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ABSTRACT

Large amounts of missing data are becoming increasingly ubiquitous in modern
high-dimensional datasets. High-rank matrix completion (HRMC) uses the power-
ful union of subspace (UoS) model to handle these vast amounts of missing data.
However, existing HRMC methods often fail when dealing with real data that does
not follow the UoS model exactly. Here we propose a new approach: instead of
finding a UoS that fits the observed data directly, we will find a UoS in a latent
space that can fit a non-linear embedding of the original data. Embeddings of this
sort are typically attained with deep architectures. However, the abundance of
missing data impedes the training process, as the coordinates of the observed sam-
ples rarely overlap. We overcome this difficulty with a novel pseudo-completion
layer (in charge of estimating the missing values) followed by an auto-encoder
(in charge of finding the embedding) coupled with a self-expressive layer (that
clusters data according to a UoS in the latent space). Our design reduces the
exponential memory requirements that are typically induced by uneven patterns of
missing data. We give exact details of our architecture, model, loss functions, and
training strategy. Our experiments on several real datasets show that our method
consistently outperforms the state-of-the-art accuracy by more than a staggering
40%.

1 INTRODUCTION

Motivation: missing data. Missing data is a widespread challenge across various fields, including
epidemiology, social sciences, finance, clinical research, computer vision and many more Enders
(2022); Baraldi & Enders (2010); Beaulieu-Jones et al. (2018); Gelman & Loken (2016); Little &
Rubin (2019); Garcia-Laencina et al. (2010). For example, missing data is observed in epidemiology
due to participant attrition and incomplete responses during health assessments Beaulieu-Jones et al.
(2018), while in social science research, non-response bias in survey-based studies compromises
representativeness Gelman & Loken (2016). Clinical trials also face missing data due to participant
dropout Little & Rubin (2019). In finance and economic analysis, missing data occurs frequently,
particularly in time-series data where gaps may arise due to reporting lags, data collection constraints,
or economic events affecting data availability Garcia-Laencina et al. (2010). Additionally, computer
vision encounters missing data when input image files are corrupted.

Prior work and limitations. Over the years, various methods have been developed to address miss-
ing data, but each has limitations Woods et al. (2021). For instance, (1) single imputation methods
Zhang (2016) can reduce the variability of the data and introduce bias due to the assumption that
one value can adequately replace the missing ones. (2) Deletion methods Baraldi & Enders (2010);
Newman (2014) can lead to significant data loss and potential bias if the missing data are not missing
completely at random. (3) Model based methods Enders (2022); Ma & Chen (2018) and (4) machine
learning methods Khosravi et al. (2020) are computationally intensive and rely on the assumed
underlying statistical model, which can lead to biased estimates and misleading conclusions. (5) Mul-
tiple imputation methods Schafer (1999); White et al. (2011) require complex statistical expertise to
implement and interpret results correctly. (6) Hybrid methods that include combinations of the afore-
mentioned methods can be difficult to analyze and implement, potentially requiring careful tuning to
balance the strengths and weaknesses of combined approaches, and some combinations can probably
yield incorrect solutions Elhamifar (2016). Moreover, none of these methods can handle the large
amounts of missing data that are present in modern datasets and that are information-theoretically
feasible Pimentel-Alarcon & Nowak (2016).
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Figure 1: Clustering accuracy for COIL20, Yale B, and ORL dataset respectively. Our architecture
outperforms the next best algorithm by a staggering 40% at any interval across all datasets.

Instead of being evenly distributed throughout the feature space, high-dimensional data is sometimes
seen to display a low-dimensional structure. Through the use of this structure, observable entries
can be completed by interpolating missing values through the inference of the underlying structure.
Such completion tasks typically make use of linear subspaces, as exemplified by Low-rank Matrix
Completion (LRMC) techniques Candes & Recht (2012).

High-rank Matrix Completion (HRMC) approaches are more effective at approximating modern
datasets, which frequently exhibit complexities that exceed the capacity of a single subspace model
Eriksson et al. (2012). HRMC accommodates numerous subspaces by extending LRMC with a Union
of Subspaces (UoS) framework. This effectively adapts Subspace Clustering (SC) techniques Parsons
et al. (2004) to handle incomplete data. The goals of HRMC are as follows: (a) determine the ideal
UoS that most accurately depicts the incomplete data matrix XΩ; (b) cluster the columns of XΩ in
accordance with the determined UoS; and (c) fill in the missing values within XΩ. Cluster knowledge
would make it easier to apply LRMC to each cluster for data completion and subspace learning; on
the other hand, missing value detection would help SC cluster the data and find subspaces. These two
goals are intertwined. The main challenge lies in completing these objectives at the same time.

Figure 2: Reconstruction Im-
ages for Yale B dataset. The
reconstruction capabilities of
our DeLUCA model are ex-
traordinary. For example, the
image highlighted in green is a
reconstruction obtained from
the image highlighted in red,
which has 80% of their entries
missing. Compare to its origi-
nal, highlighted in blue.

In recent years, there has been a proliferation of High-rank Matrix
Completion (HRMC) algorithms due to the widespread adoption of
the Union of Subspaces (UoS) model. The algorithms demonstrate
a wide range of approaches and levels of performance. Among the
notable techniques are nearby methods, which, as Eriksson et al.
2012 describe, use distances between partially seen sites to construct
clusters. Van der Velden 2018 also describes naïve methods that
replace missing items with zeros or means before clustering using
a Subspace Clustering (SC) method. As described by Pimentel et
al. 2016a, additional techniques have also been developed, such
as GROUSE Balzano et al. (2010), which are used in addition to
techniques that combine aspects of ridge and lasso regression. Using
unions as second-order algebraic structures in techniques known as
"liftings" is another novel strategy Vidal et al. (2005). Furthermore,
the incorporation of quantum computing into HRMC represents a
breakthrough, as Kazdaghli 2023 demonstrates. Quantum algorithms
are utilized for data imputation to boost performance in compari-
son to conventional techniques. When it comes to neural networks,
variational auto-encoders (Kingma & Welling (2013)) and Long
Short-Term Memory (LSTM) networks Hochreiter & Schmidhuber
(1997) are commonly paired with one another to handle data im-
putation. In addition, generative models like Denoising Diffusion
Probabilistic Models (DDPM) Lugmayr et al. (2022) and Generative
Adversarial Networks (GANs) Goodfellow et al. (2014) are being
used more and more in matrix completion tasks.

Unfortunately, there are drawbacks to each of these techniques. For
instance, naïve approaches face challenges when working with relatively large datasets since the
mere act of filling in missing data disrupts the fundamental Union of Subspaces (UoS) structure
Van Buuren (2018). On the other hand, neighborhood approaches are not feasible in many situations
since they need a super-polynomial number of samples or a significant number of observations
to provide adequate overlaps (Eriksson et al., 2012). Increasing the dimensionality of an already
high-dimensional space is the goal of lifting methods Vidal et al. (2005). Problems like quantum
noise and computational constraints occur in quantum computing, a field within quantum information
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theory Kazdaghli et al. (2023). Furthermore, while many approaches produce excellent results on
synthetic data, real-world data performance presents difficulties.

Figure 3: LUC and related problems.

In this paper, we present Latent Union Completion
(LUC), a novel and broader completion model. The basic
goal is to identify a non-linear structure that encapsulates
the observed data and may be represented as a UoS in a
latent space. The objective is to use this latent UoS (LUoS)
to fill in the missing data. Our proposal involves a deep
learning architecture with three main components: (i) an
auto-encoder that embeds the data into the latent space; (ii)
an auto-completion layer that estimates the missing values in the input XΩ; and (iii) a self-expressive
layer that clusters the embedded data based on a UoS model.In this manner, we can concurrently
do both goals of clustering and completing with our architecture, which we refer to as Deep Latent
Union Completion Architecture (DeLUCA). Above all, our experiments on the COIL20 Nene et al.
(1996), Extended Yale B, Lee et al. (2005), and ORL Samaria & Harter (1994) datasets demonstrate
that it can achieve extraordinarily high accuracy on real datasets. Figure 1 provides a summary of the
findings and allows for comparison with other cutting-edge techniques. This Figure demonstrates
how, at every given interval of the proportion of missing data over the whole dataset, our architecture
performs 40% better in clustering accuracy than the next best approach. Furthermore highlighting
our model’s remarkable reconstruction ability is Figure 2. To illustrate an astonishing resemblance to
the genuine (original) image, highlighted in blue, the face from the Yale B dataset, indicated in red,
was finished from the partial image above, noted in green. The outcomes of the remaining samples
are equally striking (see Figures throughout).

Architecture novelty. Another model that has shown success in the related problem of Subspace
Clustering (SC) serves as the basis for our design, DeLUCA. Remember that when data is completely
observed, SC can be thought of as the particular case of HRMC, where the objective is just to cluster
the data based on a UoS. More specifically, we modify the DSC-net architecture Ji et al. (2017) by
introducing a unique pseudo-completion layer made up of two partially connected layers as a first
component. The main innovation is that the missing elements will be imputed from the normalized
entries of the observed data after the data has gone through the pseudo-completion layer. This makes
it possible for us to enter data that is incomplete into a clustering network that would not operate
otherwise. By including this pseudo-completion layer, our design can now smoothly handle clustering
and finishing at the same time.

2 LUOS MODEL AND DELUCA NETWORK

This section contains a detailed presentation of our LUoS model, along with an explanation of the
difficulties a deep learning architecture faces in the event of missing data and how we overcome
them to create our DeLUCA network. Hereafter, we will use X to denote a full-data matrix of
size m × n, and XΩ to denote the incomplete version of X that is only observed in the entries of
Ω ⊂ {1, . . . ,m} × {1, . . . , n}.

HRMC assumes that the rows of X lie near the union of K subspaces denoted by U1, . . . ,UK. Given
XΩ, the goals of HRMC is (a) to infer the underlying subspaces U1, . . . ,UK, (b) to cluster the
columns of XΩ according to their closest subspace, and (c) to complete the missing values in XΩ.
LUC. Unfortunately, many datasets do not lie near a UoS. However, any data is more likely to lie
near a non-linear structure that can be represented as a UoS in a latent space. That is because UoSs
are the special case of this latent model where the embedding is simply the identity map. Hence, we
will assume that there exists an embedding Z ∈ Rm×r of X where the rows of Z lie near the union
of K subspaces denoted by V1, . . . ,VK. We make no assumptions about the number of subspaces or
their dimensions. Given XΩ, the goals of LUC are (a) to find the embedding Z and infer the latent
subspaces V1, . . . ,VK, (b) to cluster the columns of Z (and by correspondence, the columns of XΩ)
according to their closest latent subspace, and (c) to complete the missing values in XΩ according
to the inverse embedding and the latent UoS. To achieve these goals, we will use a deep network
architecture that is detailed below.
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Figure 4: DeLUCA Network.

2.1 ARCHITECTURE

Three major parts make up our DeLUCA network (Figure 4): (i) a self-expressive layer, (ii) an
auto-encoder, and (iii) a pseudo-completion layer. The pseudo-completion layer, which enables the
handling of missing data, is where we mostly contribute. This is by no means a simple task, as each
sample contains uneven patterns of observed entries that disturb the data to the point where it can
no longer be fed directly into the auto-encoder, as is usually the case with full-data methods such as
DSC-net Ji et al. (2017) (for more information, see Section 2.3).

Pseudo-completion layer. This consists of two flattened, partially linked layers. In order to create a
completed-data matrix Xc with placeholder imputations, these layers normalize all of the observed
elements in XΩ. These normalized values then replace the missing entries. In this manner, the matrix
Xc can be smoothly fed into our architecture’s auto-encoder component. See Section 2.3 for more
information.

Auto-encoder. The auto-encoder, which performs the task of mapping the pseudo-completed data
into an embedding where the self-expressive layer can locate the latent UoS structure that clusters the
given data, is the second key element of our architecture. This auto-encoder, as usual, consists of two
parts. The encoder is the first component whose goals are to capture important features and patterns
in the input data and compress the data into a reduced dimensional space until it generates a compact
representation in the latent space. The second part being the decoder, which returns the data to its
original space, is the second part of the auto-encoder. Completing the data in accordance with the
latent UoS is its goal.

Self-expressive layer. The self-expressive layer is our model’s final essential element. The auto-
encoder contains this layer in the center, in between the encoder and the decoder. Its objective is to
use Sparse Subspace Clustering (SSC) to determine the UoS Elhamifar & Vidal (2013). Sparsity in
data representations is used in SSC, a technique for exposing UoS structures in high dimensional
datasets. The method is to express each sample as a linear combination of the remaining data, so
creating a sparse representation of each sample. Subspaces are then revealed by clustering the data
according to the coefficients of these combinations.

These three layers achieve their respective tasks through a coupled loss function, detailed below.

2.2 LOSS FUNCTION

The design of the loss function required careful consideration in order to accommodate the presence
of missing data, and the disparity between the incomplete input and the complete output. Recall that
we use XΩ to represent the incomplete version of X observed on the entries indicated in Ω. Here
XΩ is the input of our network. We use Z to denote the latent representation of X, which corresponds
to the output of the encoder and the input to the self-expressive layer, whose weights we represent
with the coefficient matrix Θ ∈ Rm×m. Notice that besides Θ, the output of our network depends on
all the other parameters of the network (weights of the pseudo-completion and auto-encoder), which
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we denote as Φ. To emphasize this dependency, we use X̂Φ to denote the output of our network.
Finally, to compare the (complete) output with the (incomplete) input of our network, we define X̂

Ω

Φ

as the incomplete version of X̂Φ observed on the entries indicated in Ω. With this, we are ready to
present our loss function:

L(Θ,Φ) =
1

2
∥XΩ − X̂

Ω

Φ∥2F +
λ1

2
∥Z−ΘZ∥2F + λ2∥Θ∥2.

Coefficients and Parameter Tuning. The first term is minimizing the error between the observed
input and their corresponding entries in the output. The second term aims to express each row in Z as
a linear combination of the remaining rows of Z. These coefficients are given by Θ. The intuition
is that Θ will reveal the UoS structure because larger coefficients will indicate belonging to the
same subspace. The last term aims to regularize Θ, so that it produces a stable result with minimum
norm (as there could be arbitrarily many solutions). We point out that SSC generally uses an ℓ1
norm for this last term, in order to favor sparse solutions. Our choice to use the ℓ2 norm instead was
driven by recent results showing improved performance Ji et al. (2014). In this work it was further
concluded that the typical constraint diag(Θ) = 0 is not a strict requirement when the ℓ2 regularizer
is used. Finally, λ1 and λ2 are regularization parameters. These regularization parameters were
determined by an iterative refinement approach where parameters were tuned based on their impact
on model performance, leading to the identification of optimal values. Our training goal is to find the
parameters Θ and Φ that minimize this loss. We describe our strategy to attain this goal below.

2.3 TRAINING STRATEGY

The self-expressive layer requires receiving the entire dataset at once (rather than one sample at a
time). This is required because the layer must compute similarities between all samples to learn the
patterns in the observed data that will reveal the UoS. Since we are dealing with missing data, it is
not possible to pretrain the autoencoder, and hence, we do not pretrain our model. It also does not
require initialization of the model with a pre-processed dataset for performing subspace clustering
unlike other SC models. It is also to be noted that for training we do not have a set epoch value for
termination but rather the termination happens when the learning rate reaches a value of the original
learning rate/10. Furthermore, for the loss function, we determine the values of Θ and Φ by an
iterative tuning where multiple configurations were explored, and the final values were selected based
on their performance in minimizing the loss.

The additional challenge is that, contrary to what is frequently accomplished by other approaches
Yang et al. (2015), the missing entries cannot be naively supplied with zeros or means since this type
of imputation introduces bias and distorts the true underlying low-dimensional structure Elhamifar
(2016). In a similar vein, we are unable to truncate or sketch (keep only a few characteristics) due to
the possibility of bias, information loss, and decreased generalization ability caused by missing data
in every column Pimentel-Alarcón et al. (2016b).

It was decided to mask the missing entries so that their absence wouldn’t impact the weights assigned
to them by the network. But it needed to be done cautiously. The rationale is that every neuron
encodes a single complete feature. However, every feature contains a significant number of missing
entries under the high missing data regimes that we are interested in. Therefore, masking any neuron
with missing values would mask all the neurons, meaning that there would be no active connections
between the encoder and the input layer.

Creation of Pseudo Completion Layer. We solved the masking problem by flattening XΩ into a
1× ℓ dimensional vector, where ℓ = m×n. Now each node contains one entry and all of the missing
entries were masked. An additional layer of 1 × ℓ dimension was introduced in the model before
encoder. For the earlier version of the architecture these layers were fully connected. These layers
also served the purpose of preserving the original shape after the masking procedure. The entries in
the second layer were then reshaped from 1 × ℓ into its original m × n. We termed this obtained
matrix as Xc with xc

j ∈ Rm representing the feature vectors of Xc. For activation, RELU activation
function was implemented in the pseudo-completion layer.

Refining Pseudo Completion Layer. But fully connected layers created large requirements of com-
puting resources. To reduce this requirement, connections between initial layers were modified
to be partially connected layers. Now each xΩj nodes at m intervals in the flattened layer and the
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additional layer were interconnected. These partially connected layers together were termed as the
pseudo-completion layer.

At the output of the pseudo-completion layer, the data Xc is now compatible with the auto-encoder.
This activates the auto-encoder and it can now perform its function of mapping Xc into an embedding
where the self-expressive layer can find the LUoS structure that clusters the given data. Following the
clustering process, the decoder reverses the embedding with the final layer containing x̂Φj ∈ Rm

feature vectors. This is then resolved into an output matrix X̂Φ that comprises of predicted values.

3 RELATED WORK

There have been numerous research performed in the field of high rank matrix completion. Long
Short-Term Memory (LSTM) Hochreiter & Schmidhuber (1997) is one of the most commonly
used methods for this. Further there are multitude of methods which utilize autoencoders for data
imputation. Autoencoders are designed for learning efficient representations of data and are used for
imputing missing values by training the network to reconstruct the missing values as demonstrated
in McCoy et al. (2018). Autoencoders are also used in combination with other methods including
PCA, variational autoencoders, denoising autoencoders and, masked autoencoders. One of the
major contributions in in image reconstruction field was provided in Zheng et al. (2023) where
they had implemented masked autoencoders for preserving intrinsic dimension instead of pursuing
reconstruction in the traditional pixel level methods but this method was confined to Deep Neural
Networks alone.

MIDAS, a neural network for data imputation was introduced recently which applies the dimensional
reduction strategy with an autoencoder to initially corrupt and then reconstruct the image by perform-
ing multiple imputations (MI) Lall & Robinson (2022). MIDAS suffers from the usual challenges
that MI suffer which include the inability to ignore bias and is also prone to performance loss when
subjected to unconventional data structures Lall & Robinson (2022).

Generative Adversarial Networks (GANs) Goodfellow et al. (2014) are also used for matrix com-
pletion Zeng et al. (2021); Liu et al. (2020); Yu et al. (2019) but are majorly confined in the image
inpainting field. Then Yoon et al. (2018) introduced a new GAIN algorithm that outperformed all
the comparative models but also faced all the challenges of mode collapse where the model only
generates similar, instead of diverse values. Another research explored was where the structure of a
CNN model was inspired by autoencoders and GANs Altay & Velipasalar (2018).

Another new approach is the use of Denoising Diffusion Probabilistic Model (DDPM) for data
imputation and image inpainting and has shown to be an alternate paradigm for GANs. The most
notable work presented in Lugmayr et al. (2022) in which the RePaint model solely leverages an
off-the-shelf unconditionally trained DDPM. Specifically, instead of learning a mask-conditional
generative model, they conditioned the generation process by sampling from the given pixels during
the reverse diffusion iterations. But, since this is an inpainting method that relies on an unconditional
pretrained DDPM. Further a nre diffusion model based method was presented recently for handling
missing data Zheng & Charoenphakdee (2023). This method could effectively handle categorical
variables and numerical variables simultaneously but the model architecture is still inefficient and
requires more optimization.

For subspace clustering, Sparse Subspace Clustering Elhamifar & Vidal (2013) is predominantly
implemented. Then Yang et al. (2015) have also implemented SSC while also presenting two
new approaches labeled as SSC-MC in which they initially perform matrix completion which they
then follow it up by implementing SSC. The second approach was termed SSC-EWZF where they
implemented the zero fill method followed by SSC and these two variations of SSC performed best
for high dimensional data. They have gotten good results for both synthetic and real data but face
the challenge of inaccurate clustering when the subspaces in the dataset are not properly separated
and also if the data within them are not well distributed. Another variation of SSC is provided in
the Deep Subspace Clustering Network (DSC-net) Ji et al. (2017) which provides performs SSC in
combination with neural networks, it solely focuses on the clustering for a complete dataset. It can
handle non-linearity which traditional subspace clustering methods may struggle to represent. GANs
have also been used specifically for subspace clustering Yu et al. (2022). This paper introduced two
new architectures for subspace clustering using GANs but focuses only on clustering.
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Generally naive methods offer simplicity in handling missing data. Mean and median imputation,
among the simplest approaches, have been employed in diverse fields. For nearest neighbours, more
recent contributions in Lee et al. (2012) proposed a novel neighbor-based method for time series
clustering Liao (2005), highlighting the adaptability of these techniques to diverse data modalities.
Despite these achievements, challenges remain in scalability and parameter sensitivity.

Importantly Lane et al. (2019) adds a valuable layer of insight into our study. This survey paper
focuses on completion and clustering accuracy for diverse subspace clustering methods including
(1) Group Sparse Subspace Clustering (GSSC), which clusters data points into subspaces while
simultaneously promoting sparsity at the group level Pimentel-Alarcón et al. (2016a), and (2) an
EM algorithm to deal with missing data in Gaussian mixtures Pimentel et al. (2014) and finally (3)
Multiview Subspace Clustering (MSC) Zhang et al. (2018). These methods Lane et al. (2019) offer a
benchmark against for our DUC network. It is also to be noted that all the experiments documented
in this paper have only been performed on synthetic data. Further, a recent survey paper Cai et al.
(2022) that mostly corroborated the results for the methods implemented in Lane et al. (2019).

4 EXPERIMENTS

The subsequent sections will describe the baseline models that were used for comparison, how
the tests were set up, how the findings were analyzed, and the overall improvements noted in this
research. Interestingly, the results achieved for synthetic data are only equivalent to the baseline
models, even though our DeLUCA network has shown exceptional performance on real datasets. The
synthetic data experiments were carried out with consideration for several factors. These datasets
have been diligently constructed to include precisely separated clusters with almost orthogonal
subspaces of the same tiny dimensions. The number of subspaces, the even distribution of data
across subspaces, the isotropic distribution of data inside each subspace, and the known dimensions
were assumed. Furthermore, particular parameters were selected to maximize the performance of
the baseline models—basically, customizing the experimental configuration to correspond to their
strengths. Even under these idealized conditions, which favored the baseline models, our DeLUCA
network produced competitive results. This demonstrates that even while it was tested in a setting
designed to bring out the advantages of other approaches, it is flexible and resilient when dealing
with a wide range of datasets and circumstances.

Comparative Baselines. For the comparative analysis, synthetic and real data were provided to 10
different methods to undergo data completion and data clustering. These methods can be categorized
into two types: the first type includes methods exclusively for data completion, while the second type
encompasses methods capable of both completion and clustering. The following are examples of
completion-only algorithms: (1) SimpleFill: This method uses the most recent non-missing value to
fill in any missing values in a dataset. (2) K-Nearest Neighbors: This technique estimates missing
values by using the similarity between data points Troyanskaya et al. (2001). (3) Iterative Imputer:
Using a sophisticated imputation method, each feature with missing data is modeled as a function of
other characteristics, allowing for the iterative prediction of missing values Van Buuren & Groothuis-
Oudshoorn (2011). (4) SoftImpute: A penalty term is incorporated while the rank of the finished
matrix is minimized to recover missing points Mazumder et al. (2010). (5) MIDAS: To corrupt and
recover data, this method uses denoising autoencoders Lall & Robinson (2022).The remaining five
models, which are able to do both subspace clustering and reconstruction, belong to the second group.
These models, which are covered in the related work section, include SSC-MC, SSC-EWFZ, GSSC,
EM, and MSC.

Synthetic data generation. A synthetic dataset was generated that is lying near a union of subspaces
in the following manner. First, we sampled K d-dimensional subspaces in Rn uniformly at random
by drawing Uk ∈ Rd×n with standard Gaussian entries and orthogonalizing. We then generated data
for each subspace, Xk ∈ Rmk×n, as

Xk = VkUk +Ek,

where each entry in Vk ∈ Rmk×d is drawn according to N (0, 1/d), and each entry in Ek ∈ Rn×mk

is drawn according to N (0, σ2/d). The generated Xk matrices were then stacked one below the
other to form a full-data matrix X of size n×m. Recall that in our construction each row represents
a sample, and each column represents a feature. Finally, recall that each feature vector xj ∈ Rm
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Figure 5: Completion and Clustering Accuracy for Synthetic Data.

contains the jth feature of all the samples. To create Ω we sample exactly ℓ > 0 observed entries
uniformly at random.

Data Parameters. The synthetic dataset was structured as a 200 × 50 (m × n) matrix and we
considered the following parameters: mk = 50, K = 4, d = 3, n = 50. We included a small amount
of noise, σ = 0.01 where mk is the number of samples/subspace, K is the number of subspaces, d is
subspace dimension and n is the ambient dimension.

We simulated missing entries by introducing missing values in the synthetic dataset X dataset with
varying proportions, reflecting real-world scenarios where data gaps can emerge due to diverse
factors.

Accuracy metrics. This synthetic dataset was then fed to the model and the accuracy was plotted
against the percentage of missing data in the dataset as shown in Figure 5. For this experiment, we
consider two types of accuracy, on our final result X̂Φ. To measure completion accuracy we take
the normalized Frobenius norm of the difference between X̂Φ and X, i.e., ∥X̂Φ −X∥F /∥X∥. We
additionally measure clustering accuracy which we quantify the proportion of correctly assigned data
points to their respective clusters compared to the ground truth. The choice for opting clustering
accuracy is due to clustering being an effective method for segmenting images into meaningful
regions or for compressing images while preserving essential details. Clustering accuracy is also
necessary for preserving quality and integrity of reconstructed features.

As discussed above, it can be observed from Figure 5 that some of the other models for synthetic data
slightly outperform DeLUCA in terms of clustering and completion accuracy. See the beginning of
Section 4 for a detailed discussion about this.

Real Data. Only the results obtained from a real dataset can be used to determine the model’s true
performance. To generate the missing dataset for this phase of the experiment, several real datasets
were employed.

Figure 1 and the other comparative graphs in Figure 6 demonstrate that the baseline models’ clustering
and completion accuracy may produce remarkable outcomes with synthetic data, but they are unable
to replicate the results in real data. On the other hand, our model yielded better results for real data
than it did the for synthetic data.

COIL20 The first real life dataset used in this project is COIL20. This dataset consists of 1440
128 × 128 grayscale images (20 objects with 72 poses each), with 16,384 features. These images
were reshaped to 32× 32 pixels for computation feasibility. The data was fed into the model and it
was observed Figure 6 that DeLUCA performed better than all other models in terms of completion
accuracy when plotted against the percentage of missing data. It can also be noted from Figure 1 that,
the model performs significantly better than all other methods in terms of clustering accuracy and
that it outperforms the next best method by more than 40%.

From Figure 7 we can observe the image reconstruction performed by DeLUCA for three levels
of missing entries starting from 20% to 50% and then finally at 80%, in a set of 2 random images
sampled from the COIL20 dataset.

Extended Yale B. We then used the Extended Yale B which contains 2414 images of 38 human
subjects with 64 images per person, where all the images are manually aligned, cropped, and then
re-sized to 192× 168 images. From this, we used only 20 human subjects with a total of 1280 images
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Figure 6: Completion Accuracies for COIL20, Extended Yale B, and ORL Dataset.

Figure 7: Reconstruction results for different missing data percentages for COIL20, E-YaleB and
ORL Datasets.

which were reshaped to 48×42 pixels. Similar to COIL20, it is again observed from Figure 6 that the
completion accuracy of DeLUCA outperforms uniformly over all the other methods for any amount
of missing data in the dataset. Again Figure 1 can be referred to see that for even Extended Yale B,
our DeLUCA network clearly outperforms the remaining models in terms of clustering accuracy.
Also worth noting that for this dataset, even at 80% missing entries, the model performs at a clustering
accuracy of more than 80%.

Figure 7 shows reconstruction tests performed we used 2 sets of images randomly selected from the
Extended Yale B dataset and we imputed the 3 levels of missing entries at 20%, 50%, and 80% of the
dataset.

ORL Dataset. And finally, we used the ORL Database of Faces that contains 400 images from 40
distinct subjects. The size of each image is 92× 112 pixels which was reshaped to 32× 32 pixels,
with 256 grey levels per pixel. Again as seen in Figure 6, our DeLUCA network provides the best
completion accuracy among the state of the art models. The clustering accuracy for this dataset is
also similar to what was attained for Extended Yale B as shown in Figure 1.

Figure 7 depicts similar tests which were performed on COIL20 and Extended Yale B, where
we randomly selected 2 sets of images each of them for various levels of missing entries were
reconstructed.

5 CONCLUSION

In this paper we introduced our novel DeLUCA architecture which finds a UoS in a latent space
that can fit a non-linear embedding of the original data and performs sparse subspace clustering.
We have presented a novel Pseudo-completion layer designed to effectively handle missing data,
complemented by an autoencoder that uses the inherent self-expressiveness of latent subspaces for
both clustering and data reconstruction tasks. Throughout our research, we encountered significant
challenges associated with missing data handling and observed that our model’s performance is
highly contingent upon the selection of hyperparameters, spanning network architecture and, learning
rates. And impressively our experimental findings showcase remarkable enhancements in data
reconstruction, surpassing existing models by margins ranging from 5% to 60%, while achieving
substantial improvements in clustering performance, with enhancements ranging from 40% to 80%.
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