial ex- 611

amples to train the calibrator. The method of Yang 612

et al. (2019) works well on in-domain test set due 613

to huge data augmentation. Besides, our method 614

can guarantee the best in-domain performance. 615

6 Conclusion 616

We demonstrate that the impact of distribution- 617

shift data on model is to make final ranking un- 618

reliable. So we use the calibrator as a reranker to 619

improve performance of adversarial and generaliza- 620

tion dataset without sacrificing in-domain perfor- 621

mance. We take manual features and representation 622

learning features into consideration while previous 623

work only focus on manual features. When the 624

calibrator is trained on the mixture of in-domain 625

and adversarial data, the target performance can 626

improve by more than 10% and generalization per- 627

formance can improved by 1% while maintaining 628

in-domain performance. And our calibrator only 629

takes about ten minutes to train and is very easy 630

to use as a post-hoc structure behind MRC model. 631

To summarize, our calibrator is simple, effective, 632

and has potential to be practical application and 633

extended to other NLP tasks. 634
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Some examples in Natural Questions after changing format

Question what was the tower of london originally used for
Context The Tower of London, officially Her Majesty’s Royal Palace and Fortress of the Tower of

London, is a historic castle located on the north bank of the River Thames in central London.
It lies within the London Borough of Tower Hamlets, separated from the eastern edge of
the square mile of the City of London by the open space known as Tower Hill. It was
founded towards the end of 1066 as part of the Norman Conquest of England. The White
Tower, which gives the entire castle its name, was built by William the Conqueror in 1078
and was a resented symbol of oppression, inflicted upon London by the new ruling elite.
The castle was used as a prison from 1100 (Ranulf Flambard) until 1952 (Kray twins),[3]
although that was not its primary purpose. A grand palace early in its history, it served as a
royal residence. As a whole, the Tower is a complex of several buildings set within two
concentric rings of defensive walls and a moat. There were several phases of expansion,
mainly under Kings Richard I, Henry III, and Edward I in the 12th and 13th centuries. The
general layout established by the late 13th century remains despite later activity on the site.

Answer Text:as a royal residence; Answer_start:794
Text:a royal residence; Answer_start:797

Question where does the mary river start and finish
Context The river rises at Booroobin in the Sunshine Coast hinterland, west of Landsborough. From

its source, the Mary River flows north through the towns of Kenilworth, Gympie, Tiaro and
Maryborough before emptying into the Great Sandy Strait, a passage of water between the
mainland and Fraser Island, near the town of River Heads, 17 km (11 mi) south of Hervey
Bay. The Mary River flows into the Great Sandy Strait, near wetlands of international
significance recognised by the International agreement of the Ramsar Convention and the
UNESCO Fraser Island World Heritage Area, which attracts thousands of visitors every
year.

Answer []

Table 6: Some examples in Natural Questions dataset after using script provided by Sen and Saffari (2020) to change
its format into standard SQuAD style.

Trained on clean data AddKSentDiverse SQuAD 2.0 dev Natural Questions
Feature kind Feature selection Acc F1 Acc F1 Acc F1

Baseline(without calibrator) 55.04 53.41 86.39 87.39 59.75 53.30

manual ci + qi + li0 55.04 53.42 85.90 87.29 57.44 52.91
+pij 55.02 53.64 86.02 87.25 58.41 53.19
+pij + Ei 55.12 53.67 86.10 87.30 58.44 53.20
+spij 55.32 53.91 85.80 87.20 58.62 53.32
+spij + Ei 55.06 53.8 85.87 87.21 58.39 53.18

representation +vi 55.10 53.43 85.31 86.97 59.78 53.32
learning +hi,n 54.75 53.24 86.41 87.38 59.78 53.32

+Ai 55.12 53.43 86.31 87.34 59.69 53.32

Table 7: The results on AddKSentDiverse when calibrator only trained on clean original data. All features have
been described in section 3. Baseline result is the output of basic model without calibration. Applying manual
features to train the calibrator can improve the performance on AddKSentDiverse. Representation learning features
just maintain the baseline. Applying the mixture of manual features and representation features has similar results
with only apply manual features to train, which we omit in the results.
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B Calibrator trained on in-domain data855

only856

Under this setting, the calibrator is only trained on857

the separated SQuAD 2.0 dataset.858

As main experiments, we take manual features859

and representation learning features described in860

section 3 into consideration. Accuracy of calibrator,861

EM and F1-score are the metrics to be evaluated.862

We take AddKSentDiverse as a representative to863

demonstrate varying results under different selec-864

tion of features in table 7.865

From the experimental results, we found that866

manual features can be helpful when calibrator only867

trained on clean data. It can improve performance868

of adversarial dataset by 1% while degradation by869

less than 0.2% on the original dataset. Since the870

calibrator is ignorant of distribution-shift data, it871

can’t utilize representation learning features and872

just maintain the baseline result. Among manual873

features, Ei and spij we proposed can be most874

informative to calibration. It seems that improving875

the performance of distribution-shift data without876

sacrificing the original performance is infeasible877

when calibrator is only trained on the clean data.878

Further exploration on better features is required.879
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