Minimizing Makespan with LaCAM* for
Optimal Multi-Agent Path Finding

Anonymous Author(s)
Submission Id: 636

ABSTRACT

Multi-Agent Path Finding (MAPF) requires collision-free paths for
a set of agents. Optimal MAPF solutions often minimize one of
two cost functions: (1) sum-of-costs (SOC), which is the sum of the
costs of the paths, or (2) makespan (MKS), the maximum of these
costs. LaCAM* is a recent anytime MAPF solver, which eventually
converges to the optimal solution. However, LaCAM* has a consid-
erably slow convergence speed to the optimum and is considered a
scalable near-optimal solver. While this is true for SOC, in this paper,
we show that LaCAM* can quickly converge to the optimal MKS
solution. We explore LaCAM* and an improved version LaCAM*2
with three search methods: DFBnB, A, and IDA*. We present their
superb performance for finding optimal MKS solutions, even with
thousands of agents.

KEYWORDS

Multi-Agent Path Finding, Makespan, LaCAM*, A*, Combinatorial
Search

ACM Reference Format:

Anonymous Author(s). 2026. Minimizing Makespan with LaCAM* for Opti-
mal Multi-Agent Path Finding. In Proc. of the 25th International Conference on
Autonomous Agents and Multiagent Systems (AAMAS 2026), Paphos, Cyprus,
May 25 - 29, 2026, IFAAMAS, 8 pages.

1 INTRODUCTION

The task in the Multi-Agent Path Finding problem (MAPF) is to find
conflict-free (collision-free) paths for multiple agents [44]. MAPF is
derived from real-world applications of navigating multiple phys-
ical entities, such as drones, robots, vehicles, etc. There are two
common objective functions that quantify the cost of MAPF solu-
tions: sum-of-costs (SOC) and makespan (MKS). SOC is the sum of
the costs of all paths, and MKS is the highest cost among all paths’
costs. It is NP-hard to optimally solve MAPF for both SOC [51] and
MKS [45]. However, advanced algorithms are capable of optimally
solving MAPF for many agents [13, 20, 30, 39].

LaCAM* [33] is a recent anytime solver, which extends the sub-
optimal algorithm LaCAM [34] and converges to the optimal MAPF
solution (for SOC or MKS). Both LaCAM and LaCAM* search in
a vertex configuration space, where each node represents the ver-
tices of the entire set of agents. In contrast, Conflict-Based Search
(CBS) [39], a common optimal MAPF algorithm, searches in a path
configuration space, where each node represents a set of paths for
all agents. Each of the two algorithms LaCAM™ and CBS has its
own different forte; while LaCAM* is capable of quickly finding
(unbounded) near-optimal solutions (for SOC or MKS), CBS is better

Proc. of the 25th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2026), C. Amato, L. Dennis, V. Mascardi, J. Thangarajah (eds.), May 25 — 29,
2026, Paphos, Cyprus. © 2026 International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). This work is licenced under the Creative
Commons Attribution 4.0 International (CC-BY 4.0) licence.

suited for finding optimal or bounded-suboptimal solutions (again,
for SOC or MKS) [4, 7, 8, 11, 22, 23, 25, 30, 39].

A primary weakness of LaCAM* is that it explores the vertex
configuration space, in which the number of successors of each
node and, in particular, the size of the state space is exponential in
the number of agents. Moreover, to prove optimality, as in standard
heuristic search, every node that may lead to a better solution (ac-
cording to a heuristic function) must be expanded [9]. In this paper,
we challenge the weakness of LaCAM* and aim to use the algorithm
to find optimal solutions. In particular, we show that LaCAM* can
quickly find optimal MKS solutions when it is executed on large and
sparse maps. As we explain, this is due to its accurate heuristic es-
timate for MKS. Moreover, we experimentally demonstrate that, in
such maps, LaCAM* significantly outperforms CBSMm, a CBS-based
algorithm designed for MKS, making LaCAM* the state-of-the-art
optimal MAPF solver for MKS in these maps. Therefore, we explore
various search strategies for LaCAM*. Standard LaCAM* (denoted
LaCAM*-DFBnB) employs a depth-first branch-and-bound search
(DFBnB); nodes are explored in a depth-first search (DFS) manner
until a solution is found and, then, additional nodes are explored
until the optimal solution is determined. We then introduce two
new versions of LaCAM*: LaCAM* with an A* search (LaCAM*-A*)
as well as LaCAM* with an IDA” search (LaCAM*-IDA*). We also
apply these two strategies to LaCAM*2 [35], an improved version
of LaCAM*. We experimentally show that LaCAM*2 with the new
search strategies (LaCAM*2-A* and LaCAM*2-IDA*) outperforms
other methods in finding optimal MKS solutions, presenting state-
of-the-art performance on various benchmark maps. For instance,
with a time limit of 60 seconds, LaCAM*2-IDA* reaches 100% suc-
cess rate for optimally solving MAPF for MKS on a city benchmark
map (Berlin_1_256) containing 3,000 agents.

2 BACKGROUND

2.1 Path Finding

A path & in graph G = (V, E) from start vertex s € V to goal
vertex g € V is a list of vertices such that the list starts with vertex
s and ends with vertex g, and any two consecutive vertices in the
list must be traversable. Let 7(¢) denote the ¢-th vertex in path 7.
Formally, 7(0) =s, n(|z| — 1) = g, and V¢t : (n(t), n(t +1)) € E. A
Path Finding problem (PF) is defined by a tuple (G, s, g) and requires
such a path. The cost C(r) = || -1 of path 7 is equal to the number
of transitions performed in it.! The optimal solution (optimal path)
to PF is the lowest-cost path among all PF solutions (paths).

Finding the optimal path to PF can be efficiently accomplished
using various search algorithms, which track their search by nodes
(where each node represents a vertex in the given graph), main-
tained in a data structure called OPEN.

!This work focuses on a unit-cost graph, which is common in Multi-Agent Path Finding,

A*. A*[16], a well-known Best-First Search (BFS) heuristic search
algorithm, uses a heuristic function h(v) that estimates the cost to
reach the goal vertex g from any given vertex v. Let C*(v) denote
the cost of the optimal path from a given vertex v to vertex g. A
heuristic function is called admissible if it never overestimates, i.e.,
Vo : h(v) < C*(v). Until the goal is expanded, A* iteratively expands
the node with the lowest f(v) = g(v) + h(v), where g(v) is the cost
of reaching v from the start vertex s, and generates its successors.
Given an admissible heuristic function, A* is guaranteed to return
the optimal path.

Depth-First Branch-and-Bound (DFBnB). DFBnB [18] is an any-
time PF algorithm, which converges to the optimal solution. It
performs a Depth-First Search (DFS), which explores as far as pos-
sible along each branch before backtracking. After a solution is
found, DFBnB continues the search and improves the quality of the
solution while discarding nodes whose f-value exceeds the cost of
the lowest-cost solution found. DFBnB halts when OPEN is empty.

Iterative Deepening A* (IDA”). IDA™ [17] is a heuristic search algo-
rithm, which performs a DFS in iterations, according to the lowest
f-value observed, ensuring that the first solution found is optimal.
All three algorithms A*, DFBnB, and IDA* often use another data
structure, called CLOSED, to avoid re-expanding duplicate nodes.

2.2 Multi-Agent Path Finding

The Multi-Agent Path Finding problem (MAPF) [44], which gener-
alizes PF for multiple agents, is defined by the tuple (G, A, S, G),
where G = (V, E) is an undirected graph, A = (ay, ..., ay) is a set
of k agents and S = (s1,...,5¢) and G = (g1, ...,gx) are lists of
start and goal vertices for the k agents, respectively. A path 7; for
agent q; is a path from start vertex s; to goal vertex g;, represent-
ing the movement actions of the agent between each consecutive
timesteps t and ¢ + 1, and it is composed of move actions (where
7i(t) # mi(t + 1)) and wait actions (where 7;(t) = m; (t + 1)).

AplanIl = (7, ..., my) is alist of paths for the agents. A solution
to MAPF is a conflict-free plan IT; that is, any two paths in plan IT
do not conflict. For any two paths ; and 7; of agents a; and a;, we
consider the following two common types of conflicts.

1. A vertex conflict <a,~, aj, v, t> exists when the agents are simul-
taneously at vertex v at timestep ¢ (3t : m;(t) = 7j(t) = v).

2. A swapping conflict <a,~, aj,e, t> exists when the agents tra-
verse edge e in opposite directions between timesteps ¢t and ¢ + 1
@t mi(t) =7t +1) Ami(t) = m(t+1) A (mi(2), mi(t + 1)) =e).

Objective functions. The objective functions for MAPF are de-
fined as follows. The sum-of-costs (SOC) of plan IT is

Csoc() = Z C(mi).
siell

The makespan (MKS) of plan IT is

Cpmks(IT) = max C(;).
miell

i

An optimal MAPF solution minimizes either SOC or MKS.

9—D)—B)

Figure 1: MAPF problem instance with different SOC and
MKS optimal solutions.

Example. Figure 1 presents a MAPF problem instance containing
two agents a; and ap, with start vertices s; and sy, and goal vertices
g1 and g. Let TI! = (7[11, 71'21) such that 71'11 = (s1,91) and 71'21 =
(s2,C, B, A, g2), and let 2 = (71'12,71'%) such that nlz = (51,51, 51,91)
and nzz = (s2,D, g1,92). For 1!, Csoc (IT') = 5 and Cpgs (ITY) = 4.
For I12, Csoc(I1%) = 6 and Cpxs (I1?) = 3. Therefore, IT' is better
(and optimal) for minimizing SOC while I1? is better (and optimal)
for minimizing MKS.

2.3 LaCAM

LaCAM [34] is a MAPF algorithm, capable of quickly finding sub-
optimal solutions. LaCAM has two search levels. On the high level,
the algorithm is executed in a composite graph G° = (V¢, E°),
where each composite vertex v° € V¢ contains a configuration
(a list of the vertices of the entire set of agents). The start and
goal composite vertices are S and G, respectively (the start and
goal vertices of the agents). A composite edge (v{,05) € E° from
o = (05}, .., vik) toog = (05, ..., vgk) is any possible movement
of all agents: Vo, : (v;,05;) € E V of; = v5,, excluding that where
all agents wait o] # 05 or where two agents conflict.

Each high-level node contains a specific configuration (compos-
ite vertex). The high level iteratively chooses a node from OpPEN
and only partially expands it. That is, given a node n it generates a
single successor of n, and n remains in OPEN until all successors are
generated. This method of partially expanding a node while only
generating a single successor is also known as Enhanced partial
expansion A* (EPEA*) [15]. Choosing the configuration for the next
successor to be generated is performed by (1) a low-level search
and (2) a configuration generator. To ensure that all possible con-
figurations are considered for the successors, the low level uses a
positive constraint, enforcing an agent to perform a specific move.
Starting from no constraints, the low level gradually constrains
the agents to perform any possible movement. This is done using
a tree, maintained in each high-level node, where each tree level
considers a different agent and every low-level successor imposes
a positive constraint on the agent. Therefore, each branch repre-
sents a specific movement for some of the agents. For a specific
branch, the configuration generator completes the movement for
the agents that have no constraints. The configuration generator
can be implemented by different possible methods. It has been ex-
perimentally demonstrated that using the PIBT algorithm [36] for
the configuration generator outperforms other methods. PIBT is
a fast MAPF algorithm that moves the agents towards their goals
while preferring agents with a higher priority. When needed, PIBT
lets a lower-priority agent inherit a higher priority.

Algorithm 1: LaCAM

1 LaCAM (MAPF instance)

2 | init OPEN, CLOSED; N (L [[C™]) null)
3 | OPEN.insert(N™?); CLosED[S] = Nt

4 | while OpeN is not empty do

5 N « OpEN.peek()

6 if N.config = G then return N

7 if N.tree = 0 then OPEN.extract(); continue
8 C « low_level_search(N)

9 Q""" « configuration_generator(N, C)

10 if Q™" = null then continue

11 if CLosen[@Q"™*™] # null then continue

12 NTew <Qnew, [[C"’”]],N>

13 OrEN.insert(N"¢"); CLOSED[Q""] # NV
14 return No Solution

Pseudo-code. The pseudo-code of LaCAM’s high-level can be
found in Algorithm 1. Each node represents {(config, tree, parent),
a tuple of a configuration (config), low-level tree that is used to
track the low-level constraints (tree), and a parent-pointer (parent).
First, LaCAM initialize OPEN and CLOSED with a root node N/
(Lines 2-3). C™™* means "no constraints". While OPEN is not empty,
an expansion cycle is performed as follows (Lines 4-13). The next
node N from OPEN is examined (Line 5). If it has the goal config-
uration G, then N is returned (Line 6), and the solution can be
easily constructed using the parent-pointers. Otherwise, if all con-
straint combinations are complete, then N is discarded and a new
expansion cycle begins (Line 7). If they are not complete, the next
constraint is set and a new configuration Q™¢" is generated (Lines
8-9). A new node NV is created based on the new configuration
Q™" and inserted into OPEN and CLOSED (Lines 12-13) only if the
configuration Q™" could have been generated (it is possible to
generate a new configuration under the low-level constraints) and
the configuration Q™¢" is not already explored (Lines 10-11).

2.3.1 LaCAM*. LaCAM™ [33] is a successor of the suboptimal
MAPF algorithm LaCAM [34], capable of finding optimal solutions.
The main difference between LaCAM and LaCAM* is that LaCAM
performs a DFS (where OPEN is a stack) and halts when a solution
is chosen for expansion and LaCAM* performs a DFBnB, prunes
nodes with an f-value that is higher than or equal to the cost of the
lowest-cost solution found, and halts only when OPEN is empty,
and the optimal solution is found. For calculating the f-value of
nodes, LaCAM* uses a heuristic function that estimates the cost of
reaching a goal for each agent separately, assuming a free space,
i.e., ignoring all other agents. Trivially, for SOC, the heuristic value
is equal to the sum of all these estimates and, for MKS, the heuristic
value is equal to the maximum value of these estimates. For exam-
ple, consider again the problem instance presented in Figure 1. A
heuristic function h with a free-space assumption estimates, for
agent aj, h(s1,g1) = 1 and, for agent ay, h(s2, g2) = 3. At the root
node of LaCAM*, we have the initial configuration of the start ver-
tices of the agents (s1, s2). Therefore, for SOC, the heuristic value

is equal to 4 and, for MKS, the heuristic value is equal to 3. We can
see that, in this example, the heuristic value for MKS is accurate
and equal to the cost of the optimal MKS solution. However, the
heuristic value for SOC is inaccurate. As we explain below, the
heuristic value for MKS is often accurate, making it suitable for
finding optimal MKS solutions.

2.3.2 LaCAM™2. Recently, an improved version of LaCAM* was
introduced [35]. We denote it as LaCAM*2, which has five main
modifications, as follows.

(1) Non-deterministic node extraction. To prevent progressing
toward the goal configuration in the wrong direction during the
search, in some cases, stochastically, LaCAM*2 chooses a random
node from OPEN and continues the search from that randomly
selected node.

(2) Space utilization optimization (SUO/Scatter). When choosing
a configuration using the configuration generator, the agents may
eventually become congested in narrow spaces. To prevent multiple
agents from reaching such areas, this modification also prefers
configurations that better scatter the agents.

(3) Monte-Carlo configuration generation. The low-level search
and the configuration generator have a stochastic nature for choos-
ing a configuration for the successor. Therefore, in LaCAM™2, a few
random configurations are sampled and examined, and the best one
is ultimately selected.

(4) Dynamic incorporation of alternative solutions (iterative). A
solution that is found by the algorithm is in the form of a path in
the composite graph. When such a solution is found, LaCAM*2
tries to improve it by iteratively choosing a single agent and two
vertices along its path. Then, LaCAM*2 aims to find a shorter path
between the two vertices, which does not conflict with all other
paths. If such a path is found, the best solution found is updated.

(5) Recursive use of LaCAM*. Similar to Modification 4 above,
after a solution is found, LaCAM*2 tries to improve it. This is done
by LaCAM*2 recursively calling itself between two composite nodes
along the solution found. While Modification 4 is aimed at finding
a shorter sub-path for a single agent, here, the aim is to find a better
sub-plan for all agents.

2.4 Conflict-Based Search (CBS)

Conflict-Based Search (CBS) [39] is an optimal MAPF algorithm
for either SOC or MKS. In CBS, a constraint {a;, x, t) (x is either
a vertex or an edge) prohibits agent a; from occupying vertex x
at timestep t or from traversing edge x between timesteps ¢ and
t + 1. Note that, in contrast to the constraint used in LaCAM, which
is positive and enforces the agent to perform a specific action, the
constraint in CBS is negative. CBS is a two-level algorithm. On its
high level, CBS contracts a Constraint Tree (CT). Each CT node
N contains: (1) a set of constraints, denoted N.constraints; (2) a
plan N.II that satisfies N.constraints; and (3) the cost N.cost of
plan N.II. N.cost can be either Csoc (1) or Cpxs(IT) depending
on whether the aim is to minimize SOC or MKS. The path of each
agent g; in plan N.II (denoted N.IL.x;) satisfying N.constraints is
planned by CBS’s low-level search.

The high level performs a BFS over the CT nodes by prioritizing
CT nodes according to their costs. It starts from initializing a Root
CT node containing an empty set of constraints and inserting it
into OPEN. Then, repeatedly, CBS extracts the lowest-cost CT node
N from OpEN. If N.II is conflict-free, it is returned as a solution.
Otherwise, a conflict (ai, aj, x, t) is chosen. To resolve the conflict,
two new child CT nodes N and N; are created for node N with the
constraints N.constraints and the additional constraints (a;, x, t)
and (aj,x, t> are added to N; and Nj, respectively. The new CT
nodes N; and Nj are inserted into OPEN.

When a new constraint is added to agent a; in a new CT node
N; (to resolve a conflict), the low level is called to replan the lowest-
cost path for agent a; that satisfies the new set of constraints in Nj.
The lowest-cost low-level search can be implemented by (Temporal-
)A* [42], which executes A* but must satisfy the constraints.

CBSMm. Many improvements for CBS were introduced over the
years [6, 7, 11, 22-24, 41, 52]. Recently, a CBS version specifically
adapted for minimizing MKS was proposed [30]. We denote this
version of CBS by CBSm. Instead of calling, in CT node N, a low
level that finds the lowest-cost path, it uses a low level that finds a
bounded-cost path, which is bounded by the cost of the longest path
(MKS) currently existing in CT node N. If no such path exists, then
it calls a lowest-cost low-level search. To the best of our knowledge,
CBSM is the state-of-the-art MAPF solver for MKS.

3 RELATED WORK

Due to its applicative nature, MAPF has been solved by different
algorithms and extended in various directions, as follows.

3.1 Solvers

There are two main categories of MAPF solvers: search-based and
reduction-based. Search-based algorithms systematically explore
different paths (or sub-paths) until a solution can be determined.
Beside, LaCAM* and CBS, search-based algorithms that optimally
solve MAPF include Cooperative A* (CA*) [42], Operator Decom-
position (OD) [43], Independence Detection (ID) [43], M* [48], In-
creasing Cost Tree Search (ICTS) [40], and Branch and Cut and
Price (BCP) [20]. Reduction-based algorithms compile MAPF into
another known problem that has mature and effective solvers.
Previous studies on reduction-based approaches include reducing
MAPF to Integer-Linear Program (ILP) [50], Answer Set Programming
(ASP) [10, 32], SAT [5, 46], and more. In this paper, we only consider
CBSM in our experiments because it experimentally outperformed
other search-based and reduction-based algorithms for optimally
solving MAPF for MKS.

3.2 Extensions

The standard MAPF may not capture all constraints that exist in real-
life applications. Therefore, many studies extended the classical def-
inition of the problem. These include cases where agents have differ-
ent sizes and may occupy multiple locations at a single timestep [26];
cases where agents have imperfect execution, and the solutions are
designed to withstand delays [2, 3, 38]; cases where goals have
deadlines [12, 29]; online/lifelong scenarios [27, 28, 31, 47, 49],
where new agents/tasks arrive over time; cases where time is con-
tinuous [1]; and MAPF with other objective functions, such as

Fuel [14, 19], which takes into account only move actions. While
this paper studies the standard MAPF problem, our methods can
be generalized for other MAPF extensions, such as the ones above.

4 VARYING LACAM®S SEARCH STRATEGY

As mentioned, LaCAM performs a DFS on its high level. The main
reason for using this particular search is that the algorithm was
developed to find a (suboptimal) solution as fast as possible (the
original paper was titled "LaCAM: Search-Based Algorithm for Quick
Multi-Agent Pathfinding”) [34]. Following the same direction, La-
CAM?* (titled "Improving LaCAM for Scalable Eventually Optimal
Multi-Agent Pathfinding") [33] performs a DFBnB, which improves
the quality of the solution found by continuing the search until
the optimal solution is reached. LaCAM* aimed to be scalable (the
author mentions that "it [LaCAM"] suboptimally solved 99% of the
instances retrieved from the MAPF benchmark") and it only eventu-
ally converges to the optimal solution ("the convergence speed was
slow in large instances with many agents"). However, as we show,
LaCAM?* can optimally solve many large instances containing many
agents when MKS is minimized.

Standard LaCAM* performs a DFBnB on its high level and, there-
fore, we denote it as LaCAM*-DFBnB. Indeed, DFBnB is an anytime
algorithm that converges to the optimal solution. However, in this
paper, we are only interested in finding optimal solutions. Hence,
different known search strategies can also be employed while main-
taining the optimality of the returned solution. We also consid-
ered the following search strategies for LaCAM*: A* (LaCAM*-A*)
and IDA* (LaCAM*-IDA*). Likewise, for LaCAM*2, we consider
LaCAM*2-A* and LaCAM*2-IDA*. We note that, some of the modifi-
cations made for LaCAM*2-DFBnB are not relevant to LaCAM*2-A*
and LaCAM*2-IDA*. In particular, Modifications 4 and 5 (mentioned
in Section 2.3) are used to quickly refine the quality of the solu-
tion found. However, the first solution found by LaCAM*2-A* and
LaCAM*2-IDA* is optimal, and the algorithms immediately halt.
Therefore, these two modifications are not relevant to them. In our
experiments below, we also added a version of LaCAM*2-DFBnB
that as well does not include these two refiners (Modifications 4
and 5), denoted as LaCAM*2-DFBnBnr.

4.1 Node Expansion and Runtime

A common classification divides nodes expanded by any search
algorithm into three groups [9]: must-expand, maybe-expand, and
never-expand. Let C* denote the cost of the optimal solution. A
must-expand node is every node with f < C*; it must be expanded
to guarantee optimality. A maybe-expand node is every node with
f = C*; it may or may not be expanded. A never-expand node is
every node with f > C*; it can be prevented from being expanded.
Therefore, when an algorithm expands never-expand nodes, they
are often referred to as surplus nodes, as it was not required to
expand them in order to determine the optimality of the solution.

Example. Consider the search tree illustrated in Figure 2, in
which there are three goal nodes in depths 2, 3, and 4. Assume a unit-
edge cost, a zero heuristic value for all nodes, and a DFS that prefers
the left successor first. Here, C* = 2. The black nodes in depths 0 and
1 are must-expand nodes, the dark-gray nodes are maybe-expand
nodes, and the light-gray nodes are never-expand nodes, and can be

Figure 2: Nodes classification. Black: Must-expand nodes;
Dark gray: Maybe-expand nodes; Light gray: Never-expand
nodes (surplus nodes). Solid-line circle: Expanded by DFBnB.

avoided from expansion (surplus). In this example, DFBnB gradually
improves its solution and expands all nodes represented by a solid-
line circle. Here, DFBnB only expands four surplus nodes, however,
on larger tree, it may expand many such nodes. In contrast, A* and
IDA” never expand these nodes.

DFBnB, A”, and IDA”. When search algorithms are executed,
the number of expansions is not the only factor that impacts their
runtime. Consider DFBnB, A*, and IDA*. Each has scenarios where it
performs worse and better due to its own weaknesses and strengths.
Weaknesses: DFBnB deepens the search and may reach and expand
surplus nodes, and it halts only when OPEN is empty; A* is required
to order OPEN, which incurs runtime; IDA* may perform multiple
iterations until the optimal solution is found. Strengths: A* and IDA*
do not expand surplus nodes and halt when a solution is expanded;
DFBnB and IDA* are not required to order OPEN; DFBnB and A*
only perform a single iteration. Next, we evaluate experimentally
LaCAM* and LaCAM*2 with the different search strategies.

5 EXPERIMENTS

In this section, we conduct an extensive empirical study on standard
benchmark maps from the MovingAI repository [44]. As the num-
ber of agents for each map in the benchmark is limited (usually up
to 1,000 agents), we generated problem instances using the MAPF-
LNS2 [21] instance generator using the publicly available imple-
mentation.? For each map, 25 problem instances were created. We
experimented with CBSm, LaCAM*-DFBnB, LaCAM*-A*, LaCAM*-
IDA*, LaCAM*2-DFBnB, LaCAM*2-A*, LaCAM*2-DFBnBnr, and
LaCAM*2-IDA”. We set the time limit to 60 seconds. We will make
our implementation publicly available upon acceptance.

5.1 Comparing SOC vs. MKS

We first examined the difference in finding suboptimal and optimal
solutions for minimizing SOC and MKS, for LaCAM*2-DFBnB. We
evaluated LaCAM*2-DFBnB’s performance on the warehouse map
warehouse-20-40-10-2-1 (denoted Warehouse), with 100, 200, ...,
1,000 agents. Table 1 presents the success rate (percentage of solved
instances within the time limit) of this experiment.

Zhttps://github.com/Jiaoyang-Li/MAPF-LNS2

Suboptimal Optimal

SOC | MKS | SOC | MKS
100 100% | 100% 0% | 100%
200 100% | 100% 0% | 100%
300 100% | 100% 0% | 100%
400 100% | 100% 0% 92%
500 100% | 100% 0% 96%
600 100% | 100% 0% 92%
700 100% | 100% 0% 96%
800 100% | 100% | 100% | 100%
900 100% | 100% | 100% 88%
1000 100% | 100% 0% | 100%

Table 1: Success rate of LaCAM*2-DFBnB on Warehouse for
finding a suboptimal and optimal solution for SOC or MKS.

#Agents

As was already known, LaCAM*2-DFBnB excels in finding a
first suboptimal solution and was able to suboptimally solve all
problem instances for both SOC and MKS. Indeed, which was ex-
pected, LaCAM*2-DFBnB could not optimally solve any problem
instance for SOC. However, many problem instances were opti-
mally solved for MKS; LaCAM*2-DFBnB optimally solved all 25
problem instances with 1,000 agents (some problem instances were
not solved for fewer agents due to LaCAM*2’s stochastic behavior).
Importantly, LaCAM*2-DFBnB is executed in a state space where
each node contains a configuration (the vertices of all agents). Given
an underlying graph G with |'V| = n vertices and k agents, there
are ~ nk possible nodes for LaCAM*2-DFBnB. Specifically, the map
Warehouse, used for the above experiment, contains 22,599 vertices.
Therefore, the size of the state space, for 1,000 agents, is equal to
~ 22,5990 wwhich is a huge number. These results and findings
inspired us to use LaCAM*2-DFBnB as an optimal algorithm for
MKS. This raises the question: How is it possible that such a large
problem instance was optimally solved?

As mentioned, in SOC, the heuristic value at each node is equal
to the sum of all the estimates of all agents to reach their goals
from their current vertices. In MKS, the heuristic value is equal to
the maximum of these estimates. A deeper look at the optimally
solved problem instances for MKS revealed that the initial heuristic
estimate at LaCAM*2-DFBnB’s root node was perfect for all of them,
which means that the heuristic value was precisely equal to the
makespan of the optimal solution. The reason for having a perfect
heuristic for MKS is that, often, to avoid conflicts, agents with non-
maximal cost paths can extend their paths without increasing the
cost of the solution (as it is only affected by the maximal one). In the
case of a perfect heuristic, there are no nodes to be classified as must-
expand nodes, where f < C*. Therefore, when the optimal solution
is found, all nodes in OPEN have f > C* and can be immediately
pruned. In fact, the only modification we added to LaCAM*2-DFBnB
(and LaCAM*-DFBnB) is that, when the cost of the best solution
found is equal to the heuristic value of the root, the algorithm
immediately halts (this was not part of the original algorithm).
In all the experiments below, we only aim to find optimal MKS
solutions.

https://github.com/Jiaoyang-Li/MAPF-LNS2

%Surplus Nodes

0%
1% 10% 20% 30%
Number of Agents

=>¢16x16 -0-32x32 -M-48x48 —-064x64

Figure 3: Percentage of surplus nodes on empty grids.

100%
80%
60%
40%
20%

0%

Success Rate

100 200 300 400 500 600 700 800 900 1000
Number of Agents

—+—~Mod. 1 -#~Mod. 2 ~Mod. 3 ——~Mod. 4+5
Figure 4: Success rate of LaCAM*2-DFBnB when each modifi-
cation is removed.

5.2 Counting Surplus Nodes

In this paper, we focus on finding optimal solutions for MKS whose
cost is C*. To evaluate the impact of surplus nodes (with f > C*)
expanded by LaCAM*2-DFBnB for minimizing MKS, we experi-
mented on empty grids of sizes 16 X 16, 32 X 32, 48 X 48, and 64 X 64.
The results are presented in Figure 3, where every curve represents
a different grid size. Each empty grid was tested with agents that
occupy 1%, 10%, 20%, and 30% of the grid (x axis). We measured
the average percentage of surplus nodes expanded by LaCAM*2-
DFBnB out of the total expanded nodes (all problem instances were
solved).

In general, increasing the number of agents also increases the
percentage of surplus nodes; when more agents are present, it is
more likely for LaCAM*2-DFBnB to reach a solution that is farther
than the optimal one, resulting in many surplus expansions. Notably,
the percentage of surplus nodes can be very high; in the 64 x 64 grid
with agents occupying 30% of the grid, on average, more than 50% of
expansions were of surplus nodes. We also observed specific cases
where more than 80% of the expansions were of surplus nodes.
These results motivate the use of different search strategies, as
proposed in this paper, which do not expand any surplus nodes.

5.3 Considering LaCAM*2’s Improvements

To evaluate the impact of the five modifications of LaCAM*2 (de-
scribed in Section 2.3.2), we executed LaACAM*2-DFBnB on Ware-
house with 100, 200, ..., 1,000 agents (as in the experiment of

Table 1) and removed each modification in turn (we consider Modi-
fications 4 and 5 together, as done in the original LaCAM*2’s paper).
Figure 4 shows the result of this experiment, where each curve repre-
sents LaCAM*2 without a single modification. For instance, Mod. 1
represents LaCAM™2 without Modification 1 of "Non-deterministic
node extraction". Removing any of the modification, did not have a
large impact on the performance of LaCAM*2, besides Modification
2. This means that, Modification 2 has the largest impact on the
algorithm and significantly improves its performance.

5.4 Evaluating Overall Performance

Next, we evaluate the performance of all eight algorithms (CBSM,
LaCAM*-DFBnB, LaCAM*-A*, LaCAM*-IDA*, LaCAM*2-DFBnB,
LaCAM*2-A*, LaCAM*2-DFBnBnr, and LaCAM*2-IDA*) on eight
various benchmark maps: empty-32-32 (denoted Empty), room-
64-64-16 (Room), maze-128-128-10 (Maze), warehouse-20-40-10-2-
1 (Warehouse), den520d (Gamel), brc202d (Game2), Berlin_1_256
(City1), and Boston_0_256 (City2). For each map, we created prob-
lem instances with 100, 200, . .., 1,000, 1,500, . . ., 5,000 agents (with
gaps of 100 agents for up to 1,000 agents, and with gaps of 500
agents for more than 1,000 agents). We measured the success rate
and the average runtime. The runtime was set to 60 seconds for an
unsolved instance within the time limit. Figure 5 shows the results
of this experiment. The number that appears next to each map
name represents the number of available vertices in the map.

As also observed by Maliah et al. (2025), CBSM performs best
in small maps, and outperformed all other solvers in Empty and
Room. However, for any larger map, CBSm achieved relatively poor
results compared to other solvers. In almost all maps, LaCAM*2-
DFBnBnr outperformed LaCAM*2-DFBnB. This means that the
refiners of Modifications 4 and 5 do not improve the algorithm and
even make it perform worse. The reason is that these modifications
try to find better paths for any of the agents, while only a path
of a single agent (the highest-cost path) impacts the cost of the
solution. The LaCAM*’s algorithms (LaCAM*-DFBnB, LaCAM*-A*,
and LaCAM*-IDA”) presented a similar performance in most cases,
which implies that the selected search strategy does not significantly
affect LaCAM”. In contrast, LaCAM*2-A* and LaCAM*2-IDA* per-
formed better than LaCAM*2-DFBnB (and LaCAM*2-DFBnBnr) and
also outperformed all three LaCAM*’s solvers (LaCAM*-DFBnB,
LaCAM*-A*, and LaCAM*-IDA*). Notably, problem instances that
contain thousands of agents were optimally solved for MKS. For
instance, in City1l with 3,000 agents, LaCAM*2-A" reached a 100%
success rate (!).

The LaCAM*2’s algorithms improve the LaCAM*’s algorithms
mainly due to their ability to choose better configurations, such as
ones that scatter the agents (Modification 2). On one hand, when
the agents are scattered, the agents may be led to sparse areas and
a solution will be quickly found. On the other hand, this may ex-
tend the time it takes to converge to the optimal MKS solution.
For LaCAM*2-DFBnB, when scattering the agents, the f-value of
successors often increase, resulting in a longer runtime for finding
the optimal solutions. However, LaCAM*2-A* and LaCAM*2-IDA*
gradually only consider nodes with minimal f-values. Therefore,
when a successor of a higher f-value is created, these two algo-
rithms enforce the nodes to generate more successors until one

Empty (1,024) |:| Room (3,646) % Maze (14,818) ~7|| Warehouse (22.599)
100%)| 8 : =
% 75%
s 50%
g
=]
N 25%
0% . B e 3
100 200 300 100 400 700 1000{ 0 600 1200 1800 2400 3000
#Agents #Agents #Agents #Agents
Gamel (28,178) ﬂ Game2 (43,151) City1 (47,540) % City2 (47,768)
100% i : 4 = <
% 75%
A
3 50%
g
=
« 25%
0%
0 500 1000 1500 2000 2500 0 600 1200 1800 2400 3000| 0 900 1800 2700 3600 45000 800 1600 2400 3200 4000
#Agents #Agents #Agents #Agents

@ CBSm -+-LaCAM*-A* -# LaCAM*-DFBnB -+-LaCAM*-IDA* -« LaCAM*2-A* -»-LaCAM*2-DFBnB -@-LaCAM*2-DFBnBnr -¥LaCAM*2-IDA*

Figure 5: Success rate and runtime (in seconds) on eight benchmark maps.

with the minimal f—value is generatedA As aresult, they both scatter [3] Dor Atzmon, Roni Stern, Ariel Felner, Glenn Wagner, Roman Barték, and Neng-
the agents and restrain this behavior by choosing a node of a low Fa Zhou. 2020. Robust multi-agent path finding and executing. JAIR 67 (2020),
549-579.
cost. [4] Max Barer, Guni Sharon, Roni Stern, and Ariel Felner. 2014. Suboptimal Variants
of the Conflict-Based Search Algorithm for the Multi-Agent Pathfinding Problem.
6 CONCLUSION AND FUTURE WORK In the Symposium on Combinatorial Search (SoCS). 19-27.
[5] Roman Bartak and Jiri Svancara. 2019. On SAT-Based Approaches for Multi-Agent
In this paper, we show that LaCAM”* can quickly optimally solve Path Finding with the Sum-of-Costs Objective. In SoCS. 10-17.
P * [6] Eli Boyarski, Shao-Hung Chan, Dor Atzmon, Ariel Felner, and Sven Koenig. 2022.
MAPF f(‘)r minimizing MKS. Star}dard LaCAM *p erforms a DFBnB. On Merging Agents in Multi-Agent Pathfinding Algorithms. In SoCS. 11-19.
We consider other search strategies for LaCAM*: BFS and ID. More- [7] Eli Boyarski, Ariel Felner, Roni Stern, Guni Sharon, David Tolpin, Oded Betza-
over, we compare both LaCAM* and LaCAM*2 with these search lel, and Solomon Eyal Shimony. 2015. ICBS: Improved Conflict-Based Search
trategi howing that h £ best and achi tate-of- Algorithm for Multi-Agent Pathfinding. In IJCAIL 740-746.
strategies, showing 3 a f!aC per Ormsl est and achieves state-o [8] Shao-Hung Chan, Jiaoyang Li, Graeme Gange, Daniel Harabor, Peter J. Stuckey,
the-art performance in different scenarios. and Sven Koenig. 2022. Flex Distribution for Bounded-Suboptimal Multi-Agent
This work has many possible directions for future work: Path Finding. In the AAAI Conference on Artificial Intelligence (AAAI). 9313-9322.
. [9] Rina Dechter and Judea Pearl. 1985. Generalized Best-First Search Strategies and
o employing other search methods for LaCAM?*, such as beam the Optimality of A*. . ACM 32, 3 (1985), 505—-536.
search [37] . [10] Esra Erdem, Doga G. Kisa, Umut Oztok, and Peter Schueller. 2013. A general
. ’ . . formal framework for pathfinding problems with multiple agents. In AAAL 290-
o designing an algorithm-selection method that chooses the 296. b 6P pese
preferred algorithm for a given scenario, e.g., choosing CBSm [11] Ariel Felner, Jiaoyang Li, Eli Boyarski, Hang Ma, Liron Cohen, T. K. Satish Kumar,
or LaCAM*2. and. for LaCAM*2. a preferred search method: and Sven Koenig. 2018. Adding Heuristics to Conflict-Based Search for Multi-
¢ AVi2, and, Jor & “ap S ! ; Agent Path Finding. In ICAPS.
® 1mproving the heuristic function of LaCAM™2 for different [12] Gilad Fine, Dor Atzmon, and Noa Agmon. 2023. Anonymous Multi-Agent Path
objective functions: SOC, MKS, or Fuel; Finding with Individual Deadlines. In AAMAS. 869-877.

[13] Graeme Gange, Daniel Harabor, and Peter J. Stuckey. 2019. Lazy CBS: implicit

X * . .

® using LaCAM"2 for optlmally S.OIVIHg related prOblems’ such Conflict-based Search using Lazy Clause Generation. In ICAPS. 155-162.
as lifelong MAPF, where multiple tasks need to be accom- [14] Tzvika Geft and Dan Halperin. 2022. Refined Hardness of Distance-Optimal
plished by the agents, or any other extension mentioned in Multi-Agent Path_ Finding. In AAMAS. International Foundation for Autonomous

. Agents and Multiagent Systems (IFAAMAS), 481-488.
Section 3.2. [15] Meir Goldenberg, Ariel Felner, Roni Stern, Guni Sharon, Nathan Sturtevant,
o adjusting other MAPF algorithms for MKS, e.g., Increasing Robert C Holte, and Jonathan Schaeffer. 2014. Enhanced partial expansion A*.
. Journal of Artificial Intelligence Research 50 (2014), 141-187.
Cost Tree Search (ICTS) [40] and Branch and Cut and Price [16] Peter E. Hart, Nils J. Nilsson, and Bertram Raphael. 1968. A Formal Basis for the
(BCP) [20]- Heuristic Determination of Minimum Cost Paths. IEEE Transactions on Systems
Science and Cybernetics 4(2) (1968), 100-107.
[17] Richard E. Korf. 1985. Depth-first iterative-deepening: An optimal admissible tree
REFERENCES search. Artificial Intelligence 27, 1 (1985), 97-109. https://doi.org/10.1016/0004-
[1] Anton Andreychuk, Konstantin S. Yakovlev, Pavel Surynek, Dor Atzmon, and 3702(85)90084-0
Roni Stern. 2022. Multi-agent pathfinding with continuous time. Artificial [18] Richard E. Korf. 1993. Linear-space best-first search. Artificial Intelligence 62, 1
Intelligence 305 (2022), 103662. (1993), 41-78. https://doi.org/10.1016/0004-3702(93)90054-D

[2] Dor Atzmon, Roni Stern, Ariel Felner, Nathan R. Sturtevant, and Sven Koenig.
2020. Probabilistic Robust Multi-Agent Path Finding. In ICAPS. 29-37.

https://doi.org/10.1016/0004-3702(85)90084-0
https://doi.org/10.1016/0004-3702(85)90084-0
https://doi.org/10.1016/0004-3702(93)90054-D

[19] Daniel Koyfman, Dor Atzmon, Shahaf Shperberg, and Ariel Felner. 2025. Minimiz- 34
ing Fuel in Multi-Agent Pathfinding. In Proceedings of the International Symposium
on Combinatorial Search, Vol. 18. 83-91. 35
[20] Edward Lam, Pierre Le Bodic, Daniel Harabor, and Peter J. Stuckey. 2022. Branch-
and-cut-and-price for multi-agent path finding. Computers & Operations Research
144 (2022), 105809 [36
[21] Jiaoyang Li, Zhe Chen, Daniel Harabor, Peter J. Stuckey, and Sven Koenig. 2022.
MAPF-LNS2: Fast Repairing for Multi-Agent Path Finding via Large Neighbor-

Keisuke Okumura. 2023. LaCAM: search-based algorithm for quick multi-agent
pathfinding. In AAAL 11655-11662.

Keisuke Okumura. 2024. Engineering LaCAM*: Towards Real-time, Large-scale,
and Near-optimal Multi-agent Pathfinding. In the International Conference on
Autonomous Agents and Multiagent Systems (AAMAS). 1501-1509.

Keisuke Okumura, Manao Machida, Xavier Défago, and Yasumasa Tamura. 2022.
Priority inheritance with backtracking for iterative multi-agent path finding.
Artificial Intelligence 310 (2022), 103752.

hood Search. In AAAI 10256-10265. [37] Stuart J. Russell and Peter Norvig. 2010. Artificial Intelligence: A Modern Approach
[22] Jiaoyang Li, Ariel Felner, Eli Boyarski, Hang Ma, and Sven Koenig. 2019. Improved (3rd ed.). Pearson.

Heuristics for Multi-Agent Path Finding with Conflict-Based Search. In IJCAL [38] Tomer Shahar, Shashank Shekhar, Dor Atzmon, Abdallah Saffidine, Brendan Juba,

442-449. and Roni Stern. 2021. Safe Multi-Agent Pathfinding with Time Uncertainty. JAIR
[23] Jiaoyang Li, Daniel Harabor, Peter J. Stuckey, Hang Ma, Graeme Gange, and Sven 70 (2021), 923-954.

Koenig. 2021. Pairwise symmetry reasoning for multi-agent path finding search. [39] Guni Sharon, Roni Stern, Ariel Felner, and Nathan R. Sturtevant. 2015. Conflict-

AIJ 301 (2021), 103574

Jiaoyang Li, Daniel Harabor, Peter J. Stuckey, Hang Ma, and Sven Koenig. 2019.
Disjoint Splitting for Multi-Agent Path Finding with Conflict-Based Search. In
ICAPS. 279-283.

Jiaoyang Li, Wheeler Ruml, and Sven Koenig. 2021. EECBS: A Bounded-
Suboptimal Search for Multi-Agent Path Finding. In the AAAI Conference on

based search for optimal multi-agent pathfinding. AIJ 219 (2015), 40-66.

Guni Sharon, Roni Stern, Meir Goldenberg, and Ariel Felner. 2013. The increasing
cost tree search for optimal multi-agent pathfinding. AI7 195 (2013), 470-495.
Bojie Shen, Zhe Che, Jiaoyang Li, Muhammad Aamir Cheema, Daniel Damir
Harabor, and Peter J. Stuckey. 2023. Beyond Pairwise Reasoning in Multi-Agent
Path Finding. In ICAPS. 384-392.

Artificial Intelligence (AAAI). 12353-12362. [42] David Silver. 2005. Cooperative Pathfinding. In AIIDE. 117-122.

[26] Jiaoyang Li, Pavel Surynek, Ariel Felner, Hang Ma, T. K. Satish Kumar, and Sven [43] Trevor Standley. 2010. Finding Optimal Solutions to Cooperative Pathfinding
Koenig. 2019. Multi-Agent Path Finding for Large Agents. In the AAAI Conference Problems. In the AAAI Conference on Artificial Intelligence (AAAI). 173-178.
on Artificial Intelligence (AAAI). 7627-7634. [44] Roni Stern, Nathan R. Sturtevant, Ariel Felner, Sven Koenig, Hang Ma, Thayne T.

[27

Jiaoyang Li, Andrew Tinka, Scott Kiesel, Joseph W. Durham, T. K. Satish Ku- Walker, Jiaoyang Li, Dor Atzmon, Liron Cohen, T. K. Satish Kumar, Roman

mar, and Sven Koenig. 2020. Lifelong Multi-Agent Path Finding in Large-Scale
Warehouses. In AAAL 11272-11281.

Hang Ma. 2021. A Competitive Analysis of Online Multi-Agent Path Finding. In
ICAPS. 234-242.

Hang Ma, Glenn Wagner, Ariel Felner, Jiaoyang Li, TK Kumar, and Sven Koenig.
2018. Multi-agent path finding with deadlines. In the International Joint Conference

Bartak, and Eli Boyarski. 2019. Multi-Agent Pathfinding: Definitions, Variants,
and Benchmarks. In SoCS. 151-159.

Pavel Surynek. 2010. An Optimization Variant of Multi-Robot Path Planning Is
Intractable. In AAAL 1261-1263.

P. Surynek, A. Felner, R. Stern, and E. Boyarski. 2016. Efficient SAT Approach to
Multi-Agent Path Finding Under the Sum of Costs Objective. In ECAIL 810--818.

on Artificial Intelligence (IJCAI). 417-423. [47] Jiti Svancara, Marek Vlk, Roni Stern, Dor Atzmon, and Roman Bartak. 2019.

[30] Amir Maliah, Dor Atzmon, and Ariel Felner. 2025. Minimizing Makespan with Online multi-agent pathfinding. In AAAIL 7732-7739.
Conflict-Based Search for Optimal Multi-Agent Path Finding. In AAMAS. 1418— [48] Glenn Wagner and Howie Choset. 2015. Subdimensional expansion for multirobot
1426. path planning. Artificial Intelligence 219 (2015), 1-24.

[31] Jonathan Morag, Ariel Felner, Roni Stern, Dor Atzmon, and Eli Boyarski. 2022. [49] Qian Wan, Chonglin Gu, Sankui Sun, Mengxia Chen, Hejiao Huang, and Xiaohua

Jia. 2018. Lifelong Multi-Agent Path Finding in A Dynamic Environment. In
ICARCV. 875-882.

Online Multi-Agent Path Finding: New Results. In SoCS. 229-233.
[32] Van Nguyen, Philipp Obermeier, Tran Cao Son, Torsten Schaub, and William

Yeoh. 2017. Generalized Target Assignment and Path Finding Using Answer Set [50] Jingjin Yu and Steven M LaValle. 2013. Multi-agent path planning and network
Programming. In [JCAL 1216-1223. flow. In Algorithmic foundations of robotics X. Springer, 157-173.
[33] Keisuke Okumura. 2023. Improving LaCAM for scalable eventually optimal [51] Jingjin Yu and Steven M. LaValle. 2013. Structure and Intractability of Optimal

Multi-Robot Path Planning on Graphs. In AAAIL 1444-149.
[52] Han Zhang, Jiaoyang Li, Pavel Surynek, Sven Koenig, and T. K. Satish Kumar.
2020. Multi-Agent Path Finding with Mutex Propagation. In ICAPS. 323-332.

multi-agent pathfinding. In IJCAL 243-251.

	Abstract
	1 Introduction
	2 Background
	2.1 Path Finding
	2.2 Multi-Agent Path Finding
	2.3 LaCAM
	2.4 Conflict-Based Search (CBS)

	3 Related Work
	3.1 Solvers
	3.2 Extensions

	4 Varying LaCAM*'s Search Strategy
	4.1 Node Expansion and Runtime

	5 Experiments
	5.1 Comparing SOC vs. MKS
	5.2 Counting Surplus Nodes
	5.3 Considering LaCAM*2's Improvements
	5.4 Evaluating Overall Performance

	6 Conclusion and Future Work
	References

