
Under review as a conference paper at ICLR 2023

TOWARDS EXPLAINING DISTRIBUTION SHIFT

Anonymous authors
Paper under double-blind review

ABSTRACT

A distribution shift can have fundamental consequences such as signaling a change
in the operating environment or significantly reducing the accuracy of downstream
models. Thus, understanding distribution shifts is critical for examining and hope-
fully mitigating the effect of such a shift. Most prior work has focused on merely
detecting if a shift has occurred and assumes any detected shift can be understood
and handled appropriately by a human operator. We hope to aid in these man-
ual mitigation tasks by explaining the distribution shift using interpretable trans-
portation maps from the original distribution to the shifted one. We derive our
interpretable mappings from a relaxation of the optimal transport problem, where
the candidate mappings are restricted to a set of interpretable mappings. We then
use quintessential examples of distribution shift in simulated and real-world cases
to showcase how our explanatory mappings provide a better balance between de-
tail and interpretability than the de facto standard mean shift explanation by both
visual inspection and our PercentExplained metric.

1 INTRODUCTION

Most real-world environments are constantly changing, and in many situations, understanding how
a specific operating environment has changed is crucial to making decisions respective to such a
change. Such a change might be a new data distribution seen in deployment which causes a machine
learning model to begin to fail. Another example is a decrease in monthly sales data which could
be due to a temporary supply chain issue in distributing a product or could mark a shift in consumer
preferences. When these changes are encountered, the burden is often placed on a human operator
to investigate the shift and determine the appropriate reaction, if any, that needs to be taken. In this
work, our goal is to aid these operators in providing an explanation of such a change.

This ubiquitous phenomenon of having a difference between related distributions is known as dis-
tribution shift. Much prior work focuses on detecting distribution shifts; however, there is little
prior work that looks into understanding a detected distribution shift. As it is usually solely up to
an operator investigating a flagged distribution shift to decide what to do next, understanding the
shift is critical for the operator to more efficiently mitigate any harmful effects of the distribution
shift. Without a defined approach to this task, the current de facto standard in analyzing a shift is
looking at how the mean of the original, source, distribution shifted to the new, target, distribution.
However, this simple explanation can miss crucial shift information due to being a coarse summary
(e.g., Fig. 2). Further, in high-dimensional regimes, a shift in means could be uninterpretable due to
its high dimensionality. Instead, if after flagging that a shift has occurred, we could automatically
provide more detailed information about the shift but still remain at a level that is interpretable, we
could reduce the manual load on the operator to understand the shift, and, ultimately, to take action
if necessary.

Therefore, we propose a novel framework for explaining distribution shifts, such as showing how
features have changed or how groups within the distributions have shifted. Since a distribution
shift can be seen as a movement from a source distribution x ∼ Psrc to a target distribution y ∼
Ptgt, we define a distribution shift explanation as a transport map T (x) which maps a point in our
source distribution onto a point in our target distribution. For example, under this framework, the
typical distribution shift explanation via mean shift can be written as T (x) = x + (µy − µx).
Intuitively, these transport maps can be thought of as a functional approximation of how the source
distribution could have moved in a distribution space to become our target distribution. However,
without making assumptions on the type of shift, there exist many possible mappings that explain the
shift (see subsection A.2 for examples). Thus, we leverage prior optimal transport work to define an
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Figure 1: An overall look at our approach to explaining distribution shifts, where given a source
Psrc and shifted Ptgt dataset pair, a user can choose to explain the distribution shift using k-sparse
maps (which are best suited for high dimensional or feature-wise complex data), k-cluster maps (for
tracking how heterogeneous groups change across the shift), or distribution translation maps (for
data which has uninterpretable raw features such as images). For details on the results seen in the
three boxes, please see experiments in Section 5 and Section 6.

ideal distribution shift explanation and develop practical algorithms for finding and validating such
maps. We summarize our contributions as follows:

• In Section 3, we define interpretable transport maps by constraining a relaxed form of the
optimal transport problem to only search over a set of interpretable mappings and suggest
possible interpretable sets.

• In Section 4, we develop practical methods for finding such interpretable mappings which
allow us to adjust the interpretability of an explanation to fit the needs of a situation.

• In Section 5, we show empirical results on real-world tabular datasets demonstrating how
our explanations and our PercentExplained metric can aid an operator in understanding
how a distribution has shifted.

• In Section 6, we use latent transport mappings and Image-to-Image translation methods to
extend this approach to explain image-based shifts such as investigating how the staining
of histopathological images varies across a hospital network.

2 RELATED WORKS

The characterization of the problem of distribution shift has been extensively studied (Quiñonero-
Candela et al., 2009; Storkey, 2009; Moreno-Torres et al., 2012) via breaking down a joint distri-
bution P (x, y) of features x and outputs y, into conditional factorizations such as P (y|x)P (x) or
P (x|y)P (y). For covariate shift (Sugiyama et al., 2007) the P (x) marginal differs from source to
target, but the output conditional P (y|x) the same, while label shift (also known as prior probability
shift) (Zhang et al., 2013; Lipton et al., 2018) is when the P (y) marginals differ from source to
target, but the full-feature conditional P (x|y) remains the same. In this work, we refer to general
problem distribution shift, i.e. a shift in the joint distribution (with no distinction between y and x),
and leave applications of explaining specific sub-genres of distribution shift to future work.

As far as we are aware, this is the first work specifically tackling explaining distribution shifts;
however, there are distinct works that can be applied to explain distribution shifts. For exam-
ple, one could use feature attribution methods Saarela & Jauhiainen (2021); Molnar (2020) on a
domain/distribution classifier (e.g., Shanbhag et al. (2021) uses Shapley values Shapley (1997) to
explain how changing input feature distributions affect a classifier’s behavior), or once could find
samples which are most illustrative of the differences between distributions Brockmeier et al. (2021).
Additionally, one could use counterfactual generation methods Karras et al. (2019); Sauer & Geiger
(2021); Pawelczyk et al. (2020) and apply them for “distributional counterfactuals” which would
show what a sample from Ptgt would have looked like if it instead came from Psrc (e.g., Pawelczyk
et al. (2020) uses a classifier-guided VAE to generate class counterfactuals on tabular data). We
explore this distributional counterfactual explanation approach in subsection 6.2.

A sister field is that of detecting distribution shifts. This is commonly done using methods such as
statistical hypothesis testing of the input features (Nelson, 2003; Rabanser et al., 2018; Quiñonero-
Candela et al., 2009), training a domain classifier to test between source and non-source domain
samples Lipton et al. (2018), etc. In (Kulinski et al., 2020; Budhathoki et al., 2021), the authors
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attempt to provide more information beyond the binary “has a shift occurred?” via localizing a shift
to a subset of features or causal mechanisms. (Kulinski et al., 2020) does this by introducing the
notion of Feature Shift, which first detects if a shift has occurred and if so, localizes that shift to
a specific subset of features that have shifted from source to target. In (Budhathoki et al., 2021),
the authors take a causal approach via individually factoring the source and target distributions into
a product of their causal mechanisms (i.e. a variable conditioned on its parents) using a shared
causal graph, which is assumed to be known/discoverable. Then, the authors “replace” a subset of
causal mechanisms from Psrc with Ptgt, and measure divergence from Psrc (i.e. measuring how
much the subset change affects the source distribution). Both of these methods are still focused
on detecting distribution shifts (via identifying shifted causal mechanisms or feature-level shifts),
unlike explanatory mappings which help explain how the data has shifted.

3 EXPLAINING DISTRIBUTION SHIFTS VIA TRANSPORT MAPS

The underlying assumption of distribution shift is that there exists a relationship between the source
and target distributions. From a distributional standpoint, we can view distribution shift as a move-
ment, or transportation, of samples from the source distribution Psrc to the target distribution Ptgt.
Thus, we can capture this relationship between the distributions via a transport map T from the
source distribution to the target, i.e., if x ∼ Psrc, then T (x) ∼ Ptgt. If this mapping is understand-
able to an operator investigating a distribution shift, this can serve as an explanation to the operator
on what changed between the environments; thus allowing for more effective reactions to the shift.
Therefore, we claim a shift explanation to be: an interpretable transport map T which approximately
maps a source distribution Psrc onto a target distribution Ptgt such that T♯Psrc ≈ Ptgt. Similar to
ML model interpretability Molnar (2020), an interpretable map can either be one that is intrinsically
interpretable (subsection 3.1) or a mapping which is explained via post-hoc methods such as sets of
input-output pairs (subsection 6.2).
3.1 INTRINSICALLY INTERPRETABLE TRANSPORTATION MAPS

In order to find such a mapping between distributions, it is natural to look to Optimal Transport (OT)
and its extensive prior work in this field Cuturi (2013); Arjovsky et al. (2017); Torres et al. (2021);
Peyré & Cuturi (2019). An OT mapping is defined as a method of optimally moving points from
one distribution to another given a transport cost function c and is formally defined as:

TOT := argmin
T

EPsrc [c(x, T (x))] s.t.T♯Psrc = Ptgt

where T♯Psrc is the push forward operator that can be viewed as applying the T mapping onto all
points in Psrc, and T♯Psrc = Ptgt is the marginal constraint, meaning that TOT must perfectly align
the source distribution and the target.

OT is a natural starting point for shift explanations as it allows for a rich geometric structure on the
space of distributions, and by finding a mapping that minimizes a transport cost we are forcing our
mapping to retain as much information about the original x samples when aligning Psrc and Ptgt.
For more details about OT, please see Villani (2009); Peyré & Cuturi (2019).

However, since OT considers all possible mappings which satisfy the marginal constraint, this means
the resulting TOT can be arbitrarily complex and thus possibly uninterpretable as a shift explanation.
We can alleviate this by restricting the candidate transport maps to belong to a set of user-defined
interpretable mappings Ω. However, this problem can be infeasible if Ω does not contain a mapping
that satisfies the marginal constraint. Therefore, we can use Lagrangian relaxation to relax the
marginal constraint, giving us an Interpretable Transport mapping TIT :

TIT := argmin
T∈Ω

EPsrc
[c(x, T (x))] + λ ϕ(PT(x), Ptgt) (1)

where c is assumed to be the squared Euclidean cost and ϕ(·, ·), the divergence function, is assumed
to be the squared Wasserstein-2 metric, unless stated otherwise. Due to the heavily complex and
context-specific nature of distribution shift, it is likely that Ω would be initialized based on context.
However, we suggest two general methods in the next section as a starting point and hope that future
work can build upon this framework for specific contexts.

3.2 INTERPRETABLE TRANSPORT SETS

The current common practice for explaining distribution shifts is comparing the means of the source
and the target distributions. The mean shift explanation can be generalized as Ωvector = {T : T (x) =
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x+δ}where δ is a constant vector and mean shift being the specific case where δ is the difference of
the source and target means. By letting δ be a function of x, which further generalizes the notion of
mean shift by allowing each point to move a variable amount per dimension, we arrive at a transport
set that includes any possible mapping T : Rd → Rd. However, even a simple transport set like
Ωvector can yield uninterpretable mappings in high dimensional regimes (e.g., a shift vector of over
100 dimensions). To combat this, we can regulate the complexity of a mapping by forcing it only
move points along a specified number of dimensions. We define this as k-Sparse Transport:

k-Sparse Transport: For a given class of transport maps, Ω and a given k ∈ {1, ..., d}, we can
find a subset Ω(k)

sparse which is the set of transport maps from Ω which only transport points along
k dimensions or less. Formally, we define an active set A to be the set of dimensions along which
a given T moves points: A(T ) ≜ {j ∈ {1, . . . , d} : ∃x, T (x)j − xj ̸= 0}. Then, we define
Ω

(k)
sparse = {T ∈ Ω : |A(T )| ≤ k}.

k-sparse transport is most useful in situations where a distribution shift has happened along a subset
of dimensions, such as explaining a shift where some sensors in a network are picking up a change
in an environment. However, in situations where points shift in different directions based on their
original value, e.g., when investigating how a heterogeneous population responded to an advertising
campaign, k-sparse transport is not ideal. Thus, we provide a shift explanation that breaks the
source and target distributions into k sub-populations and provides a vector-based shift explanation
per sub-population. We define this as k−cluster transport:

k-Cluster Transport Given a k ∈ {1, . . . , d} we define k-cluster transport to be a mapping which
moves each point x by constant vector which is specific to x’s cluster. More formally, we de-
fine a labeling function σ(x;M) ≜ argmin j ∥mj − x∥2, which returns the index of the col-

umn in M (i.e. the label of the cluster) which x is closest to. With this, we define Ω
(k)
cluster ={

T : T (x) = x+ δσ(x;M),M ∈ Rd×k,∆ ∈ Rd×k
}

, where δj is the jth column of ∆.

Since measuring the exact interpretability of a mapping is heavily context-dependent, we can instead
use k in the above transport maps to define a partial ordering of interpretability of mappings within
a class of transport maps. Let k1 and k2 be the size of the active sets for k-sparse maps (or the
number of clusters for k-cluster maps) of T1 and T2 respectively. If k1 ≤ k2, then Inter(T1) ≥
Inter(T2), where Inter(T ) is the interpretability of shift explanation T . For example, we claim the
interpretability of a T1 ∈ Ω

(k=10)
sparse is greater than (or possibly equal to) the interpretability of a

T2 ∈ Ω
(k=100)
sparse since a shift explanation in Ω which moves points along only 10 dimensions is more

interpretable than a similar mapping which moves points along 100 dimensions. A similar result can
be shown for k-cluster transport since an explanation of how 5 clusters moved under a shift is less
complicated than an explanation of how 10 clusters moved. The above method allows us to have a
partial ordering on interpretability without having to determine the absolute value of interpretability
of an individual explanation T , as this requires expensive context-specific human evaluations, which
is out of scope for this paper.

4 PRACTICAL METHODS FOR FINDING AND VALIDATING SHIFT
EXPLANATIONS

In this section, we discuss practical methods for shift explanations. We first discuss using our k-
sparse and k-cluster maps to allow a user to automatically change the level of interpretability of a
shift explanation as desired. Coupled with a PercentExplained metric, this gives an operator various
levels/complexities of explanation and a way to validate them. Next, we propose a practical approx-
imation to Eqn. 1, the Interpretable Transport equation, and in Sections 4.3 and 4.4 we cover how to
find the optimal explanation from Ω

(k)
sparse and Ω

(k)
cluster for this equation.

4.1 INTERPRETABILITY AS A HYPERPARAMETER

By optimizing Eqn. 1 we can find the best shift explanation for a given set of interpretable transport
maps Ω. However, directly defining a Ω which contains candidate mappings that are guaranteed
to be both interpretable and expressive enough to explain a shift can be a difficult task. Thus, we
can instead set Ω to be a super-class, such as Ωvector given in subsection 3.2, and then adjust k
until a Ω(k) is found which matches the needs of the situation. This allows a human operator to
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request a mapping with better alignment by increasing k, which correspondingly will decrease the
mapping’s interpretability, or request a more interpretable mapping by decreasing the complexity
(i.e. decreasing k) which will decrease the alignment.

To assist an operator in determining if the interpretability hyperparameter should be adjusted, we
introduce a PercentExplained metric, which we define to be:

PercentExplained(Psrc, Ptgt, T ) :=
W 2

2 (Psrc, Ptgt)−W 2
2 (T♯Psrc, Ptgt)

W 2
2 (Psrc, Ptgt)

(2)

where W 2
2 (·, ·) is the squared Wasserstein-2 distance between two distributions. By rearranging

terms (and ignoring the percentage scaling factor) we get 1 − W 2
2 (T♯Psrc,Ptgt)

W 2
2 (Psrc,Ptgt)

, which shows this
metric’s correspondence to the statistics coefficient of determination R2, where W 2

2 (T♯Psrc, Ptgt) is
analogous to the residual sum of squares and W 2

2 (Psrc, Ptgt) is similar to the total sum of squares.
This gives an approximation of how much a current shift explanation T accurately maps onto a
target distribution. This can be seen as a normalization of a mapping’s fidelity with the extremes
being T♯Psrc = Ptgt, which fully captures a shift, and T = Id, which does not move the points at
all. When provided this metric along with a shift explanation, an operator can decide whether to
accept the explanation (e.g., the PercentExplained is sufficient and T is still interpretable) or reject
the explanation and adjust k.

4.2 EMPIRICAL INTERPRETABLE TRANSPORT

Since the divergence term in Eqn. 1 can be computationally-expensive to optimize in practice, we
suggest an empirical approximation to the interpretable transport solution:

argmin
T∈Ω

1

N

N∑
i=1

c
(
x(i), T (x(i))

)
+ λd

(
T (x(i)), TOT (x

(i))
)

(3)

where d is a distance function such as the l2 distance or squared euclidean distance. Most notably,
the divergence value in Eqn. 1 is replaced with the sum over distances between T (x) and the op-
timal transport mapping for x. This is computationally attractive as the optimal transport solution
only needs to be calculated once, rather than calculating the Wasserstein distance once per iter-
ation like in the Interpretable Transport solution (which even if the W -distance is approximated,
can be expensive over many iterations). For optimization purposes, this is also reasonable since
1
N

∑N
i=1 d(T (x

(i)), TOT (x
(i))) upper-bounds ϕ(PT (x), Ptgt), when d = ℓ22, ϕ = W 2

2 and N ap-
proaches the population size of Psrc (proof shown in appendix).

4.3 FINDING k-SPARSE MAPS

Let k be a desired level of interpretability; our goal is to find the optimal k features to include in our
active feature setA and then find the best transport along those features for a given transport class Ω.
A simple (and often ideal) approach to the feature selection problem is to select the k features which
have the largest average shift from the source distribution to the target distribution; this approach
is used throughout this paper. Although the chosen T will depend on the optimization over Ω,
we provide two closed-form solutions that give optimal alignment for a given k under cases where
Ω = Ωvector and when Ω is all possible mappings. The mapping which gives the best alignment
in Ω

(k)
vector is k-sparse mean shift, i.e. T (x) = x + µ̃ where µ̃ is a vector where the jth coordinate

is [µtgt − µsrc]j , if j ∈ A, else, it is 0. When Ω(k) is all k-sparse functions, the shift explanation
which minimizes the distance term in Eqn. 3 is the k-sparse optimal transport solution which sets
each feature in A to match that of the OT push forward for that feature, i.e. [T (x)]j = [TOT (x)]j if
j ∈ A, else [x]j , thus allowing for arbitrary conditional transports for features in A (see proof ??.
The proofs for the two previous claims can be seen in the Appendix.

4.4 FINDING k-CLUSTER MAPS

Instead of shifting respective to features, we can define k vector shifts for k groups in our source
domain, with the goal of explaining how each group changed from source to target. To do this, we
perform paired clustering in the source and target domains, so that we can relate a given cluster
in Psrc to its most similar counterpart in Ptgt (as opposed to pushing the k clusters in Psrc onto
the entire target domain). With this, we construct Msrc and Mtgt where the k columns of M
represent the k cluster means for the source and target distributions, respectively. Then, we define
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∆ = Mtgt −Msrc so that each vector shift δj is the difference in means between the jth source and
the target clusters. In practice, the set of paired clusters can be found by performing clustering in
a joint Z space of Psrc and PTOT (x) where the resultant k cluster centroids in this space are of the
form [Msrc,Mtgt]. Formally, this is done using the algorithm seen in Alg. 1.

5 EXPERIMENTS

While in Appendix C we have experiments on simulated and simpler shifts which can be used to
gain intuition on how the different shift explanation techniques work, in this section, we study the
performance of our methods when applied to real-world data. We first present results using k-sparse
transport as our method of explaining shifts between toxic and non-toxic comments across splits
from the Stanford WILDS distribution shift benchmark Koh et al. (2021) version of the “CivilCom-
ments” Dataset Borkan et al. (2019). We then, use k-cluster transport to explain the difference
between different groups of the male population and groups of the female population in the U.S.
Census “Adult Income” dataset Kohavi & Becker (1996). Finally, in the next section, we provide a
general framework for explaining image-based shifts in high dimensional regimes (e.g., images).

Table 1: A baseline vanilla mean shift explanation, k-sparse mean shift explanation, (k-µ-Ex), and
k-sparse OT explanations (k-OT-Ex) for the three splits from CivilComments (to save space the
baseline is only used for F→M). Each cell represents adding/subtracting a unigram from Psrc to
align it with the comment distribution of Ptgt and the respective PercentExplained (excluding the
baseline method). For example, in k-µ-Ex(F0→F1), adding “stupid” aligns the non-toxic female
comments to the toxic female comments and cumulatively explains 0.2% of the shift.

𝑘 𝑘-𝜇-Ex(F,	M) 𝑘-OT-Ex(F,	M)
1 +	man 2.4% +	man 6.9%
2 +	men 2.4% +	men 9.2%
3 - woman 2.6% - woman 10.8%
4 +	white 2.7% +	white 12.0%
5 +	male 2.8% - people 13.0%
6 +	black 2.8% - like 13.9%
7 +	god 2.8% - just 14.7%
8 - female 2.8% +	male 15.4%
9 - abortion 2.8% - don't 16.3%
10 +	males 2.8% +	god 16.8%

𝑘 𝑘-𝜇-Ex(F! ,	F") 𝑘-OT-Ex(F! ,	F")
1 +	white 0.1% +	trump 2.6%
2 - women 0.1% +	people 3.7%
3 +	like 0.2% +	woman 4.7%
4 +	stupid 0.2% +	like 5.7%
5 - church 0.2% - men 6.6%
6 +	hillary 0.2% +	just 7.5%
7 +	black 0.2% +	don't 8.3%
8 +	sex 0.2% +	white 9.2%
9 - female 0.2% +	man 9.9%
10 - abortion 0.3% - think 10.5%

𝑘 𝑘-𝜇-Ex(M! ,	M") 𝑘-OT-Ex(M! ,	M")
1 +	trump 0.2% - women 2.8%
2 - women 0.3% - men 4.1%
3 +	black 0.3% +	man 5.3%
4 - church 0.3% +	people 6.3%
5 +	stupid 0.3% +	like 7.3%
6 +	gay 0.4% +	trump 8.3%
7 +	racist 0.4% +	just 9.2%
8 - god 0.4% +	don't 10.9%
9 - jesus 0.4% +	black 11.6%
10 +	man 0.4% - male 12.3%

𝑘 Baseline: 𝜇(𝐹,𝑀)
1 +	man
2 +	men
3 - woman
4 +	white
…	[29K	more	entries]	…

29,553 +	martina
29,554 - diqlmjawsae
29,555 - да
29,556 - bodybuilder
29,557 +	philhiblers

Civil Comments Dataset Here we present results using k-sparse shifts to explain the difference
between three splits of the CivilComments dataset Borkan et al. (2019) from the WILDS datasets
Koh et al. (2021). This dataset consists of comments scraped from the internet where each comment
is paired with a binary toxicity label and demographic information pertaining to the content of the
comment. If we were an operator trying to see how the comments and their toxicity change across
targeted demographics, we could create three splits: {F, M}, {F0, F1}, and {M0, M1}, where F
represents all female comments, M are all male comments, and F0, F1 are nontoxic, toxic female
comments, respectively (and likewise for males). We can explain these three splits using vanilla
mean shift, a k-sparse mean shift (k-µ), and k-sparse OT (k-OT) shift explanations, as seen in Ta-
ble 1 which shows results for the unigrams which the maximize the alignment between the unigram
distributions created for each split. The baseline vanilla mean-shift explanation yields all 30K fea-
tures at once (with no guide for truncating), while the k-sparse shifts provide explanations up to a k
words as well as a corresponding PercentExplained to aid in determining if additional words should
be added to the explanation. Note that for k-µ explanations, when transporting a word, that word is
added equally to all comments in Psrc, while since k-OT allows for each comment to be shifted op-
timally (via conditioning on the other words in each comment), thus k-OT can explain significantly
more of the shift by transporting the same word.

It is clear that performing a vanilla full mean shift explanation on the unigram data between splits
is unwise due to the high dimensionality of the data and, without further information, it is unclear
when to truncate such an explanation. However, in our approach, by iteratively reporting the shifted
unigrams along with the cumulative PercentExplained, a practitioner can better understand the im-
pact each additional word has on the shift explanation. For example, it makes sense that adding
“man”, “men”, and subtracting “woman” were the three unigrams that best aligned the female and
male comment distributions and could account for as much as 10% of the shift. By moving from
nontoxic to toxic comments we can see a decrease in plural words such as “women” and “men”
suggesting individuals are being targeted, and when narrowing to male nontoxic to toxic mappings
we see an increase in words such as “gay” and “racist” as opposed to F0→1 which shows an increase
in words such as “sex” and “white”.
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Baseline Mean Shift Explanation:

𝟒 - Cluster Explanation (ours):
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Figure 2: Using k-cluster transport (bottom) to explain the shift from the male population to the fe-
male population of the Adult Income dataset allows us to capture how heterogeneous groups within
the dataset moved. For example, our cluster-based explanation (where k = 4) highlights the larger
income disparity between males and females with a bachelor’s degree (edu=12) seen in C4, which
is hidden in the mean shift explanation. On the other hand, comparing the means of the two distribu-
tions (top left) or the Shapley values calculated from a Random Forest classifier trained to classify
between the Male/Female distributions (top right) only allows us to see that the income gap as a
predominate difference, but provide no additional actionable detail.

Adult Income Dataset This dataset originally comes from the United States 1994 Census database
and is commonly used to predict whether a person’s annual income exceeds $50k using 14 demo-
graphic features. Similar to Budhathoki et al. (2021), we consider a subset of non-redundant fea-
tures: age, years of education (where 12+ is beyond high school), and income (which is encoded as
1 if the person’s annual income is greater than $50k and 0 if it is below). We then split this dataset
along the sex dimension, and define our source distribution as the male population and the target as
the female population. In order to find the set of paired clusters, we first standardize a copy of the
data to have zero mean and unit variance across all features, where the µ and σ used for the stan-
dardization are found via the feature-wise mean and standard deviation of the source distribution
and perform clustering in the standardized joint space using the method described in Section 4.4.
The k clustering labels are then used to label points to clusters in the original (unstandardized) data
space.

Let’s assume the role of a researcher looking to implement a social program targeting gender in-
equalities. We could compare the means of the male/female distributions which shows on average a
20% lower chance of having an annual income above $50k when moving from the male population
to the female population. Additionally, we could train a classifier to predict between male/female
data points and use a feature importance measurement tool like Shapley values Lundberg & Lee
(2017) to determine that income is a main differing feature. However, let’s say we want to dig
deeper. We could instead use k-cluster transport to see how heterogeneous subgroups shifted across
a range of clusters, as seen in Fig. 2. If we accept the explanation at k = 4 (since beyond this, the
marginal advantage of adding an additional cluster is minimal in terms of both transport cost and
PercentExplained), with this more detailed explanation we could see in µC4

M
the more significant

drop in high-income likelihood between middle-age adults with a bachelors degree (from males
having nearly a 100% likelihood of having an income ≥50k to only a 38% chance when pushed
onto the female cluster). This sub-shift, which was hidden in both the mean-shift and distribution
classifier explanations, gives us a significantly narrower scope as a starting point to look deeper at
the discrepancies between a given population of men and women.

6 EXTENDING TO EXPLAINING SHIFTS IN IMAGES

Thus far, our focus has been on building a foundation for explaining distribution shifts via intrinsi-
cally interpretable transportation maps and showing the baseline efficacy of this approach. As seen
in the Stanford Wilds dataset Koh et al. (2021), which contains benchmark examples of real-world
image-based distribution shifts, image-based shifts can be immensely complex and context-specific–
even when the oracle shift is known. In order to provide an adequate intrinsically interpretable map-
ping explanation of a distribution shift in image data, multiple new advancements must first be met
(e.g., finding a disentangled latent space with semantically meaningful dimensions, approximating
high dimensional empirical optimal transport maps, etc.), which are out of scope of this paper. Thus,
we first present an initial framework for finding intrinsically interpretable transport maps to explain
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distribution shifts in images, which we hope future work can build upon. Then, in subsection 6.2,
we use visualizations of complex distributional mappings as a post-hoc transport map interpretabil-
ity method which alleviates the intrinsic interpretability requirement (allowing for more expressive
mappings), but leaves more up to operator interpretation.

6.1 HIGH DIMENSIONAL INTERPRETABLE TRANSPORT MAPS

In order to find interpretable transport mappings for high dimensional spaces like images, we can
project Psrc and Ptgt onto an interpretable latent space (e.g., a space which has disentangled
and semantically meaningful dimensions) which is learned by some (pseudo-)invertible function
g : Rd → Rk where k < d (e.g., an autoencoder). Then, we can solve for an interpretable
mapping such that it aligns the distributions in the latent space, PT (g(x)) ≈ Pg(y). For counter-
factual purposes, we can use g−1 to project T (g(x)) back to Rd to display the transported image
to an operator. With this, we can define our set of high dimensional interpretable transport maps:
Ωhigh-dim :=

{
T : T = g−1

(
T̃ (g(x))

)
, T̃ ∈ Ω, g ∈ I

}
where Ω the set of interpretable mappings

(e.g., k-sparse mappings) and I is the set of (pseudo-)invertible functions with an interpretable (i.e.
semantically meaningful) latent space. Finally, given an interpretable g ∈ I, this gives us High-
dimensional Interpretable Transport, THIT :

argmin
T̃∈Ω(k)

EPsrc

[
c
(
g(x), T̃ (g(x))

)]
+ λϕ(PT̃ (g(x)), Pg(y)) (4)

which results in an interpretable map T̃ which approximately shows how images from Psrc shifted
to Ptgt in a semantically meaningful way (e.g., how the H&E staining in histopathology images
changes across hospitals). For further details about THIT , its variants, and results for an experiment
on explaining Colorized-MNIST, please see Appendix D.

6.2 EXPLAINING IMAGE-BASED SHIFTS VIA COUNTERFACTUAL EXAMPLES

In some cases, solving for an interpretable latent space can be too difficult/costly, and thus a shift
cannot be expressed by an interpretable mapping function. However, if the samples themselves
are easy to interpret (e.g., images), we can still explain a transport mapping by visualizing trans-
lated samples. Specifically, we can remove the interpretable constraint on the mapping and lever-
age methods from the unpaired Image-to-Image translation (I2I) literature to translate between the
source and target domain while preserving the content. For a comprehensive summary of the re-
cent I2I works and methods, please see Pang et al. (2021). Once a distributional mapping is
found, to serve as an explanation, we can provide an operator with a set of counterfactual pairs
{(x, T (x)) : x ∼ Psrc, T (x) ∼ Ptgt}. Then, by determining what commonly stays invariant and
what commonly changes across the set of counterfactual pairs, this can serve as an explanation of
how the source distribution shifted to the target distribution. While more broadly applicable, this ap-
proach could put a higher load on the operator than an intrinsically interpretable mapping approach.

Explaining Shifts in H&E Images Across Hospitals We apply this distribution counterfactual
approach to the Camelyon17 dataset Bandi et al. (2018) which is a real-world distribution shift
dataset that consists of whole-slide histopathology images from five different hospitals. We use the
Stanford WILDS Koh et al. (2021) variant of the dataset which converts the whole-slide images into
over 400 thousand patches. Since each hospital has varying hematoxylin and eosin (H&E) staining
characteristics, this, among other batch effects, leads to heterogeneous image distributions across
hospitals as can be seen in Fig. 3.

To generate the counterfactual examples, we treat each hospital as a domain and train a StarGAN
model Choi et al. (2018) to translate between each domain. For training, we followed the original
training approach seen in Choi et al. (2018), with the exception that we perform no center cropping.
After training, we can generate distribution counterfactual examples by inputting a source image and
the label of the target hospital domain to the model. Counterfactual generation was done for all five
hospitals and can be seen on the right-hand side of Fig. 3. It can be seen that the StarGAN model
captures the different staining characteristics across the hospitals. For example, hospital 1 (P1)
consists of mostly light staining, and thus transporting to this domain usually involves lightening
of the image while P3 seems to have more hematoxylin stain thus leading to deeper purple images
when pushing onto this domain. We can also see that the model tends to respect the content of
the image where patches that contain tumor cells (e.g., the P5 sample on the right-hand side) still
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Original Counterfactual Examples (ours)
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Baseline: Saliency Maps for Domain Classifier

Baseline: Visual Inspection of Samples

Figure 3: Our explanation approach (right) of showing paired counterfactual images translated
between the hospital domains (represented as P1, P2, . . . ) quickly makes it clear how the stain-
ing/coloring differs across the hospital domains (where the (i, j) row, column pair represents the
pushforward of the ith domain onto the jth domain). The baseline method of unpaired samples (top-
left) requires many more samples to begin to understand the differences across the hospital domains
and using Grad-CAM Selvaraju et al. (2016) to explain a ResNet-50 He et al. (2016) domain classi-
fier (bottom-left) does not capture the appropriate staining/coloring details.

contain tumor cells in the counterfactual cases and likewise for lymphocyte cells (e.g., the P4 sample
on the right-hand side). We further explore content-based changes (as opposed to style changes) of
an image using the CelebA dataset in subsection C.4.

7 LIMITATIONS

A primary challenge in developing distribution shift explanations is determining how to evaluate
the efficacy of a given explanation in a given context. Evaluating explanations is an active area
of research Robnik-vSikonja & Bohanec (2018); Molnar (2020); Doshi-Velez & Kim (2017) with
commonalities such as an explanation should be contrastive, succinct, should highlight abnormal-
ities, and should have high fidelity Molnar (2020). For the case of distribution shift explanations,
as this is a highly context-dependent problem (dependent on the data setting, task setting, and op-
erator knowledge) and our approach is designed to tackle this problem in general, we do not have a
general automated way of measuring whether a given explanation is indeed interpretable. Instead,
we provide a general contrastive method that supplies the PercentExplained (approximation of fi-
delity) and the adjustable k-level of sparse/cluster mappings (which trades off between succinctness
and fidelity) but ultimately leaves the task of validating the explanation up to the operator. We be-
lieve developing new shift explanation maps and criteria for specific applications (e.g., explaining
the results of experiments run with different initial conditions), thus offering tighter interpretabil-
ity measurement bounds, is a rich area for future work. An additional challenge is that while the
PercentExplained metric shows the fidelity of an explanation (i.e. how aligned T♯(Psrc) and Ptgt

are), we do not have a method of knowing specifically what is missing from the explanation – which
can be considered a “known unknown”. For further discussions of challenges with explaining dis-
tribution shifts (e.g., finding an interpretable latent space, approximations of Wasserstein distances
in high dimensional regimes, etc.) we point the reader to Appendix B.

8 DISCUSSION AND CONCLUSION

In this paper, we introduced a framework for explaining distribution shifts using a transport map T
between a source and target distribution. We constrained a relaxed form of optimal transport to the-
oretically define an interpretable mapping TIT and introduced two interpretable transport methods:
k-sparse and k-cluster transport. We provided practical approaches to calculating a shift explana-
tion, which allows us to use treat interpretability as a hyperparameter that can be adjusted based on
a user’s need and showed how our methods can help an operator investigate a distribution shift on
real-world examples.

We hope our work suggests multiple natural extensions such as using trees as a feature-axis-aligned
form of clustering or even other forms of interpretable sets. Given our results and potential ways
forward, we ultimately hope our framework lays the groundwork for providing more information to
aid in investigations of distribution shift.
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Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein generative adversarial networks.
In International conference on machine learning, pp. 214–223. PMLR, 2017.

Peter Bandi, Oscar Geessink, Quirine Manson, Marcory Van Dijk, Maschenka Balkenhol, Meyke
Hermsen, Babak Ehteshami Bejnordi, Byungjae Lee, Kyunghyun Paeng, Aoxiao Zhong, et al.
From detection of individual metastases to classification of lymph node status at the patient level:
the camelyon17 challenge. IEEE Transactions on Medical Imaging, 2018.

Dimitris Bertsimas, Agni Orfanoudaki, and Holly Wiberg. Interpretable clustering: an optimization
approach. Machine Learning, 110(1):89–138, 2021.

Daniel Borkan, Lucas Dixon, Jeffrey Sorensen, Nithum Thain, and Lucy Vasserman. Nuanced
metrics for measuring unintended bias with real data for text classification. In Companion Pro-
ceedings of The 2019 World Wide Web Conference, 2019.

Austin J Brockmeier, Claudio Cesar Claros-Olivares, Matthew Emigh, and Luis Gonzalo Sanchez
Giraldo. Identifying the instances associated with distribution shifts using the max-sliced bures
divergence. In NeurIPS 2021 Workshop on Distribution Shifts: Connecting Methods and Appli-
cations, 2021.

Kailash Budhathoki, Dominik Janzing, Patrick Bloebaum, and Hoiyi Ng. Why did the distribution
change? In Arindam Banerjee and Kenji Fukumizu (eds.), Proceedings of The 24th Interna-
tional Conference on Artificial Intelligence and Statistics, volume 130 of Proceedings of Machine
Learning Research, pp. 1666–1674. PMLR, 13–15 Apr 2021. URL http://proceedings.
mlr.press/v130/budhathoki21a.html.

Yunjey Choi, Minje Choi, Munyoung Kim, Jung-Woo Ha, Sunghun Kim, and Jaegul Choo. Star-
gan: Unified generative adversarial networks for multi-domain image-to-image translation. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018.

Marco Cuturi. Sinkhorn distances: Lightspeed computation of optimal transport. Advances in neural
information processing systems, 26:2292–2300, 2013.

Li Deng. The mnist database of handwritten digit images for machine learning research. IEEE
Signal Processing Magazine, 29(6):141–142, 2012.

Finale Doshi-Velez and Been Kim. Towards a rigorous science of interpretable machine learning.
arXiv preprint arXiv:1702.08608, 2017.

Ricardo Fraiman, Badih Ghattas, and Marcela Svarc. Interpretable clustering using unsupervised
binary trees. Advances in Data Analysis and Classification, 7(2):125–145, 2013.

Aude Genevay, Lénaic Chizat, Francis Bach, Marco Cuturi, and Gabriel Peyré. Sample complex-
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A ADDITIONAL TRANSPORTATION MAPPINGS DETAILS AND PROOFS

A.1 FINDING K-PAIRED CLUSTERS

Algorithm 1 Finding k Paired Clusters

Input: X , Y , k
d← X.ndim
TOT ← OptimalTransportAlg(X,Y ) //e.g., Sinkhorn
Z ← [X,TOT (X)]
Zcluster−centroids ← ClusteringAlg(Z, k) //e.g., k-means
Msrc ← [Zcluster−centroids]1:d //slicing column-wise
Mtgt ← [Zcluster−centroids]d:2d
Output: Msrc, Mtgt

A.2 INFINITE NUMBER OF POSSIBLE MAPPINGS BETWEEN DISTRIBUTIONS

As stated in the introduction, given two distributions, there exist many possible mappings such that
T♯Psrc = Ptgt (it should be noted that here we are speaking of the general mapping problem, not
the optimal transport problem which can be shown via Brenier’s theorem Peyré & Cuturi (2019) to
have a unique matching for some cases). For instance, given two isometric Gaussian distributions
x ∼ N1(µ1, I), y ∼ N2(µ2, I), where I is the Identity matrix, there exist an infinite number of
T ’s such that T (x) ∼ N2. Specifically, any T of the form: T (x) = µ2 + R(x − µ1), where is
R is an arbitrary rotation matrix, will shift T♯N1 to have a mean of µ2 and perfectly align the two
distributions (since any rotation of an isometric Gaussian will still be an isometric Gaussian).

A.3 DISTANCE IN EMPIRICAL INTERPRETABLE TRANSPORT UPPER-BOUNDS THE
WASSERSTEIN DISTANCE

First, let’s remember our empirical method for finding T :

argmin
T∈Ω

1

N

N∑
i

c(x(i), T (x(i))) + λd(T (x(i)), TOT (x
(i))) (5)

where TOT is the optimal transport solution between our source and target domains with the given c
cost function. The distance term d on the right-hand side of this equation is assumed to be the ℓ2 cost
or squared euclidean cost and is an empirical approximation of the divergence term ϕ(PT (x), PY )
in Eqn. 1, where ϕ is assumed to be the Wasserstein distance, W . We claim this is a reasonable
approximation since as N approaches the size of the dataset (or for densities, limN→∞), the dis-
tance term becomes the expectation: Ex∼Psrc

d(T (x(i)), TOT (x
(i))) which is an upper-bound on

the W (PT (x), PY ) distance. To show this, we start with the expanded W distance:

W (PT (x), PY ) = min
R∈Ψ

Ex∼Psrc
d (T (x), R(T (x))) , Ψ := {R : R♯T (x) = PY }

≤ Ex∼Psrc
d (T (x), R(T (x))) , ∀R ∈ Ψ

If we let Q = TOT · T−1, and since Q ∈ Ψ we can say
≤ Ex∼Psrc

d (T (x), Q(T (x))) = Ex∼Psrc
d (T (x), TOT (x)))

=⇒ W (PT (x), PY ) ≤ Ex∼Psrc
d (T (x), TOT (x)))

A.4 PROVING THE K-SPARSE OPTIMAL TRANSPORT IS THE K-SPARSE TRANSPORT THAT
MINIMIZES OUR DISTANCE FROM OT LOSS

When performing unrestricted k-sparse transport, i.e. where Ω
(k)
sparse is any transport which only

moves points along k dimensions, the k-sparse optimal transport solution is the exact mapping that
minimizes the distance function in the right-hand side of Eqn. 5 if d is the ℓ2 distance or squared
Euclidean distance. As a reminder, k-sparse optimal transport is: [T (x)]j = [TOT (x)]j if j ∈ A,
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else [x]j , whereA is the active set of k dimensions which our k-sparse transport T can move points.
Let Ā be A’s complement (i.e. the dimensions which are unchanged under T ). Let z = T (x),
zOT = TOT (x), and x ∈ Rn×d. If d is the squared Euclidean distance:

d(z, zOT ) =
∑
j∈[d]

∑
i∈[n]

(
zi,j − zOTi,j

)2
=

∑
j∈A

∑
i∈[n]

(
zi,j − zOTi,j

)2
+

∑
j∈Ā

∑
i∈[n]

(
xi,j − zOTi,j

)2
︸ ︷︷ ︸

=α , since constant w.r.t T

=
∑
j∈A

∑
i∈[n]

(
zi,j − zOTi,j

)2
+ α

now if T is the truncated optimal transport solution, [z]j = [zOT ]j ∀j ∈ A
= 0 + α

Since α is the minimum of d(z − zOT ) for a given A, the truncated optimal transport problem
minimizes the d(T (x(i)), TOT (x

(i))) distance. This can easily be extended to show that the optimal
active set for this case is the one that minimizes α, thus the active set should be the k dimensions
which have the largest squared difference between x and zOT .

A.5 PROOF THAT K-MEAN SHIFT IS THE K-VECTOR SHIFT THAT GIVES US THE BEST
ALIGNMENT

When performing k-sparse vector transport, i.e. where Ω
(k)
vector = {T : T (x) = x + δ̃} where

δ̃ = [δ]j if j ∈ A else [δ]j = 0 and δ ∈ Rd, |A| ≤ k, the k-sparse mean shift solution is the
exact mapping that minimizes the distance function in the right-hand side of Eqn. 5 when d is the ℓ2
distance.

d(z, zOT ) =
∑
j∈[d]

∑
i∈[n]

(
zi,j − zOTi,j

)2
=

∑
j∈A

∑
i∈[n]

(
zi,j − zOTi,j

)2
+

∑
j∈Ā

∑
i∈[n]

(
xi,j − zOTi,j

)2
︸ ︷︷ ︸

=α , since constant w.r.t T

=
∑
j∈A

∑
i∈[n]

(
zi,j − zOTi,j

)2
+ α

=
∑
j∈A

∑
i∈[n]

(
xi,j + δj − zOTi,j

)2
+ α

=
∑
j∈A

∑
i∈[n]

(
x2
i,j + δ2j + z2

OTi,j
+ 2δj(xi,j − zOTi,j )− 2zOTi,jδj − 2xi,jzOTi,j

)
+ α

Similar to the k-sparse optimal transport solution, we can see that A should be selected as the k
dimensions which have the largest shift, thus minimizing α. The coordinate-wise gradient of the
above equation is:

∇δj d(z, zOT ) =

{∑
i∈[n]

(
2δj + 2xi,j − 2zOTi,j

)
j ∈ A

0 j ∈ Ā

Now with this we can say:
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∇δj∈A d(z, zOT ) =
∑
i∈[n]

(
2δj + 2xi,j − 2zOTi,j

)
= 2nδj +

∑
i∈[n]

(
2xi,j − 2zOTi,j

)
now let δj = δ∗j

0 = 2nδ∗j +
∑
i∈[n]

(
2xi,j − 2zOTi,j

)
nδ∗j =

∑
i∈[n]

(
zOTi,j

− xi,j

)
δ∗j =

1

n

∑
i∈[n]

(
zOTi,j

− xi,j

)
δ∗j = µzOTj

− µxj

Thus showing the optimal delta vector to minimize k-vector transport is exactly the k-sparse mean
shift solution.

B CHALLENGES OF EXPLAINING DISTRIBUTION SHIFTS AND LIMITATIONS
OF OUR METHOD

Distribution shift is a ubiquitous and quite challenging problem. Thus, we believe discussing the
challenges of this problem and the limitations of our solution should aid in advancements in this
area of explaining distribution shifts.

As mentioned in the main body, as distribution shifts can take many forms, trying to explain a distri-
bution shift is a highly context-dependent problem (i.e., dependent on the data setting, task setting,
and operator knowledge). Thus, a primary challenge in developing distribution shift explanations is
determining how to evaluate whether a given explanation is valid for a given context. In this work,
we hope to introduce the problem of explaining distribution shifts in general (i.e. not with a specific
task nor setting in mind), therefore we do not have an automated way of measuring whether a given
explanation is indeed interpretable. Evaluating explanations is an active area of research Robnik-
vSikonja & Bohanec (2018); Molnar (2020); Doshi-Velez & Kim (2017) with commonalities such
as an explanation should be contrastive, succinct, should highlight abnormalities, and should have
high fidelity. Instead, we introduce a proxy method that supplies the operator with the PercentEx-
plained and the adjustable k-level of sparse/cluster mappings but leaves the task of validating the
explanation up to the operator. We believe developing new shift explanation maps and criteria for
specific applications (e.g., explaining the results of experiments run with different initial conditions)
is a rich area for future work.

Explaining distribution shifts becomes more difficult when the original data is not interpretable.
This typically can take two forms: 1) the raw data features are uninterpretable but the samples
are interpretable (e.g., a sample from the CelebA dataset Liu et al. (2015) is interpretable but the
pixel-level features are not) or 2) when both the raw data features and samples are uninterpretable
(e.g., raw experimental outputs from material science simulations). In the first case, one can use
the set of counterfactual pairs method outlined in subsection 6.2 (see Fig. 8 for examples with
CelebA), however, as mentioned in the main paper, this is less sample efficient than an interpretable
transport map. For the second case, if the original features are not interpretable, one must first find
an interpretable latent feature space – which is a challenging problem by itself. As seen in Fig. 10,
it is possible to solve for a semantic latent space and solve interpretable transport maps within the
latent space, in this case, the latent space of a VAE model. However, if the meaningful latent features
are not extracted, then any transport map within this latent space will be meaningless. In the case of
Fig. 10, the 3-cluster explanation is likely only interpretable because we know the ground truth and
thus know what to look for. As such, this is still an open problem and one we hope future work can
improve on.
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Additionally, while the PercentExplained metric shows the fidelity of an explanation (i.e. how
aligned T♯(Psrc) and Ptgt are), we do not have a method of knowing specifically what is missing
from the explanation. This missing part of the explanation can be considered a “known unknown”.
For example, if a given T has a PercentExplained of 85%, we know how much is missing, but we
do not know what information is contained in the missing 15%. Similarly, when trying to explain an
image-based distribution shift with large differences in content (e.g., a dataset with blonde humans
and a dataset with bald humans), leveraging existing style transfer architectures (where one wishes
to only change the style of an image while retaining as much of the original content as possible) to
generate distributional counterfactuals can lead to misleading explanations. This is because explain-
ing image-based distribution shifts might require large changes in content (such as removing head
hair from an image), which most style-transfer models are biased against doing. As an example,
Fig. 8 shows an experiment that translates between five CelebA domains (blond hair, brown hair,
wearing hat, bangs, bald). It can be seen that the StarGAN model can successfully translate between
stylistic differences such as “blond hair”→ “brown hair” but is unable to make significant content
changes such as “bangs”→ “bald”.

The above issues are mainly problems that affect distribution shift explanations in general, but below
are issues specific to our shift explanation method (or any method which similarly uses empirical
OT). Since we rely on the empirical OT solution for the sparse and cluster transport (and the percent
explained metric), the weaknesses of empirical OT are also inherited. For example, empirical OT,
even using the Sinkhorn algorithm with entropic regularization, scales at least quadratically in the
number of samples Cuturi (2013). Thus, this is only practical for thousands of samples. Further-
more, empirical OT is known to poorly approximate the true population-level OT in high dimensions
although entropic regularization can reduce this problem Genevay et al. (2019). Finally, empirical
OT does not provide maps for new test points. Some of these problems could be alleviated by using
recent Wasserstein-2 approximations to optimal maps via gradients of input-convex neural networks
based on the dual form of Wasserstein-2 distance Korotin et al. (2019); Makkuva et al. (2020).
Additionally, when using k-cluster maps, the clusters are not guaranteed to be significant (i.e. it
might be indiscernible what makes this cluster different than another cluster), and thus if using k-
cluster maps on datasets that do not have natural significant clusters (e.g., Psrc ∼Uniform(0, 1),
Ptgt ∼Uniform(1, 2)) an operator might waste time looking for significance where there is none.
While this cannot be avoided in general, using a clustering method that is either specifically de-
signed for finding interpretable clusters Fraiman et al. (2013); Bertsimas et al. (2021) or one which
directly optimizes the objective in interpretable transport equation Eqn. 1 might lead to easier to
explanations which are easier to interpret or validate.

C EXPERIMENTS ON KNOWN SHIFTS

Here we present additional results on simulated experiments as well as an experiment on UCI
“Breast Cancer Wisconsin (Original)” dataset Mangasarian & Wolberg (1990). Our goal is to il-
luminate when to use the different sets of interpretable transport, and how the explanations can be
interpreted, where in this case, a ground truth explanation is known. 1

C.1 SIMULATED EXPERIMENTS

In this section we study three toy shift problems: a mean shift between two, otherwise identical,
Gaussian distributions, a Gaussian mixture model where each mixture component has a different
mean shift, and a flipped and shifted half-moon dataset, as seen in figures (a), (d), and (g) in Fig. 4.

The first case is of a mean shift between two, otherwise identical, Gaussian distributions can be
easily explained using k-sparse mean shift (as well as vanilla mean shift). We first calculate the
OT mapping TOT between the two Gaussian distributions, which has a closed form solution of
TOT (x) = µtgt + A(x − µsrc), where A is a matrix that can be seen as a conversion between the
source and target covariance matrices, and because the covariance matrices are identical, A is the
identity.

1Code to recreate all experiments seen here and in the main body of the paper will be released upon accep-
tance.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4: Three toy dataset shift examples showing the advantages of the different shift explanation
methods, where a mean shift between Gaussians (top row) can be easily explained using k-sparse
vector shifts, a varying mean shift across mixture components of a Gaussian mixture model (middle
row) is best explained using k-sparse transport maps, while a complex shift (bottom row) requires
a complex feature-wise mapping, such as k-sparse optimal transport, which maximally aligns the
distributions as it can perform conditional transport mappings for each sample (as seen by the dif-
fering vertical shifts in (h) depending on where the blue sample lies on the horizontal axis), at the
expense of interpretability. Each example shows three levels of decreasing interpretability, where
the leftmost column shows the original shift (which has maximal interpretability since k = 0) from
source (blue diamonds) to target (red down arrows), and the rightmost column shows a shift with
near-perfect fidelity.

The second toy example of distribution shift is a shifted Gaussian mixture model which represents a
case where groups within a distribution shift in different ways. An example of this type of shift could
be explaining the change in immune response data across patients given different forms of treatment
for a disease. Looking at (d) in Fig. 4, it is clear that sparse feature transport will not easily explain
this shift. Instead, we turn to cluster-based explanations, where we first find k paired clusters and
attempt to show how these shift from Psrc to Ptgt. Following the mean-shift transport of paired
clusters approach outlined in subsection 4.4, the k = 3 case as seen in the Appendix shows that
three clusters can sufficiently approximate the shift by averaging the shift between similar groups.
If a more faithful explanation is required, (f) of Fig. 4 shows that increasing k to 6 clusters can
recover the full shift, i.e. PercentExplained=100, at the expense of being less interpretable (which is
especially true in a real-world case where the number of dimensions might be large).

The half-moon example, figure (g) in Fig. 4, shows a case where a complex feature-wise dependency
change has occurred. This example is likely best explained via feature-wise movement, so will use
k-sparse transport. If we follow the approach in subsection 4.3 with our interpretable set as the Ω(k)

and let k = 1, we get a mapping that is interpretable, but has poor alignment (see Figure (h) in
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Fig. 4). For this example, we can possibly reject this explanation due to a poor PercentExplained.
With the understanding that this shift is not explainable via just one feature, we can instead use a
k = 2-sparse OT solution. The k = 2 case can be seen in (i) of Fig. 4 which shows that this approach
aligns the distributions perfectly, at the expense of interpretability.

C.2 EXPLAINING SHIFT IN WISCONSIN BREAST CANCER DATASET

2 Features: “Bare Nuclei and Cell Size were shifted by 
6.28 and 5.27”

5 Features: “Bare Nuclei, Cell Size, Cell Shape, Normal 
Nucleoli, and Marginal Adhesion were shifted 
by 6.28, 5.27, 5.15, 4.6, 4.24”

All Features: “Bare Nuclei, Cell Size, Cell Shape, Normal 
Nucleoli, Marginal Adhesion, Clump Thickness, 
Bland Chromatin, Single Epithelial Cell Size, 
and Mitoses were shifted by 6.28, 5.27, 5.15, 
4.6, 4.24, 4.22, 3.89, 3.22, 1.54
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Figure 5: A comparison of the performance of k-sparse mean shift explanations (solid line) and k-
sparse optimal transport explanations (dashed line) when explaining the shift from the benign tumor
samples to malignant tumor samples for the UCI Wisconsin Breast Cancer dataset. On the right are
example explanations a human operator would see as they change the level of interpretability during
k-sparse mean shift explanations (where “All Features” is the baseline full mean shift explanation).

This tabular dataset consists of tumor samples collected by Mangasarian & Wolberg (1990) where
each sample is described using nine features which are normalized to integers from [0, 10]. We split
the dataset along the class dimension and set Psrc to be the 443 benign tumors and Ptgt as the 239
malignant samples. To explain the shift, we used two forms of k-sparse transport, the first being k-
sparse mean transport and the second being k-sparse optimal transport. The left of Fig. 5 shows that
the k-sparse mean shift explanation is sufficient for capturing the 50% of the shift between Psrc and
Ptgt using only four features, and nearly 80% of the shift with all 9 features. However, if an analyst
requires a more faithful mapping, they can use the k-sparse OT explanation which can recover the
full shift, at the expense of the interpretability. The right of Fig. 5 shows example explanations that
an analyst can use along with their context-specific expertise for determining the main differences
between the different tumors they are studying.

C.3 COUNTERFACTUAL EXAMPLE EXPERIMENT TO EXPLAIN A MULTI-MNIST SHIFT

Figure 6: A grid of 25 raw samples from each domain (left is Psrc and right is Ptgt). Even for
the relatively simple shift seen in the Shifted Multi-MNIST dataset, it may be hard to tell what is
different between the two distributions by just looking at samples (without knowing the oracle shift).
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As mentioned in subsection 6.2, image-based shifts can be explained by supplying an operator with
a set of distributional counterfactual images with the notion that the operator would resolve which
semantic features are distribution-specific. Here we provide a toy experiment (as opposed to the
real-world experiment seen in subsection 6.2) to illustrate the power of distributional counterfactual
examples. To do this, we apply the distributional counterfactual example approach to a Multi-
MNIST dataset where each sample consists of a row of three randomly selected MNIST digits Deng
(2012) and is split such that Psrc consists of all samples where the middle digit is even and zero and
Ptgt is all samples where the middle digit is odd, as seen in Fig. 6.

𝑃!"# 𝑃!"#→ 𝑃$%$ 𝑃$%$𝑃$%$→ 𝑃!"#𝑃!"# 𝑃$%$

Figure 7: A comparison of the baseline grid of unpaired source and target samples (left) and counter-
factual pairs (right) which show how counterfactual examples can highlight the difference between
the two distributions. For each image, the top left digit represents the class label, the middle digit
represents the distribution label (where Psrc only contains even digits and zero and Ptgt has odd
digits), and the bottom right digit is noise information and is randomly chosen. The second, third
columns show the counterfactuals from Psrc → Ptgt and Ptgt → Psrc, respectively. Hence we can
see under the push forward of each image the “evenness” of the domain digit changes while the class
and noise digits remain unchanged.

Algorithm 2 Generating distributional counterfactuals using DIVA

Input: x1 ∼ D1, x2 ∼ D2, model
zy1

, zd1
, zresidual1 ← model.encode(x1)

zy2
, zd2

, zresidual2 ← model.encode(x2)
x̂1→2 ← model.decode(zy1

, zd2
, zresidual1 )

x̂2→1 ← model.decode(zy2
, zd1

, zresidual2 )
Output: x̂1→2, x̂2→1

To generate the counterfactual examples, we use a Domain Invariant Variational Autoencoder
(DIVA) Ilse et al. (2020), which is designed to have three independent latent spaces: one for class
information, one for domain-specific information (or in this case, distribution-specific information),
and one for any residual information. We trained DIVA on the Shifted Multi-MNIST dataset for 600
epochs with a KL-β value of 10 and latent dimension of 64 for each of the three sub-spaces. Then,
for each image counterfactual, we sampled one image from the source and one image from the target
and encoded each image into three latent vectors: zy , zd, and zresidual. The latent encoding zd was
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then “swapped” between the two encoded images, and the resulting latent vector set was decoded
to produce the counterfactual for each image. This process is detailed in Algorithm 2 below. The
resulting counterfactuals can be seen in Fig. 7 where the middle digit maps from the source (i.e.,
odd digits) to the target (i.e., even digits) and vice versa while keeping the other content unchanged
(i.e., the top and bottom digits).

C.4 USING STARGAN TO EXPLAIN DISTRIBUTION SHIFTS IN CELEBA

Here we apply the distributional counterfactual approach seen in subsection 6.2 to the CelebA
dataset Liu et al. (2015), which contains over 200K images of celebrities, each with 40 attribute
annotations. We split the original dataset into 5 related sets, P1=“blonde hair”, P2=“brunette hair”,
P3=“wearing hat”, P4=“bangs”, P5=“bald”. These five sets were chosen as they are related con-
cepts (all related to hair) yet mostly visually distinct. Although there are images with overlapping
attributes, such as a blonde/brunette person with bangs, these are rare and naturally occurring, thus
they were not excluded.

𝑃!→# 𝑃!→$ 𝑃!→% 𝑃!→& 𝑃!→'𝑃!
𝑃#

𝑃$

𝑃%

𝑃&

𝑃'

Original Counterfactual Examples𝑃# 𝑃$ 𝑃% 𝑃& 𝑃'

Figure 8: StarGAN is able to adequately translate between distributions with similar content but
different style (e.g., P1 → P2), however, when transporting between distributions with different
content (e.g., ”no hat” → P3) the I2I model is unable to properly capture the shift. This is likely
due to the model being biased to only change the style of the image, while maintaining as much
content as possible. The figure breakdown is similar to Fig. 3 with the baseline method of unpaired
samples on the left and paired counterfactual images on the right, where here P1=“blonde hair”,
P2=“brunette hair”, P3=“wearing hat”, P4=“bangs”, P5=“bald”.

We trained a StarGAN model Choi et al. (2018) to generate distributional counterfactuals following
the same approach seen in subsection 6.2. The result of this process can be seen in Fig. 8, where we
can see the model successfully translating “stylistic” parts of the image such as hair color. However,
the model is unable to translate between distributions with larger differences in “content” such as
removing hair when translating to “bald”. This highlights a difference between I2I tasks such as
style transfer (where one wishes to bias a model to only change the style of an image while retain-
ing as much of the original content as possible) the mappings required for explaining image-based
distribution shifts, which might require large changes in content (such as adding a hat to an image).

D EXPLAINING SHIFTS IN IMAGES VIA HIGH-DIMENSIONAL
INTERPRETABLE TRANSPORTATION MAPS

If x is an image with domain Rd>>1, then any non-trivial transportation map in this space is likely to
be hard to optimize for as well as uninterpretable. However, if Psrc, Ptgt can be expressed on some
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interpretable lower dimensional manifold which is learned by some manifold-invertible function
g : Rd → Rk where k < d, we can project Psrc, Ptgt onto this latent space and solve for an
interpretable mapping such that it aligns the distributions in the latent space, PT (g(x)) ≈ Pg(y).
Note, in practice, an encoder-decoder with an interpretable latent space can be used for g, however,
requiring g to be exactly invertible allows for mathematical simplifications, which we will see later.
For explainability purposes, we can use g−1 to re-project T (g(x)) back to Rd in order to display the
transported image to an operator. With this, we can define our set of high dimensional interpretable
transport maps: Ωhigh-dim :−

{
T : T = g−1

(
T̃ (g(x))

)
, T̃ ∈ Ω(k), g ∈ I

}
where Ω(k) is the set of

k-interpretable mappings (e.g., k-sparse or k-cluster maps) and I is the set of invertible functions
with an interpretable (i.e. semantically meaningful) latent space.

Looking at our interpretable transport problem:

argmin
T∈Ωhigh-dim

EPsrc [c(x, T (x))] + λFidϕ(PT (x)), Py) (6)

Although our transport is now happening in a semantically meaningful space, our transportation
cost is still happening in the original raw pixel space. This is undesirable since we want a transport
cost that penalizes large semantic movements, even if the true change in the pixel space is small
(e.g., a change from “dachshund” to “hot dog” would be a large semantic movement). We can take
a similar approach as before and instead calculate our transportation cost in the g space. This logic
can similarly be applied to our divergence function ϕ (especially if ϕ is the Wasserstein distance,
since this term can be seen as the residual shift not explained by T ). Thus, calculating our cost and
alignment functions within the latent space gives us:

argmin
g∈I,T̃∈Ω(k)

EPsrc

[
c
(
g(x), T̃ (g(x))

)]
+ λϕ(PT̃ (g(x)), Pg(y)) (7)

This formulation has a critical problem however. Since we are jointly learning our representation
g and our transport map T , a trivial solution for the above minimization is for g to map each point
to an arbitrarily small space such that the distance between any two points c(g(x), g(y)) ≈ 0, thus
giving us a near zero cost regardless of how “far” we move points. To avoid this, we can use pre-
defined image representation function h, e.g., the latter layers in Inception V3, and calculate pseudo-
distances between transported images in this space. Because h expects an image as an input, we can
utilize the invertibility of g and perform our cost calculation as: c

(
h(x), h

(
g−1

(
T̃ (g(x))

)))
, or

more simply, ch (x, T (x)), where T = g−1
(
T̃ (g(x))

)
. Similar to the previous equation, we also

apply this h pseudo-distance to our divergence function to get ϕh. With this approach, we can still
use g to jointly learn a semantic representation which is specific to our source and target domains
(unlike h which is trained on images in general, e.g., ImageNet) and an interpretable transport map
T̃ within g’s latent space. This gives us:

argmin
g∈I,T∈Ω

EPsrc
[ch (x, T (x))] + λϕh(PT (x), Py) (8)

While the above equation is an ideal approach, it can be difficult to use standard gradient approaches
to optimize over in practice due it being a joint optimization problem and any gradient information
having to first pass through h which could be a large neural network. To simplify this, we can op-
timize T̃ and g separately. With this, we can first find a g which properly encodes our source and
target distributions into a semantically meaningful latent space, and then find the best interpretable
transport to align the distributions in the fixed latent space. The problem can be even further simpli-
fied by setting the pre-trained image representation function h to be equal to the pretrained g, since
the disjoint learning of g and T̃ removes the shrinking cost problem. By setting h := g, we can see
that c

(
h(x), h ◦ g−1 ◦ T̃ ◦ g(x)

)
= c

(
g(x), T̃ ◦ g(x)

)
= cg(x, T̃ (x)), which simplifies Eqn. 8

back to our interpretable transport problem, Eqn. 6, where g is treated as a pre-processing step on
the input images:

argmin
T∈Ω

EPsrc
[c(g(x), g (T (x)))] + λϕg(PT (x)), Py) (9)
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Another way to simplify Eqn. 8 is to relax the constraint that g is manifold-invertible and instead use
a pseudo-invertible function such as an encoder g and decoder g+ structure where g+ is a pseudo-
inverse to g such that g+(g(x)) ≈ x. This gives us:

argmin
T̃∈Ω̃,g,g+

EPsrc

[
ch

(
x, g+(T̃ (g(x)))

)]
+ λFid ϕh(Pg+(T̃ (g(x))), Py)

+ λRecon E 1
2Psrc+

1
2Ptgt

[
L
(
x, g+(T̃ (g(x)))

)] (10)

where L(x, ·) is some reconstructive-loss function.

D.1 EXPLAINING A COLORIZED-MNIST SHIFT VIA HIGH-DIMENSIONAL INTERPRETABLE
TRANSPORT

In this section we present a preliminary experiment showing the validity of our framework for ex-
plaining high-dimensional shifts. The experiment consists of using k-cluster maps to explain a shift
in a colorized-version of MNIST, where the source environment is yellow/light red digits with a
light grayscale background color (i.e. light gray) and the target environment consists of darker red
digits and/or a darker grayscale background colors. Like the lower dimensional experiments before,
our goal is to test our method on a shift where the ground truth is known and thus the explanation
can validated against. We follow the framework presented in Eqn. 9, where the fixed g is a semi-
supervised VAE Siddharth et al. (2017) which is trained on a concatenation of Psrc and Ptgt. Our
results show that k-cluster transport can capture the shift and explain the shift, however, we sus-
pect the given explanation is interpretable because the ground truth is already known. Our hope is
that future work will improve upon this framework by better finding a latent space which is inter-
pretable and disentangled, leading to better latent mappings, and thus better high-dimensional shift
explanations.

Figure 9: The left figure shows samples from the source environment which has lighter digits and
backgrounds while the right figure shows the target environment which has darker digits and/or
darker backgrounds

Data Generation The base data is the 60,000 grayscale handwritten digits from the MNIST
dataset Deng (2012). We first colored each digit by copying itself along the red and green chan-
nel axes with an empty blue channel, yielding an initial dataset of yellow digits. We then randomly
sampled 60,000 points from a two-dimensional Beta distribution with shape parameters, α = β = 5.
The first dimension of our Beta distribution represented how much of the green channel would be
visible per sample meaning low values would result in a red image, while high values would result
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in a yellow image. The second dimension of our Beta distribution represented how white vs. black
the background of the image would be, where 0 := black background and 1 := white background.

Specifically, the data was generated as follows. With xraw representing a grayscale digit from the
unprocessed MNIST dataset, a mask of representing the background was calculated m = xraw ≤
0.1, where any pixel value below 0.1 is deemed to be the background (where each pixel value
∈ [0, 1]). Then, the foreground (i.e. digit) color was created xdigit−color = [(1−m) ·xraw, b1 ·(1−
m) ·xraw,0], where 0 is a zero-valued matrix matching the size of xraw and b1 ∼ Beta(α, β). The
background color was calculated via xback−color = [b2 ·m·xraw, b2 ·m·xraw, b2 ·m·xraw]. Then
xcolored = xdigit−color + xback−color, which results in a colorized MNIST digit with a stochastic
foreground and background coloring.

The environments were created by setting the source environment to be any images where b1 ≥
0.4 and b2 ≥ 0.4, i.e. any colorized digits that had over 40% of the green channel visible and a
background at least 40% white, and the target environment is all other images. Informally, this split
can be thought of as three sub-shifts: a shift which is only reddens the digit, a second shift which
only a darkens the background, and a third shift which is both a digit reddening and background
darkening. The environments can be seen in Fig. 9.

Model To encode and decode the colored images, we used a semi-supervised VAE (SSVAE) Sid-
dharth et al. (2017). The SSVAE encoder consisted of an initial linear layer with input size of
3 · 28 · 28 and a latent size of 1024. This was then multi-headed into a classification linear layer
of size 1024 to 10, and for each sample with a label, digit label classification was performed on the
output of this layer. The second head of the input layer was sent to a style linear layer of size 1024 to
50 which is to represent the style of the digit (and is not used in classification). The decoder followed
a typical VAE decoder approach on a concatenation of the classification and style latent dimensions.
The SSVAE was trained for 200 epochs on a concatenation of both Psrc and Ptgt with 80% of the
labels available per environment, and a batch size of 128 (for training details please see Siddharth
et al. (2017)). The transport mapping was then found on the saved lower-dimensional embeddings.

Figure 10: The linear interpolation explanations for the three clusters where the left cluster seems
to explain the darkening digit shift, the right-most figure explains the shift which darkens the back-
ground, and the middle cluster explains the case where both digit and background darkens. For each
cluster, the left-most digit x is the reconstruction of original encoding from the source distribution,
the right-most digit is the cluster-based push-forward of that digit T (x), and the three middle images
are reconstructions of a linear interpolations λ · x+ (1− λ) · T (x) with λ ∈ {0.25, 0.5, 0.75}.

Shift Explanation Results Given the shift is divided into three main sub-shifts, we used k = 3
cluster maps to explain the shift. We followed the approach given in Eqn. 9, where the three clus-
ter labels and transport were found in the 60 dimensional latent space using the algorithm given in
Algorithm 1. Since our current approach is not able to find a latent space with disentangled and
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semantically meaningful axes, we cannot use the mean shift information per cluster as the explana-
tion itself (as it is meaningless if the space is uninterpretable). Instead, we provide an operator with
m samples from our source environment and the linear interpolation to the samples’ push-forward
versions under the target environment, for each cluster. The goal is for the operator to discern the
meaning of each cluster’s mean shift by finding the invariances across the m linear interpolations.
The explanations can be seen in Fig. 10.

The linear interpolations from the first cluster (the left of Fig. 10) seem to show a darkening of the
source digit, while keeping the background relatively constant. The third cluster (right-most side
of the figure) represents the situation where only the background is darkened but the digit is not.
Finally, the third cluster seems to explain the sub-shift where both the background and the digit are
darkened. However, the changes made in the figures are quite faint, and without a priori knowledge
of the shift it is possible that this could be an insufficient explanation. As mentioned in Section 6,
this could be improved by finding a disentangled latent space with semantically meaningful dimen-
sions, better approximating high dimensional empirical optimal transport maps, jointly finding a
representation space and transport map like in Eqn. 4, and more; however, these advancements are
out of scope for this work. We hope that this current preliminary experiment showcases the validity
of using transportation maps to explain distribution shifts in images and inspires future work to build
upon this foundation.
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