
Minimizing Makespan with LaCAM* for
Optimal Multi-Agent Path Finding

Anonymous Author(s)
Submission Id: 636

ABSTRACT

Multi-Agent Path Finding (MAPF) requires collision-free paths for
a set of agents. Optimal MAPF solutions often minimize one of
two cost functions: (1) sum-of-costs (SOC), which is the sum of the
costs of the paths, or (2) makespan (MKS), the maximum of these
costs. LaCAM* is a recent anytime MAPF solver, which eventually
converges to the optimal solution. However, LaCAM* has a consid-
erably slow convergence speed to the optimum and is considered a
scalable near-optimal solver.While this is true for SOC, in this paper,
we show that LaCAM* can quickly converge to the optimal MKS
solution. We explore LaCAM* and an improved version LaCAM*2
with three search methods: DFBnB, A*, and IDA*. We present their
superb performance for finding optimal MKS solutions, even with
thousands of agents.

KEYWORDS

Multi-Agent Path Finding, Makespan, LaCAM*, A*, Combinatorial
Search
ACM Reference Format:

Anonymous Author(s). 2026. Minimizing Makespan with LaCAM* for Opti-
mal Multi-Agent Path Finding. In Proc. of the 25th International Conference on
Autonomous Agents and Multiagent Systems (AAMAS 2026), Paphos, Cyprus,

May 25 – 29, 2026, IFAAMAS, 8 pages.

1 INTRODUCTION

The task in the Multi-Agent Path Finding problem (MAPF) is to find
conflict-free (collision-free) paths for multiple agents [44]. MAPF is
derived from real-world applications of navigating multiple phys-
ical entities, such as drones, robots, vehicles, etc. There are two
common objective functions that quantify the cost of MAPF solu-
tions: sum-of-costs (SOC) and makespan (MKS). SOC is the sum of
the costs of all paths, and MKS is the highest cost among all paths’
costs. It is NP-hard to optimally solve MAPF for both SOC [51] and
MKS [45]. However, advanced algorithms are capable of optimally
solving MAPF for many agents [13, 20, 30, 39].

LaCAM* [33] is a recent anytime solver, which extends the sub-
optimal algorithm LaCAM [34] and converges to the optimal MAPF
solution (for SOC or MKS). Both LaCAM and LaCAM* search in
a vertex configuration space, where each node represents the ver-
tices of the entire set of agents. In contrast, Conflict-Based Search
(CBS) [39], a common optimal MAPF algorithm, searches in a path
configuration space, where each node represents a set of paths for
all agents. Each of the two algorithms LaCAM* and CBS has its
own different forte; while LaCAM* is capable of quickly finding
(unbounded) near-optimal solutions (for SOC orMKS), CBS is better

Proc. of the 25th International Conference on Autonomous Agents and Multiagent Systems

(AAMAS 2026), C. Amato, L. Dennis, V. Mascardi, J. Thangarajah (eds.), May 25 – 29,

2026, Paphos, Cyprus. © 2026 International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). This work is licenced under the Creative
Commons Attribution 4.0 International (CC-BY 4.0) licence.

suited for finding optimal or bounded-suboptimal solutions (again,
for SOC or MKS) [4, 7, 8, 11, 22, 23, 25, 30, 39].

A primary weakness of LaCAM* is that it explores the vertex
configuration space, in which the number of successors of each
node and, in particular, the size of the state space is exponential in
the number of agents. Moreover, to prove optimality, as in standard
heuristic search, every node that may lead to a better solution (ac-
cording to a heuristic function) must be expanded [9]. In this paper,
we challenge the weakness of LaCAM* and aim to use the algorithm
to find optimal solutions. In particular, we show that LaCAM* can
quickly find optimal MKS solutions when it is executed on large and
sparse maps. As we explain, this is due to its accurate heuristic es-
timate for MKS. Moreover, we experimentally demonstrate that, in
such maps, LaCAM* significantly outperforms CBSm, a CBS-based
algorithm designed for MKS, making LaCAM* the state-of-the-art
optimal MAPF solver for MKS in these maps. Therefore, we explore
various search strategies for LaCAM*. Standard LaCAM* (denoted
LaCAM*-DFBnB) employs a depth-first branch-and-bound search
(DFBnB); nodes are explored in a depth-first search (DFS) manner
until a solution is found and, then, additional nodes are explored
until the optimal solution is determined. We then introduce two
new versions of LaCAM*: LaCAM* with an A* search (LaCAM*-A*)
as well as LaCAM* with an IDA* search (LaCAM*-IDA*). We also
apply these two strategies to LaCAM*2 [35], an improved version
of LaCAM*. We experimentally show that LaCAM*2 with the new
search strategies (LaCAM*2-A* and LaCAM*2-IDA*) outperforms
other methods in finding optimal MKS solutions, presenting state-
of-the-art performance on various benchmark maps. For instance,
with a time limit of 60 seconds, LaCAM*2-IDA* reaches 100% suc-
cess rate for optimally solving MAPF for MKS on a city benchmark
map (Berlin_1_256) containing 3,000 agents.

2 BACKGROUND

2.1 Path Finding

A path 𝜋 in graph G = (V, E) from start vertex 𝑠 ∈ V to goal
vertex 𝑔 ∈ V is a list of vertices such that the list starts with vertex
𝑠 and ends with vertex 𝑔, and any two consecutive vertices in the
list must be traversable. Let 𝜋 (𝑡) denote the 𝑡-th vertex in path 𝜋 .
Formally, 𝜋 (0) = 𝑠 , 𝜋 (|𝜋 | − 1) = 𝑔, and ∀𝑡 : (𝜋 (𝑡), 𝜋 (𝑡 + 1)) ∈ E. A
Path Finding problem (PF) is defined by a tuple ⟨G, 𝑠, 𝑔⟩ and requires
such a path. The cost𝐶 (𝜋) = |𝜋 |−1 of path 𝜋 is equal to the number
of transitions performed in it.1 The optimal solution (optimal path)
to PF is the lowest-cost path among all PF solutions (paths).

Finding the optimal path to PF can be efficiently accomplished
using various search algorithms, which track their search by nodes
(where each node represents a vertex in the given graph), main-
tained in a data structure called Open.

1This work focuses on a unit-cost graph, which is common inMulti-Agent Path Finding.

A*. A* [16], a well-known Best-First Search (BFS) heuristic search
algorithm, uses a heuristic function ℎ(𝑣) that estimates the cost to
reach the goal vertex 𝑔 from any given vertex 𝑣 . Let 𝐶∗ (𝑣) denote
the cost of the optimal path from a given vertex 𝑣 to vertex 𝑔. A
heuristic function is called admissible if it never overestimates, i.e.,
∀𝑣 : ℎ(𝑣) ≤ 𝐶∗ (𝑣). Until the goal is expanded, A* iteratively expands
the node with the lowest 𝑓 (𝑣) = 𝑔(𝑣) + ℎ(𝑣), where 𝑔(𝑣) is the cost
of reaching 𝑣 from the start vertex 𝑠 , and generates its successors.
Given an admissible heuristic function, A* is guaranteed to return
the optimal path.

Depth-First Branch-and-Bound (DFBnB). DFBnB [18] is an any-
time PF algorithm, which converges to the optimal solution. It
performs a Depth-First Search (DFS), which explores as far as pos-
sible along each branch before backtracking. After a solution is
found, DFBnB continues the search and improves the quality of the
solution while discarding nodes whose 𝑓 -value exceeds the cost of
the lowest-cost solution found. DFBnB halts when Open is empty.

Iterative Deepening A* (IDA*). IDA* [17] is a heuristic search algo-
rithm, which performs a DFS in iterations, according to the lowest
𝑓 -value observed, ensuring that the first solution found is optimal.
All three algorithms A*, DFBnB, and IDA* often use another data
structure, called Closed, to avoid re-expanding duplicate nodes.

2.2 Multi-Agent Path Finding

The Multi-Agent Path Finding problem (MAPF) [44], which gener-
alizes PF for multiple agents, is defined by the tuple ⟨G, 𝐴, 𝑆,𝐺⟩,
where G = (V, E) is an undirected graph, 𝐴 = (𝑎1, . . . , 𝑎𝑘) is a set
of 𝑘 agents and 𝑆 = (𝑠1, . . . , 𝑠𝑘) and 𝐺 = (𝑔1, . . . , 𝑔𝑘) are lists of
start and goal vertices for the 𝑘 agents, respectively. A path 𝜋𝑖 for
agent 𝑎𝑖 is a path from start vertex 𝑠𝑖 to goal vertex 𝑔𝑖 , represent-
ing the movement actions of the agent between each consecutive
timesteps 𝑡 and 𝑡 + 1, and it is composed of move actions (where
𝜋𝑖 (𝑡) ≠ 𝜋𝑖 (𝑡 + 1)) and wait actions (where 𝜋𝑖 (𝑡) = 𝜋𝑖 (𝑡 + 1)).

A plan Π = (𝜋1, . . . , 𝜋𝑘) is a list of paths for the agents. A solution

to MAPF is a conflict-free plan Π; that is, any two paths in plan Π
do not conflict. For any two paths 𝜋𝑖 and 𝜋 𝑗 of agents 𝑎𝑖 and 𝑎 𝑗 , we
consider the following two common types of conflicts.

1. A vertex conflict

〈
𝑎𝑖 , 𝑎 𝑗 , 𝑣, 𝑡

〉
exists when the agents are simul-

taneously at vertex 𝑣 at timestep 𝑡 (∃𝑡 : 𝜋𝑖 (𝑡) = 𝜋 𝑗 (𝑡) = 𝑣).

2. A swapping conflict

〈
𝑎𝑖 , 𝑎 𝑗 , 𝑒, 𝑡

〉
exists when the agents tra-

verse edge 𝑒 in opposite directions between timesteps 𝑡 and 𝑡 + 1
(∃𝑡 : 𝜋𝑖 (𝑡) = 𝜋 𝑗 (𝑡 + 1) ∧ 𝜋 𝑗 (𝑡) = 𝜋𝑖 (𝑡 + 1) ∧ (𝜋𝑖 (𝑡), 𝜋𝑖 (𝑡 + 1)) = 𝑒).

Objective functions. The objective functions for MAPF are de-
fined as follows. The sum-of-costs (SOC) of plan Π is

𝐶𝑆𝑂𝐶 (Π) =
∑︁
𝜋𝑖 ∈Π

𝐶 (𝜋𝑖).

The makespan (MKS) of plan Π is

𝐶𝑀𝐾𝑆 (Π) = max
𝜋𝑖 ∈Π

𝐶 (𝜋𝑖) .

An optimal MAPF solution minimizes either SOC or MKS.

𝑠1 𝑔1 𝑠2

𝑔2

𝐷

𝐵𝐴

𝐶

Figure 1: MAPF problem instance with different SOC and

MKS optimal solutions.

Example. Figure 1 presents a MAPF problem instance containing
two agents 𝑎1 and 𝑎2, with start vertices 𝑠1 and 𝑠2, and goal vertices
𝑔1 and 𝑔2. Let Π1 = (𝜋11 , 𝜋

1
2) such that 𝜋11 = (𝑠1, 𝑔1) and 𝜋12 =

(𝑠2,𝐶, 𝐵,𝐴,𝑔2), and let Π2 = (𝜋21 , 𝜋
2
2) such that 𝜋21 = (𝑠1, 𝑠1, 𝑠1, 𝑔1)

and 𝜋22 = (𝑠2, 𝐷, 𝑔1, 𝑔2). For Π1, 𝐶𝑆𝑂𝐶 (Π1) = 5 and 𝐶𝑀𝐾𝑆 (Π1) = 4.
For Π2, 𝐶𝑆𝑂𝐶 (Π2) = 6 and 𝐶𝑀𝐾𝑆 (Π2) = 3. Therefore, Π1 is better
(and optimal) for minimizing SOC while Π2 is better (and optimal)
for minimizing MKS.

2.3 LaCAM

LaCAM [34] is a MAPF algorithm, capable of quickly finding sub-
optimal solutions. LaCAM has two search levels. On the high level,
the algorithm is executed in a composite graph G𝑐 = (V𝑐 , E𝑐),
where each composite vertex 𝑣𝑐 ∈ V𝑐 contains a configuration

(a list of the vertices of the entire set of agents). The start and
goal composite vertices are 𝑆 and 𝐺 , respectively (the start and
goal vertices of the agents). A composite edge (𝑣𝑐1, 𝑣

𝑐
2) ∈ E

𝑐 from
𝑣𝑐1 = (𝑣𝑐11, . . . , 𝑣

𝑐
1𝑘) to 𝑣

𝑐
2 = (𝑣𝑐21, . . . , 𝑣

𝑐
2𝑘) is any possible movement

of all agents: ∀𝑣𝑐1𝑖 : (𝑣
𝑐
1𝑖 , 𝑣

𝑐
2𝑖) ∈ E

𝑐 ∨ 𝑣𝑐1𝑖 = 𝑣𝑐2𝑖 , excluding that where
all agents wait 𝑣𝑐1 ≠ 𝑣𝑐2 or where two agents conflict.

Each high-level node contains a specific configuration (compos-
ite vertex). The high level iteratively chooses a node from Open
and only partially expands it. That is, given a node 𝑛 it generates a
single successor of 𝑛, and 𝑛 remains in Open until all successors are
generated. This method of partially expanding a node while only
generating a single successor is also known as Enhanced partial

expansion A* (EPEA*) [15]. Choosing the configuration for the next
successor to be generated is performed by (1) a low-level search
and (2) a configuration generator. To ensure that all possible con-
figurations are considered for the successors, the low level uses a
positive constraint, enforcing an agent to perform a specific move.
Starting from no constraints, the low level gradually constrains
the agents to perform any possible movement. This is done using
a tree, maintained in each high-level node, where each tree level
considers a different agent and every low-level successor imposes
a positive constraint on the agent. Therefore, each branch repre-
sents a specific movement for some of the agents. For a specific
branch, the configuration generator completes the movement for
the agents that have no constraints. The configuration generator
can be implemented by different possible methods. It has been ex-
perimentally demonstrated that using the PIBT algorithm [36] for
the configuration generator outperforms other methods. PIBT is
a fast MAPF algorithm that moves the agents towards their goals
while preferring agents with a higher priority. When needed, PIBT
lets a lower-priority agent inherit a higher priority.

Algorithm 1: LaCAM

1 LaCAM (MAPF instance)

2 init Open, Closed; N 𝑖𝑛𝑖𝑡 ←
〈
𝑆, [[C𝑖𝑛𝑖𝑡]], 𝑛𝑢𝑙𝑙

〉
3 Open.𝑖𝑛𝑠𝑒𝑟𝑡 (N 𝑖𝑛𝑖𝑡); Closed[𝑆] = N 𝑖𝑛𝑖𝑡

4 while Open is not empty do

5 N ← Open.𝑝𝑒𝑒𝑘 ()
6 if N .𝑐𝑜𝑛𝑓 𝑖𝑔 = 𝐺 then return N
7 if N .𝑡𝑟𝑒𝑒 = ∅ then Open.𝑒𝑥𝑡𝑟𝑎𝑐𝑡 (); continue
8 C ← low_level_search(N)
9 Q𝑛𝑒𝑤 ← configuration_generator(N , C)

10 if Q𝑛𝑒𝑤 = 𝑛𝑢𝑙𝑙 then continue
11 if Closed[Q𝑛𝑒𝑤] ≠ 𝑛𝑢𝑙𝑙 then continue
12 N𝑛𝑒𝑤 ←

〈
Q𝑛𝑒𝑤, [[C𝑖𝑛𝑖𝑡]],N

〉
13 Open.insert(N𝑛𝑒𝑤); Closed[Q𝑛𝑒𝑤] ≠ N𝑛𝑒𝑤

14 return No Solution

Pseudo-code. The pseudo-code of LaCAM’s high-level can be
found in Algorithm 1. Each node represents ⟨𝑐𝑜𝑛𝑓 𝑖𝑔, 𝑡𝑟𝑒𝑒, 𝑝𝑎𝑟𝑒𝑛𝑡⟩,
a tuple of a configuration (𝑐𝑜𝑛𝑓 𝑖𝑔), low-level tree that is used to
track the low-level constraints (𝑡𝑟𝑒𝑒), and a parent-pointer (𝑝𝑎𝑟𝑒𝑛𝑡).
First, LaCAM initialize Open and Closed with a root node N𝑖𝑛𝑖𝑡
(Lines 2-3). C𝑖𝑛𝑖𝑡 means "no constraints". While Open is not empty,
an expansion cycle is performed as follows (Lines 4-13). The next
node N from Open is examined (Line 5). If it has the goal config-
uration 𝐺 , then N is returned (Line 6), and the solution can be
easily constructed using the parent-pointers. Otherwise, if all con-
straint combinations are complete, then N is discarded and a new
expansion cycle begins (Line 7). If they are not complete, the next
constraint is set and a new configuration Q𝑛𝑒𝑤 is generated (Lines
8-9). A new node N𝑛𝑒𝑤 is created based on the new configuration
Q𝑛𝑒𝑤 and inserted into Open and Closed (Lines 12-13) only if the
configuration Q𝑛𝑒𝑤 could have been generated (it is possible to
generate a new configuration under the low-level constraints) and
the configuration Q𝑛𝑒𝑤 is not already explored (Lines 10-11).

2.3.1 LaCAM*. LaCAM* [33] is a successor of the suboptimal
MAPF algorithm LaCAM [34], capable of finding optimal solutions.
The main difference between LaCAM and LaCAM* is that LaCAM
performs a DFS (where Open is a stack) and halts when a solution
is chosen for expansion and LaCAM* performs a DFBnB, prunes
nodes with an 𝑓 -value that is higher than or equal to the cost of the
lowest-cost solution found, and halts only when Open is empty,
and the optimal solution is found. For calculating the 𝑓 -value of
nodes, LaCAM* uses a heuristic function that estimates the cost of
reaching a goal for each agent separately, assuming a free space,
i.e., ignoring all other agents. Trivially, for SOC, the heuristic value
is equal to the sum of all these estimates and, for MKS, the heuristic
value is equal to the maximum value of these estimates. For exam-
ple, consider again the problem instance presented in Figure 1. A
heuristic function ℎ with a free-space assumption estimates, for
agent 𝑎1, ℎ(𝑠1, 𝑔1) = 1 and, for agent 𝑎2, ℎ(𝑠2, 𝑔2) = 3. At the root
node of LaCAM*, we have the initial configuration of the start ver-
tices of the agents (𝑠1, 𝑠2). Therefore, for SOC, the heuristic value

is equal to 4 and, for MKS, the heuristic value is equal to 3. We can
see that, in this example, the heuristic value for MKS is accurate
and equal to the cost of the optimal MKS solution. However, the
heuristic value for SOC is inaccurate. As we explain below, the
heuristic value for MKS is often accurate, making it suitable for
finding optimal MKS solutions.

2.3.2 LaCAM*2. Recently, an improved version of LaCAM* was
introduced [35]. We denote it as LaCAM*2, which has five main
modifications, as follows.

(1) Non-deterministic node extraction. To prevent progressing
toward the goal configuration in the wrong direction during the
search, in some cases, stochastically, LaCAM*2 chooses a random
node from Open and continues the search from that randomly
selected node.

(2) Space utilization optimization (SUO/Scatter). When choosing
a configuration using the configuration generator, the agents may
eventually become congested in narrow spaces. To prevent multiple
agents from reaching such areas, this modification also prefers
configurations that better scatter the agents.

(3) Monte-Carlo configuration generation. The low-level search
and the configuration generator have a stochastic nature for choos-
ing a configuration for the successor. Therefore, in LaCAM*2, a few
random configurations are sampled and examined, and the best one
is ultimately selected.

(4) Dynamic incorporation of alternative solutions (iterative). A
solution that is found by the algorithm is in the form of a path in
the composite graph. When such a solution is found, LaCAM*2
tries to improve it by iteratively choosing a single agent and two
vertices along its path. Then, LaCAM*2 aims to find a shorter path
between the two vertices, which does not conflict with all other
paths. If such a path is found, the best solution found is updated.

(5) Recursive use of LaCAM*. Similar to Modification 4 above,
after a solution is found, LaCAM*2 tries to improve it. This is done
by LaCAM*2 recursively calling itself between two composite nodes
along the solution found. While Modification 4 is aimed at finding
a shorter sub-path for a single agent, here, the aim is to find a better
sub-plan for all agents.

2.4 Conflict-Based Search (CBS)

Conflict-Based Search (CBS) [39] is an optimal MAPF algorithm
for either SOC or MKS. In CBS, a constraint ⟨𝑎𝑖 , 𝑥, 𝑡⟩ (𝑥 is either
a vertex or an edge) prohibits agent 𝑎𝑖 from occupying vertex 𝑥

at timestep 𝑡 or from traversing edge 𝑥 between timesteps 𝑡 and
𝑡 + 1. Note that, in contrast to the constraint used in LaCAM, which
is positive and enforces the agent to perform a specific action, the
constraint in CBS is negative. CBS is a two-level algorithm. On its
high level, CBS contracts a Constraint Tree (CT). Each CT node
𝑁 contains: (1) a set of constraints, denoted 𝑁 .𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠; (2) a
plan 𝑁 .Π that satisfies 𝑁 .𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠; and (3) the cost 𝑁 .𝑐𝑜𝑠𝑡 of
plan 𝑁 .Π. 𝑁 .𝑐𝑜𝑠𝑡 can be either 𝐶𝑆𝑂𝐶 (Π) or 𝐶𝑀𝐾𝑆 (Π) depending
on whether the aim is to minimize SOC or MKS. The path of each
agent 𝑎𝑖 in plan 𝑁 .Π (denoted 𝑁 .Π.𝜋𝑖) satisfying 𝑁 .𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 is
planned by CBS’s low-level search.

The high level performs a BFS over the CT nodes by prioritizing
CT nodes according to their costs. It starts from initializing a Root
CT node containing an empty set of constraints and inserting it
into Open. Then, repeatedly, CBS extracts the lowest-cost CT node
𝑁 from Open. If 𝑁 .Π is conflict-free, it is returned as a solution.
Otherwise, a conflict

〈
𝑎𝑖 , 𝑎 𝑗 , 𝑥, 𝑡

〉
is chosen. To resolve the conflict,

two new child CT nodes 𝑁𝑖 and 𝑁 𝑗 are created for node 𝑁 with the
constraints 𝑁 .𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 and the additional constraints ⟨𝑎𝑖 , 𝑥, 𝑡⟩
and

〈
𝑎 𝑗 , 𝑥, 𝑡

〉
are added to 𝑁𝑖 and 𝑁 𝑗 , respectively. The new CT

nodes 𝑁𝑖 and 𝑁 𝑗 are inserted into Open.
When a new constraint is added to agent 𝑎𝑖 in a new CT node

𝑁𝑖 (to resolve a conflict), the low level is called to replan the lowest-
cost path for agent 𝑎𝑖 that satisfies the new set of constraints in 𝑁𝑖 .
The lowest-cost low-level search can be implemented by (Temporal-
)A* [42], which executes A* but must satisfy the constraints.

CBSm. Many improvements for CBS were introduced over the
years [6, 7, 11, 22–24, 41, 52]. Recently, a CBS version specifically
adapted for minimizing MKS was proposed [30]. We denote this
version of CBS by CBSm. Instead of calling, in CT node 𝑁 , a low
level that finds the lowest-cost path, it uses a low level that finds a
bounded-cost path, which is bounded by the cost of the longest path
(MKS) currently existing in CT node 𝑁 . If no such path exists, then
it calls a lowest-cost low-level search. To the best of our knowledge,
CBSm is the state-of-the-art MAPF solver for MKS.

3 RELATEDWORK

Due to its applicative nature, MAPF has been solved by different
algorithms and extended in various directions, as follows.

3.1 Solvers

There are two main categories of MAPF solvers: search-based and
reduction-based. Search-based algorithms systematically explore
different paths (or sub-paths) until a solution can be determined.
Beside, LaCAM* and CBS, search-based algorithms that optimally
solve MAPF include Cooperative A* (CA*) [42], Operator Decom-

position (OD) [43], Independence Detection (ID) [43], M* [48], In-
creasing Cost Tree Search (ICTS) [40], and Branch and Cut and

Price (BCP) [20]. Reduction-based algorithms compile MAPF into
another known problem that has mature and effective solvers.
Previous studies on reduction-based approaches include reducing
MAPF to Integer-Linear Program (ILP) [50],Answer Set Programming

(ASP) [10, 32], SAT [5, 46], and more. In this paper, we only consider
CBSm in our experiments because it experimentally outperformed
other search-based and reduction-based algorithms for optimally
solving MAPF for MKS.

3.2 Extensions

The standardMAPFmay not capture all constraints that exist in real-
life applications. Therefore, many studies extended the classical def-
inition of the problem. These include cases where agents have differ-
ent sizes andmay occupymultiple locations at a single timestep [26];
cases where agents have imperfect execution, and the solutions are
designed to withstand delays [2, 3, 38]; cases where goals have
deadlines [12, 29]; online/lifelong scenarios [27, 28, 31, 47, 49],
where new agents/tasks arrive over time; cases where time is con-
tinuous [1]; and MAPF with other objective functions, such as

Fuel [14, 19], which takes into account only move actions. While
this paper studies the standard MAPF problem, our methods can
be generalized for other MAPF extensions, such as the ones above.

4 VARYING LACAM*’S SEARCH STRATEGY

As mentioned, LaCAM performs a DFS on its high level. The main
reason for using this particular search is that the algorithm was
developed to find a (suboptimal) solution as fast as possible (the
original paper was titled "LaCAM: Search-Based Algorithm for Quick

Multi-Agent Pathfinding") [34]. Following the same direction, La-
CAM* (titled "Improving LaCAM for Scalable Eventually Optimal

Multi-Agent Pathfinding") [33] performs a DFBnB, which improves
the quality of the solution found by continuing the search until
the optimal solution is reached. LaCAM* aimed to be scalable (the
author mentions that "it [LaCAM*] suboptimally solved 99% of the

instances retrieved from the MAPF benchmark") and it only eventu-
ally converges to the optimal solution ("the convergence speed was
slow in large instances with many agents"). However, as we show,
LaCAM* can optimally solve many large instances containing many
agents when MKS is minimized.

Standard LaCAM* performs a DFBnB on its high level and, there-
fore, we denote it as LaCAM*-DFBnB. Indeed, DFBnB is an anytime
algorithm that converges to the optimal solution. However, in this
paper, we are only interested in finding optimal solutions. Hence,
different known search strategies can also be employed while main-
taining the optimality of the returned solution. We also consid-
ered the following search strategies for LaCAM*: A* (LaCAM*-A*)
and IDA* (LaCAM*-IDA*). Likewise, for LaCAM*2, we consider
LaCAM*2-A* and LaCAM*2-IDA*. We note that, some of the modifi-
cations made for LaCAM*2-DFBnB are not relevant to LaCAM*2-A*
and LaCAM*2-IDA*. In particular, Modifications 4 and 5 (mentioned
in Section 2.3) are used to quickly refine the quality of the solu-
tion found. However, the first solution found by LaCAM*2-A* and
LaCAM*2-IDA* is optimal, and the algorithms immediately halt.
Therefore, these two modifications are not relevant to them. In our
experiments below, we also added a version of LaCAM*2-DFBnB
that as well does not include these two refiners (Modifications 4
and 5), denoted as LaCAM*2-DFBnBnr.

4.1 Node Expansion and Runtime

A common classification divides nodes expanded by any search
algorithm into three groups [9]: must-expand, maybe-expand, and
never-expand. Let 𝐶∗ denote the cost of the optimal solution. A
must-expand node is every node with 𝑓 < 𝐶∗; it must be expanded
to guarantee optimality. A maybe-expand node is every node with
𝑓 = 𝐶∗; it may or may not be expanded. A never-expand node is
every node with 𝑓 > 𝐶∗; it can be prevented from being expanded.
Therefore, when an algorithm expands never-expand nodes, they
are often referred to as surplus nodes, as it was not required to
expand them in order to determine the optimality of the solution.

Example. Consider the search tree illustrated in Figure 2, in
which there are three goal nodes in depths 2, 3, and 4. Assume a unit-
edge cost, a zero heuristic value for all nodes, and a DFS that prefers
the left successor first. Here,𝐶∗ = 2. The black nodes in depths 0 and
1 are must-expand nodes, the dark-gray nodes are maybe-expand
nodes, and the light-gray nodes are never-expand nodes, and can be

𝑠

𝑔

𝑔

𝑔

Figure 2: Nodes classification. Black: Must-expand nodes;

Dark gray: Maybe-expand nodes; Light gray: Never-expand

nodes (surplus nodes). Solid-line circle: Expanded by DFBnB.

avoided from expansion (surplus). In this example, DFBnB gradually
improves its solution and expands all nodes represented by a solid-
line circle. Here, DFBnB only expands four surplus nodes, however,
on larger tree, it may expand many such nodes. In contrast, A* and
IDA* never expand these nodes.

DFBnB, A*, and IDA*. When search algorithms are executed,
the number of expansions is not the only factor that impacts their
runtime. Consider DFBnB, A*, and IDA*. Each has scenarios where it
performs worse and better due to its own weaknesses and strengths.
Weaknesses: DFBnB deepens the search and may reach and expand
surplus nodes, and it halts only when Open is empty; A* is required
to order Open, which incurs runtime; IDA* may perform multiple
iterations until the optimal solution is found. Strengths: A* and IDA*
do not expand surplus nodes and halt when a solution is expanded;
DFBnB and IDA* are not required to order Open; DFBnB and A*
only perform a single iteration. Next, we evaluate experimentally
LaCAM* and LaCAM*2 with the different search strategies.

5 EXPERIMENTS

In this section, we conduct an extensive empirical study on standard
benchmark maps from the MovingAI repository [44]. As the num-
ber of agents for each map in the benchmark is limited (usually up
to 1,000 agents), we generated problem instances using the MAPF-

LNS2 [21] instance generator using the publicly available imple-
mentation.2 For each map, 25 problem instances were created. We
experimented with CBSm, LaCAM*-DFBnB, LaCAM*-A*, LaCAM*-
IDA*, LaCAM*2-DFBnB, LaCAM*2-A*, LaCAM*2-DFBnBnr, and
LaCAM*2-IDA*. We set the time limit to 60 seconds. We will make
our implementation publicly available upon acceptance.

5.1 Comparing SOC vs. MKS

We first examined the difference in finding suboptimal and optimal
solutions for minimizing SOC and MKS, for LaCAM*2-DFBnB. We
evaluated LaCAM*2-DFBnB’s performance on the warehouse map
warehouse-20-40-10-2-1 (denoted Warehouse), with 100, 200, . . . ,
1,000 agents. Table 1 presents the success rate (percentage of solved
instances within the time limit) of this experiment.

2https://github.com/Jiaoyang-Li/MAPF-LNS2

#Agents

Suboptimal Optimal

SOC MKS SOC MKS

100 100% 100% 0% 100%
200 100% 100% 0% 100%
300 100% 100% 0% 100%
400 100% 100% 0% 92%
500 100% 100% 0% 96%
600 100% 100% 0% 92%
700 100% 100% 0% 96%
800 100% 100% 100% 100%
900 100% 100% 100% 88%
1000 100% 100% 0% 100%

Table 1: Success rate of LaCAM*2-DFBnB on Warehouse for

finding a suboptimal and optimal solution for SOC or MKS.

As was already known, LaCAM*2-DFBnB excels in finding a
first suboptimal solution and was able to suboptimally solve all
problem instances for both SOC and MKS. Indeed, which was ex-
pected, LaCAM*2-DFBnB could not optimally solve any problem
instance for SOC. However, many problem instances were opti-
mally solved for MKS; LaCAM*2-DFBnB optimally solved all 25
problem instances with 1,000 agents (some problem instances were
not solved for fewer agents due to LaCAM*2’s stochastic behavior).
Importantly, LaCAM*2-DFBnB is executed in a state space where
each node contains a configuration (the vertices of all agents). Given
an underlying graph G with |V| = 𝑛 vertices and 𝑘 agents, there
are ≈ 𝑛𝑘 possible nodes for LaCAM*2-DFBnB. Specifically, the map
Warehouse, used for the above experiment, contains 22,599 vertices.
Therefore, the size of the state space, for 1,000 agents, is equal to
≈ 22, 5991,000, which is a huge number. These results and findings
inspired us to use LaCAM*2-DFBnB as an optimal algorithm for
MKS. This raises the question: How is it possible that such a large

problem instance was optimally solved?

As mentioned, in SOC, the heuristic value at each node is equal
to the sum of all the estimates of all agents to reach their goals
from their current vertices. In MKS, the heuristic value is equal to
the maximum of these estimates. A deeper look at the optimally
solved problem instances for MKS revealed that the initial heuristic
estimate at LaCAM*2-DFBnB’s root nodewas perfect for all of them,
which means that the heuristic value was precisely equal to the
makespan of the optimal solution. The reason for having a perfect
heuristic for MKS is that, often, to avoid conflicts, agents with non-
maximal cost paths can extend their paths without increasing the
cost of the solution (as it is only affected by the maximal one). In the
case of a perfect heuristic, there are no nodes to be classified asmust-
expand nodes, where 𝑓 < 𝐶∗. Therefore, when the optimal solution
is found, all nodes in Open have 𝑓 ≥ 𝐶∗ and can be immediately
pruned. In fact, the onlymodification we added to LaCAM*2-DFBnB
(and LaCAM*-DFBnB) is that, when the cost of the best solution
found is equal to the heuristic value of the root, the algorithm
immediately halts (this was not part of the original algorithm).
In all the experiments below, we only aim to find optimal MKS
solutions.

https://github.com/Jiaoyang-Li/MAPF-LNS2

0%

20%

40%

60%

1% 10% 20% 30%

%
S

u
rp

lu
s

N
o

d
es

Number of Agents

16x16 32x32 48x48 64x64

Figure 3: Percentage of surplus nodes on empty grids.

0%

20%

40%

60%

80%

100%

100 200 300 400 500 600 700 800 900 1000

S
u

cc
es

s
R

at
e

Number of Agents

~Mod. 1 ~Mod. 2 ~Mod. 3 ~Mod. 4+5

Figure 4: Success rate of LaCAM*2-DFBnB when each modifi-

cation is removed.

5.2 Counting Surplus Nodes

In this paper, we focus on finding optimal solutions for MKS whose
cost is 𝐶∗. To evaluate the impact of surplus nodes (with 𝑓 > 𝐶∗)
expanded by LaCAM*2-DFBnB for minimizing MKS, we experi-
mented on empty grids of sizes 16× 16, 32× 32, 48× 48, and 64× 64.
The results are presented in Figure 3, where every curve represents
a different grid size. Each empty grid was tested with agents that
occupy 1%, 10%, 20%, and 30% of the grid (𝑥 axis). We measured
the average percentage of surplus nodes expanded by LaCAM*2-
DFBnB out of the total expanded nodes (all problem instances were
solved).

In general, increasing the number of agents also increases the
percentage of surplus nodes; when more agents are present, it is
more likely for LaCAM*2-DFBnB to reach a solution that is farther
than the optimal one, resulting inmany surplus expansions. Notably,
the percentage of surplus nodes can be very high; in the 64×64 grid
with agents occupying 30% of the grid, on average, more than 50% of
expansions were of surplus nodes. We also observed specific cases
where more than 80% of the expansions were of surplus nodes.
These results motivate the use of different search strategies, as
proposed in this paper, which do not expand any surplus nodes.

5.3 Considering LaCAM*2’s Improvements

To evaluate the impact of the five modifications of LaCAM*2 (de-
scribed in Section 2.3.2), we executed LaCAM*2-DFBnB on Ware-
house with 100, 200, . . . , 1,000 agents (as in the experiment of

Table 1) and removed each modification in turn (we consider Modi-
fications 4 and 5 together, as done in the original LaCAM*2’s paper).
Figure 4 shows the result of this experiment, where each curve repre-
sents LaCAM*2 without a single modification. For instance, Mod. 1
represents LaCAM*2 without Modification 1 of "Non-deterministic
node extraction". Removing any of the modification, did not have a
large impact on the performance of LaCAM*2, besides Modification
2. This means that, Modification 2 has the largest impact on the
algorithm and significantly improves its performance.

5.4 Evaluating Overall Performance

Next, we evaluate the performance of all eight algorithms (CBSm,
LaCAM*-DFBnB, LaCAM*-A*, LaCAM*-IDA*, LaCAM*2-DFBnB,
LaCAM*2-A*, LaCAM*2-DFBnBnr, and LaCAM*2-IDA*) on eight
various benchmark maps: empty-32-32 (denoted Empty), room-

64-64-16 (Room), maze-128-128-10 (Maze), warehouse-20-40-10-2-
1 (Warehouse), den520d (Game1), brc202d (Game2), Berlin_1_256
(City1), and Boston_0_256 (City2). For each map, we created prob-
lem instances with 100, 200, . . . , 1,000, 1,500, . . . , 5,000 agents (with
gaps of 100 agents for up to 1,000 agents, and with gaps of 500
agents for more than 1,000 agents). We measured the success rate
and the average runtime. The runtime was set to 60 seconds for an
unsolved instance within the time limit. Figure 5 shows the results
of this experiment. The number that appears next to each map
name represents the number of available vertices in the map.

As also observed by Maliah et al. (2025), CBSm performs best
in small maps, and outperformed all other solvers in Empty and
Room. However, for any larger map, CBSm achieved relatively poor
results compared to other solvers. In almost all maps, LaCAM*2-
DFBnBnr outperformed LaCAM*2-DFBnB. This means that the
refiners of Modifications 4 and 5 do not improve the algorithm and
even make it perform worse. The reason is that these modifications
try to find better paths for any of the agents, while only a path
of a single agent (the highest-cost path) impacts the cost of the
solution. The LaCAM*’s algorithms (LaCAM*-DFBnB, LaCAM*-A*,
and LaCAM*-IDA*) presented a similar performance in most cases,
which implies that the selected search strategy does not significantly
affect LaCAM*. In contrast, LaCAM*2-A* and LaCAM*2-IDA* per-
formed better than LaCAM*2-DFBnB (and LaCAM*2-DFBnBnr) and
also outperformed all three LaCAM*’s solvers (LaCAM*-DFBnB,
LaCAM*-A*, and LaCAM*-IDA*). Notably, problem instances that
contain thousands of agents were optimally solved for MKS. For
instance, in City1 with 3,000 agents, LaCAM*2-A* reached a 100%
success rate (!).

The LaCAM*2’s algorithms improve the LaCAM*’s algorithms
mainly due to their ability to choose better configurations, such as
ones that scatter the agents (Modification 2). On one hand, when
the agents are scattered, the agents may be led to sparse areas and
a solution will be quickly found. On the other hand, this may ex-
tend the time it takes to converge to the optimal MKS solution.
For LaCAM*2-DFBnB, when scattering the agents, the 𝑓 -value of
successors often increase, resulting in a longer runtime for finding
the optimal solutions. However, LaCAM*2-A* and LaCAM*2-IDA*
gradually only consider nodes with minimal 𝑓 -values. Therefore,
when a successor of a higher 𝑓 -value is created, these two algo-
rithms enforce the nodes to generate more successors until one

Empty (1,024) Room (3,646) Maze (14,818) Warehouse (22,599)

Game1 (28,178) Game2 (43,151) City1 (47,540) City2 (47,768)

S
u

cc
es

s
ra

te

100%

75%

50%

25%

0%

0 600 1200 1800 2400 3000 0 900 1800 2700 3600 4500 0 800 1600 2400 3200 4000

#Agents #Agents #Agents

100 400 700 1000

#Agents #Agents

100 200 300 400 500

0 500 1000 1500 2000 2500

#Agents

#Agents

100 200 300 400

#Agents

0 600 1200 1800 2400 3000

S
u

cc
es

s
ra

te

100%

75%

50%

25%

0%

Figure 5: Success rate and runtime (in seconds) on eight benchmark maps.

with the minimal 𝑓 -value is generated. As a result, they both scatter
the agents and restrain this behavior by choosing a node of a low
cost.

6 CONCLUSION AND FUTUREWORK

In this paper, we show that LaCAM* can quickly optimally solve
MAPF for minimizing MKS. Standard LaCAM* performs a DFBnB.
We consider other search strategies for LaCAM*: BFS and ID. More-
over, we compare both LaCAM* and LaCAM*2 with these search
strategies, showing that each performs best and achieves state-of-
the-art performance in different scenarios.

This work has many possible directions for future work:
• employing other search methods for LaCAM*, such as beam
search [37];
• designing an algorithm-selection method that chooses the
preferred algorithm for a given scenario, e.g., choosing CBSm
or LaCAM*2, and, for LaCAM*2, a preferred search method;
• improving the heuristic function of LaCAM*2 for different
objective functions: SOC, MKS, or Fuel;
• using LaCAM*2 for optimally solving related problems, such
as lifelong MAPF, where multiple tasks need to be accom-
plished by the agents, or any other extension mentioned in
Section 3.2.
• adjusting other MAPF algorithms for MKS, e.g., Increasing
Cost Tree Search (ICTS) [40] and Branch and Cut and Price

(BCP) [20].

REFERENCES

[1] Anton Andreychuk, Konstantin S. Yakovlev, Pavel Surynek, Dor Atzmon, and
Roni Stern. 2022. Multi-agent pathfinding with continuous time. Artificial

Intelligence 305 (2022), 103662.
[2] Dor Atzmon, Roni Stern, Ariel Felner, Nathan R. Sturtevant, and Sven Koenig.

2020. Probabilistic Robust Multi-Agent Path Finding. In ICAPS. 29–37.

[3] Dor Atzmon, Roni Stern, Ariel Felner, Glenn Wagner, Roman Barták, and Neng-
Fa Zhou. 2020. Robust multi-agent path finding and executing. JAIR 67 (2020),
549–579.

[4] Max Barer, Guni Sharon, Roni Stern, and Ariel Felner. 2014. Suboptimal Variants
of the Conflict-Based Search Algorithm for the Multi-Agent Pathfinding Problem.
In the Symposium on Combinatorial Search (SoCS). 19–27.

[5] Roman Barták and Jirí Svancara. 2019. On SAT-Based Approaches forMulti-Agent
Path Finding with the Sum-of-Costs Objective. In SoCS. 10–17.

[6] Eli Boyarski, Shao-Hung Chan, Dor Atzmon, Ariel Felner, and Sven Koenig. 2022.
On Merging Agents in Multi-Agent Pathfinding Algorithms. In SoCS. 11–19.

[7] Eli Boyarski, Ariel Felner, Roni Stern, Guni Sharon, David Tolpin, Oded Betza-
lel, and Solomon Eyal Shimony. 2015. ICBS: Improved Conflict-Based Search
Algorithm for Multi-Agent Pathfinding. In IJCAI. 740–746.

[8] Shao-Hung Chan, Jiaoyang Li, Graeme Gange, Daniel Harabor, Peter J. Stuckey,
and Sven Koenig. 2022. Flex Distribution for Bounded-Suboptimal Multi-Agent
Path Finding. In the AAAI Conference on Artificial Intelligence (AAAI). 9313–9322.

[9] Rina Dechter and Judea Pearl. 1985. Generalized Best-First Search Strategies and
the Optimality of𝐴∗ . J. ACM 32, 3 (1985), 505—-536.

[10] Esra Erdem, Doga G. Kisa, Umut Oztok, and Peter Schueller. 2013. A general
formal framework for pathfinding problems with multiple agents. In AAAI. 290–
296.

[11] Ariel Felner, Jiaoyang Li, Eli Boyarski, Hang Ma, Liron Cohen, T. K. Satish Kumar,
and Sven Koenig. 2018. Adding Heuristics to Conflict-Based Search for Multi-
Agent Path Finding. In ICAPS.

[12] Gilad Fine, Dor Atzmon, and Noa Agmon. 2023. Anonymous Multi-Agent Path
Finding with Individual Deadlines. In AAMAS. 869–877.

[13] Graeme Gange, Daniel Harabor, and Peter J. Stuckey. 2019. Lazy CBS: implicit
Conflict-based Search using Lazy Clause Generation. In ICAPS. 155–162.

[14] Tzvika Geft and Dan Halperin. 2022. Refined Hardness of Distance-Optimal
Multi-Agent Path Finding. In AAMAS. International Foundation for Autonomous
Agents and Multiagent Systems (IFAAMAS), 481–488.

[15] Meir Goldenberg, Ariel Felner, Roni Stern, Guni Sharon, Nathan Sturtevant,
Robert C Holte, and Jonathan Schaeffer. 2014. Enhanced partial expansion A*.
Journal of Artificial Intelligence Research 50 (2014), 141–187.

[16] Peter E. Hart, Nils J. Nilsson, and Bertram Raphael. 1968. A Formal Basis for the
Heuristic Determination of Minimum Cost Paths. IEEE Transactions on Systems

Science and Cybernetics 4(2) (1968), 100–107.
[17] Richard E. Korf. 1985. Depth-first iterative-deepening: An optimal admissible tree

search. Artificial Intelligence 27, 1 (1985), 97–109. https://doi.org/10.1016/0004-
3702(85)90084-0

[18] Richard E. Korf. 1993. Linear-space best-first search. Artificial Intelligence 62, 1
(1993), 41–78. https://doi.org/10.1016/0004-3702(93)90054-D

https://doi.org/10.1016/0004-3702(85)90084-0
https://doi.org/10.1016/0004-3702(85)90084-0
https://doi.org/10.1016/0004-3702(93)90054-D

[19] Daniel Koyfman, Dor Atzmon, Shahaf Shperberg, and Ariel Felner. 2025. Minimiz-
ing Fuel inMulti-Agent Pathfinding. In Proceedings of the International Symposium

on Combinatorial Search, Vol. 18. 83–91.
[20] Edward Lam, Pierre Le Bodic, Daniel Harabor, and Peter J. Stuckey. 2022. Branch-

and-cut-and-price for multi-agent path finding. Computers & Operations Research

144 (2022), 105809.
[21] Jiaoyang Li, Zhe Chen, Daniel Harabor, Peter J. Stuckey, and Sven Koenig. 2022.

MAPF-LNS2: Fast Repairing for Multi-Agent Path Finding via Large Neighbor-
hood Search. In AAAI. 10256–10265.

[22] Jiaoyang Li, Ariel Felner, Eli Boyarski, HangMa, and Sven Koenig. 2019. Improved
Heuristics for Multi-Agent Path Finding with Conflict-Based Search. In IJCAI.
442–449.

[23] Jiaoyang Li, Daniel Harabor, Peter J. Stuckey, Hang Ma, Graeme Gange, and Sven
Koenig. 2021. Pairwise symmetry reasoning for multi-agent path finding search.
AIJ 301 (2021), 103574.

[24] Jiaoyang Li, Daniel Harabor, Peter J. Stuckey, Hang Ma, and Sven Koenig. 2019.
Disjoint Splitting for Multi-Agent Path Finding with Conflict-Based Search. In
ICAPS. 279–283.

[25] Jiaoyang Li, Wheeler Ruml, and Sven Koenig. 2021. EECBS: A Bounded-
Suboptimal Search for Multi-Agent Path Finding. In the AAAI Conference on

Artificial Intelligence (AAAI). 12353–12362.
[26] Jiaoyang Li, Pavel Surynek, Ariel Felner, Hang Ma, T. K. Satish Kumar, and Sven

Koenig. 2019. Multi-Agent Path Finding for Large Agents. In the AAAI Conference

on Artificial Intelligence (AAAI). 7627–7634.
[27] Jiaoyang Li, Andrew Tinka, Scott Kiesel, Joseph W. Durham, T. K. Satish Ku-

mar, and Sven Koenig. 2020. Lifelong Multi-Agent Path Finding in Large-Scale
Warehouses. In AAAI. 11272–11281.

[28] Hang Ma. 2021. A Competitive Analysis of Online Multi-Agent Path Finding. In
ICAPS. 234–242.

[29] Hang Ma, Glenn Wagner, Ariel Felner, Jiaoyang Li, TK Kumar, and Sven Koenig.
2018. Multi-agent path findingwith deadlines. In the International Joint Conference
on Artificial Intelligence (IJCAI). 417–423.

[30] Amir Maliah, Dor Atzmon, and Ariel Felner. 2025. Minimizing Makespan with
Conflict-Based Search for Optimal Multi-Agent Path Finding. In AAMAS. 1418–
1426.

[31] Jonathan Morag, Ariel Felner, Roni Stern, Dor Atzmon, and Eli Boyarski. 2022.
Online Multi-Agent Path Finding: New Results. In SoCS. 229–233.

[32] Van Nguyen, Philipp Obermeier, Tran Cao Son, Torsten Schaub, and William
Yeoh. 2017. Generalized Target Assignment and Path Finding Using Answer Set
Programming. In IJCAI. 1216–1223.

[33] Keisuke Okumura. 2023. Improving LaCAM for scalable eventually optimal
multi-agent pathfinding. In IJCAI. 243–251.

[34] Keisuke Okumura. 2023. LaCAM: search-based algorithm for quick multi-agent
pathfinding. In AAAI. 11655–11662.

[35] Keisuke Okumura. 2024. Engineering LaCAM*: Towards Real-time, Large-scale,
and Near-optimal Multi-agent Pathfinding. In the International Conference on

Autonomous Agents and Multiagent Systems (AAMAS). 1501–1509.
[36] Keisuke Okumura, Manao Machida, Xavier Défago, and Yasumasa Tamura. 2022.

Priority inheritance with backtracking for iterative multi-agent path finding.
Artificial Intelligence 310 (2022), 103752.

[37] Stuart J. Russell and Peter Norvig. 2010. Artificial Intelligence: A Modern Approach

(3rd ed.). Pearson.
[38] Tomer Shahar, Shashank Shekhar, Dor Atzmon, Abdallah Saffidine, Brendan Juba,

and Roni Stern. 2021. Safe Multi-Agent Pathfinding with Time Uncertainty. JAIR
70 (2021), 923–954.

[39] Guni Sharon, Roni Stern, Ariel Felner, and Nathan R. Sturtevant. 2015. Conflict-
based search for optimal multi-agent pathfinding. AIJ 219 (2015), 40–66.

[40] Guni Sharon, Roni Stern, Meir Goldenberg, and Ariel Felner. 2013. The increasing
cost tree search for optimal multi-agent pathfinding. AIJ 195 (2013), 470–495.

[41] Bojie Shen, Zhe Che, Jiaoyang Li, Muhammad Aamir Cheema, Daniel Damir
Harabor, and Peter J. Stuckey. 2023. Beyond Pairwise Reasoning in Multi-Agent
Path Finding. In ICAPS. 384–392.

[42] David Silver. 2005. Cooperative Pathfinding. In AIIDE. 117–122.
[43] Trevor Standley. 2010. Finding Optimal Solutions to Cooperative Pathfinding

Problems. In the AAAI Conference on Artificial Intelligence (AAAI). 173–178.
[44] Roni Stern, Nathan R. Sturtevant, Ariel Felner, Sven Koenig, Hang Ma, Thayne T.

Walker, Jiaoyang Li, Dor Atzmon, Liron Cohen, T. K. Satish Kumar, Roman
Barták, and Eli Boyarski. 2019. Multi-Agent Pathfinding: Definitions, Variants,
and Benchmarks. In SoCS. 151–159.

[45] Pavel Surynek. 2010. An Optimization Variant of Multi-Robot Path Planning Is
Intractable. In AAAI. 1261–1263.

[46] P. Surynek, A. Felner, R. Stern, and E. Boyarski. 2016. Efficient SAT Approach to
Multi-Agent Path Finding Under the Sum of Costs Objective. In ECAI. 810––818.

[47] Jiří Švancara, Marek Vlk, Roni Stern, Dor Atzmon, and Roman Barták. 2019.
Online multi-agent pathfinding. In AAAI. 7732–7739.

[48] GlennWagner andHowie Choset. 2015. Subdimensional expansion formultirobot
path planning. Artificial Intelligence 219 (2015), 1–24.

[49] Qian Wan, Chonglin Gu, Sankui Sun, Mengxia Chen, Hejiao Huang, and Xiaohua
Jia. 2018. Lifelong Multi-Agent Path Finding in A Dynamic Environment. In
ICARCV. 875–882.

[50] Jingjin Yu and Steven M LaValle. 2013. Multi-agent path planning and network
flow. In Algorithmic foundations of robotics X. Springer, 157–173.

[51] Jingjin Yu and Steven M. LaValle. 2013. Structure and Intractability of Optimal
Multi-Robot Path Planning on Graphs. In AAAI. 1444–149.

[52] Han Zhang, Jiaoyang Li, Pavel Surynek, Sven Koenig, and T. K. Satish Kumar.
2020. Multi-Agent Path Finding with Mutex Propagation. In ICAPS. 323–332.

	Abstract
	1 Introduction
	2 Background
	2.1 Path Finding
	2.2 Multi-Agent Path Finding
	2.3 LaCAM
	2.4 Conflict-Based Search (CBS)

	3 Related Work
	3.1 Solvers
	3.2 Extensions

	4 Varying LaCAM*'s Search Strategy
	4.1 Node Expansion and Runtime

	5 Experiments
	5.1 Comparing SOC vs. MKS
	5.2 Counting Surplus Nodes
	5.3 Considering LaCAM*2's Improvements
	5.4 Evaluating Overall Performance

	6 Conclusion and Future Work
	References

