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ABSTRACT

Diffusion models have achieved great success in generating high-dimensional
samples across various applications. While the theoretical guarantees for
continuous-state diffusion models have been extensively studied, the convergence
analysis of the discrete-state counterparts remains under-explored. In this paper,
we study the theoretical aspects of score-based discrete diffusion models under the
Continuous Time Markov Chain (CTMC) framework. We introduce a discrete-
time sampling algorithm in the general state space [S]d that utilizes score estima-
tors at predefined time points. We derive convergence bounds for the Kullback-
Leibler (KL) divergence and total variation (TV) distance between the generated
sample distribution and the data distribution, considering both scenarios with and
without early stopping under reasonable assumptions. Notably, our KL diver-
gence bounds are nearly linear in the dimension d, aligning with state-of-the-art
results for diffusion models. Our convergence analysis employs a Girsanov-based
method and establishes key properties of the discrete score function, which are
essential for characterizing the discrete-time sampling process.

1 INTRODUCTION

Diffusion models (Sohl-Dickstein et al., 2015; Song & Ermon, 2019; Ho et al., 2020) have achieved
great empirical success in various generative tasks including audio (Kong et al., 2021; Schneider,
2023), video (Ho et al., 2022b; Yang et al., 2023), and image (Batzolis et al., 2021; Ho et al., 2022a)
generation, and have demonstrated potential across a wide range of domains like computer visions
(Baranchuk et al., 2022; Whang et al., 2022), medical image reconstruction (Chung & Ye, 2022;
Cao et al., 2024), and bioinformatics (Trippe et al., 2023; Guo et al., 2024). The main goal of
diffusion models is to generate novel samples from an unknown and unstructured data distribution.
In general, the framework of score-based diffusion models consists of two stochastic processes:
a predefined forward noising process that gradually corrupts data into some easy-to-sample noise
distribution (e.g., standard Gaussian), and a reverse generative process generating new samples that
almost obeys the real data distribution from the pure noise by learning the logarithmic gradient of
the forward marginal distributions known as the (Stein) score.

Previous works on diffusion models primarily focus on continuous state spaces, particularly Eu-
clidean space Rd. In this setting, as studied by Song et al. (2021b), the forward process can be
constructed as a continuous-time process characterized by a stochastic differential equation (SDE).
The associated reverse process is also described by an SDE, which incorporates the drift and diffu-
sion coefficients of the forward SDE along with the score function. Hence, an approximate reverse
process can be constructed by estimating the score functions, which is the core principle of the
score-based diffusion models. However, many problems require us to deal with discrete data, which
arise in fields like text generation (Austin et al., 2021; Hoogeboom et al., 2021; Li et al., 2022;
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Zheng et al., 2023), protein design (Gruver et al., 2024; Campbell et al., 2024), and segmentation
maps (Zbinden et al., 2023; Courdier et al., 2024). Therefore, modeling probability distributions and
constructing diffusion processes in discrete space is of great importance.

To tackle the discrete data, analogous to the state-of-the-art Denoising Diffusion Probabilistic Mod-
els (DDPMs) (Ho et al., 2020) in continuous state space, Austin et al. (2021) proposed structured
discrete diffusion models in discrete time, which was referred to as Discrete Denoising Diffusion
Probabilistic Models (D3PMs). Campbell et al. (2022) introduced a continuous-time framework for
discrete diffusion models, in which the forward noising process is formulated as a CTMC. Similar
to the continuous SDE setting, the reversal of a forward CTMC can be characterized by the for-
ward rate matrix and the forward marginal probability ratios known as the discrete score function.
Lou et al. (2024) proposed methods for estimating the discrete score by minimizing discrete score
matching objectives. Thus, we can refer to the discrete diffusion models by estimating the score
function within the CTMC framework as the score-based discrete diffusion models. Interestingly,
Benton et al. (2024b) demonstrated that score-based continuous space SDE diffusion and discrete
space CTMC diffusion can be regarded as a more general unity, which well illustrates the many
similarities between discrete and continuous diffusion.

In light of the significant empirical advances, extensive theoretical works for understanding the effi-
ciency and acceleration of score-based diffusion models in the SDE framework (Chen et al., 2023b;
Lee et al., 2022; Yang & Wibisono, 2022; Chen et al., 2023a; Benton et al., 2024a; Li et al., 2023;
2024a; Cheng et al., 2024; Li et al., 2024b; Chen et al., 2024a;b; Gupta et al., 2024) have arisen.
Nevertheless, the theoretical foundation remains largely absent for discrete diffusion models, both
in discrete-time and continuous-time settings. The recent work Chen & Ying (2024) first studied the
theory of score-based discrete diffusion models. This paper proposed a sampling algorithm in the
hypercube setting {0, 1}d utilizing the uniformization technique of CTMC, proved its efficiency by
deriving convergence bounds and sampling complexities, and applied the elementary properties of
the discrete score function to promote the algorithm design. Inspired by these prior works, we study
the theoretical analysis of score-based discrete diffusion models within the CTMC framework, as
this framework allows us to leverage the score error and its properties in a manner similar to the
convergence analysis of continuous diffusion models. The discrete-time sampling algorithm and
analysis in our paper are closely related to the previous works on the theory of continuous diffusion
models (Chen et al., 2023b; Benton et al., 2024a;b) and discrete diffusion models (Campbell et al.,
2022; Chen & Ying, 2024). Our contributions are summarized as follows.

1. Analogous to the exponential integrator (Zhang & Chen, 2022; De Bortoli, 2022; Yang &
Wibisono, 2022; Chen et al., 2023a) within the SDE framework, which discretizes the true re-
verse SDE, we propose a discrete-time sampling algorithm for high-dimensional discrete diffu-
sion tasks with theoretical guarantee within the CTMC framework. Under reasonable assump-
tions, we derive convergence bounds for scenarios with and without early stopping. When the
data distribution is balanced, the bound without early stopping is tighter than the bound with
early stopping. Our main KL divergence bounds for convergence consist of three components:
score estimation error, discretization error, and truncation error due to insufficient mixing of the
forward process, which are analogous to the typical convergence bounds found in continuous
diffusion models (Chen et al., 2023a;b; Yang & Wibisono, 2022; Benton et al., 2024a).

2. Technically, we use a Girsanov-based method to analyze the proposed discrete-time sampling
algorithm. We study the theoretical properties of discrete score functions such as the movement
bound to facilitate our analysis. The discretization error terms in our main bounds are novel in the
literature on score-based discrete diffusion models. Also, we derive the exponential convergence
of the forward process with uniform mixing in the general state space [S]d. Our KL divergence
bounds are nearly linear in the dimension d, matching the best result for continuous diffusion
models (Benton et al., 2024a) and discrete diffusion models (Chen & Ying, 2024).

Notation. We use lowercase letters to denote scalars and boldface lowercase letters to represent
vectors. All vectors are considered as column vectors. The i-th entry of a vector x is denoted by xi,
or simply xi when the context is clear. We use x\i to refer to all dimensions of x except the i-th,
and x\i ⊙ x̂i to denote a vector whose i-th dimension takes the value x̂i, while the other dimensions
remain as x\i. For a positive integer n, we denote [n] as the set {1, 2, . . . , n}, 1n ∈ Rn as the
vector of ones, and In ∈ Rn×n as the identity matrix. The notation ei refers to a one-hot vector
with a 1 in the i-th position. δ{·, ·} denotes the Kronecker delta, and 1{·} is the indicator function.
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Table 1: Comparison of convergence results for score-based discrete diffusion models with and
without early stopping. The true reverse CTMC is discretized in our algorithm, leading to a step
size h in our bound. For early stopping, a terminal time of T − δ is used, where qδ is a δ-uniform
perturbation of the data distribution, and pT−δ is the law of output from the diffusion model after K
steps with T − δ = Kh. Without early stopping, q0 = pdata is the data distribution, and pT is the
law of output from the diffusion model with time horizon T after K iterations with T = Kh. ϵ is
score error, S is the size of discrete state space, C1 depends on S and δ, and C2 and κ2 depend on the
properties of data distribution. To keep comparison consistent, we present all bounds with ϵ, though
in Chen & Ying (2024) the actual bound is ϵT due to their time-averaged score error assumption.

Space Time-discretized? Early stopping? Assumption Convergence result Reference

{0, 1}d No Yes
continuous score error

DKL(qδ∥pT−δ) ≲ de−T + ϵ
(Chen & Ying, 2024,

Theorem 6)bounded score estimator

[S]d Yes Yes discretized score error
DKL(qδ∥pT−δ) ≲ de−T logS+

Theorem 1 (This work)
δ−3C1S

2h3d+ C1S
2h2dT + C2

1ϵ

{0, 1}d No No
continuous score error

DKL(q0∥pT ) ≲ de−T + ϵ
(Chen & Ying, 2024,

Theorem 7)bounded score estimator

bounded score of pdata

[S]d Yes No
discretized score error DKL(q0∥pT ) ≲ de−T logS+

Theorem 2 (This work)
bounded score of pdata C2S

2h2κ2T + C2
2ϵ

The Hamming distance between two vectors x and y is denoted by Ham(x,y) =
∑

i 1{xi ̸= yi}.
We use Cat(p) to denote a categorical distribution over a one-hot vector with probabilities given
by the vector p. We adopt f ≲ g to mean that there is a universal constant C > 0 such that
f ≤ Cg. Additionally, we denote the generalized I-divergence (Amari, 2012) as DI(x∥y) =∑

i(−xi+yi+xi log(xi/yi)), which is the Bregman divergence with respect to the negative entropy
function I(x) =

∑
i x

i log xi.

2 RELATED WORK

Discrete Diffusion Models. The diffusion model was first introduced by Sohl-Dickstein et al.
(2015). Many previous works construct discrete diffusion processes as discrete-time Markov chains,
and thus train and sample the model in discrete time (Austin et al., 2021; Chen et al., 2024c). In par-
ticular, D3PM (Austin et al., 2021) and the Discrete Non-Markov Diffusion Model (DNDM) (Chen
et al., 2024c) serve as the discrete diffusion counterparts to DDPM (Ho et al., 2020) and Denoising
Diffusion Implicit Model (DDIM) (Song et al., 2021a) in continuous diffusion, respectively. These
works offer various practical sampling algorithms but lack theoretical guarantees. Given the limi-
tations and inflexibility of the discrete-time formulation, Campbell et al. (2022) proposed a CTMC
framework for discrete diffusion models, which offers much greater flexibility in defining the reverse
sampling scheme. Due to the particular nature of the discrete space, this paper sensibly proposed
to assume the factorization of the forward process for high-dimensional tasks, a strategy that has
been widely adopted, and introduced a tau-leaping method to simulate the continuous-time reverse
process. Lou et al. (2024) provided a practical sampling algorithm using Euler discretization and
the discrete Tweedie’s theorem.

Inspiringly, the CTMC framework for discrete diffusion models makes estimating the discrete score
function important for simulating the reverse process. Meng et al. (2022) proposed a concrete score
matching objective, but the L2 distance there cannot fully capture the characteristics of the score
and is thus unsatisfactory. Sun et al. (2023) derived the score matching objective from the marginal
probabilities of each dimension with maximum likelihood training. Lou et al. (2024) proposed score
entropy losses by deriving the KL divergence path measure between the true and approximate reverse
processes, which are analogous to the score matching objectives in continuous diffusion models
(Hyvärinen & Dayan, 2005; Vincent, 2011). Benton et al. (2024b) provided a general framework
for these score matching objectives in both discrete and continuous spaces.
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Convergence Analysis of Discrete Diffusion Models. There is a lack of convergence analysis of
discrete diffusion models in the existing literature. Campbell et al. (2022) derived an error bound
for the tau-leaping sampling algorithm with TV distance metric, under strong assumptions such as
bounded forward probability ratios and L∞ error for the approximate rate matrix, since the forward
process can be quite general. The error bound grows at least quadratically in the dimension d. Chen
& Ying (2024) first introduced a sampling algorithm for score-based discrete diffusion models that
exactly simulates the reverse process through uniformization of CTMC in the hypercube setting with
independent flips as forward process. They also provided corresponding convergence bounds and
algorithm complexities that are nearly linear in the dimension d, matching the best result achieved
for continuous diffusion models (Benton et al., 2024a). The results of Chen & Ying (2024) and ours
are summarized in Table 1.

3 BACKGROUNDS ON SCORE-BASED DISCRETE DIFFUSION MODEL

We will be handling discrete data x0 ∈ X = [N ]. A probability distribution on X can be represented
by a probability mass vector p ∈ RN , where the entries of p are non-negative and sum to 1. Assume
that x0 ∼ pdata for some discrete data distribution pdata. The forward noising process is defined as
a CTMC on X , evolving from t = 0 to t = T , with a rate matrix (or generator matrix) Qt ∈ RN×N

and an initial distribution q0. Rate matrix Qt defines the infinitesimal transition probability for the
continuous-time process between the two time points t and t+∆t:

qt+∆t|t(y|x) = δ{x, y}+Qt(x, y)∆t+ o(∆t), (1)
where Qt(x, y) is the (x, y) element of the rate matrix Qt and qt+∆t|t(y|x) denotes the infinitesimal
transition probability of being in state y at time t+∆t given state x at time t. From (1) we know

Qt(x, y) ≥ 0 for x ̸= y, Qt(x, x) ≤ 0, and Qt(x, x) = −
∑
y ̸=x

Qt(x, y).

Moreover, the forward marginal distribution qt satisfies Kolmogorov forward equation (see, e.g.,
Campbell et al. (2022); Chewi (2023)):

dqt
dt

= Q⊤t qt, q0 = pdata. (2)

Generally, Qt is chosen as a simple matrix such that the forward process mixes quickly towards
noise distribution pref which is easy to sample. For example, if setting β(t) as a time-dependent
scalar, the uniform rate matrix Qt = β(t)(1N1⊤N − N · IN ) results in pref = 1

N 1N , the uniform
distribution on X ; Qt = β(t)(1N · e⊤MASK − IN ) yields pref = eMASK, the one-hot probability
encoding of the MASK absorbing state (Austin et al., 2021; Campbell et al., 2022; Lou et al., 2024).

Notably, the forward process has an exact time reversal (Kelly, 2011; Campbell et al., 2022) which
is also a CTMC that evolves from t = 0 to t = T with rate matrix Q←t given by

Q←t (x, y) = QT−t(y, x)
qT−t(y)

qT−t(x)
for x ̸= y, and Q←t (x, x) = −

∑
y ̸=x

Q←t (x, y).

Therefore, we know that the access to probability ratio qt(y)
qt(x)

is important to simulate the reversal.

Specifically, the collective ratios st(x) :=
(

qt(y)
qt(x)

)
y ̸=x

∈ RN−1 are known as the discrete score

function (Meng et al., 2022), which generalizes the Stein score function ∇x log qt(x) (Song & Er-
mon, 2019) in the continuous setting. As pointed out by previous works concerning score matching
in discrete space (Lou et al., 2024; Benton et al., 2024b), we learn a discrete score estimator ŝt to st
for t ∈ [0, T ] by minimizing the score entropy

LSE(ŝ) =

∫ T

0

Ext∼qt

∑
y ̸=xt

Qt(y, xt)DI(st(xt)y∥ŝt(xt)y) dt.

Note that the score entropy loss is characterized by the Bregman divergence, different from the L2

distance loss in the continuous counterpart. We defer the details on the Bregman divergence to
Appendix E. The score entropy is exactly the path measure KL divergence (Lou et al., 2024; Chen
& Ying, 2024; Benton et al., 2024b). Although the score entropy can not be directly estimated, there
are equivalent objectives such as implicit score entropy and denoising score entropy (Lou et al.,
2024; Benton et al., 2024b) which can be optimized practically.
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4 PROBLEM SETTING

In practice, the discrete state space typically factorizes as X = [S]d, representing sequences x =
x1:d = x1 · · ·xd (e.g., text token sequences (Lou et al., 2024), image pixel values (Campbell et al.,
2022), or protein sequences (Campbell et al., 2024)).

Forward Process. The forward process X = (Xt)t≥0 is defined by a CTMC on X with rate
matrix Qt starting from X0 ∼ q0 = pdata which is the data distribution. Let qt := Law(Xt),
which follows the Kolmogorov forward equation (2). As a general Qt ∈ RSd×Sd

would be of
exponential size, we assume that the forward process can be factorized such that each dimen-
sion propagates independently with rate Qtok

t ∈ RS×S . Namely, the forward transition ker-
nel qt|s(xt|xs) = P(Xt = xt|Xs = xs) factorizes as qt|s(xt|xs) =

∏d
i=1 q

i
t|s(x

i
t|xi

s), where
qit|s(x

i
t|xi

s) = P(Xi
t = xi

t|Xi
s = xi

s) is the transition probability for the i-th dimensional CTMC
Xi := (Xi

t)t≥0 with forward rate Qtok
t . This is a common assumption in literature considering high

dimension tasks in the CTMC setting (Campbell et al., 2022; Lou et al., 2024; Campbell et al., 2024;
Chen & Ying, 2024). According to Campbell et al. (2022, Proposition 3), the non-zero off-diagonal
entries of Qt are given by

Qt(x,x
\i ⊙ x̂i) = Qt(x

1 · · ·xi · · ·xd, x1 · · · x̂i · · ·xd) = Qtok
t (xi, x̂i)

for x ∈ X and xi ̸= x̂i ∈ [S]. We see that the non-zero off-diagonal entries of Qt can only occur
between sequences with a Hamming distance of 1, leading to a rather sparse structure. As for the
perturbation of each dimension, we take the time-homogeneous uniform rate

Qtok
t ≡ Qtok =

1

S
1S1

⊤
S − IS .

This rate matrix is common in applications (Austin et al., 2021; Campbell et al., 2022; Lou et al.,
2024; Campbell et al., 2024), and also analyzed by Chen & Ying (2024) where S = 2 is taken. Then
Qt ≡ Q is of the form

Q(x,y) =


1
S , Ham(x,y) = 1,

( 1
S − 1)d, x = y,

0, otherwise.

We can then obtain the expression of forward transition probabilities and marginals as stated in the
following proposition, showing that the marginal converges to a uniform distribution over X = [S]d

which we denote πd as t increases. The proof of Proposition 1 is deferred to Appendix A.1.
Proposition 1. Let P i

s,t ∈ RS×S be the transition probability matrix of the i-th dimensional forward
CTMC Xi from time s to time t, i.e., P i

s,t(x, y) = qit|s(y|x) for all x, y ∈ [S] and i ∈ [d]. Then for
all i ∈ [d], P i

s,t ≡ P 0
s,t where

P 0
s,t =

1

S
(1− e−(t−s))1S1

⊤
S + e−(t−s)IS .

Let Ps,t ∈ RSd×Sd

be the transition probability matrix of the forward process from time s to time t
for t > s, i.e., Ps,t(x,y) = qt|s(y|x) for all x,y ∈ X , then

Ps,t =
(
P 0
s,t

)⊗d
,

where (·)⊗d denotes performing the matrix Kronecker product d times. In particular, the marginal
distribution of the forward process at time t can be expressed as

qt =

[
1

S
(1− e−t)1S1

⊤
S + e−tIS

]⊗d
· pdata,

and when t → +∞, qt approaches the uniform distribution πd.

Reverse Process and Score Model. Suppose that we run the forward process until time T > 0,
ending at qT . We can convert the noise back into samples if we reverse the forward CTMC dynamic
X in time. According to Campbell et al. (2022, Proposition 3), the reverse process Y = (Yt)t∈[0,T ]
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can be achieved by a CTMC starting from Y0 ∼ qT with Law(Yt)
a.s.
= Law(XT−t) = qT−t, and the

reverse rate Q←t ∈ RSd×Sd

is of the form

Q←t (x, x̃) =

d∑
i=1

Qtok
T−t(x̃

i,xi)δ{x\i, x̃\i}qT−t(x̃)
qT−t(x)

. (3)

From (3) we know that the non-zero off-diagonal entries of Q←t can only occur between sequences
with a Hamming distance of 1. Therefore, we care about the forward marginal ratios between these
sequences and denote the collective ratios as st : X → Rd(S−1) defined by

st(x)i,x̂i :=
qt(x

\i ⊙ x̂i)

qt(x)
for x ∈ X , i ∈ [d], xi ̸= x̂i ∈ [S].

Then the sparse structure of Q←t can be expressed as

Q←t (x,x\i ⊙ x̂i) = Qtok
T−t(x̂

i, xi)sT−t(x)i,x̂i =
1

S
sT−t(x)i,x̂i for i ∈ [d], xi ̸= x̂i ∈ [S],

and the reverse marginal qT−t satisfies the Kolmogorov equation
dqT−t
dt

= Q←t
⊤qT−t. (4)

However, in practice, we do not have access to qT , the initial distribution of the reverse process,
so we start the reverse process at the noise πd, the target distribution of the forward process, and
simulate it with score estimators. The score estimator ŝt : X → Rd(S−1) that estimates st for
t ∈ [0, T ] is learned by minimizing the score entropy loss

LSE(ŝ) =

∫ T

0

Ext∼qt

d∑
i=1

∑
x̂i
t ̸=xi

t

Qt(x
\i
t ⊙ x̂i

t,xt)DI(st(xt)i,x̂i
t
∥ŝt(xt)i,x̂i

t
) dt

=
1

S

∫ T

0

Ext∼qtDI(st(xt)∥ŝt(xt)) dt. (5)

Algorithm. Since the reverse process is time-inhomogeneous, we can discretize the time to simulate
it. Let h > 0 be the step size, and T be the time horizon. We consider applying early stopping with
a terminal time of T − δ, because the score function can blow up as t → 0 for data distributions
without full support on X . As shown in Section 5, early stopping can be removed when pdata has
full support on X . The time horizon is set to T = Kh+ δ, where δ ≥ 0 is a small value and K ∈ N
is assumed. Suppose we have access to the score estimators ŝT−kh for k = 0, 1 · · · ,K − 1. We
then construct a continuous-time sampling process Z = (Zt)t∈[0,T−δ] starting from Z0 ∼ πd, and
let pt := Law(Zt). For t ∈ [kh, (k + 1)h], by freezing the value of the rate matrix in the ODEs (4)
at time kh and replacing the true score with the score estimator, (Zt)t∈[kh,(k+1)h] is constructed
as a time-homogeneous CTMC with rate matrix Q̂←kh ∈ RSd×Sd

, where the non-zero off-diagonal
entries of Q̂←kh are given by

Q̂←kh(x,x
\i ⊙ x̂i) =

1

S
ŝT−kh(x)i,x̂i for i ∈ [d], xi ̸= x̂i ∈ [S].

Hence, in each step from time kh to (k + 1)h, the distribution follows the Kolmogorov equation
d

dt
pkh+t|kh(xkh+t|xkh) = Q̂←kh

⊤pkh+t|kh(xkh+t|xkh), t ∈ [0, h]. (6)

For k = 0, 1 · · · ,K − 1, theoretically we update the solution of the ODEs (6) as

zk+1 ∼ Cat
(
exp

(
hQ̂←hk

⊤
)
· (ez1

k
⊗ · · · ⊗ ezd

k
)
)
, z0 ∼ πd. (7)

After K iterations, we get a sample zK with law pT−δ . Unlike the exponential integrator in the
continuous setting, where the closed-form solution for the iteration formula of sampling random
variables can be obtained by solving the linear discretized SDE within each time interval, the dis-
crete setting requires deriving the categorical probability from the Kolmogorov equation and then
sampling from this distribution. In practice for sampling, we can run (7) with a Poisson point process
utilizing the uniformization of CTMC (Chen & Ying, 2024) instead of exactly calculating the matrix
exponential exp(hQ̂←hk

⊤) which is intractable for reasonably sized S and d. For completeness, we
formalize the practical sampling procedure in Algorithm 1, presented in Appendix D.
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5 MAIN RESULTS

Our main results are the convergence analyses for the theoretical iterative algorithm (7). We use
an analogous Girsanov-based method in the continuous SDE settings (Chen et al., 2023a;b; Benton
et al., 2024a) by bounding the KL divergence between the path measures of the true reverse process
and the sampling process.

The score estimation error measures the quality of the learned score estimator. Since we discretize
the true reverse CTMC in our algorithm, we make the following score error assumption.
Assumption 1 (Score estimation error). The score estimator satisfies

1

S

K−1∑
k=0

∫ (k+1)h+δ

kh+δ

Ext∼qtDI(s(k+1)h+δ(xt)∥ŝ(k+1)h+δ(xt)) dt ≤ ϵscore.

Assumption 1, which we introduce for the first time, can be viewed as a time-discretization of the
score entropy loss (5), establishing a discretized version of score error assumptions for our CTMC
framework. This assumption is analogous to those widely used in diffusion models (Lee et al., 2022;
Chen et al., 2023a;b; Li et al., 2023; 2024a;b; Benton et al., 2024a; Chen & Ying, 2024), but with
two key distinctions. First, we use the Bregman distance instead of the L2 distance, aligning with
the discrete nature of the CTMC framework. Second, in contrast to Chen & Ying (2024), we only
require a small error over pre-defined discretization points, rather than a continuous error bound.

Theorem 1. Suppose Assumption 1 holds. By choosing a small δ = Õ(S−
2
3 ) > 0, the KL diver-

gence between qδ and pT−δ is bounded by

DKL(qδ∥pT−δ) ≲ de−T logS + δ−3C1S
2h3d+ C1S

2h2dT + C2
1ϵscore, (8)

where C1 = max
{
1 + S

δ ,maxx∈X ,k∈{0,··· ,K−1} ∥ŝ(k+1)h+δ(x)∥∞
}

, and the TV distance between
pdata and pT−δ is bounded by

DTV(pdata, pT−δ) ≲
√

de−T logS + δ−3C1S2h3d+ C1S2h2dT + C2
1ϵscore+(1−e−dδ(S−1)/S).

(9)

The proof of Theorem 1 is deferred to Appendix A.3. We interpret the KL divergence bound (8) as
follows. The first term de−T logS arises from the initialization error of the algorithm. Recall that
the true reverse process should begin from qT , but the algorithm starts from the noise πd. The second
term δ−3C1S

2h3d + C1S
2h2dT reflects the discretization error, which scales with the step size h

and is linear in d, vanishing as h → 0. The third term C2
1ϵscore corresponds to the score estimation

error, which is non-vanishing. We remark that the appearance of the quantity C1 in the bound (8),
which is absent in the continuous SDE counterpart, stems from the lack of the triangle inequality
for the Bregman divergence. Specifically, C1 is the uniform bound of the involved score and score
estimators (see Lemma 2 in Appendix for details). As discussed in Appendix A.4, if applying the
score clipping technique, we can ensure that C1 ≲ S/δ. The nearly linear dependence on d of the
KL bound (8) matches the best result for the continuous diffusion model (Benton et al., 2024a).

The last term in (9) provides an upper bound on the TV distance between pdata and qδ . There is
a trade-off involving δ in this bound: to reduce DTV(pdata, qδ), we opt for a rather small δ > 0,
especially when d is large. However, this causes the square root term to grow rapidly, at a rate of
δ−2. As a result, the square root term dominates the bound, leading us to focus on the KL divergence
bound (8) for a small δ.

The data distribution characteristics are closely related to the properties of the score function when
t > 0 is small. We perform early stopping because the score of the data distribution can be positive
infinity for some data points with a probability of zero. However, if the score of pdata is uniformly
bounded, early stopping is no longer necessary.
Assumption 2. The data distribution pdata has full support on X , and there exists a uniform L > 0
depending on S but not on d, such that for all x ∈ X , i ∈ [d], and xi ̸= x̂i ∈ [S],

s0(x)i,x̂i =
pdata(x

\i ⊙ x̂i)

pdata(x)
≤ L.
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Assumption 2 holds in many cases, e.g., when the data distribution is the product of i.i.d. com-
ponents, each with a marginal distribution fully supported on [S]. It is similar to Assumption 3 in
Chen & Ying (2024), both aimed to remove early stopping. Our Assumption 2 is stronger since we
assume that L does not depend on d. Campbell et al. (2022) also applied similar assumptions, as
presented in Assumptions 1 and 2 in their paper. As they noted, the uniform boundness for the data
distribution follows trivially from the strict positiveness of pdata if we allow L to depend on d. We
adopt the assumption from Campbell et al. (2022), which enables us to derive a bound that can be
nearly linear in d, as stated in the following theorem.
Theorem 2. Suppose Assumptions 1 and 2 hold. Let δ = 0. Denote pidata ∈ RS as the marginal

distribution of the i-th dimension of the data, and let κi =
(pi

data)max

(pi
data)min

for i ∈ [d] and κ2 =
∑d

i=1 κ
2
i ,

then it holds that
DKL(pdata∥pT ) ≲ de−T logS + C2κ

2S2h2T + C2
2ϵscore, (10)

where C2 = max
{
L,maxx∈X ,k∈{0,··· ,K−1} ∥ŝ(k+1)h(x)∥∞

}
.

The proof of Theorem 2 is deferred to Appendix A.4. κi is well-defined since the strict positiveness
of pdata in Assumption 2 ensures the strict positiveness of marginal distribution pidata. In the bound
(10), the term C2κ

2S2h2T is the discretization error, where κ2 and C2 are related to the property
of the data distribution. Specifically, κ2 is characterized by the ratio of the largest to the smallest
entry in the marginal data distribution, and a large value of κ2 indicates that the probability values
for certain data points are either very high or very low. κ2 is nearly linear in d and equals d when
pdata is a uniform distribution. When pdata is relatively balanced, meaning that the probabilities
across data points are fairly similar, κ2/d and C2 are reasonably small, and thus the bound (10) is
tighter than (8) as it eliminates the term involving δ−4. The quantity C2 arises similarly to C1, and
applying score clipping can make C2 ≲ L as shown in Appendix A.4, where L is proven to be the
uniform bound of the score along the forward process.

With the early stopping criterion, Theorem 1 results in the following iteration complexity.
Corollary 1. Suppose Assumption 1 holds. By choosing a small δ = Õ(S−2/3) > 0, for any ϵ > 0,

if choosing T ≍ log
(

d logS
ϵ

)
and h ≍ min

{
δ
(

ϵ
C1S2d

)1/3
,
(

ϵ
C1S2d

)1/2}
, then the discrete diffu-

sion model requires at most Õ
(
max

{
1
δ

(
C1S

2d
ϵ

)1/3
,
(

C1S
2d

ϵ

)1/2})
steps to reach a distribution

pT−δ with DKL(qδ∥pT−δ) = Õ(ϵ+ C2
1ϵscore).

By Corollary 1, to have DKL(qδ∥pT−δ) = Õ(ϵ), it suffices to choose ϵscore = O(ϵ/C2
1 ). Similarly,

Theorem 2 leads to the following iteration complexity without early stopping.
Corollary 2. Suppose Assumptions 1 and 2 hold. Let δ = 0. For any ϵ > 0, if choosing T ≍

log
(

d logS
ϵ

)
and h ≍

√
ϵ

C2S2κ2 , then the discrete diffusion model requires at most Θ̃
(√

C2S2κ2

ϵ

)
steps to reach a distribution pT with DKL(pdata∥pT ) ≤ Õ(ϵ+ C2

2ϵscore).

By Corollary 2, to have DKL(pdata∥pT ) = Õ(ϵ), it suffices to have ϵscore = O(ϵ/C2
2 ).

Comparison with Chen & Ying (2024). Both Chen & Ying (2024) and our paper utilize a uniform
rate matrix for its structural simplicity. Chen & Ying (2024) applied the uniformization technique of
CTMC to develop a sampling algorithm for discrete diffusion models, enabling the exact simulation
of approximate reverse CTMC dynamics. In contrast, our algorithm discretizes the time to simulate
the reverse process and calls the score estimator at fixed discretization points {kh+ δ}k∈[K] instead
of at randomly sampled times, introducing an additional discretization error term in our bounds. As
h → 0, our sampling procedure covers the exact simulation, at which point our bound (8) degrades
to the bound in terms of score error and the mixing of the forward noising process. See Table 1 for
a comparison of the quantitative KL divergence bounds. Moreover, although we do not explicitly
make additional assumptions on the score estimator, we note that the score clipping approach dis-
cussed in Appendices A.4 and D aligns with Assumption 2 in Chen & Ying (2024), which assumes
a bounded score estimator to implement their sampling algorithm. Furthermore, our convergence
analysis is conducted in the more general [S]d setting, as opposed to the {0, 1}d hypercube frame-
work used in their work, making our state space setting and algorithm more broadly applicable.
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True Reverse Process

True Sampling Process

πd (q∞)

Z0 (p0)

YT (q0) Y0 (qT)

ZT−δ (pT−δ)

Analyzed Sampling Process
Z̃0 (qT)Z̃T−δ

YT−δ (qδ)

sδ . . . skh+δ sKh+δ. . .

̂sδ . . . ̂skh+δ ̂sKh+δ

̂sδ
. . . ̂skh+δ ̂sKh+δ

. . .

. . .

YT−kh−δ (qkh+δ)

ZT−kh−δ (pT−kh−δ)

Z̃T−kh−δ

Figure 1: Illustration of the processes Y , Z and Z̃. Y is the true reverse process, Z is the sampling
process starting from the noise πd, and Z̃ is the same as Z except for the initialization. Both Y and
Z̃ start from qT . The random variables (e.g., Yt, Zt) are shown with their corresponding probability
laws in parentheses (e.g., qT−t, pt).

6 OVERVIEW OF KEY PROOF TECHNIQUES

We present key proof techniques for the main results given in Section 5, which characterize the
discrete-time sampling process in the discrete diffusion model. Theorems 1 and 2 provide bounds
for both the KL divergence and the TV distance. In this section, we focus on proving the KL
bound (8), as the TV distance bound (9) follows from this KL bound via Pinsker’s inequality, plus
the additional term (1− e−dδ(S−1)/S). The proof of the KL bound (10) follows similarly.

Let Q be the path measure of the reverse process Y = (Yt)t∈[0,T ] starting from Y0 ∼ qT , and Pπd

be the path measure of the sampling process Z = (Zt)t∈[0,T−δ] starting from Z0 ∼ πd. Recall that
qt = Law(YT−t) and pt = Law(Zt). Additionally, let the process Z̃ = (Z̃t)t∈[0,T−δ] be the same
as Z except for its initialization at qT , and PqT be the path measure of Z̃. We visualize these three
processes in Figure 1. Then by the data processing inequality and the chain rule of KL divergence,
we have

DKL(qδ∥pT−δ) ≤ DKL(Q∥Pπd

) = DKL(qT ∥πd) +DKL(Q∥PqT ). (11)

Therefore, it suffices to bound the two KL divergence terms in (11).

Forward Process with General S States. The term DKL(qT ∥πd) represents the prior loss due to
the initial distribution mismatch between qT and πd. This can be bounded using the convergence
properties of the forward process. Proposition 1 already shows that the forward process qT converges
to πd as T → ∞. We now characterize this convergence rate for general S states.

Proposition 2. For the forward process marginal qt targeting the uniform distribution πd, we have

DKL(qt∥πd) ≤ e−tDKL(pdata∥πd) ≤ e−td logS.

The proof of Proposition 2 is deferred to Appendix A.2. Proposition 2 demonstrates that the forward
marginal converges exponentially to the uniform distribution πd. Since DKL(pdata∥πd) can be
upper bounded by d logS, which is the maximum possible KL divergence between any discrete
distribution and the uniform distribution over S states in d dimensions, this result holds irrespective
of the complexity of the data distribution pdata.

Girsanov-Based Method. The term DKL(Q∥PqT ) is the discretization error that calculates the path
measure KL divergence between the true reverse process and discretized reverse sampling process.
We employ Girsanov’s theorem to explicitly express the discretization error as follows (detailed in
Lemma 1 in Appendix)

DKL(Q∥PqT ) =
1

S

K−1∑
k=0

∫ (k+1)h+δ

kh+δ

Ext∼qtDI(st(xt)∥ŝ(k+1)h+δ(xt)) dt,

where DI(st(xt)∥ŝ(k+1)h+δ(xt)) is the Bregman divergence characterizing the distance between st
and ŝ(k+1)h+δ , for t ∈ [kh+δ, (k+1)h+δ]. Since our Assumption 1 is made on the discrete points

9
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{kh+ δ}k∈[K], we further decompose the Bregman divergence into two parts:

DKL(Q∥PqT ) ≲
C1

S

K−1∑
k=0

∫ (k+1)h+δ

kh+δ

Ext∼qt∥st(xt)− s(k+1)h+δ(xt)∥22 dt︸ ︷︷ ︸
Score Movement

+
C2

1

S

K−1∑
k=0

∫ (k+1)h+δ

kh+δ

Ext∼qtDI(s(k+1)h+δ(xt)∥ŝ(k+1)h+δ(xt)) dt︸ ︷︷ ︸
Score Error

, (12)

where the inequality holds due to the boundness of score and the property of Bregman divergence
(detailed in Lemma 2 and Proposition 3 in Appendix). The score movement term in (12) represents
the squared norm of the score difference ∥st(x)−s(k+1)h+δ(x)∥22 over the time interval [kh+δ, (k+

1)h+ δ], and the score error term in (12) is naturally bounded by C2
1ϵscore due to Assumption 1.

Score Movement Bound. We derive the score movement bound to quantify the change in the
score function over time (detailed in Lemma 3 in Appendix). For all k ∈ {0, 1, · · · ,K − 1},
t ∈ [kh+ δ, (k + 1)h+ δ], and xt ∈ X , we establish the following inequality:

1

S
∥st(xt)− s(k+1)h+δ(xt)∥22 ≲

[
e−(kh+δ)

(1− e−(kh+δ))2
+

S

ekh+δ − 1
+ 1

]2
dS2h2,

which leads to the score movement term in (12) being bounded by δ−3C1dS
2h3 + C1dS

2h2T
(detailed in Lemma 2 and the proof of Theorem 1 in Appendix), vanishing as h approaches zero.

In summary, we established proof techniques for bounding (11). We demonstrated exponential
convergence of the forward process to the uniform distribution, bounding the prior loss term. The
Girsanov-based method was employed to analyze the discretization error, decomposing it into score
movement and score error components. The derived score movement bound revealed dependencies
on step size h, dimension d, and state space size S. Collectively, these techniques provide a final
bound on DKL(qδ∥pT−δ), offering a rigorous framework for analyzing discrete diffusion models
under various parameter regimes.

7 CONCLUSION AND FUTURE WORK

We introduce a discrete-time sampling algorithm for the high-dimensional score-based discrete
diffusion models within the CTMC framework and corresponding convergence analyses using a
Girsanov-based method, similar to that in the continuous SDE setting. We study the properties of
the discrete score function and incorporate them into our discretization error analysis. The conver-
gence bounds for the sampling algorithm are nearly linear in the dimension d, both with and without
early stopping. The bound without early stopping is related to the property of the data distribution.

The primary limitation of this work is that the discretization error in the convergence bounds of
the proposed sampling algorithm becomes significant when δ is sufficiently small or when the data
distribution contains extreme probability values. Hence, future work can be focused on developing
refined techniques to treat the discretization error. Another important future direction will be devel-
oping accelerated algorithms with theoretical guarantees for score-based discrete diffusion models
and applying our method to some more general rate matrices to obtain tight convergence bounds.
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A MAIN PROOFS

A.1 PROOF OF PROPOSITION 1

Proof of Proposition 1. Consider the Kolmogorov forward equation ∂
∂tP

i
s,t = P i

s,tQ
tok, we obtain

that P i
s,t = exp

(
(t− s)Qtok

)
for the CTMC Xi. Let Qtok = PΛP−1 be the eigendecomposition

of Qtok with

P =


−1 −1 · · · −1 1
1 0 · · · 0 1
0 1 · · · 0 1
...

...
. . .

...
...

0 0 · · · 1 1

 , P−1 =
1

S


−1 S − 1 · · · −1 −1

...
...

. . .
...

...
−1 −1 · · · S − 1 −1
−1 −1 · · · −1 S − 1
1 1 · · · 1 1

 ,

and Λ = diag{−1, · · · ,−1, 0}. Then it can be easily verified that

P 0
s,t = exp

(
(t− s)Qtok

)
= P exp ((t− s)Λ)P−1 =

1

S

[
(1− e−(t−s))1S1

⊤
S + Se−(t−s)IS

]
.

Also, the Kolmogorov forward equation ∂
∂tPs,t = Ps,tQ yields Ps,t = exp((t−s)Q). Furthermore,

note that Q has a Kronecker-product structure

Q =

d⊕
k=1

Qtok =

d∑
k=1

I
⊗(k−1)
S ⊗Qtok ⊗ I

⊗(d−k)
S

where ⊕ denotes the Kronecker sum, and this structure can be verified by direct calculation:[
d⊕

k=1

Qtok

]
(x,x\i ⊙ x̂i) =

d∑
k=1

[
I
⊗(k−1)
S ⊗Qtok ⊗ I

⊗(d−k)
S

]
(x,x\i ⊙ x̂i)

=
[
I
⊗(i−1)
S ⊗Qtok ⊗ I

⊗(d−i)
S

]
(x,x\i ⊙ x̂i)

=
∏
j ̸=i

IS(x
j , xj) ·Qtok(xi, x̂i) =

1

S
= Q(x,x\i ⊙ x̂i)

and [
d⊕

k=1

Qtok

]
(x,x) =

d∑
k=1

[
I
⊗(k−1)
S ⊗Qtok ⊗ I

⊗(d−k)
S

]
(x,x)

=

d∑
k=1

∏
j ̸=k

IS(x
j , xj) ·Qtok(xk, xk)

=

d∑
k=1

(
1

S
− 1

)
=

(
1

S
− 1

)
d = Q(x,x)

for all x ∈ X , i ∈ [d], and xi ̸= x̂i ∈ [S]. Then

Ps,t = exp((t− s)Q) = exp

(
d⊕

k=1

(t− s)Qtok

)
=
(
exp

(
(t− s)Qtok

))⊗d
=
(
P 0
s,t

)⊗d
.

Thus, by the Kolmogorov forward equation d
dtqt = Q⊤qt we have

qt = exp(tQ) · pdata =
(
exp

(
tQtok

))⊗d · pdata =

[
1

S
(1− e−t)1S1

⊤
S + e−tIS

]⊗d
· pdata.

As t → +∞, qt →
[
1
S1S1

⊤
S

]⊗d · pdata = 1
Sd1Sd1⊤Sd · pdata = 1

Sd1Sd = πd. □
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A.2 PROOF OF PROPOSITION 2

Proof of Proposition 2. For the first inequality, we prove that the forward CTMC with generator
matrix Q and stationary distribution πd satisfies a modified log-Sobolev inequality (MLSI) with
constant CLSI = 2:

Entπd [f ] ≤ CLSI

2
E(f, log f) for all function f : X → R+, (13)

where the entropy is
Entπd [f ] = Eπd [f log f ]− Eπd [f ] log(Eπd [f ])

for a function f : X → R+, and the associated Dirichlet form is

E(f, g) = −
∫
X
f(x)

∑
y∈X

Q(x,y)g(y) dπd(x)

=
1

2

∑
x,y∈X

(f(x)− f(y))(g(x)− g(y))Q(x,y)πd(x)

for two functions f, g : X → R. With the sparse structure of Q, we can further write out that

E(f, log f) = 1

2S
Ex∼πd

d∑
i=1

S∑
x̂i=1

(f(x)− f(x\i ⊙ x̂i))(log f(x)− log f(x\i ⊙ x̂i))

for some function f : X → R+. We now use the subadditivity of entropy and tensorization property
of log-Sobolev constants to prove (13), and we will see that it is sufficient to show that the CTMC
on [S] with generator matrix Qtok and stationary distribution π = 1

S1S satisfies MLSI with constant
CLSI = 2. First, Boucheron et al. (2013, Theorem 4.10) implies the subadditivity of entropy that

Entπd [f ] ≤ Ex\i∼π⊗(d−1)

d∑
i=1

Ent(i)π [f ],

where Ent(i)π [f ] = Exi∼π[f log f ] − Exi∼π[f ] logExi∼π[f ]. Hence, it suffices to show that for all
i ∈ [d],

Ent(i)π [f ] ≤ CLSI

4
Exi∼π

S∑
x̂i=1

(f(x)− f(x\i ⊙ x̂i))(log f(x)− log f(x\i ⊙ x̂i)). (14)

Given any fixed realization of x\i, f(x) can take S different values with equal probability 1
S , and

we call these values a1, · · · , aS > 0. Then the desired inequality (14) is of the form

S∑
i=1

ai
S

log ai −

(
S∑

i=1

ai
S

)
log

S∑
i=1

ai
S

≤ CLSI

4S2

S∑
i,j=1

(ai − aj)(log ai − log aj).

Thus, it remains to prove that this elementary inequality holds for all a1, · · · , aS > 0, which can be
easily verified by plugging CLSI = 2 and the concavity of logarithmic function.

To conclude, the MLSI (13) implies the exponential mixing of the forward process in KL divergence
(see, e.g., Bobkov & Tetali (2006, Theorem 2.4), Chewi (2023, Theorem 1.2.25)):

DKL(qt∥πd) ≤ exp

(
− 2t

CLSI

)
DKL(pdata∥πd) = e−tDKL(pdata∥πd).

The second inequality is because

DKL(pdata∥πd) =
∑
x∈X

pdata(x) log
pdata(x)

S−d
=
∑
x∈X

pdata(x) log pdata(x) + d logS ≤ d logS.

□
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A.3 PROOF OF THEOREM 1

To prove Theorem 1, we state the following lemmas. Their proofs are provided in Appendix B.
Lemma 1. The KL divergence between the true and approximate path measures of the reverse
process both starting from qT is

DKL(Q∥PqT ) =

K−1∑
k=0

∫ (k+1)h+δ

kh+δ

Ext∼qt

d∑
i=1

∑
x̂i
t ̸=xi

t

Qtok
t (x̂i

t, x
i
t)DI(st(xt)i,x̂i

t
∥ŝ(k+1)h+δ(xt)i,x̂i

t
) dt.

Lemma 1 is the key lemma to our analysis, allowing us to explicitly express the path measure KL
divergence.
Lemma 2 (Score bound). Let δ > 0. For all t ∈ [δ, T ], x ∈ X , i ∈ [d] and x̂i ̸= xi ∈ [S], we have

st(x)i,x̂i ≤ 1 +
S

et − 1
≤ 1 +

S

eδ − 1
.

Lemma 3 (Score movement bound). For all k ∈ {0, 1, · · · ,K − 1}, t ∈ [kh + δ, (k + 1)h + δ],
x ∈ X and x̂i ̸= xi ∈ [S], we have

|st(x)i,x̂i − s(k+1)h+δ(x)i,x̂i | ≲
[

e−(kh+δ)

(1− e−(kh+δ))2
+

S

ekh+δ − 1
+ 1

]
Sh.

Proof of Theorem 1. Recall that Q is the path measure of the true reverse process Y = (Yt)t∈[0,T ]

starting from Y0 ∼ qT , and Pπd

is the path measure of the sampling process Z = (Zt)t∈[0,T−δ]
starting from Z0 ∼ πd. Z is a CTMC with rate matrix Q̂←t , where the non-zero off-diagonal entries
are defined by

Q̂←t (x,x\i ⊙ x̂i) =
1

S
ŝT−[ t

h ]h(x)i,x̂i for x̂i ̸= xi.

Then Z̃ = (Z̃t)t∈[0,T−δ] is a CTMC with rate matrix Q̂←t starting from Z̃0 ∼ qT with path measure
PqT . By the data processing inequality, we have the estimate

DKL(qδ∥pT−δ) ≤ DKL(Q∥Pπd

) = EY∼Q log

(
dQ
dPqT

(Y )
dPqT

dPπd (Y )

)
= EY∼Q log

(
dQ
dPqT

(Y )
dqT
dπd

(Y0)

)
= DKL(Q∥PqT ) +DKL(qT ∥πd), (15)

where the second to last equality holds since the only difference between the two path measures PqT

and Pπd

is the initial distribution for a path Y . We respectively bound the two terms in (15). The
second term is bounded by Proposition 2. We next combine Lemmas 1, 2, and 3, Assumption 1 and
Proposition 3 to bound the first term in (15). By choosing

C1 = max

{
1 +

S

eδ − 1
, max
x∈X ,k∈{0,··· ,K−1}

∥ŝ(k+1)h+δ(x)∥∞
}
,

we have

DKL(Q∥PqT )

=
1

S

K−1∑
k=0

∫ (k+1)h+δ

kh+δ

Ext∼qtDI(st(xt)∥ŝ(k+1)h+δ(xt)) dt

≲
C1

S

K−1∑
k=0

∫ (k+1)h+δ

kh+δ

Ext∼qt∥st(xt)− s(k+1)h+δ(xt)∥22 dt

+
C2

1

S

K−1∑
k=0

∫ (k+1)h+δ

kh+δ

Ext∼qtDI(s(k+1)h+δ(xt)∥ŝ(k+1)h+δ(xt)) dt
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≲
C1

S

K−1∑
k=0

[
e−(kh+δ)

(1− e−(kh+δ))2
+

S

ekh+δ − 1
+ 1

]2
dS3h3 + C2

1ϵscore

≲ C1

K−1∑
k=0

[
e−2(kh+δ)

(1− e−(kh+δ))4
+

(
S

ekh+δ − 1

)2

+ 1

]
dS2h3 + C2

1ϵscore

≲ C1dS
2h3

∫ T

δ

[
e−2x

(1− e−x)4
+

S2

ex − 1

]
dx+ C1dS

2h2T + C2
1ϵscore

≤
[
(eδ − 1)−3 + (δ − log(eδ − 1))S2

]
C1dS

2h3 + C1dS
2h2T + C2

1ϵscore

≤
[
δ−3 + (δ + log(1/δ))S2

]
C1dS

2h3 + C1dS
2h2T + C2

1ϵscore

≲ δ−3C1dS
2h3 + C1dS

2h2T + C2
1ϵscore. (16)

The first equality follows from Lemma 1. The first inequality is a consequence of Lemma 2 and
Proposition 3. Lemma 3 and Assumption 1 lead to the second inequality. The third inequality stems
from (a + b + c)2 ≤ 3(a2 + b2 + c2). The second last inequality utilizes the fact that ex − 1 ≥ x.
For the final inequality, we employ δ = Õ(S−

2
3 ) and note that δ−3 + log(1/δ)S2 = O(δ−3) as

δ → 0+. Lastly, combining (15), (16), and Proposition 2 yields the KL divergence bound (8).

As for the TV distance bound (9), it is a similar proof to that of Theorem 6(2) in Chen & Ying
(2024). By the definition of TV distance and the uniformization of CTMC (Chen & Ying, 2024,
Proposition 1), we have

DTV(pdata, qδ) ≤ P(X0 ̸= Xδ)

≤ P(‘A Poisson(d(S − 1)δ/S) random variable is non-zero’) (17)

= 1− e−d(S−1)δ/S .

Then by the triangle inequality, Pinsker’s inequality and inequality (8), we have

DTV(pdata, pT−δ)

≤ DTV(qδ, pT−δ) +DTV(pdata, qδ)

≤
√

1

2
DKL(qδ∥pT−δ) + (1− e−d(S−1)δ/S)

≲
√

de−T logS + δ−3C1S2h3d+ C1S2h2dT + C2
1ϵscore + (1− e−d(S−1)δ/S).

We conclude the proof of Theorem 1. □

A.4 PROOF OF THEOREM 2

Proof of Theorem 2. The proof of Theorem 2 is similar to that of Theorem 1. Note that the decom-
position (15) and the equation for path measure KL divergence in Lemma 1 still hold for δ = 0. It
suffices to bound the first term of (15). We need the following lemmas. Proofs of Lemmas 4 and 5
are provided in Appendix B.

Lemma 4 (Score bound). Suppose Assumption 2 holds. Let δ = 0. Then for all t ∈ [0, T ], x ∈ X ,
i ∈ [d] and x̂i ̸= xi ∈ [S], we have

st(x)i,x̂i ≤ L.

Lemma 5 (Score movement bound). Suppose Assumption 2 holds. Let δ = 0. Then for all k ∈
{0, 1, · · · ,K − 1}, t ∈ [kh, (k + 1)h], x ∈ X , i ∈ [d], and x̂i ̸= xi ∈ [S], we have

|st(x)i,x̂i − s(k+1)h(x)i,x̂i | ≲
[

1

1− e−(k+1)h
+ S

]
κih.

We then combine Lemmas 1, 4, and 5, Assumption 1 and Proposition 3 with δ = 0. By choosing

C2 = max

{
L, max

x∈X ,k∈{0,··· ,K−1}
∥ŝ(k+1)h(x)∥∞

}
,
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we have

DKL(Q∥PqT )

=
1

S

K−1∑
k=0

∫ (k+1)h

kh

Ext∼qtDI(st(xt)∥ŝ(k+1)h(xt)) dt

≲
C2

S

K−1∑
k=0

∫ (k+1)h

kh

Ext∼qt∥st(xt)− s(k+1)h(xt)∥22 dt

+
C2

2

S

K−1∑
k=0

∫ (k+1)h

kh

Ext∼qtDI(s(k+1)h(xt)∥ŝ(k+1)h(xt)) dt

≤ C2

S

K−1∑
k=0

∫ (k+1)h

kh

Ext∼qt

d∑
i=1

∑
x̂i ̸=xi

|st(xt)i,x̂i − s(k+1)h(xt)i,x̂i |2 dt+ C2
2ϵscore

≲
C2

S

K−1∑
k=0

∫ (k+1)h

kh

Ext∼qt

d∑
i=1

∑
x̂i ̸=xi

[
1

1− e−(k+1)h
+ S

]2
κ2
ih

2 dt+ C2
2ϵscore

≲ C2

K−1∑
k=0

d∑
i=1

[
1

(1− e−(k+1)h)2
+ S2

]
κ2
ih

3 + C2
2ϵscore

= C2κ
2
K−1∑
k=0

1

(1− e−(k+1)h)2
h3 + C2κ

2S2h2T + C2
2ϵscore

≲ C2κ
2h3

∫ T

h

1

(1− e−x)2
dx+ C2κ

2S2h2T + C2
2ϵscore

≤ C2κ
2h3

[
T − log(eh − 1) +

1

eh − 1

]
+ C2κ

2S2h2T + C2
2ϵscore

(i)

≤ C2κ
2h3

[
T − log h+

1

h

]
+ C2κ

2S2h2T + C2
2ϵscore

≲ C2κ
2h3

[
T +

1

h

]
+ C2κ

2S2h2T + C2
2ϵscore

≲ C2κ
2h2T

[
h+ S2

]
+ C2

2ϵscore
(ii)

≲ C2κ
2h2S2T + C2

2ϵscore. (18)

The first equality follows from Lemma 1. Lemma 4 and Proposition 3 lead to the first inequality. As-
sumption 1 gives rise to the second inequality, while Lemma 5 yields the third. The fourth inequality
stems from the fact that (a+ b)2 ≤ 2(a2 + b2). Inequality (i) is a consequence of ex − 1 ≥ x, and
(ii) results from the assumption that h ≤ S2.

Then Theorem 2 follows from (15), (18) and Proposition 2. □

Discussion on C1 and C2. Since we have access to uniform bounds for the true score functions
from Lemmas 2 and 4, which depend on either δ and S, or L, we can apply score clipping during
training to ensure that the learned score functions are reliable. Specifically, we enforce the following
conditions:

max
x∈X , k∈{0,...,K−1}

∥ŝ(k+1)h+δ(x)∥∞ ≤ 3

2

(
1 +

S

eδ − 1

)
≤ 3S

δ
, for a small δ.

and

max
x∈X , k∈{0,...,K−1}

∥ŝ(k+1)h(x)∥∞ ≤ 3

2
L.

As a result, we can choose that C1 = 3S
δ and C2 = 3

2L.

18
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B OMITTED PROOFS IN APPENDIX A

B.1 PROOF OF LEMMA 1

To prove Lemma 1, we need the following generalized Girsanov’s theorem and Dynkin’s formula,
as stated below. For related definitions and details regarding the notations used in Theorem 3 and
Lemma 6, we refer readers to the work of Benton et al. (2024b).
Theorem 3 (Girsanov, (Benton et al., 2024b, Theorem 6)). Let Ȳ = (Yt, t)t≥0 and Z̄ = (Zt, t)t≥0
be Feller processes on S with generators L,M and path measures Q̄, P̄ respectively, such that Y0

and Z0 have the same law. Suppose that there exists a bounded, measurable function α : S →
(0,+∞) such that α−1Lα is bounded, and such that

αMf = L(fα)− fLα (19)

for all proper functions f (assume that all the involved functions are well-defined). Then we have

dP̄
dQ̄

(ω) =
α(ωT , T )

α(ω0, 0)
exp

{
−
∫ T

0

Lα(ωs, s)

α(ωs, s)
ds

}
.

Lemma 6 (Dynkin’s formula, (Dong, 2003, Theorem 27.20)). If Ȳ = (Yt, t)t≥0 is a Feller process
on S with generator L and f is a proper function on S (assume that all the involved functions are
well-defined), then

Mf
t = f(Yt, t)− f(Y0, 0)−

∫ t

0

Lf(Ys, s) ds

is a martingale with respect to the natural filtration of Ȳ .

Proof of Lemma 1. Recall that Y = (Yt)t∈[0,T ] is the true time reversal CTMC with generator Q←t ,
and Z = (Zt)t∈[0,T ] is the sampling CTMC with generator Q̂←t , both initiating from qT ; the rate
matrices are of the forms

Q←t (x,x\i ⊙ x̂i) =
1

S
sT−t(x)i,x̂i and Q̂←t (x,x\i ⊙ x̂i) =

1

S
ŝT−[ t

h ]h(x)i,x̂i for xi ̸= x̂i.

Since the processes Y and Z on X are time-inhomogeneous, inspired by Benton et al. (2024b), we
consider Feller processes Ȳ , Z̄ defined on the extended space S = X × [0,+∞) which are con-
structed by setting Yt = YT and Zt = ZT for t ≥ T and letting Ȳ = (Yt, t)t≥0 and Z̄ = (Zt, t)t≥0,
which are time-homogeneous. For more related details on the Feller process and stochastic analysis,
we refer readers to the work of Benton et al. (2024b).

We can now apply Theorem 3 with L = ∂t + L̂ and M = ∂t + M̂, where L̂ and M̂ are the
generators of the CTMCs Y and Z respectively, the condition (19) has the form

αM̂f = L̂(fα)− f L̂α,
and it follows that

α(x, t)
∑
z∈X

Q̂←t (x, z)f(z) =
∑
z∈X

Q←t (x, z)α(z, t)f(z)− f(x)
∑
z∈X

Q←t (x, z)α(z, t)

for all x ∈ X . By taking y = x\i ⊙ x̂i (x̂i ̸= xi) and f(z) = 1{z = y}, we have

α(x, t)ŝT−[ t
h ]h(x)i,x̂i = α(y, t)sT−t(x)i,x̂i for all i ∈ [d] and x̂i ̸= xi.

Thus, in order for (19) to hold, it is required that

sT−t(x)i,x̂i =
α(x, t)

α(x\i ⊙ x̂i, t)
ŝT−[ t

h ]h(x)i,x̂i for all i ∈ [d] and x̂i ̸= xi. (20)

It also can be easily verified that this is sufficient for (19) to hold for a given α. Let Q̄ and P̄ be
the path measures of Ȳ and Z̄ respectively. Then with function α(x, t) satisfying (20), Theorem 3
yields that

dP̄
dQ̄

(Y ) =
α(YT−δ, T − δ)

α(Y0, 0)
exp

{
−
∫ T−δ

0

α(Ys, s)
−1Lα(Ys, s) ds

}
. (21)
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By taking f = logα in Lemma 6, we know that

Mf
t := log

α(Yt, t)

α(Y0, 0)
−
∫ t

0

L logα(Ys, s) ds

is a Q̄-martingale. Then by taking logarithms in (21), it follows that

log
dP̄
dQ̄

(Y )

=

∫ T−δ

0

[
L logα(Ys, s)−

Lα(Ys, s)

α(Ys, s)

]
ds+Mf

T−δ

=

∫ T−δ

0

[[
∂t logα(Ys, s) + L̂ logα(Ys, s)

]
−

[
∂tα(Ys, s)

α(Ys, s)
+

L̂α(Ys, s)

α(Ys, s)

]]
ds+Mf

T−δ

=

∫ T−δ

0

[
L̂ logα(Ys, s)−

L̂α(Ys, s)

α(Ys, s)

]
ds+Mf

T−δ.

Taking expectation above yields that

DKL(Q∥PqT ) = DKL(Q̄∥P̄) = EQ̄ log
dQ̄
dP̄

= EQ̄

∫ T−δ

0

[
L̂α(Ys, s)

α(Ys, s)
− L̂ logα(Ys, s)

]
ds+ EQ̄M

f
T−δ

=

∫ T−δ

0

Ext∼qT−t

[
L̂α(xt, t)

α(xt, t)
− L̂ logα(xt, t)

]
dt

=

∫ T−δ

0

Ext∼qT−t

∑
y∈X

{
Q←t (xt,y)

α(y, t)

α(xt, t)
−Q←t (xt,y) log

α(y, t)

α(xt, t)

}dt

=

∫ T−δ

0

Ext∼qT−t

Q←t (xt,xt) +
∑
y ̸=xt

Q←t (xt,y)
α(y, t)

α(xt, t)
+
∑
y ̸=xt

Q←t (xt,y) log
α(xt, t)

α(y, t)

dt

=
1

S

∫ T−δ

0

Ext∼qT−t

d∑
i=1

∑
x̂i
t ̸=xi

t

[
− sT−t(xt)i,x̂i

t
+ ŝT−[ t

h ]h(xt)i,x̂i
t

+ sT−t(xt)i,x̂i
t
log

sT−t(xt)i,x̂i
t

ŝT−[ t
h ]h(xt)i,x̂i

t

]
dt

=
1

S

∫ T−δ

0

Ext∼qT−t

d∑
i=1

∑
x̂i
t ̸=xi

t

DI(sT−t(xt)i,x̂i
t
∥ŝT−[ t

h ]h(xt)i,x̂i
t
) dt

=
1

S

K−1∑
k=0

∫ (k+1)h

kh

Ext∼qT−t

d∑
i=1

∑
x̂i
t ̸=xi

t

DI(sT−t(xt)i,x̂i
t
∥ŝT−kh(xt)i,x̂i

t
) dt

=
1

S

K−1∑
k=0

∫ (k+1)h

kh

Ext∼qT−t
DI(sT−t(xt)∥ŝT−kh(xt)) dt

=
1

S

K−1∑
k=0

∫ (k+1)h+δ

kh+δ

Ext∼qtDI(st(xt)∥ŝ(k+1)h+δ(xt)) dt,

where we used EQ̄M
f
T−δ = EQ̄M

f
0 = 0 since {Mf

t }t≥0 is a Q̄-martingale by Lemma 6. Thus we
finish the proof of Lemma 1. □
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B.2 PROOF OF LEMMA 2

Proof o Lemma 2. Note that for all 0 ≤ t′ ̸= t,

st(x)i,x̂i =
qt(x

\i ⊙ x̂i)

qt(x)
=

1

qt(x)

∑
xt′∈X

qt′(xt′)qt|t′(x
\i ⊙ x̂i|xt′)

=
1

qt(x)

∑
xt′∈X

qt′(xt′)
∏
k ̸=i

qit|t′(x
k|xk

t′)q
i
t|t′(x̂

i|xi
t′)

=
1

qt(x)

∑
xt′∈X

qt′(xt′)

d∏
k=1

qit|t′(x
k|xk

t′)
qit|t′(x̂

i|xi
t′)

qit|t′(x
i|xi

t′)

=
∑

xt′∈X

qt′(xt′)qt|t′(x|xt′)

qt(x)
·
qit|t′(x̂

i|xi
t′)

qit|t′(x
i|xi

t′)

= Ext′∼qt′|t(·|x)
qit|t′(x̂

i|xi
t′)

qit|t′(x
i|xi

t′)
. (22)

In particular, by taking t′ = 0 in (22), we have

st(x)i,x̂i = Ex0∼q0|t(·|x)
qit|0(x̂

i|xi
0)

qit|0(x
i|xi

0)

= Ex0∼q0|t(·|x)
1 + e−t(−1 + S · δ{x̂i, xi

0})
1 + e−t(−1 + S · δ{xi, xi

0})
≤ 1 +

S

et − 1
≤ 1 +

S

eδ − 1
. (23)

□

B.3 PROOF OF LEMMA 3

To prove Lemma 3, we need the following lemmas. Proofs of Lemmas 7, 8, and 9 are provided in
Appendix C.
Lemma 7. Denote qit as the marginals of the i-th dimensional forward CTMC Xi, and the cor-
responding score function for Xi as sit(x)y =

qit(y)

qit(x)
for x ̸= y ∈ [S]. Then for all i ∈ [d],

k ∈ {0, 1, · · · ,K − 1}, t ∈ [kh+ δ, (k + 1)h+ δ], and x ̸= y ∈ [S], we have

sit(x)y ≤ 1 +
S

ekh+δ − 1
, and

∣∣∣sit(x)y − si(k+1)h+δ(x)y

∣∣∣ ≤ She−(kh+δ)

(1− e−(kh+δ))2
.

Lemma 8. There exists some large enough t′ such that for all i ∈ [d], k ∈ {0, 1, · · · ,K − 1},
t ∈ [kh+ δ, (k + 1)h+ δ], x ̸= y ∈ [S], and xt′ ∈ [S], we have∣∣∣∣∣ q

i
t′|t(xt′ |y)
qit′|t(xt′ |x)

−
qit′|(k+1)h+δ(xt′ |y)
qit′|(k+1)h+δ(xt′ |x)

∣∣∣∣∣ ≤ 8Sh, and
qit′|t(xt′ |y)
qit′|t(xt′ |x)

≤ 2.

Lemma 9. There exists some large enough t′ such that for all k ∈ {0, 1, · · · ,K − 1}, t ∈ [kh +
δ, (k + 1)h+ δ] and x ∈ X , it holds that

2 ·DTV(qt′|t(·|x), qt′|(k+1)h+δ(·|x)) ≤ h.

Proof of Lemma 3. We can bound the high-dimensional score movement as follows:

|st(x)i,x̂i − s(k+1)h+δ(x)i,x̂i |

=

∣∣∣∣∣Ext′∼qt′|t(·|x)
qit|t′(x̂

i|xi
t′)

qit|t′(x
i|xi

t′)
− Ext′∼qt′|(k+1)h+δ(·|x)

qi(k+1)h+δ|t′(x̂
i|xi

t′)

qi(k+1)h+δ|t′(x
i|xi

t′)

∣∣∣∣∣
≤ Ext′∼qt′|t(·|x)

∣∣∣∣∣q
i
t|t′(x̂

i|xi
t′)

qit|t′(x
i|xi

t′)
−

qi(k+1)h+δ|t′(x̂
i|xi

t′)

qi(k+1)h+δ|t′(x
i|xi

t′)

∣∣∣∣∣
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+

∣∣∣∣∣Ext′∼qt′|t(·|x)
qi(k+1)h+δ|t′(x̂

i|xi
t′)

qi(k+1)h+δ|t′(x
i|xi

t′)
− Ext′∼qt′|(k+1)h+δ(·|x)

qi(k+1)h+δ|t′(x̂
i|xi

t′)

qi(k+1)h+δ|t′(x
i|xi

t′)

∣∣∣∣∣
≤ Ext′∼qt′|t(·|x)

∣∣∣∣∣st(xi)x̂i ·
qit′|t(x

i
t′ |x̂i)

qit′|t(x
i
t′ |xi)

− s(k+1)h+δ(x
i)x̂i ·

qit′|(k+1)h+δ(x
i
t′ |x̂i)

qit′|(k+1)h+δ(x
i
t′ |xi)

∣∣∣∣∣
+ sup

t,x̂i,xi
t′ ,x

i

{
qit′|t(x

i
t′ |x̂i)

qit′|t(x
i
t′ |xi)

}
· 2DTV(qt′|t(·|x), qt′|(k+1)h+δ(·|x)), (24)

where the first equality is by (22), the first inequality is due to the triangle inequality, and the last
inequality is due to the Bayes’ rule.

Then by utilizing the inequality |a1a2 − b1b2| ≤ |a1 − b1|a2 + b1|a2 − b2| (a1, a2, b1, b2 ≥ 0) for
the first term in (24), and then using Lemmas 7, 8, and 9, for some large enough t′, we have that

|st(x)i,x̂i − s(k+1)h+δ(x)i,x̂i | ≤
[

2She−(kh+δ)

(1− e−(kh+δ))2
+ (1 +

S

ekh+δ − 1
)8Sh

]
+ 2h

≲

[
e−(kh+δ)

(1− e−(kh+δ))2
+

S

ekh+δ − 1
+ 1

]
Sh.

□

B.4 PROOF OF LEMMA 4

Proof of Lemma 4. This is a similar proof to that of Lemma 8 in Chen & Ying (2024). Define the
kernel function

gw(t) =
1

Sd

d∏
i=1

[
1 + e−t(−1 + S · 1{wi ≡ 0 (mod S)})

]
for w ∈ Zd, t ≥ 0.

By Proposition 1, we can express the transition probability of the forward process as

qt|s(xt|xs) =

d∏
i=1

qit|s(x
i
t|xi

s) =

d∏
i=1

P 0
s,t(x

i
s, x

i
t)

=
1

Sd

d∏
i=1

[
1 + e−(t−s)(−1 + S · δ{xi

t, x
i
s})
]

for all t > s ≥ 0.

Then we have qt|0(y|x) = gy−x(t) for t > 0. Thus, it follows that for all t ∈ (0, T ], x ∈ X , i ∈ [d]

and xi ̸= x̂i ∈ [S],

st(x)i,x̂i =
qt(x

\i ⊙ x̂i)

qt(x)

=
qt(x+ (x̂i − xi)ei)

qt(x)

=

∑
y∈X q0(y)qt|0(x+ (x̂i − xi)ei|y)

qt(x)

=

∑
y∈X q0(y)gx+(x̂i−xi)ei−y(t)

qt(x)

=

∑
y∈X q0(y + (x̂i − xi)ei)gx−y(t)

qt(x)

=
∑
y∈X

q0(y)qt|0(x|y)
qt(x)

· q0(y + (x̂i − xi)ei)

q0(y)

= Ey∼q0|t(·|x)
q0(y + (x̂i − xi)ei)

q0(y)
≤ L,

where the last inequality is by Assumption 2 and y + (x̂i − xi)ei should be understood in modulo
S sense. □
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B.5 PROOF OF LEMMA 5

Lemma 10. Suppose Assumption 2 holds. Let δ = 0, then for all i ∈ [d], k ∈ {0, 1, · · · ,K − 1},
t ∈ [kh, (k + 1)h], and x ̸= y ∈ [S], we have

sit(x)y ≤ κi, and
∣∣∣sit(x)y − si(k+1)h(x)y

∣∣∣ ≤ κi ·
h

1− e−(k+1)h
.

The proof of Lemma 10 is provided in Appendix C.

Proof of Lemma 5. Similar to the proof of Lemma 3, by utilizing the inequality |a1a2 − b1b2| ≤
|a1 − b1|a2 + b1|a2 − b2|(a1, a2, b1, b2 ≥ 0) for the first term in (24) and then combining Lemma 8,
Lemma 9, and Lemma 10 with δ = 0, we obtain

|st(x)i,x̂i − s(k+1)h(x)i,x̂i | ≤ κi

[
1

1− e−(k+1)h
h · 2 + 8Sh

]
+ 2h

≲

[
1

1− e−(k+1)h
+ S

]
κih.

□

C OMITTED PROOFS IN APPENDIX B

C.1 PROOF OF LEMMA 7

Proof of Lemma 7. Proposition 1 implies that

qit = P i
0,t · pidata = e−tpidata + (1− e−t)π.

Thus, we have

sit(x)y =
qit(y)

qit(x)
=

pidata(y) + (et − 1) 1
S

pidata(x) + (et − 1) 1
S

, (25)

and ∣∣∣sit(x)y − si(k+1)h+δ(x)y

∣∣∣ = ∣∣∣∣∣ qit(y)qit(x)
−

qi(k+1)h+δ(y)

qi(k+1)h+δ(x)

∣∣∣∣∣
=

(e(k+1)h+δ − et)|pidata(x)− pidata(y)|
(pidata(x) +

1
S (e

(k+1)h+δ − 1))(Spidata(y) + (et − 1))
. (26)

We can derive from (25) and (26) that if we retain the dependence on δ, we obtain

sit(x)y ≤ 1 +
S

et − 1
≤ 1 +

S

ekh+δ − 1
,

and ∣∣∣sit(x)y − si(k+1)h+δ(x)y

∣∣∣ ≤ Se(k+1)h+δ(1− e−((k+1)h+δ−t))

(e(k+1)h+δ − 1)(et − 1)

≤ Sh

(1− e−((k+1)h+δ))(ekh+δ − 1)

≤ She−(kh+δ)

(1− e−(kh+δ))2
.

□
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C.2 PROOF OF LEMMA 8.

Proof of Lemma 8. First, we have

|qit′|t(xt′ |y)− qit′|(k+1)h+δ(xt′ |y)|

=
1

S

∣∣∣(−1 + S · δ{xt′ , y})(e−(t
′−t) − e−(t

′−((k+1)h+δ)))
∣∣∣

≤ e−(t
′−((k+1)h+δ))(1− e−((k+1)h+δ−t)) ≤ h,

and
qit′|t(xt′ |x) =

1

S
(1 + e−(t

′−t)(−1 + S · δ{x, xt′})) ≥
1

S
(1− e−(t

′−t)) ≥ 1√
2S

;

qit′|t(xt′ |x) ≤
1

S
(1 + e−(t

′−t)(S − 1)) ≤ 2

S

for some large enough t′ (for example, t′ ≥ T + 2 log S
2 ). Hence, we have the estimate∣∣∣∣∣ q

i
t′|t(xt′ |y)
qit′|t(xt′ |x)

−
qit′|(k+1)h+δ(xt′ |y)
qit′|(k+1)h+δ(xt′ |x)

∣∣∣∣∣
=

∣∣∣∣∣q
i
t′|t(xt′ |y)qit′|(k+1)h+δ(xt′ |x)− qit′|(k+1)h+δ(xt′ |y)qit′|t(xt′ |x)

qit′|t(xt′ |x)qit′|(k+1)h+δ(xt′ |x)

∣∣∣∣∣ ≤ 2h 2
S

1
2S2

= 8Sh.

For the other statement, it holds that

qit′|t(xt′ |y)
qit′|t(xt′ |x)

=
1 + e−(t

′−t)(−1 + S · δ{xt′ , y})
1 + e−(t′−t)(−1 + S · δ{xt′ , x})

≤ 1 +
S

et′−t − 1
≤ 2

for some large t′ (for example, t′ ≥ T + logS). □

C.3 PROOF OF LEMMA 9.

Proof of Lemma 9. By taking a large enough t′ (for example, t′ ≥ T + d logS + log d), we have

2 ·DTV(qt′|t(·|x), qt′|(k+1)h+δ(·|x)) =
∑

xt′∈X
|qt′|t(xt′ |x)− qt′|(k+1)h+δ(xt′ |x)|

=
∑

xt′∈X

∣∣∣∣∣
d∏

i=1

qit′|t(x
i
t′ |xi)−

d∏
i=1

qit′|(k+1)h+δ(x
i
t′ |xi)

∣∣∣∣∣
≤ (Sdde−(t

′−((k+1)h+δ)))h ≤ h,

where the second last inequality comes from the inequality∣∣∣∣∣
n∏

i=1

ai −
n∏

i=1

bi

∣∣∣∣∣ ≤
n∑

k=1

∣∣∣∣∣∣(ak − bk)
∏
i̸=k

mix{ai, bi}

∣∣∣∣∣∣
where mix{ai, bi} denotes taking a value from ai and bi. □

C.4 PROOF OF LEMMA 10

Proof of Lemma 10. We retain the dependence on pidata in equations (25) and (26) with δ = 0, and
derive that

sit(x)y ≤max

{
(pidata)max

(pidata)min
, 1

}
= κi,

and ∣∣∣sit(x)y − si(k+1)h(x)y

∣∣∣ ≤ (pidata)max

(pidata)min
· h

1− e−(k+1)h
= κi ·

h

1− e−(k+1)h
.

□
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Algorithm 1 Generative Reverse Process Simulation through Uniformization
Input: Learned discrete score function ŝT−kh (k = 0, 1, · · · ,K − 1), total time T , discretization

step h > 0, and δ = T −Kh ≥ 0
1: Draw z0 ∼ πd

2: for k = 0, 1, · · · ,K − 1 do
3: Set λk = maxx∈X {ŝT−kh(x)x}
4: Draw M ∼ Poisson(λkh)
5: Set y0 = zk
6: for j = 0, 1, · · · ,M − 1 do

7: Set yj+1 =

y
\i
j ⊙ ŷi, w.p.

ŝT−kh(yj)i,ŷi

λk
, 1 ≤ i ≤ d, ŷi ̸= yi

j , ŷ
i ∈ [S]

yj , w.p. 1−
∑d

i=1

∑
ŷi ̸=yi

j

ŝT−kh(yj)i,ŷi

λk

8: end for
9: Set zk+1 = yM

10: end for
Output: A sample zK from pT−δ

D PRACTICAL ALGORITHM

Inspired by Chen & Ying (2024, Algorithm 1), we provide a practical generative sampling algorithm
in Algorithm 1. The uniformization of CTMC guarantees the algorithm (Chen & Ying, 2024, Propo-
sition 1). For convenience, we define ŝt(x)x :=

∑d
i=1

∑
x̂i ̸=xi ŝt(x)i,x̂i for t ∈ [0, T ], yielding that

Q̂←t (x,x) = −
∑
y ̸=x

Q̂←t (x,y) = −
d∑

i=1

∑
x̂i ̸=xi

Q̂←t (x,x\i ⊙ x̂i) = − 1

S

d∑
i=1

∑
x̂i ̸=xi

sT−t(x)i,x̂i

= − 1

S
ŝT−[ t

h ]h(x)x.

Note that we run a Poisson point process to sample based on the transition probability matrix
exp

(
hQ̂←hk

)
in each iteration. Running Algorithm 1 requires M ∼ Poisson(λ) steps with

λ =
∑K−1

k=0 λkh = (
∑K−1

k=0 maxx∈X {ŝT−kh(x)x})h, which characterizes the sampling complex-
ity.

Discussion on λk in Algorithm 1. We set λk = maxx∈X {ŝT−kh(x)x} in Algorithm 1, where
the maximum is taken over the discrete set X = [S]d. When |X | = Sd is so large that it is
impractical to obtain this exact maximum, by the uniformization of CTMC (Chen & Ying, 2024,
Proposition 1), we can instead set λk as an upper bound for maxx∈X {ŝT−kh(x)x}. Since we
know that

∑d
i=1

∑
x̂i ̸=xi sT−kh(x)i,x̂i ≤ dS(1 + S

eT−kh−1 ) for all k ∈ {0, 1, · · · ,K − 1} and
x ∈ X by Lemma 2, we can apply score clipping to ensure that ŝT−kh(x)x ≤ 3

2dS(1 +
S

eT−kh−1 )

for all x ∈ X . Therefore, we can set λk = 3
2dS

(
1 + S

eT−kh−1

)
which is tractable given any

k, T, h, d, and S, thereby avoiding the need to calculate the maximum over the set X .

Discussion on λ. By applying score clipping with ŝT−kh(x)x ≤ 3
2dS(1 +

S
eT−kh−1 ), we have

λ ≲
K−1∑
k=0

dS

(
1 +

S

eT−kh − 1

)
h = dST + dS2h

K∑
k=1

1

ekh+δ − 1

≲ dST + dS2h

∫ T

h+δ

1

ex − 1
dt ≲ dS(T + Sh log(1/(h+ δ))).

By choosing T and h in Corollary 1, we have

λ ≲ dS

(
log

d logS

ϵ
+min

{
δ

(
ϵ

C1S2d

) 1
3

,

(
ϵ

C1S2d

) 1
2

}
S log(1/δ)

)
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≤ dS log
d logS

ϵ
+

(
ϵ

C1

) 5
12

S
7
6 d

7
12 δ

1
2 log(1/δ), (27)

where we used the inequality min{a, b} ≤
√
ab for a, b ≥ 0; by choosing T and h in Corollary 2,

we have

λ ≲ dS

(
log

d logS

ϵ
+ Sh log(1/h)

)
≲ dS

(
log

d logS

ϵ
+

√
ϵ

C2κ2
log

C2S
2κ2

ϵ

)
, (28)

which depends on the property of data distribution. When score clipping is applied as discussed in
Appendix A.4, we can specify C1 = 3S

δ and C2 = 3
2L and further obtain from (27) that

λ ≲ dS log
d logS

ϵ
+ ϵ

5
12S

19
12 d

7
12 δ

1
12 log(1/δ) → dS log

d logS

ϵ
(δ → 0+) (29)

with early stopping, and from (28) that

λ ≲ dS

(
log

d logS

ϵ
+

√
ϵ

Lκ2
log

Lκ2S2

ϵ

)
≲ dS log

d logS

ϵ
+ 1 +

√
ϵ

Lκ2
logS (30)

without early stopping. Note that the last term of (30) can be rather small for some large L and κ2,
leading the first term to be the dominant term in the bound (30), which matches the bound (29) for
the sampling complexity with a sufficient small δ > 0.

E BREGMAN DIVERGENCE

Definition 1 (Bregman divergence). Let ϕ be a strictly convex function defined on a convex set
S ⊂ Rn (n ∈ N+) and ϕ is differentiable. The Bregman divergence Dϕ(x∥y) : S × S → R+ is
defined as

Dϕ(x∥y) = ϕ(x)− ϕ(y)−∇ϕ(y)⊤(x− y).

In particular, the generalized I-divergence

DI(x∥y) =
n∑

i=1

[
−xi + yi + xi log

xi

yi

]
is generated by the negative entropy function I(x) =

∑n
i=1 x

i log xi. When restricted on the sim-
plex, the generalized I-divergence becomes KL divergence.

The Bregman divergence does not satisfy the triangle inequality. However, for the negative entropy
restricted to a closed box contained in Rn

+, we have the following proposition, which provides an
analogous form of triangle inequality.
Proposition 3. Let the negative entropy function I(x) =

∑n
i=1 x

i log xi defined on [ 1C , C]n (C >

0). Then for all x,y, z ∈ [ 1C , C]n, we have

DI(x∥y) ≤ C · ∥x− z∥22 + 2C2 ·DI(z∥y).

Proof of Proposition 3. By ∇2I(x) = diag{ 1
x1 , · · · , 1

xn } ⪯ CIn for all x ∈ [ 1C , C]n, there exists
some θ ∈ [0, 1] such that for all x,y, z ∈ [ 1C , C]n, it holds that

DI(x∥y) =
1

2
(x− y)⊤∇2I(y + θ(x− y))(x− y)

≤ C

2
∥x− y∥22

≤ C · (∥x− z∥22 + ∥z− y∥22)
≤ C · ∥x− z∥22 + 2C2 ·DI(z∥y),

where the last inequality is by the strongly-convexity of I on [ 1C , C]n since ∇2I(x) =

diag{ 1
x1 , · · · , 1

xn } ⪰ 1
C In. □
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