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Abstract

Machine Reading Comprehension(MRC) has
achieved a remarkable result since some power-
ful models, such as BERT, are proposed. How-
ever, these models are not robust enough and
vulnerable to adversarial input perturbation and
generalization examples. Some works tried to
improve the performance on adversarial pertur-
bation by adding related examples into train-
ing data while it leads to degradation on the
in-domain dataset, because the shift of data dis-
tribution makes the answer ranking based on
the softmax probability of model unreliable. In
this paper, we propose a method to improve
the robustness by using a calibrator as the post-
hoc reranker, which is implemented based on
XGBoost model. The calibrator combines both
manual features and representation learning fea-
tures to rerank candidate results. Experimental
results on adversarial datasets show that our
model can achieve performance improvement
by more than 10% and also make improvement
on the in-domain and generalization datasets.

1 Introduction

Assisted by large pre-trained models, Machine
Reading Comprehension(MRC) has achieved
human-comparable results on some existing
datasets. But even state-of-the-art (SOTA) mod-
els trained on such datasets are not robust enough.
These models are not only vulnerable to adversar-
ial input perturbations, but also perform poorly on
out-of-domain data.

Building more challenging MRC datasets may
improve the robustness, but the whole process is
expensive. Therefore, there are two directions to ad-
dress the problem based on existing datasets. One
is the data level. Using some of adversarial or out-
of-domain examples as data augmentation can im-
prove performance on corresponding dataset, but it
leads to degradation on the in-domain dataset. The
other is the model level. Adding complex struc-
tures in models and modifying loss function may

improve generalization and defend adversarial at-
tack, but the new model is time-consuming and
memory intensive during training and inference.
In this paper, we proposed a simple yet effec-
tive method to improve performance on adversarial
and generalization datasets without sacrificing in-
domain performance in extractive MRC task. We
applied several kinds of adversarial examples to
explore the vulnerability of SOTA MRC model,
and we found that the reason for the performance
degradation was not that the model completely lost
its ability to predict the range of correct answers,
but that the ranking of candidate answers became
unreliable. In other words, the model can still pre-
dict the correct range, but won’t choose it as final
output. Based on the above observation and in-
spired by previous work, we proposed a method, in
which a calibrator is used as the post-hoc reranker
to adjust the ranking of candidates. On account of
the time complexity and space consumption, we
adopted XGBoost to implement the calibrator.
Instead of BERT (Devlin et al., 2019), we use
RoBERTa (Liu et al., 2019) as our backbone MRC
model, for the latter shows higher level of robust-
ness in MRC task. We use SQuAD 2.0 dataset
(Rajpurkar et al., 2018) as main dataset and use
Natural Questions (Kwiatkowski et al., 2019) to re-
veal generalization ability. We employ the methods
proposed by Maharana and Bansal (2020) to gen-
erate adversarial examples, which is diverse and
has been proved aggressive to attack baseline MRC
models. And then we utilize our proposed calibra-
tor as a post-hoc reranker to improve robustness.
Our contributions can be summarized as follows:

* We had a thorough research on adversarial
examples generation on MRC datasets and
made an analysis with statistical data of the
influence of these examples on MRC models.

* We proposed a simple yet effective method to
use calibrator as a reranker to improve perfor-



mance on adversarial datasets without sacri-
ficing in-domain performance.

* We expand the feature space of calibrator by
introducing two new manual features and in-
tegrating representation learning features to
characterize model’s states during inference,
while previous works are limited to focusing
on shallow manual features only.

2 Related Work

Robustness in MRC Robustness is a research
highlight in NLP because researchers have found
that models achieved impressive performance on
particular datasets is too vulnerable for practical
application (Jin et al., 2020). As for MRC, the re-
search on robustness of models can be generally
categorised into two directions: generalization to
out-of-domain distributions and robustness under
test-time perturbations (Si et al., 2021a). Both di-
rections will disturb the data distribution, but they
have different goals. Adversarial input perturba-
tions aim to ascertain whether model learns short-
cut, which means model learns to answer questions
based on some specific implicit patterns rather than
reading comprehension ability (Lai et al., 2021).
Generalization aims to extend application scope of
the model to out-of-domain data and maintains per-
formance under domain-shift (Kamath et al., 2020).
Many previous researches focus on exposing mod-
els’ vulnerabilities through maliciously designed
inputs and bringing forward to new challenging
datasets and tools (Gan and Ng, 2019; Sen and Saf-
fari, 2020; Jin et al., 2020; Si et al., 2021a; Bartolo
etal., 2021; Si et al., 2021b). Another perspective
is to modify the model structure and loss function,
such as introducing external knowledge and multi-
task strategy (Wu and Xu, 2020), adding adapters
(Han et al., 2021), changing loss function to adjust
bias caused by generalization (Wu et al., 2020; Liu
et al., 2020) and so on. These models are more
robust but have more than doubled parameters.

Adversarial Examples Generation The goal of
adversarial attack is to mislead the model into giv-
ing wrong outputs. Due to discrete characteristics
of Natural Language, some aggressive adversar-
ial attack methods in Computer Vision may cause
out-of-distribution(OOD) problem in NLP. As for
MRC, adversarial input perturbation on contexts
and questions may have a great effect. There are
various ways to perturb the text of contexts and

questions, such as word substitution, heuristics,
gradient-based techniques and so on (Zhang et al.,
2019; Bao et al., 2021). Jia and Liang (2017) first
proposed to use distracting sentences that have sig-
nificant overlap with the question and insert them
into the context to generate adversarial examples.
However, the creation of such distracting sentences
is based on fixed templates, so the model probably
identifies learnable biases and overfits to the tem-
plates instead of being robust to attack itself (Maha-
rana and Bansal, 2020). Then more researches have
tried to address this problem by creating complex
templates (Wang and Bansal, 2018), or exploring
more challenging generative methods (Gan and Ng,
2019; Si et al., 2021b; Bartolo et al., 2021). In ad-
dition to adding confusing sentences into contexts,
there are several methods that can be aggressive
and cause huge performance degradation as well,
such as deleting pivotal sentences from contexts
(Maharana and Bansal, 2020), using language mod-
els to generate new questions with same semantics
and different syntactic forms (Iyyer et al., 2018),
perturbing word embedding (Lee et al., 2021) and
so on. Maharana and Bansal (2020)’s work is com-
prehensive by containing inserting distracting sen-
tences, deleting crucial sentences and paraphrasing
questions, so we apply their method to generate
adversarial examples and analyze their influence.

Calibration in NLP The question of whether the
model’s confidence provides an accurate empirical
measure of how likely the model is to be correct has
been put forward to examine the reliability of the
model (Jung et al., 2020; Jiang et al., 2021). A well-
calibrated model should ensure that the confidence
of its predictions is consistent with its accuracy,
which means it shouldn’t output incorrect predic-
tions with high confidence. Previous works have
found that the model which gives good confidence
estimates on in-domain data is overconfident on
OOD data (Desai and Durrett, 2020). In MRC,
models tend to choose results with maximal soft-
max probability as final outputs. But out-of-domain
data leads to the shift of data distribution, which
causes overconfident issue (Kamath et al., 2020;
Xin et al., 2021). Previous works proposed to apply
the calibrator as a threshold to decide whether to
abstain the prediction and try to avoid making con-
fident yet incorrect predictions in preserved exam-
ples (Kamath et al., 2020; Xin et al., 2021; Zhang
et al., 2021). Based on the analysis of the impact
of adversarial examples, instead of using it as a



threshold, we use the calibrator as a reranker.

3 Method

We use the calibrator as a post-hoc reranker to im-
prove robustness in extractive MRC task. Basic QA
model feeds outputs and some important model fea-
tures into the calibrator and then calibrator chooses
the best answer span from k' candidates as final
outputs. We follow prior works (Kamath et al.,
2020; Zhang et al., 2021), for the idea and ba-
sic features. But the key differences are that we
adopt different calibrator architecture and use it for
reranking rather than as a discard threshold ,and we
extend the feature space. We categorized features
into two kinds: manual features that are irrelevant
to the MRC model, and representation learning
features that revealed model states.

3.1 Metrics

Previous works (Kamath et al., 2020; Zhang et al.,
2021) use the calibrator to decide whether to ab-
stain an example, so the metrics to evaluate cali-
brator performance are associated with accuracy
of binary classification and performance of the re-
tained examples. They first plot risk versus cover-
age graph, where coverage is the fraction of evalua-
tion data that calibration chooses to retain and risk
is the error at that coverage. And they calculate
the area under the curve, i.e. AUROC(Area Under
the Receiver Operating Characteristics Curve), as
the metrics.A good calibrator should cover as much
coverage as possible with a specific given accuracy.

We propose to use the calibrator to choose the
best from candidates, so it is a multi-classification
problem rather than binary classification as previ-
ous work. And we don’t abstain examples, so we
use a different metric to evaluate the performance
of calibrator, which is classification accuracy.

To measure MRC task performance, we use the
answers chosen by calibrator as final outputs, and
measure F1 score as a metric like common extrac-
tive MRC task.

3.2 Basic MRC model

We choose RoBERTa-large (Liu et al., 2019) as
our backbone model for its superior performance
and relative robustness. And we use standard span
prediction architecture for extractive MRC task.
We remain the architecture of MRC model. The
model has same input format and training process

'k is set to 10 in our experiments.

as general MRC models. But we make minor
changes to its final outputs. After training, in ad-
dition to outputting unique id and text of answer
with maximal softmax probability for each exam-
ple as usual, the model also needs to output some
features generated during inference, which will be
described in section 3.4 and 3.5.

3.3 Calibrator architecture

We apply gradient boosting library XGBoost (Chen
and Guestrin, 2016) to train a multi-classifier to
chooses one answer from k candidates provided by
the baseline MRC model. The calibrator does not
share its weights with basic MRC models. Since
our target is to prove the effect of calibrator on
adversarial datasets, we simply keep most of hyper-
parameters as their default values: max depth, sub-
sample, colsample by tree and so on. To accelerate
the training and inference process, we set the num-
ber of estimators to 160 and set the learning rate
to 0.1. There may be some space for improvement
by tuning these hyperparameters, but we focus on
the overall effect of calibrator on adversarial ex-
amples, so there is no experiment related to tuning
hyperparameters.

3.4 Manual features

As said before, manual features are completely ir-
relevant to the model, but characterize the property
of data.

We use the following features for each input
example i: ¢; and c; indicate the text length of
corresponding question and context respectively,
K is the collection of its k candidates. For each
candidate k;; in K; where j is the original ranking
in the candidates, we denote its features with a
quadruple: k;; = (l;5,pij,ij.€i;), where l;; means
the text length, p;; indicates corresponding softmax
probability, s;; and e;; refer to start logits and end
logits respectively.

Inspired by previous work, we proposed two
heuristic features based on a small amount of addi-
tional calculation on the above features.

One is to calculate the entropy according to gen-
eral formula based on the softmax probability of
top k predictions as the entropy feature F;:

k k k
E; =—- |:Z pijlogpij + (1 - Pij) log (1 -3 Pij>:| 1)
j=1 i=1 i=1

The reason we use entropy instead of other trans-
formations is that the entropy of distribution over



candidates can inform the calibrator of how uncer-
tain the model is with respect to the question. This
statement has been demonstrated on other question
answering tasks using generative models in Jiang
et al. (2021), so we assume it is effective in our
model and test it in our robustness experiments.

The other is based on the calculation of softmax
probability. When calculating the softmax proba-
bility for each candidate prediction, start and end
logits are added as final score. The MRC model
then use these softmax probabilities as confidence
to choose the final answer. But the shift of data
distribution leads to overconfident problem. In-
spired by Guo et al. (2017), we use a single scaling
factor T to alleviate the problem. Temperature scal-
ing can soften the softmax with 7">1. The whole
calculation is as follows:

Sij + €45

T 2

SCore;; =

escoreij
Zk 1 eScore;; (3)
j:

When the temperature scaling factor 7" is setto 1,
sp;; is equal to p;; (sp means "softed probability").
To address overconfident issue, we set 1" to 1.3,
which is acquired through several experiments.

So we take manual features with a total of 3+ 5k
into consideration.

SPij =

3.5 Representation learning features

The other category is based on specific represen-
tations from models. When the batch size is set
to 1 during inference process, the states of trained
model is relevant to the input example and may
imply information about selecting optimal answer.
For each input example ¢ containing a question
and a context, the pipeline will separate them with
a special token, and generate the embedding and a
sequence of hidden vectors from different hidden
layers. The prediction is generated based on the
final hidden layer. We denote the embedding as v;,
which is a fixed dimensional vector. And we denote
the hidden states of model as a sequence of vectors
hi = (hio, hi1, ..., hin), Where n is the number
of layers > and him 1s the corresponding hidden
vector of m-th hidden layer. The vectors in h; .,
have the same dimensionality as the embedding
vector v;, and we denote the dimensionality as /.

2For RoBERTa-large, n is 24

The large scale of h; may induce slow training
and inference. So we only consider the vector A; ,
from last hidden layer and the average vector A;
calculated as follows:

1 n
A=~ ;1 Rim 4)

And we discovered that adding embedding out-
put v; is more effective, so we modify the calcula-
tion of A; to:

1 n
A; = Nim =+ Vi 5
Hl(mzl | +v> ©

As a conclusion, we get three vectors v;, h;
and A; from the extractive MRC model. The three
vectors have same dimensionality [, so we take
representation learning features with a total of 3/
into consideration.

4 Experiments

4.1 Experiments settings

We take RoBERTa-large (Liu et al., 2019) provided
by Hugging face transformers as our basic MRC
model and use XGBoost (Chen and Guestrin, 2016)
provided by python library as the calibrator.

We choose SQuAD 2.0 dataset (Rajpurkar et al.,
2018) as our main dataset, and first fine-tune basic
RoBERTa-large model on the training dataset with
two epochs. Then we randomly extract 10k sam-
ples from the training set and the validation set of
SQuAD 2.0 respectively, and use the methods of
adversarial examples generation provided in Ma-
harana and Bansal (2020) to generate adversarial
examples on these data. We use adversarial data
generated on samples from validation set as our
test set for robustness studies. The adversarial data
generated on samples from training set is used to
train the calibrator. And we also separate half of
SQuAD 2.0 validation set for calibrator training
and use the rest for evaluation.

We use Natural Questions dataset (Kwiatkowski
et al.,, 2019) to evaluate generalization perfor-
mance, because Natural Questions is generated
from Wikipedia like SQuAD dataset (Rajpurkar
et al., 2018) but with wider coverage. For conve-
nience, we follow the setting of Sen and Saffari
(2020) and use the provided scripts to convert Nat-
ural Questions datasets into a shared SQuAD 2.0
JSON format. We also use the same metrics for
better comparison with original SQuAD 2.0 dataset.
See Appendix A for some data examples.



4.2 Adbversarial attack and generalization

Followed Maharana and Bansal (2020), the meth-
ods of adversarial examples generation can be di-
vided into two categories according to whether the
language model is used in the process: negative
for those are independent of language models and
positive for the opposite.

The negative category contains four methods:
AddSentDiverse, AddKSentDiverse, AddAnswer-
Position, and InvalidateAnswer. These methods
use templates or heuristics to generate distracting
sentences and then insert them randomly into con-
text, or apply deletion of crucial sentences to dis-
turb the model. The positive category is composed
of two methods: PerturbAnswer and PerturbQues-
tion. Both methods use language model to rephrase
sentences into different forms with the same seman-
tics. The detailed description and examples of these
methods can refer to Maharana and Bansal (2020).
Considering that AddKSentDiverse has the same
principle as AddSentDiverse but is more aggres-
sive, we only use AddKSentDiverse. PerturbAn-
swer is not suitable for our experimental scenario
either, because our main dataset is SQuAD 2.0 that
contains unanswerable questions. In summary, we
apply four kinds of methods to generate adversarial
examples: AddKSentDiverse, AddAnswerPosition,
Invalidate Answer, and PerturbQuestion.

We use adversarial examples generated on sam-
ples from validation set as parts of test sets, and
those generated on samples from training set to
train the calibrator. Table 1 shows sizes of each
test set and the results of evaluating basic model,
where the model trained on SQuUAD 2.0 merely
chooses the answer with maximal softmax proba-
bility as output without using calibrator. The re-
sults show that adversarial examples are aggressive
to basic MRC model, among which PerturbQues-
tion is the most aggressive, resulting in the most
decline(from 87.39 to 45.27). Due to the impact
of data amount, the size of adversarial examples
used to train the calibrator is 5k each. According
to Maharana and Bansal (2020), adding adversar-
ial examples to train the basic model makes great
improvement on adversarial datasets while degra-
dation on in-domain dataset. And our experiments
confirmed it by adding adversarial examples Sk
each kind into training data of model and showing
results in AD column of table 1. The in-domain per-
formance drop from 87.39 to 85.88 while general-
ization performance drop from 53.30 to 51.92. The

Testset Size Fl(base) FI1(AD)
SQuAD?2.0-dev 5937 87.39 85.88
AddKSentDiverse 4586 53.41 81.81
AddAnswerPosition 4355 68.72 85.08
InvalidateAnswer 5861 65.96 93.82
PerturbQuestion 3923 45.27 64.42
Natural Questions 3369 53.30 51.92

Table 1: Data scale and results without using calibrator
on six test datasets. Base column represents results of
baseline model after training on SQuUAD 2.0 dataset. AD
means adversarial training and this column represents
results of baseline model after training on the mixture
of in-domain and adversarial data.

impact of adversarial examples on model trained
on in-domain data only is described on section 5.1.

4.3 Calibrator

A good calibrator should improve the performance
on adversarial and generalization dataset, and main-
tain even improve the performance on the in-
domain dataset. We use data described in section
4.1 to train and evaluate the calibrator.

We hypothesis that if qualified features are ex-
tracted, the calibrator can improve performance on
the distribution-shift datasets even trained on in-
domain data. But since the calibrator is ignorant
of the type of distribution-shift data, it can’t utilize
representation learning features and just maintain
the baseline result. Manual features can be helpful
but its role is limited. So we conclude that calibra-
tor is effective with the help of distribution-shift
data, while it maintains the baseline when trained
only on in-domain data. See Appendix B for result
and more details.

Therefore, in our main experiments, the calibra-
tor is trained in two settings: Single Mixed and
All Mixed. Single Mixed means the calibrator is
only trained on the mixture of one kind of adversar-
ial data and hold-out in-domain data, and evaluate
on corresponding test set, in-domain test set and
generalization test set. All mixed data means the
calibrator is trained on the mixture of all kinds of
adversarial data and hold-out in-domain data, and
evaluate on all test sets.

4.3.1 Single mixed data

As said in section 4.1, we train the calibrator on
the mixture of in-domain data and 5k training ad-
versarial examples, and evaluate on corresponding
adversarial test set, in-domain and generalization



Trained on AddKSentDiverse+SQuAD | AddKSentDiverse | SQuAD 2.0 dev | Natural Questions
Feature kind ‘ Feature selection Acc F1 Acc F1 Acc F1
Baseline(without calibrator) | 55.04 53418639  87.39 | 59.75 53.30
Manual ¢+ qi + Lo 56.56 55.55 | 85.43 86.69 | 56.93 52.71
+Dij 64.33 64.46 | 83.21 84.51 | 59.31 54.46

+pij + E; 64.26 64.54 | 83.29 84.48 | 59.51 54.53

+5pij 64.48 64.46 | 83.43 84.74 | 59.78 54.45

+spij + B 64.74 64.74 | 83.32 84.64 | 60.14 54.58

Representation | +v; 56.56 55.43 | 85.33 86.58 | 58.68 52.87
learning +hin 65.94 66.99 | 85.60 86.59 | 59.84 53.62
+A; 64.83 65.99 | 86.14 87.26 | 59.72 53.41

Manual+ +v; + spij +1; 62.87 62.55 | 85.14 86.28 | 59.31 53.43
Representation | +h; , + spi; + I; 67.03 67.84 | 8543 87.16 | 59.54 53.92
learning +A; + spi; + 1; 67.14 68.24 | 86.29 87.41 | 59.75 53.38

Table 2: The results on AddKSentDiverse when calibrator is trained on the mixture of hold-out in-domain data and
5k AddKSentDiverse data. The description of features is in section 3 and details about test data are in section 4.1.

test set. We take manual features and representa-
tion learning features described in section 3 into
consideration. Accuracy of calibrator and F1-score
are the metrics to be evaluated. We take AddKSent-
Diverse as a representative to demonstrate varying
results under different selection of features in table
2. The results of baseline are the same as corre-
sponding results in table 1.

Table 2 shows that the access to target exam-
ples can bring great improvement on target test
set. When only exploring manual features, the per-
formance on the target testset can be improved by
11% on all metrics while degradation on in-domain
dataset by about 3%. Among manual features,
E; and sp;; we proposed can be most effective
in improving performance, especially generaliza-
tion performance. Under the feature combination
of ¢;,¢;,1;0, E;and sp;;, the calibrator can improve
the adversarial performance from 53.41(baseline)
to 64.74, and improve generalization performance
from 53.30 to 54.58 on F1 score, while degradation
on in-domain dataset by less than 3%.

Representation learning features can be great
helpful not only to improve the target performance
by 13% but also to keep in-domain performance
drop less than 1% on F1 score. The combination
of manual features and representation learning fea-
tures can improve the target performance by nearly
15% on F1 score, and improve in-domain perfor-
mance. Under the best feature combination of
¢i,qi,1:0,A;,sp;; and [;, the calibrator can improve

the adversarial performance from 53.41 to 68.24 on
F1 score while maintain and even slightly improve
the performance on in-domain and generalization
dataset. This suggests that representation learning
features can be informative for calibrator to adjust
ranking problem caused by adversarial examples.

Due to the limitation of paper length, we can’t
list results of all feature combinations on all ad-
versarial test sets, which will be available in our
repository.

4.3.2 All mixed data

Under this setting, we train the calibrator on the
mixture of 5k each of all kinds of adversarial data
and hold-out in-domain data, and evaluate on all
test sets. For a clear representation, we only list
the results under the best feature combination of
¢i,4i,1i0,A;,5p;j and [; for comparison with single
mixed setting in table 3. To be more specific, the re-
sults on Single Mixed column are obtained through
four experiments under best feature selection on
four adversarial examples respectively, each with
the same setting as described in section 4.3.1. The
results of in-domain and generalization test set on
Single Mixed column are the average of four ex-
periments. And the results on All Mixed column
are obtained through one experiment, where the
calibrator is trained on the mixture of all adversar-
ial and hold-out in-domain examples under best
feature selection. The result of all test sets under
different feature selections will be available in our
repository as well.



Single Mixed All Mixed

Test set Acc F1 Acc F1

AddKSentDiverse 55.04+12.10 53.41+14.83 | 55.04+9.85 53.41+12.24
AddAnswerPosition | 64.73+14.49 68.72+15.09 | 64.73+7.16  68.72+7.38
Invalidate Answer 81.78+13.41 65.96+13.62 | 81.78+3.73  65.96+3.87
PerturbQuestion 29.72+12.08  45.27+7.96 | 29.72+12.26  45.27+8.40
Natural Questions 59.75+0.30  53.30+0.52 | 59.75+2.60  53.30+1.29
SQuAD 2.0 dev 86.39+0.10  87.39+0.05 86.39-0.08 87.39-0.03

Table 3: The best results on all datasets. The numbers before "+’ are the baseline result represented in table 1, and
the numbers after +’ are the improvements after using calibrator to reselect final results. The meaning of Single
Mixed, All Mixed, best feature selection and more details are described in section 4.3.2.

Testset Size Better Prop(%) -

SQuAD2.0-dev 11873 1530 12.89 1000 Ndanswerpostion
AddKSentDiverse 4586 2062  44.96 o vt
AddAnswerPosition 4355 1536 35.27 .

InvalidateAnswer 5861 1068 18.22 \

PerturbQuestion 3923 2757 70.28 o0 \

Natural Questions 3369 1356 40.25 200

Table 4: The result on the number of examples with
better candidates among top k£ candidates on all datasets.

The improvement on adversarial test sets under
this setting is not as good as Single Mixed except
PerturbQuestion. The reason may be the data dis-
tribution becomes more diverse with the incorpo-
ration of multiple types of adversarial examples.
This diversity makes it harder for the calibrator to
defend against adversarial attacks, but helps im-
prove generalization ability. As for PerturbQues-
tion, the test set consists of adversarial examples
generated through rephrasing questions. So the
reason may be that model has better ability to un-
derstand rephrased sentences under All Mixed.

The results show that the effect of the calibrator
is not limited to particular dataset. Our calibrator
can improve performance on adversarial and gener-
alization test sets without in-domain performance
sacrificing whether trained on single or all mixed
data. Previous work using adversarial examples as
data augmentation to train the basic MRC model
will lead to degradation on in-domain performance,
as we give in table 1. We propose to use adver-
sarial examples to train the calibrator instead, and
with the help of manual features and representation
learning features, this method can improve robust-
ness while maintaining in-domain performance.

top position

Figure 1: The label of best answers among top & candi-
dates. We must emphasis that top O means the answer
with max softmax probability instead of top 1.

5 Analysis

5.1 Analysis of baseline bad cases

In order to figure out why the performance of fine-
tuned model dropped dramatically when applying
adversarial or generalization examples, we ana-
lyzed the bad cases based on results in table 1.
We defined any example whose final prediction has
lower F1-score than average as a bad case. Then
we explored the top k candidates provided by the
model corresponding to this bad case, calculated
the Fl-score separately, and marked the best of
top k candidates. If the answer with max softmax
probability is not the best, it means there are bet-
ter candidates in topk predictions. We first made
statistics on the number of bad cases in all datasets
and proportion of examples with better candidates.
We found that almost 90% of bad cases can find a
better candidate among top k predictions. We also
make this analysis on all examples of the whole
dataset rather than limited to bad cases. We found
that larger proportion of examples with better can-
didates in adversarial and generalization dataset



In-domain | AddSent | AddOneSent
R.M-Reader(Hu et al., 2018) 86.6 58.5 67.0
KAR(Wang and Jiang, 2019) 83.5 60.1 72.3
BERT+Adv(Yang et al., 2019) 92.4 63.5 72.5
Sub-part Alignment(Chen and Durrett, 2021) 84.7 65.8 72.7
Our BERT-base 88.6 64.8 72.8
+ calibrator 88.5 67.1 76.4

Table 5: Performance of our method compared to previous robust MRC model on both AddSent and AddOneSent.
The results are F1 scores on the full test set. The results show that we don’t trade in-distribution performance to
improve the model’s robustness like previous work. More details are described in section 5.3.

comparing to only less than 13% of in-domain
dataset. The results are represented in table 4. And
the more aggressive the adversarial examples are,
the higher the proportion of examples with better
candidates(70% for PerturbQuestion).

So we came to the conclusion that the shift of
data distribution makes the ranking based on soft-
max probability of baseline model unreliable. We
used the labels of best among top k£ candidates to
draw a line chart to show the shift in alignment be-
tween examples of high confidence and empirical
likelihoods, which is presented in figure 1. Take
AddKSentDiverse dataset as an example. There
are more than 1k samples of this dataset with the
best result ranked at position 1 (which is the sec-
ond on the original ranking) instead of the top one
with max softmax probability. From the graph, we
found that most of best answers are limited to top
3 answers, which means the shift of data distribu-
tion didn’t cause huge deviation on the ranking.
So the calibrator used to rerank the candidates can
make great improvement on adversarial datasets
and improve the robustness.

5.2 Analysis of features selection

The selection of features is crucial to the effect of
calibrator no matter which dataset. From section
4.3, manual features are informative to improve
generalization performance while representation
learning features perform better on in-domain and
adversarial datasets. sp;;, F; and A; can be helpful
for various adversarial examples, and [;5 is most
useful for InvalidateAnswer dataset due to the spe-
cial way this dataset is constructed.

When multiple features are selected, the order
of different features will have a certain impact on
the results, but the impact is not as much as the
selection of features. So results we reported are

based on a random selection of permutations. More
kinds of features and their combinations need fur-
ther exploration.

5.3 Comparison to previous work

In Table 5, we compare our model under best fea-
ture selection with previous adversarial QA models
in the literature. To make a fair comparison, we use
BERT-base (Devlin et al., 2019) as our backbone
model and use SQuAD 1.1 dataset (Rajpurkar et al.,
2016) as our main dataset like previous work. We
use 10k training examples of SQuAD 1.1 dataset to
generate AddSentDiverse examples. We don’t save
in-domain examples and only use adversarial ex-
amples to train the calibrator. The method of Yang
et al. (2019) works well on in-domain test set due
to huge data augmentation. Besides, our method
can guarantee the best in-domain performance.

6 Conclusion

We demonstrate that the impact of distribution-
shift data on model is to make final ranking un-
reliable. So we use the calibrator as a reranker to
improve performance of adversarial and generaliza-
tion dataset without sacrificing in-domain perfor-
mance. We take manual features and representation
learning features into consideration while previous
work only focus on manual features. When the
calibrator is trained on the mixture of in-domain
and adversarial data, the target performance can
improve by more than 10% and generalization per-
formance can improved by 1% while maintaining
in-domain performance. And our calibrator only
takes about ten minutes to train and is very easy
to use as a post-hoc structure behind MRC model.
To summarize, our calibrator is simple, effective,
and has potential to be practical application and
extended to other NLP tasks.
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A Generalization Examples

See table 6 for examples.
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Some examples in Natural Questions after changing format

Question what was the tower of london originally used for

Context  The Tower of London, officially Her Majesty’s Royal Palace and Fortress of the Tower of
London, is a historic castle located on the north bank of the River Thames in central London.
It lies within the London Borough of Tower Hamlets, separated from the eastern edge of
the square mile of the City of London by the open space known as Tower Hill. It was
founded towards the end of 1066 as part of the Norman Conquest of England. The White
Tower, which gives the entire castle its name, was built by William the Conqueror in 1078
and was a resented symbol of oppression, inflicted upon London by the new ruling elite.
The castle was used as a prison from 1100 (Ranulf Flambard) until 1952 (Kray twins),[3]
although that was not its primary purpose. A grand palace early in its history, it served as a
royal residence. As a whole, the Tower is a complex of several buildings set within two
concentric rings of defensive walls and a moat. There were several phases of expansion,
mainly under Kings Richard I, Henry III, and Edward I in the 12th and 13th centuries. The
general layout established by the late 13th century remains despite later activity on the site.

Answer Text:as a royal residence; Answer_start:794
Text:a royal residence; Answer_start:797

Question where does the mary river start and finish

Context  The river rises at Booroobin in the Sunshine Coast hinterland, west of Landsborough. From
its source, the Mary River flows north through the towns of Kenilworth, Gympie, Tiaro and
Maryborough before emptying into the Great Sandy Strait, a passage of water between the
mainland and Fraser Island, near the town of River Heads, 17 km (11 mi) south of Hervey
Bay. The Mary River flows into the Great Sandy Strait, near wetlands of international
significance recognised by the International agreement of the Ramsar Convention and the
UNESCO Fraser Island World Heritage Area, which attracts thousands of visitors every
year.

Answer  []

Table 6: Some examples in Natural Questions dataset after using script provided by Sen and Saffari (2020) to change
its format into standard SQuAD style.

Trained on clean data AddKSentDiverse | SQUAD 2.0 dev  Natural Questions
Feature kind ‘ Feature selection Acc F1 Acc F1 ‘ Acc F1
Baseline(without calibrator) 55.04 53.41 ‘ 86.39 87.39 | 59.75 53.30
manual ci+ g+ lio 55.04 53.42 | 85.90 87.29 | 57.44 5291
+Dij 55.02 53.64 | 86.02 87.25 | 58.41 53.19

+pij + E; 55.12 53.67 | 86.10 87.30 | 58.44 53.20

+8pij 55.32 53.91 | 85.80 87.20 | 58.62 53.32

+spij + E; 55.06 53.8 | 85.87 87.21 | 58.39 53.18

representation | +v; 55.10 53.43 | 85.31 86.97 | 59.78 53.32
learning +hin 54.75 53.24 | 86.41 87.38 | 59.78 53.32
+A; 55.12 53.43 | 86.31 87.34 | 59.69 53.32

Table 7: The results on AddKSentDiverse when calibrator only trained on clean original data. All features have
been described in section 3. Baseline result is the output of basic model without calibration. Applying manual
features to train the calibrator can improve the performance on AddKSentDiverse. Representation learning features
just maintain the baseline. Applying the mixture of manual features and representation features has similar results
with only apply manual features to train, which we omit in the results.
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B Calibrator trained on in-domain data
only

Under this setting, the calibrator is only trained on
the separated SQuAD 2.0 dataset.

As main experiments, we take manual features
and representation learning features described in
section 3 into consideration. Accuracy of calibrator,
EM and F1-score are the metrics to be evaluated.
We take AddKSentDiverse as a representative to
demonstrate varying results under different selec-
tion of features in table 7.

From the experimental results, we found that
manual features can be helpful when calibrator only
trained on clean data. It can improve performance
of adversarial dataset by 1% while degradation by
less than 0.2% on the original dataset. Since the
calibrator is ignorant of distribution-shift data, it
can’t utilize representation learning features and
just maintain the baseline result. Among manual
features, E; and sp;; we proposed can be most
informative to calibration. It seems that improving
the performance of distribution-shift data without
sacrificing the original performance is infeasible
when calibrator is only trained on the clean data.
Further exploration on better features is required.
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