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The emergence of single-cell Hi-C (scHi-C) technology has provided unprecedented opportunities for
investigating the intricate relationship between cell cycle phases and the three-dimensional (3D)
structure of chromatin. However, accurately predicting cell cycle phases based on scHi-C data
remains a formidable challenge. Here, we present scHiCyclePred, a prediction model that integrates
multiple feature sets to leverage scHi-C data for predicting cell cycle phases. scHiCyclePred extracts
3D chromatin structure features by incorporatingmulti-scale interaction information. The comparative
analysis illustrates that scHiCyclePred surpasses existing methods such as Nagano_method and
CIRCLET across various metrics including accuracy (ACC), F1 score, Precision, Recall, and balanced
accuracy (BACC). In addition, we evaluate scHiCyclePred against the previously published CIRCLET
using the dataset of complex tissues (Liu_dataset). Experimental results reveal significant
improvements with scHiCyclePred exhibiting improvements of 0.39, 0.52, 0.52, and 0.39 over the
CIRCLET in terms of ACC, F1 score, Precision, and Recall metrics, respectively. Furthermore, we
conduct analyses on three-dimensional chromatin dynamics and gene features during the cell cycle,
providing a more comprehensive understanding of cell cycle dynamics through chromatin structure.
scHiCyclePred not only offers insights into cell biology but also holds promise for catalyzing
breakthroughs in disease research. Access scHiCyclePred on GitHub at https:// github.com/
HaoWuLab-Bioinformatics/ scHiCyclePred.

The cell cycle is a highly complex process that involves dynamic changes in
various cellular components, including RNA, DNA, and proteins1–5. To
delve into the dynamics of the cell cycle, it is essential to analyze the rela-
tionship between the cell cycle phases and the state of these cellular com-
ponents, whichunderpins this fundamental biological process. In this study,
we focus on the cell cycle, a multifaceted biological process conventionally
categorized into four distinct stages: G1 phase (the stage of cellular growth),
Early-S phase (the early stage of DNA synthesis), Mid-S phase (the inter-
mediate stage of DNA synthesis), and Late-S/G2 phase (the concluding
stage of DNA synthesis). Notably, the three-dimensional structures of

chromatin undergo dynamic variations across these stages, thereby exerting
profound effects on gene expression patterns. In a previous study, Ye et al.
found that changes in chromatin structure are relatively obvious during the
S phase due to DNA replication6. Therefore, achieving a precise classifica-
tion of these four cell cycle stages is paramount for gaining deeper insights
into cellular functionality and regulatory mechanisms.

Fluorescence imaging is a powerful tool for understanding the rela-
tionship between subcellular processes and cellular behavior. Computa-
tional analysis of cell-to-cell heterogeneity in single-cell RNA-sequencing
(scRNA-seq) data has revealed hidden subpopulations of cells7–15. Previous
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studies have utilized fluorescence imaging to predict cell cycle phases, such
as Ersoy et al.‘s fast implementation ofmulti-phase graphpartitioning active
contours (fastGPAC)16, which integrated fluorescently tagged feature dis-
tribution with a support vector machine (SVM) to predict cell cycle phases
using images of the fluorescently tagged protein GFP-PCNA. Du et al.17

developed a cell cycle phases classification algorithm based on 3D fluor-
escent images of the chromatin marker histone-GFP that extracted 3D
intensity, shape, and texture information and combinedweighted-SVMand
neural network algorithms. Schonenberger et al.18 proposed a workflow for
classifying cell cycle phases in PCNA-immunolabeled cells using high-
quality single-time-point images based on the unique patterns of PCNA
distribution. Despite their effectiveness, these approaches are laborious,
expensive, and low throughput, posing a significant challenge to research
into the dynamic regulation of the cell cycle.

The advent of high-throughput single-cell technologies has sig-
nificantly elevated the dimensions of single-cell data. This development has
provided a perspective for deducing cell cycle phases. Among single-cell
technologies, scRNA-seq data has emerged as an extremely useful tool for
examining cellular heterogeneity in gene expression with unprecedented
precision. Consequently, it has been widely employed for identifying cell
cycle phases. A case in point is Hsiao et al.19, who utilized scRNA-seq data
analysis to characterize and infer quantitative cell cycle phases. Kowalczyk
et al.20 employed scRNA-seq data to uncover changes in cell cycle phases
during the aging of hematopoietic stem cells.

The emergence of scHi-C technology has revolutionized the study of
chromatin’s three-dimensional structure21. The ability to determine cell
cycle phases from scHi-C data is critical for analyzing and comprehending
changes in chromatin’s spatial structure during various cell cycle phases.
This knowledge is indispensable for revealing cell cycle dynamics. However,
accurately predicting cell cycle phases directly from scHi-C data remains a
formidable challenge. Consequently, some studies have focused on con-
structing the pseudo-trajectory sequence of the cell cycle. For example,
Nagano et al.22 obtained scHi-C data from mouse embryonic stem cells
(mESCs) at different cell cycle stages and utilized machine learning algo-
rithms to calculate the ‘repli-score’, ratio of short-range connections and
frequency of mitotic interactions for each cell. These indicators enabled the
cells to follow the pseudo-trajectory of cell cycles.

Subsequently, we refer to this method and dataset as Nagano_method
and Nagano_dataset, respectively. Liu et al.23 presented a co-assayed
scRNA-seq and scHi-C technology, along with datasets derived from
complex tissues. Particularly, the dataset originated from developingmouse
embryos, and we designate this dataset as Liu_dataset. To achieve precise
cell-cycle phasing at the single-cell level, Liu et al. took advantage of the
double-modality data of Hi-C and RNA-seq employed simultaneously
(HiRES) and devised a strategy to assign single cells to different cell-cycle
phases based on bothDNAandRNAdata. Each phasewas characterized by
distinct profiles of cell-cycle gene expression, DNA replication, and contact
distribution. Ye et al.6 proposed amethod for constructing cell cycle pseudo-
trajectories based on the combination of multiple feature sets called
CIRCLET. The study generated four distinct feature sets and their combi-
nations as inputs for CIRCLET, and the pseudo-trajectory sequence of
single cells was reconstructed by calculating the distance between cells using
the dimensionality reduction method (Wishbone), constructing the
K-Nearest Neighbor (KNN) graph between cells based on the calculated
distance, and dividing the pseudo-trajectory sequence into two semicircle
trajectories using the KNN graph.

However, direct prediction of cell cycle phases using only the con-
structed cell cycle pseudo-trajectory sequence remains challenging, as it is
necessary to know the number of cells contained in each cell cycle phase.
Suppose that there areM cells in theG1phase,N cells in theEarly-Sphase,P
cells in the Mid-S phase, and Q cells in the Late-S/G2 phase. The precise
implementation is to sort the pseudo-trajectory values corresponding to
each cell in ascending order, with the prediction results for the 1 toM cells
being the G1 phase, theM þ 1 toM þ N cells being the Early-S phase, the
M þ N þ 1 toM þ N þ P cells being theMid-S phase, and theM þ N þ

P þ 1 to M þ N þ P þ Q cells being the Late-S/G2 phase. Despite the
potential of constructing the pseudo-trajectory sequence of the cell cycle
from scHi-Cdata, the lack of general datasets containing information on the
number of cells in each cell cycle phase renders it impossible to predict the
cell cycle phases of individual cells.

Furthermore, CIRCLET can solely derive pseudo-trajectory sequences
for cells and cannot directly predict the cell cycle of individual cells, espe-
cially those at cycle boundaries. At the same time, the implementation of
CIRCLET is not entirely automated, necessitating to set the starting point of
the cell pseudo-trajectory sequences, which often requires some level of
experience and trial-and-error to adjust. Secondly, the accuracy of this
method in identifying cell cycle stages is relatively modest, indicating con-
siderable potential for enhancement. Therefore, accurate and user-friendly
computational methods for predicting cell cycle phases based solely on
scHi-C data are urgently needed.

To overcome the hurdles of predicting cell cycle phases from scHi-C
data, we present a computational framework, scHiCyclePred. This frame-
work integrates three feature sets extracted from scHi-C data and employs a
CNNmodel based on multi-feature fusion utilizing deep learning methods
to predict cell cycle phases. In addition to the existing contact probability
distribution versus genomic distance (CDD) feature set, we propose two
additional feature sets: the bin contact probability feature set (BCP) and a
small intra-domain contact probability (SICP) feature set, aimed at
enhancing the accuracy of cell cycle phase prediction. Furthermore, we
benchmark the performance of scHiCyclePred against existing methods
and demonstrate that it outperforms them in predicting cell cycle phases.
Finally, we analyze the changing patterns of chromatin’s three-dimensional
structure during the four cell cycle phases using a model interpretation
approach. Overall, our proposed framework provides an accurate and user-
friendly computational method for predicting cell cycle phases based solely
on scHi-C data and sheds a light on understanding the dynamics of chro-
matin during the cell cycle.

Results
Overview of scHiCyclePred
The deep learning-based framework of scHiCyclePred consists of two
crucial steps: the extraction ofmultiple feature sets and a CNNmodel based
onmulti-feature fusion (Fig. 1). The former extracts features of chromatin’s
three-dimensional structure from the scHi-C data based on multi-scale
interaction information. This step involves extracting the following feature
sets: (1) CDD feature set from the overall cellular interaction information,
(2) BCP feature set from the overall chromatin interaction information, and
(3) SICP feature set from the intra-domain interaction information on
chromatin. To integrate the knowledge of multi-scale interactions in cells
and intuitively predict the cell cycle stage, we develop a CNN model based
onmulti-feature fusion that integrates the three feature sets generated by the
convolution module.

In the CNNmodel based onmulti-feature fusion, three feature vectors
for each cell are input into the model, which generates three vectors in
parallel after passing through two convolution modules composed of a
Conv1d layer, BatchNorm layer, Maxpool layer, and Dropout layer, fol-
lowedby aflatteningprocess. These three generated vectors are thenmerged
into a single vector. The scores fromdifferent categories aremapped using a
linear layer and “log_softmax”, and the classificationoutcome is determined
by the index with the highest score. In the following sections, we provide a
detailed description of the workflows of the two steps in the scHiCyclePred
framework.

Effectiveness evaluation of single feature set and multiple
feature sets
To demonstrate the effectiveness of the multi-scale contact probability
feature sets, we validate and analyze the performance of our extracted fea-
ture sets in this section. To accomplish this, we input each of the three
feature sets into the network model independently and validate the classi-
fication performance obtained by using each feature set separately. To
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ensure the robustness of our results, we partition the Nagano_dataset into
fifty independent training and testing sets by altering the randomseeds,with
the Nagano_dataset being the total of each training and testing set. Subse-
quently, we evaluate the prediction performance of the three feature sets
using four evaluationmetrics: accuracy (ACC), F1 Score (F1), areaunder the
receiver operating characteristic curve (AUC), and area under the precision-
recall curve (Average Precision, AP). Specifically, the AUC value and AP

value represent the area under the ROC curve and the area under the
Precision-recall (PR) curve, respectively (Fig. 2a).

The results indicate that the five feature sets are effective in predicting
the four cell cycle phases (Fig. 2b). Overall, the BCP and SICP features
demonstrate superior accuracy and stability compared to the other three
features. In contrast, the stability of the Insulation Score of Each Bin (INS)
feature is relatively lower. Although the Pairs’ Contact Coverage (PCC)

Fig. 1 | The framework of scHiCyclePred. a The extraction of multiple feature sets.
scHiCyclePred combines read pair locus mapping file and chromatin interaction
pair file to generate a unique chromosome contact matrices for each chromosome in
every cell. To enhance cell cycle prediction accuracy and reveal variations in three-
dimensional structure across different cell cycles, we extract features representing
chromosome three-dimensional structure fromdiverse perspectives. Specifically, we

extract three feature sets: contact probability distribution versus genomic distance
(CDD), bin contact probability (BCP), and small intra-domain contact probability
(SICP). b CNN model based on multi-feature fusion. We develop a deep learning
model that combines convolution and feature fusion modules to accurately predict
cell cycle phases. c The usage of scHiCyclePred. Directly apply the trained model to
predict the cell data with unknown cell cycles.
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featureoccasionally exhibits higher accuracy thanCDD, its concatenationof
chromosome segment information at three resolutions (100 kb, 500 kb,
1Mb) results in computationally expensive operations, especially in deep
models, potentially significantly increasing the model’s runtime. Addi-
tionally, the accuracy of the PCC feature is closely tied to the selection of
hyperparameters, requiringdifferent hyperparameters for differentdatasets,
which demands a certain level of experience and methodology. Therefore,
our model ultimately selects the relatively simpler CDD, BCP, and SICP
features,whichdonot requiremanual parameter tuning, for further analysis
in the subsequent sections. The detailed prediction results of the three
feature sets for different phases show that: (1) In theG1, Early-S, andLate-S/
G2 phases, the results of the three feature sets are similar; (2) In the Mid-S
phase, the results of the SICP and BCP feature sets are significantly larger
than those of the CDD feature set (Fig. 2b). The prediction performance of
the Mid-S phase is not adequately captured based on the CDD feature set,

indicating that the change in contact probability distribution is relatively
minor. This observation aligns with the findings reported in CIRCLET.

To evaluate the effectiveness of ourCNNmodel based onmulti-feature
fusion, we compare the performance of the three-feature-set fusion model
with that of six other models constructed by retaining the corresponding
feature extractionmodules: three single-feature-setmodels (CDD,BCP, and
SICP) and three two-feature-set fusion models (BCP-CDD, CDD-SICP,
and BCP-SICP). We utilize the fifty independent training and testing sets
mentioned in the previous section for this experiment. We use four eva-
luation metrics, namely ACC, F1, Precision, and balanced accuracy
(BACC)24–26, to assess the prediction performance of each model (Fig. 2c).

The effectiveness of our extracted features is demonstrated by the fact
that the three single-feature-set models yield higher performance (Fig. 2c).
Furthermore, feature fusion enhances the performance of the three two-
feature-set models, highlighting the importance of our feature fusion. The

Fig. 2 | The effectiveness evaluation of the single feature set and the multiple
feature sets. a Performance evaluation of five single feature sets. b The accuracy of
five individual feature sets across cell cycle phases. c Performance comparison
between single feature set andmultiple feature sets. The lower and upper edges of the

boxplot represent theminimumand themaximumvalues of the results, respectively.
The bottom edge of the box represents the first quartile (Q1), while the top edge
represents the third quartile (Q3). The median value is depicted by a black line.
(*** indicates P < 1× 10−3, ** indicates P < 1× 10−2, * indicates P < 5× 10−2).
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final results indicate that the CNN model based on multi-feature fusion
exhibited the best performance in terms of ACC, F1, Precision, and BACC,
with the least difference between the maximum and minimum values, i.e.,
the most stable result. Based on these comparison results, our CNNmodel
based onmulti-feature fusion can effectively fuse feature sets at all scales and
deliver superior cell cycle phase prediction ability.

Performance evaluation of scHiCyclePred in predicting cell
cycle phases
To demonstrate the superiority of our proposed scHiCyclePredmethod, we
compare it to two cell cycle trajectory construction methods (Nagano_-
method and CIRCLET) using four evaluation metrics in this section.
Although cell cycle trajectory construction is not primarily designed for
predicting cell cycle phases, in order to evaluate Nagano_method’s and
CIRCLET’s results efficiently, we generate predictive labels based on cell
number and cycle order. As Nagano_method and CIRCLET methods do
not require thedivisionof training and testing sets, bothmethodsperformed
predictions directly on the original Nagano_dataset. To compare scHiCy-
clePredwith these twomethods, we use them to calculate the average of the
ACC, F1, and Precision metrics obtained from fifty testing sets. Addition-
ally, we evaluate the effectiveness of our constructed deep learningmodel by
employing three conventional machine learning methods, namely SVM27,
Logistic Regression28, and Random Forest29,30. The same fifty independent
training and testing sets mentioned earlier are utilized for this experi-
ment (Fig. 3).

The results indicate that scHiCyclePred outperformsNagano_method
and CIRCLET in four metrics: ACC, F1, Precision, and Recall (Fig. 3a).
Furthermore, scHiCyclePred still achieves optimal performance in terms of
ACC, F1, Precision, BACC, and Recall metrics compared to using the three
conventional machine learning methods (Fig. 3b). These findings demon-
strate that the scHiCyclePred method achieves superior performance in
predicting cell cycle phases.

In addition to comparing scHiCyclePred with CIRCLET on the
Nagano_dataset, we also evaluated its performance on the complex tissue
dataset (Liu_dataset) to validate its generalization and stability. It is worth
noting that CIRCLET incorporates PCC features, and the choice of
threshold significantly impacts its performance. Therefore, we conducted
experiments to assess performance across different thresholds and selected
the best-performing result for comparison (Supplementary Table 1).
Additionally, to evaluate the effectiveness of our deep learning model, we
employed three traditional machine learning methods: SVM, Logistic
Regression (LR), and Random Forest (RF). These experiments utilized the
same 50 independent training and testing sets as previously men-
tioned (Fig. 3).

The results indicate that scHiCyclePred achieved an accuracy of 0.76,
surpassing CIRCLET’s accuracy of 0.37 by 0.39. Additionally, scHiCy-
clePred outperformed the best-performing method on the other three
metrics by a significant margin (Fig. 3c). It is noteworthy that our model’s
performance metrics substantially exceeded those of the three machine
learning methods (Fig. 3d). In conclusion, this suggests that our model
maintains optimal and stable performance across different datasets.

Robustness validation of scHiCyclePred
Weevaluate the scHiCyclePredmodel and threemachine learningmethods
using two distinct approaches to validate scHiCyclePred’s robustness on
datasets for the following purposes: (1) Validating the effectiveness of
scHiCyclePred on imbalanced datasets by downsampling the original
Nagano_dataset. (2) Testing the effectiveness of scHiCyclePred on drop-
processed datasets. For the drop experiment, the Nagano_dataset’s chro-
matin interaction pair file (raw_data file) is initially split into a training set
(train1) and a testing set (test1) at a ratio of 80% to 20%, ensuring that the
sumof train1 and test1 is equal to the number of raw_data_file. Themodel is
then trained with train1 to produce model1, which is subsequently tested
with test1 The random seed is then altered, and four additional sets of
training and testing data are generated in the same manner. Next, for each

set of testing set, 5%y to 50%y (with an increment of 5%) of rows of data are
randomly selected,where y represents the totalnumberof rows in the testing
set. Taking into account that interactionpairswith contact numbers of 1or 2
account for 98.8% of the total number of interaction pairs (details regarding
the number of interaction pairs with varying contact numbers, as well as
their corresponding proportions are provided in Supplementary Fig. 1), we
adjust the number of contacts between two segments (counting columns)
for the selected rows using the following procedure: randomly adding or
subtracting one from the number of contacts. Subsequently, each training
set is matched to 10 testing sets, resulting in a total of 50 testing sets across
the five training sets. Each group of experiments is trained using its corre-
sponding training set, and only the 10 testing sets in the same group as the
current training set are utilized to test the trained model to prevent data
leakage. Taking all aspects into account, the comparison results of ACC, F1
score, Precision, and BACC metrics demonstrate the effectiveness of
scHiCyclePred on the drop-processed datasets (Fig. 4a).

For the downsampling experiment, we partition the Nagano_dataset
into nine imbalanced datasets (labeled A to I) composed of different pro-
portions (Fig. 4b). Using a ratio of 8:2, each of the nine datasets is split into
two parts: a training set and a testing set. The training set is used to train the
model, whereas the testing set is used to evaluate its performance. The
comparison results of the four evaluation metrics (i.e., ACC, F1, Precision,
and BACC) demonstrate the effectiveness of scHiCyclePred on imbalanced
datasets (Fig. 4c, d).

Overall, these results underscore that scHiCyclePred outperforms
othermethods and exhibits robustness on drop-processed datasets (Fig. 4a).
Moreover, scHiCyclePred demonstrates robust stability and generalization
across various imbalanced datasets. In contrast, the three machine learning
methods failed to achieve comparable results. (Fig. 4c, d and Supplementary
Fig. 2). In summary, the results from both experiments demonstrate the
effectiveness and robustness of scHiCyclePred inpredicting cell cycle phases
on various datasets.

Analysis of chromatin change patterns across various cell
cycle phases
We further investigate the pattern of changes in the 3D structure of chro-
matin during different cell cycle phases. Specifically, we utilize the SHapley
Additive exPlanations (SHAP) method27,29 to analyze the feature impor-
tance of the three feature sets during the four cycles. The SHAP graph
displays the vertical axis representing features and the dots representing
samples, with redder colors indicating higher feature values and bluer colors
indicating lower feature values. The horizontal axis demonstrates the SHAP
value, where positive values indicate a positive effect on the prediction, and
negative values indicate a negative effect.

Regarding the CDD feature set, our analysis is centered on the top 20
significant features. The evaluation of the importance of theCDD feature set
reveals that 12 features are prominently represented within the top 20 fea-
tures across the four cell cycle phases: CDD61-70, CDD72, and CDD74

(Fig. 5). In the G1, Early-S, and Mid-S phases, there is a tendency for bluer
dots to cluster in the positive semi-axis, indicating a positive effect, whereas
during the Late-S/G2 phase, redder dots predominantly cluster in the
positive semi-axis. This observation suggests that the proportion of short-
distance chromatin interactions gradually increases with cell cycle pro-
gression, leading to a progressive tightening of the three-dimensional
chromosome structure. Notably, this finding is consistent with the results
reported by Ye et al6. In addition, CDD111, CDD117, and CDD119 appear in
the 20 most important features of Early-S and Late-S/G2 cycles, indicating
that there may be more significant changes in long-distance contacts from
Early-S to Late-S/G2 cycles.

For the BCP feature set and SICP feature set, we primarily analyze the
top 50 important features. The results of the BCP feature set’s importance
evaluation reveal that for fragments on different chromatin, their three-
dimensional structure change patterns vary during the cell cycle phases.
Based on the varying contact numbers, the evaluation of the BCP feature
set’s importance indicates the following: (1) BCP41 of chr15 and BCP64 of
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chr4: In the G1 phase, the majority of bluer colors are concentrated in the
negative range, indicating a negative effect. In contrast, during the Early-S
phase, most bluer colors are concentrated in the positive range, signifying a
positive effect. Overall, this suggests that during the Early-S phase, the
chromatin contact numbers decrease compared to the G1 phase, indicating
a gradual loosening of its three-dimensional structure; (2) BCP98 of chr6: In
the G1 phase, the majority of bluer colors are concentrated in the positive
range, indicating apositive effect. In contrast, during theEarly-Sphase,most
bluer colors are concentrated in the negative range, signifying a negative
effect. Overall, this suggests that during the Early-S phase, the chromatin
contacts increase compared to theG1 phase, indicating a gradual tightening
of its three-dimensional structure; (3) BCP142 of chr5: In the G1 phase, the
majority of bluer colors are concentrated in the negative range, indicating a
negative effect. In contrast, during theEarly-S,Mid-S, andLate-S/G2phases,
most bluer colors are concentrated in the positive range, signifying a positive
effect. In summary, we find that the chromatin contact numbers in the

remaining three phases gradually decrease compared to the G1 phase,
indicating a gradual loosening of their three-dimensional structure
(Fig. 6a–d).

The results of the importance evaluation for the SICP feature set reveal
the following insights: (1) During the transition from the G1 to the Late-S/
G2 phases, the majority of bluer color clusters gradually transform into
redder color clusters and eventually transition back to bluer color clusters.
This suggests that their three-dimensional structure undergoes a transition
from loosening to tightening, subsequently followed by a trend towards
loosening again. This phenomenon is particularly evident in the analysis of
SICP127 and SICP128 of chr10; (2) The three-dimensional structure change
patterns of adjacent bins exhibit similarities. For instance, SICP3-5 of chr11
and SICP87 and SICP88 of chr12, etc demonstrate similar patterns of change;
(3) From the perspective of the three-dimensional structural changes in the
bin neighborhood, the prominent contact patterns of the Mid-S cycle and
the Late-S/G2 cycle are relatively similar (Fig. 7a–d).Onepossible reason for

Fig. 3 | Performance comparison of scHiCyclePred with other methods on dif-
ferent datasets. a Performance comparison of scHiCyclePred withNagano_method
and CIRCLET on Nagano_dataset. Each bar in the graph represents the average
value, while the bottom of the vertical line indicates the minimum value, and the top
represents the maximum value. b Performance comparison of scHiCyclePred with
other machine learning methods on Nagano_dataset. c Performance comparison of
scHiCyclePred with CIRCLET on Liu_dataset. The bar in the graph represents the

average value, while the bottom of the vertical line indicates theminimumvalue, and
the top represents the maximum value. d Performance comparison of scHiCy-
clePred with other machine learning methods on Liu_dataset. The lower and upper
edges represent the minimum value and the maximum value of the results,
respectively. The bottom edge of the box represents the first quartile (Q1), the top
edge of the box represents the third quartile (Q3), and the black line represents the
median value. (*** indicates P < 1× 10−3).
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(3) may be that the degree of three-dimensional structure change of chro-
matin gradually decreases from theMid-S cycle to the Late-S/G2 cycle. This
finding is consistent with previous findings6.

In this study, we meticulously annotate the patterns associated with
each stage of the cell cycle and link them to specific genes based on feature
importance ranking. The number of these genes varies depending on the
number of genes corresponding to the features. Specifically, as the CDD
feature set captures information from all chromosomes and cannot extract
corresponding chromosome segments (bin), we proceed to rank and select
the top 50 features based on feature importance in the BCP and SICP
features. These selected features correspond to chromosome segments (bin)
thatmap to all genes in the reference genome, with each bin having a size of
1Mb. To validate the accuracy of these patterns, we conduct an extensive
analysis of relevant research literature concerning the cell cycle.Ourfindings
are as follows: (1) In the G1 phase, we discover a significant correlation
between the gene lists from papers31–33 and the genes annotated by our
patterns, with the same p-value of 0.005858. (2) During the Early-S phase,
we observe a strong correlation between the gene lists in papers34–36 and the

genes annotated through our patterns, with p values of 2.388 × 10−5,
0.0003518, and 0.001689. (3) Similarly, for the Mid-S phase, there is a
notable correlation between the gene lists from papers37–39 and our anno-
tated genes,withp-valuesof 9.535 × 10−5, 0.00224, and0.003723. (4) Finally,
in the Late-S/G2 phases, we find a substantial correlation between the gene
lists in papers36,40,41 and our annotated genes, with p values of 4.067 × 10−6,
0.0001014, and 0.0006912. In summary, our analysis consistently demon-
strates a strong association between our annotated patterns and the cell
cycle, reaffirming the precision and relevance of our approach.

Discussion
In this study,we introduce amethodcalled scHiCyclePred for predicting cell
cycle phases using scHi-C data. Our method involves the extraction of
multiple feature sets based on scHi-C data and the development of a CNN
model based on multi-feature fusion for cell cycle phase prediction. Three
feature sets are extracted, including the existing CDD feature set (overall
cellular interaction information) and two feature sets: the BCP feature set
(overall chromatin interaction information) and the SICP feature set (intra-

Fig. 4 | Performance of scHiCyclePred on imbalanced datasets and drop-
processed datasets. a Performance of scHiCyclePred and machine learning meth-
ods on the drop-processed datasets. The lower and upper edges of the boxplot
represent the minimum and the maximum values of the results, respectively. The
bottom edge of the box represents the first quartile (Q1), the top edge represents the

third quartile (Q3), and the black line represents the median value. bDistribution of
cells across cell cycle phases in nine imbalanced datasets (A-I). Further performance
evaluation is conducted on this dataset in Fig. 4c, d. c, dEvaluation of scHiCyclePred
and machine learning methods on an imbalanced dataset using ACC and Recall
metrics.

https://doi.org/10.1038/s42003-024-06626-3 Article

Communications Biology |           (2024) 7:923 7



Fig. 5 | Importance evaluation results of the first 20 features in the CDD
feature set. a G1 phase. b Early-S phase. c Mid-S phase. d Late-S/G2 phase. The
SHAP graph displays the SHAP value on the horizontal axis, representing the
assigned importance to each feature in the given sample. The vertical axis represents
features, and the dots represent samples, with redder colors indicating higher feature

values and bluer colors indicating lower feature values. We analyze the top 20 sig-
nificant features of the CDD feature set andfind that 12 features are present across all
four cell cycle phases: CDD61-70, CDD72, andCDD74. Features with the same color in
the graph represent identical features.
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domain interaction information). Our CNNmodel based on multi-feature
fusion successfully combines the three feature sets and improves prediction
performance. Furthermore, we evaluate the CNN model based on multi-
feature fusion using ablation experiments and compare the performance of
scHiCyclePred with other popular methods, including Nagano_method,
CIRCLET, LR, SVM, and RF, in predicting cell cycle phases. Our results
demonstrate that the scHiCyclePred method has good performance in
predicting cell cycle phases and is more robust than existing scHi-C data-
based cell cycle phase prediction methods.

In addition, by evaluating the impact of different features and con-
sidering their characteristics, we analyze the patterns of chromosome three-
dimensional structure changes across various cell cycle phases. Further-
more, our research results are consistentwithprior studies. Importantly, our
analysis of different features reveals variations or trends in the three-
dimensional chromosome structure between different cell cycle phases,
thereby offering a perspective for understanding chromatin dynamics
during the cell cycle. However, we note that current scHi-C data is biased
due to the coverage consistencyof current scHi-C techniques,whichhinders
the unraveling of the relationship between cell cycle dynamics and three-
dimensional structural patterns of chromatin. Therefore, in the future, it will
be necessary to address these biases present in scHi-C data and further
incorporate our method for cell cycle phase prediction. Overall, our study
provides a promising approach for predicting cell cycle phases using scHi-C
data, and further research in this field is needed to fully realize the potential
of this method. The scHiCyclePred method offers an accurate and user-
friendly computational approach to predict cell cycle phases based solely on
scHi-C data, and it provides insights into understanding the dynamics of
chromatin during the cell cycle.

Materials and methods
Data preparation
The scHi-C data used in this study are obtained from the study by Nagano
et al.22, which includes scHi-C data from 1171 mESCs labeled according to
their cell cycle phase using fluorescence-activated cell sorting (FACS). The
cells are classified into four phases: 280 cells in the G1 phase, 303 cells in the
Early-S phase, 262 cells in theMid-S phase, and 326 cells in the Late-S orG2
phase. The additional scHi-C data utilized in this study are obtained from
the study by Liu et al.24, encompassing scHi-C data from 6288 mESCs that
are also labeled based on their cell cycle phase using FACS. The cells are
categorized into four phases: 1606 cells in the G1 phase, 766 cells in the
Early-S phase, 1688 cells in theMid-S phase, and 2228 cells in the Late-S or
G2 phase.

Our study utilizes performance metrics such as ACC, BACC,
AUC, etc., to assess the performance of various methods (Supple-
mentary Methods). The evaluation of all methods’ performance is
conducted using the known cell cycle phases (G1, Early-S, Mid-S, and
Late-S/G2) labeled by FACS. For the Nagano_dataset, raw data files are
downloaded from https://github.com/tanaylab/schic2?tab=readme-ov-
file, containing chromatin interaction pair files and read pair locus
mapping files. The chromatin interaction pair file contains information
such as the sequence number of chromatin fragment pairs and the
count of interactions, while the read pair locus mapping file contains
the relationship between chromatin fragment sequence number,
chromatin information, and precise position information. Within the
Liu_dataset, raw data files are downloaded from NCBI GEO (accession
number GSE223917), which also includes files detailing chromatin
interaction pairs.

Fig. 6 | Importance evaluation results of the first 50 features in the BCP
feature set. a BCP feature set in G1 phase. b BCP feature set in Early-S phase. c BCP
feature set in Mid-S phase. d BCP feature set in Late-S/G2 phase. The SHAP graph
displays the SHAP value on the horizontal axis, representing the assigned

importance to each feature in the given sample. The vertical axis represents features,
and the dots represent samples, with redder colors indicating higher feature values
and bluer colors indicating lower feature values. Features with the same color in the
graph represent identical features.
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Most current computational methods for scHi-C data represent the
data as multiple chromatin contact matrices with a given resolution42–50.
However, generating a chromatin contact matrix requires specific infor-
mation about interacting chromatin fragments in each cell, which is not
contained in the raw data files. To address this limitation, we combine the
read pair locusmappingfile and chromatin interaction pairfile to generate a
unique chromatin interaction information file for each chromatin in each
cell. Next, we divide each chromatin in the cell intomultiple segments called
bins basedon a specified resolutionR. This allows us to represent the scHi-C
data as a matrix of bin-pair interactions, which can be used as input for our
proposed scHiCyclePred framework. Finally, we generate the chromatin
contact matrix C by mapping the interaction information from the chro-
matin interaction information file to the corresponding bin. However, since
Nagano et al. could not capture interaction information for chromatinY, we
generate 20 chromatin contactmatrices (C1,C2,…,C19,CX) per cell to cover
all possible combinations of chromatin interactions. This allows us to
effectively capture the chromatin interaction patterns and generate accurate
representations of the scHi-C data for use in our proposed scHiCyclePred
framework.

Contact probability distribution versus genomic distance
feature set
Nagano et al. discovered that the contact probability basedon lineardistance
division showed different states in various cell cycle phases, and Ye et al.
proposed the contact probability distribution versus genomic distance
feature set to determine the cell cycle trajectory6,23. Therefore,we employ the
contact probability distribution versus genomic distance (CDD) as a feature
set in our framework. It is important to note that the CDD feature set is
extracted from the cell-wide interaction information rather than the chro-
matin contact matrix. In this feature set, the interaction pairs are allocated

into intervals based on linear distance, with the linear distance range
represented by each interval gradually increasing. Themapping formula for
the interaction pairs is as follows:

intervalloc ¼ floor
log2 loc1 � loc2

� �þ s

s

� �
ð1Þ

where loc1 and loc2 represent the positions of two interacting fragments on
the chromatin, and s denotes the exponential step length of each interval.
Based on the study byNagano et al. andYe et al.6,22, we set s ¼ 0:125 and the
distance range for genes to be [2 K, 9.3M]. After assigning all contacts, the
contact probability distribution versus genomic distance feature set is
extracted by calculating the probability of the contact count in each interval
as shown in Eq. 2.

CDDloc ¼
Total intervalloc

� �

Total Cellð Þ ð2Þ

where Total intervalloc
� �

represents the contact count in the corresponding
bin, and Total Cellð Þ represents the total number of chromatin contacts
in a cell.

Bin contact probability feature set
The contact frequency distribution of the same site on the same chromatin
varies in different cell cycle phases51–53. Therefore, we use the bin contact
probability (BCP) set of the chromatin as the contact feature set for chro-
matin in our framework. Specifically, we use the BCP values in the chro-
matin contact matrix, rather than the CDD feature set, to extract this set of
features. We then use the contact feature set of all chromatin in the cell as
one of the extracted feature sets. The chromatin contact matrix is Cn�n,

Fig. 7 | Importance evaluation results of the first 50 features in the SICP
feature set. a SICP feature set inG1 phase. b SICP feature set in Early-S phase. c SICP
feature set in Mid-S phase. d SICP BCP feature set in Late-S/G2 phase. The SHAP
graph displays the SHAP value on the horizontal axis, representing the assigned

importance to each feature in the given sample. The vertical axis represents features,
and the dots represent samples, with redder colors indicating higher feature values
and bluer colors indicating lower feature values. Features with the same color in the
graph represent identical features.
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wheren is the number of bins on the chromatin. The bin contact probability
of the chromatin is calculated as follows:

BCPi ¼
Pn

j¼1 Cij

Total chrð Þ ð3Þ

where TotalðchrÞ represents the total contact count of chromatin at the
locationof bins and thevalue rangeof i is [1, n].The feature set of bin contact
probability for each cell is generated by splicing the set of bin contact
probability for all chromatin.

Small intra-domain contact probability feature set
Nagano et al. found that INS is affected by cell cycle dynamics22. INS shows
the depletion of chromatin interaction information in a domain centeredon
the target bin.Motivatedby thisfinding,we extract the contact probability of
small intra-domain (SICP) on the chromatin as one of the feature sets in our
framework. The small domain is defined as the region centeredon the target
bin and bounded by the adjacent first-order linear bins. Specifically, we
calculate the SICP values for each bin by dividing the number of contacts
within the small domain by the total number of contacts in the bin. This
results in a vector that represents the SICP feature set for the chromatin bin.
On the chromosome contact matrixCn�n, the contact probability of a small
intra-domain is calculated similarly to the bin contact probability as follows:

SICPi ¼
Pkþ1

i¼k�1

Pkþ1
j¼i Cij

Total Cn�n
� � ð4Þ

where Ck�k represents the currently calculated chromatin domain center
and the value range of k is [1, n]. It is important to note that to calculate the
SICP features, it is necessary tofillmatrixC with 0 elements, transforming it
intomatrix B. This enables the formation of a complete small domain, even
when k is equal to 1 andn. Similar toBCP,we integratemultiple sets of small
intra-domain contact probabilities for entire chromatin as the SICP feature
set of a mouse cell.

CNNmodel based on multi-feature fusion
In this section, we present a deep learning-based CNNmodel that leverages
multi-feature fusion to accurately predict cell cycle phases. This model
incorporates convolution and feature fusion modules into its architecture.
The convolution module generates identical network models for the three
feature sets CDD, BCP, and SICP. This module consists of a CNN layer,
batch norm layer, max pooling layer, and dropout layer which are stacked
twice to generate more complicated features. The CNN layer uses a one-
dimensional convolution kernel with a kernel size of 7 and a channel size of
32 to collect features from various input feature sets. The batch norm layer
prevents gradient explosion and disappearance,while themax pooling layer
reduces feature dimension, preserves key features, scales back model cal-
culations, avoids overfitting, and enhances generalizability.We use ReLU as
the activation function to connect the batch norm layer and max pooling
layer54, adding nonlinear components to enhance the model’s expression
capability. The dropout layer effectively prevents model overfitting by dis-
carding some neurons during forward propagation with a predetermined
probability. Finally, a flattening operation is applied to the data produced
from the second dropout layer to combine the data from all channels into a
vector.

In the feature fusion module, the three vectors corresponding to the
three feature sets generated by the convolutionmodule are combined into a
single vector. The scores from various categories are then mapped using a
linear layer, followed by the “log_softmax” function55–57. The ultimate
classification outcome corresponds to the index with the highest score.
Using the “log_softmax” function avoids the value overflow problem and
facilitates the calculation of the loss function. To address the issue of
imbalanced samples and enhance the overall performance of themodel, we
adopt the focal loss function58,59 as the loss function of the model. The focal

loss is calculated as in Eq. 5.

FL pt
� � ¼ �αt 1� pt

� �γ
log pt

� � ð5Þ

where the value range of γ is [0,5], pt means the probability that the model
predicts the current sample as phase t, and�logðptÞ is utilized to calculate
the cross entropy loss. If the pt corresponding to the current sample phase is
smaller, it means that the prediction result of the model is more inaccurate,
then the coefficient ð1� ptÞγ of the difficult sample will increase, and the
difficult sample will lose. αt represents the weight coefficient corresponding
to phase t, and the value is the number of cells contained in phase t. This
model is trained by minimizing the focal loss.

Additionally, to prevent overfitting of the model to the training set
during model building, we employ an early stopping60–64 mechanism and a
5-fold cross-validation approach. The model training is terminated if the
loss of the model on the validation set does not reduce for 10 consecutive
epochs (Fig. 1 and Supplementary Fig. 3).

Statistics and reproducibility
All statistical analyses were conducted using Python version 3.9.15. scHi-
cyclePred was tested and successfully executed on the independent server,
and the same results were produced as with the original experiments.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability
Nagano_dataset is downloaded from https://github.com/tanaylab/schic2?
tab=readme-ov-file. Liu_dataset is downloaded fromNCBIGEO (accession
number GSE223917). Numerical source data for graphs presented in the
main figures can be found in Supplementary Data.

Code availability
The source code for scHiCyclePred is freely available on GitHub (https://
github.com/HaoWuLab-Bioinformatics/scHiCyclePred) and its Zenodo
(https://doi.org/10.5281/zenodo.12721771)65.
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