
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

BINARY HYPOTHESIS TESTING FOR SOFTMAX MOD-
ELS AND LEVERAGE SCORE MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Softmax distributions are widely used in machine learning, including Large Lan-
guage Models (LLMs) where the attention unit uses softmax distributions. We
abstract the attention unit as the softmax model, where given a vector input, the
model produces an output drawn from the softmax distribution (which depends on
the vector input). We consider the fundamental problem of binary hypothesis test-
ing in the setting of softmax models. That is, given an unknown softmax model,
which is known to be one of the two given softmax models, how many queries are
needed to determine which one is the truth? We show that the sample complexity
is asymptotically O(ϵ−2) where ϵ is a certain distance between the parameters of
the models.
Furthermore, we draw analogy between the softmax model and the leverage score
model, an important tool for algorithm design in linear algebra and graph theory.
The leverage score model, on a high level, is a model which, given vector input,
produces an output drawn from a distribution dependent on the input. We obtain
similar results for the binary hypothesis testing problem for leverage score models.

1 INTRODUCTION

In transforming various aspects of people’s lives, large language models (LLMs) have exhibited
tremendous potential. In recent years, numerous content learning and LLMs have been developed,
including notable models such as Adobe Firefly, Microsoft 365 Copilot (Spataro, 2023), Adobe Pho-
toshop, and Google’s Meena chatbot (Rathee, 2020), along with the GPT series and others (Radford
et al., 2018; 2019; Devlin et al., 2018; Radford et al., 2019; Yang et al., 2019; Brown et al., 2020;?;
ChatGPT, 2022; OpenAI, 2023). These models, together with those built upon them, have demon-
strated significant prowess across diverse fields. The robustness and vitality of their development
are attested to by the widespread integration of LLMs. In the realm of Natural Language Process-
ing (NLP), evaluations by Liang et al. (2022); Laskar et al. (2023); Choi et al. (2023); Bang et al.
(2023) center around natural language understanding, while Wang et al. (2023); Qin et al. (2023);
Pu & Demberg (2023); Chia et al. (2023); Chen et al. (2023) delve into natural language genera-
tion. LLMs have found applications in diverse fields, including both social science and science (Guo
et al., 2023; Deroy et al., 2023; Ferrara, 2023; Nay et al., 2023), medical applications (Chervenak
et al., 2023; Johnson et al., 2023), and engineering (Pallagani et al., 2023; Sridhara et al., 2023;
Bubeck et al., 2023; Liu et al., 2023b), showcasing their potent capabilities. A consistent theme
among these models is the adoption of the transformer architecture, a proven and highly efficient
framework. The prevailing prevalence of models like ChatGPT (OpenAI, 2023) further underscores
the transformative impact of this architecture.

However, there is a crucial problem with LLMs: their training costs and uncertainty regarding their
inference ability in different parts of the whole. Understanding how different domains work is
important in retrieval argument generation (RAG) (Siriwardhana et al., 2023; Zamani & Bendersky,
2024; Salemi & Zamani, 2024), as well as sparsity for LLMs by identifying the ability domain in
the model which is important in solving the problem above. Then a question arose:

Can we distinguish different ability parts of large language models by limited parameters
sampling?

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

We take an initial step toward addressing this question from a theoretical perspective. As we delve
deeper into LLMs, the softmax mechanism is found to play an important role in the computation
of self-attention. Thus, it is imperative to study how the self-attention mechanism works, why it
contributes significantly to the impressive capabilities of LLMs, and what role it plays are still not
fully understood.

Therefore, in this work, we want to explore the mechanism of softmax distribution from a binary
hypothesis testing perspective. By delving into the intricacies of the softmax formulation, we ex-
plore which parameters are important by explaining how the softmax can be distinguished from
each other. By delving into this idea, we can determine how many parameters are important in the
inference of transformers (Vaswani et al., 2017). In continuation of the paper and drawing upon a
formulation similar to softmax, we also direct our attention to the distribution of leverage scores.
Much like softmax, the leverage score is a distribution parameterized by a matrix. Both softmax and
leverage score can be treated as functions of distribution within this context. Importantly, resembling
softmax, leverage score assumes significance across various fields. Leverage scores have demon-
strated their significant utility in both linear algebra and graph theory. In the field of graph theory,
researchers have extensively explored the application of leverage scores in various areas such as the
generation of random spanning trees (Schild, 2018), max-flow problems (Daitch & Spielman, 2008;
Madry, 2013; 2016; Liu & Sidford, 2020), maximum matching (van den Brand et al., 2020a; Liu
et al., 2020), and graph sparsification (Spielman & Srivastava, 2008a). Many studies have delved into
the deep exploration of leverage scores, showcasing their effectiveness in optimization tasks such
as linear programming (Lee & Sidford, 2014; van den Brand et al., 2020b), cutting-plane methods
(Vaidya, 1989; Lee et al., 2015; Jiang et al., 2020b), semi-definite programming (Jiang et al., 2020a),
and the approximation of the John Ellipsoid (Cohen et al., 2019). These applications underscore the
importance of leverage scores in the context of theory of computer science and linear algebra. Based
on the analysis provided, both the leverage score and softmax computation are parameterized by a
single matrix. Given the significance of the application of softmax and computation, understanding
the influence on parameter behavior becomes crucial. Hence, we delve into this inquiry by differ-
entiating the model through parameter sampling and discussing how the number of samples affects
the distinguishing ability.

A softmax model is parameterized by a matrix A ∈ Rn×d, and denoted SoftMaxA. Given x ∈
Rd, the model outputs an element i ∈ [n] with probability pi = ⟨exp(Ax),1n⟩−1 exp(Ax)i. In
the binary hypothesis testing problem, we are given access to a softmax model which is either
SoftMaxA or SoftMaxB . We have query access to the model, that is, we can feed the model
an input x ∈ Rd, and it will produce an output. The goal is to determine whether the model is
SoftMaxA or SoftMaxB , using the fewest number of queries possible. We can similarly define the
question for leverage score models. A leverage score model is parameterized by a matrix A ∈ Rn×d,
and denoted LeverageA. Given input s ∈ (R\{0})n, the model returns an element i ∈ [n] with
probability pi = (As(A

⊤
s As)

−1A⊤
s)i,i/d, where As = S−1A, and S = Diag(s) is the diagonal

matrix with diagonal s. We define the binary hypothesis testing problem for leverage score models
similarly to the softmax case.

1.1 MAIN RESULT.

We state informal versions of our main results.

Theorem 1.1 (Informal statement of Theorem 3.2 and Theorem 3.5). Consider the binary hy-
pothesis testing problem with two softmax models SoftMaxA and SoftMaxB . We have 1). if
∥B − A∥2→∞ ≤ ϵ, then any successful algorithm uses Ω(ϵ−2) queries (Lower bound), and 2).
if B = A + ϵM for some small ϵ then the hypothesis testing problem can be solved in O(ϵ−2ν)
queries, where ν depends on A and M (Upper bound).

Theorem 1.2 (Informal statement of Theorem 4.2 and Theorem 4.3). Consider the binary hypoth-
esis testing problem with two leverage score models LeverageA and LeverageB . We have 1). if∑

i∈[n] ∥B⊤
i,∗Bi,∗ − A⊤

i,∗Ai,∗∥op ≤ ϵ, then any successful algorithm uses Ω(ϵ−1) queries (Lower
bound), and 2). if B = A+ ϵM for some small ϵ then the hypothesis testing problem can be solved
in O(ϵ−2ν) queries, where ν depends on A and M (Upper bound).

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

1.2 RELATED WORK

Theoretical LLMs Several investigations (Cai et al., 2021; Liu et al., 2023a; Reif et al., 2019; He-
witt & Manning, 2019) have concentrated on theoretical analyses concerning LLMs. The algorithm
presented by Cai et al. (2021), named ZO-BCD, introduces a novel approach characterized by ad-
vantageous overall query complexity and reduced computational complexity in each iteration. The
work by Liu et al. (2023a) introduces Sophia, a straightforward yet scalable second-order optimizer.
Sophia demonstrates adaptability to curvature variations across different parameter regions, a feature
particularly advantageous for language modeling tasks with strong heterogeneity. Importantly, the
runtime bounds of Sophia are independent of the condition number of the loss function. Studies by
Wang et al. (2022); Li & Liang (2021); Dai et al. (2021); Burns et al. (2022); Hase et al. (2023); Xie
et al. (2022) investigate the knowledge and skills of LLMs. In the realm of optimization for LLMs,
Kaplan et al. (2020); Cai et al. (2021); Rafailov et al. (2023); Liu et al. (2023a) have delved into this
domain. Demonstrating the effectiveness of pre-trained models in localizing knowledge within their
feed-forward layers, both Hase et al. (2023) and Meng et al. (2022) contribute valuable insights to
the field. The exploration of distinct ”skill” neurons and their significance in soft prompt-tuning for
language models is a central theme in the analysis conducted by Wang et al. (2022), building upon
the groundwork laid out in a prior discussion by Li & Liang (2021). The activation of skill neurons
and their correlation with the expression of relevant facts is a focal point in the research presented
by Dai et al. (2021), particularly in the context of BERT. In contrast, the work of Burns et al. (2022)
takes an entirely unsupervised approach, leveraging the internal activations of a language model to
extract latent knowledge. Lastly, the investigation by Li et al. (2022) sheds light on the sparsity
observed in feedforward activations of large trained transformers, uncovering noteworthy patterns
in their behavior. In addition to the above, Malladi et al. (2023); Deng et al. (2023a); Zelikman et al.
(2023) explore Zero-th order algorithms for LLMs.

Leverage Scores Given A ∈ Rn×d and i ∈ [n], ai represents the i-th row of matrix A. We use
σi(A) = a⊤i (A

⊤A)†ai to denote the leverage score for the i-th row of matrix A. The concept of
leverage score finds extensive applications in the domains of machine learning and linear algebra.
In numerical linear algebra and graph theory, leverage scores serve as fundamental tools. In the
context of matrices, both the tensor CURT decomposition (Song et al., 2019) and the matrix CUR
decomposition (Boutsidis & Woodruff, 2014; Song et al., 2017; 2019) heavily rely on leverage
scores. In optimization, areas such as linear programming (Lee & Sidford, 2014; van den Brand
et al., 2020b), the approximation of the John Ellipsoid (Cohen et al., 2019), cutting-plane methods
(Vaidya, 1989; Lee et al., 2015; Jiang et al., 2020b), and semi-definite programming (Jiang et al.,
2020a) incorporate leverage scores. Within graph theory applications, leverage scores play a crucial
role in max-flow problems (Daitch & Spielman, 2008; Madry, 2013; 2016; Liu & Sidford, 2020),
maximum matching (van den Brand et al., 2020a; Liu et al., 2020), graph sparsification (Spielman
& Srivastava, 2008a), and the generation of random spanning trees (Schild, 2018). Several studies,
such as Spielman & Srivastava (2008b); Drineas et al. (2012); Clarkson & Woodruff (2013), focus
on the approximation of leverage scores. Simultaneously, Lewis weights, serving as a generalization
of leverage scores, are explored in depth by Bourgain et al. (1989); Cohen & Peng (2015).

Hypothesis Testing Hypothesis testing is a central problem in statistics. In hypothesis testing,
two (or more) hypotheses about the truth are given and an algorithm needs to distinguish which
hypothesis is true. The most classic testing problem is the binary hypothesis testing. In this problem,
two distributions P0 and P1 are given, and there is an unknown distribution P which is either P0 or
P1. The goal is to distinguish whether P = P0 or P = P1 by drawing samples from P . This problem
is well-studied, with Neyman & Pearson (1933) giving tight characterization of the possible error
regions in terms of the likelihood ratio. It is known that the asymptotic sample complexity of binary
hypothesis testing for distributions is given by Θ(H−2(P0, P1)), where H denotes the Hellinger
distance, see e.g., Polyanskiy & Wu (2023+). There are other important kinds of hypothesis testing
problems. In the goodness-of-fit testing problem, a distribution Q is given, and there is an unknown
distribution P which is known to be either equal to Q or far away from Q. The goal is to distinguish
which is the true by drawing samples from P . In the two-sample testing problem, two unknown
distributions P and Q are given, and it is known that either P = Q or P and Q are far away from
each other. The goal is to distinguish which is true by drawing samples from P and Q. For these
problems there are no simple general characterization as in the binary hypothesis testing. However,
for reasonable classes of distributions such as Gaussian distributions or distributions on discrete

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

spaces, a lot of nice results are known (Ingster, 1987; 1982; Goldreich & Ron, 2011; Valiant &
Valiant, 2017; Chan et al., 2014; Arias-Castro et al., 2018; Li & Yuan, 2019). We are not aware
of any previous work that studies hypothesis testing problems for the class of softmax models or
leverage score models.

Roadmap. In Section 2, we introduce notation and concepts related to information theory and
hypothesis testing. Our results are presented in Section 3 and Section 4: Section 3 establishes upper
and lower bounds on the sample complexity for distinguishing two different softmax models, and
Section 4 delves into the case of leverage scores. We conclude and make further discussions in
Section 5.

2 PRELIMINARIES

Notation Given x ∈ Rn, we use ∥x∥p to denote ℓp norm of x, where ∥x∥0 =
∑n

i=1 1(xi ̸= 0),
∥x∥1 :=

∑n
i=1 |xi| (ℓ1 norm), ∥x∥2 := (

∑n
i=1 x

2
i)

1/2 (ℓ2 norm), and ∥x∥∞ := maxi∈[n] |xi| (ℓ∞
norm). For a square matrix, tr[A] is used to represent the trace of A. Given 1 ≤ p ≤ ∞ and
1 ≤ q ≤ ∞, ∥A∥p→q represents the p-to-q operator norm ∥A∥p→q = supx:∥x∥p≤1 ∥Ax∥q . In
particular, ∥A∥2→∞ = maxi∈[n] ∥Ai,∗∥2. For x ∈ Rn, let Diag(x) ∈ Rn×n denote the diagonal
matrix with diagonal x. For square matrix A ∈ Rn×n, let diag(A) ∈ Rn denote the diagonal of
A. For a non-negative integer n, let [n] denote the set {1, . . . , n}. For a sequence X1, . . . , Xm of
random variables, we use Xm to denote the whole sequence (X1, . . . , Xm).

2.1 INFORMATION THEORY

Definition 2.1 (TV distance). For two distributions P,Q on the same measurable space, their total
variation (TV) distance is TV(P,Q) = 1

2

∫
|P (dx)−Q(dx)|. In particular, if P and Q are on the

discrete space [n] and P = (p1, . . . , pn), Q = (q1, . . . , qn), then TV(P,Q)) = 1
2

∑n
i=1 |pi − qi|.

Definition 2.2 (Hellinger distance). For two distributions P,Q on the same measurable space, their
squared Hellinger distance is H2(P,Q) = 1

2

∫
(
√
P (dx) −

√
Q(dx))2. In particular, if P and Q

are on the discrete space [n] and P = (p1, . . . , pn), Q = (q1, . . . , qn), then

H2(P,Q) =
1

2

n∑
i=1

(
√
pi −

√
qi)

2 = 1−
n∑

i=1

√
piqi.

The Hellinger distance H(P,Q) is the square root of the squared Hellinger distance H2(P,Q).

We recall the following relationship between the Hellinger distance and the TV distance. For any
distributions P,Q on the same space, we have H2(P,Q) ≤ TV(P,Q) ≤

√
2H(P,Q).

Definition 2.3 (Expectation and variance). Let P be a distribution on a measurable space X and
f be a continuous function on X . Then EP [f] is the expectation of f under P and VarP (f) is the
variance of f under P . In particular, if X = [n], P = (p1, . . . , pn) ∈ Rn, and x ∈ Rn, then
EP [x] =

∑n
i=1 pixi and VarP (x) =

∑n
i=1 pi(x− EP [x])

2.

2.2 HYPOTHESIS TESTING

We review the classic hypothesis testing problem for distributions.
Definition 2.4 (Binary hypothesis testing for distributions). Let P0, P1 be two distributions on the
same space. We have sample access to a distribution P , which is known to be either P0 or P1. The
goal is to determine whether P = P0 or P = P1, using as few samples as possible. We say an
algorithm successfully distinguishes P0 and P1 is at least 2/3 under both hypotheses.

In the above definition, the constant 2/3 can be replaced by any constant > 1/2, and the asymptotic
sample complexity of the binary hypothesis testing problem does not change. The reason is that if
we have an algorithm that achieves success probability δ > 1

2 , then we can run it independently
a constant number of times and take the majority of the outputs. Thus, we can boost the success
probability to an arbitrarily high constant. A classic result in information theory states that the
sample complexity of the binary hypothesis testing problem is determined by the Hellinger distance.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Lemma 2.5 (e.g., Polyanskiy & Wu (2023+)). The sample complexity of the binary hypothesis
testing problem for distributions is Θ(H−2(P0, P1)). That is, there is an algorithm that solves
the problem using O(H−2(P0, P1)) queries, and any algorithm that solves the problem uses
Ω(H−2(P0, P1)) queries.

2.3 SOFTMAX MODEL

Definition 2.6 (Softmax model). The softmax model SoftMaxA associated with A ∈ Rn×d is a
model such that on input x ∈ Rd, it outputs a sample y ∈ [n] from the distribution SoftMaxA(x),
defined as follows: the probability mass of i ∈ [n] is equal to ⟨exp(Ax),1n⟩−1 exp(Ax)i.

Note that
∑n

i=1⟨exp(Ax),1n⟩−1 exp(Ax)i = 1, so the above definition gives a valid distribution.

Definition 2.7 (Binary hypothesis testing for softmax models). Let A,B ∈ Rn×d be two matrices.
Let P0 = SoftMaxA, P1 = SoftMaxB be two softmax models. Let P be the softmax model which
is either P0 or P1. In each query, we can feed x ∈ Rd into P , and retrieve a sample y ∈ [n] from
P (x). The goal is to determine whether the model P is P0 or P1 in as few samples as possible. We
say an algorithm successfully distinguishes P0 and P1, if the correctness probability is at least 2/3
under both hypotheses.

The above definition is valid. However, if we make no restrictions on the input x, then there would

be undesirable consequences. For example, suppose n = 2, d = 1, A =

[
ϵ
0

]
, B =

[
0
ϵ

]
for some

very small ϵ > 0. Because A and B are close to each other, we should expect it to be difficult to
distinguish SoftMaxA and SoftMaxB . However, if we allow any x ∈ Rd as input, then we could
take x to be a very large real number. Then SoftMaxA(x) has almost all mass on 1 ∈ [n], while
SoftMaxB(x) has almost all mass on 2 ∈ [n], and we can distinguish the two models using only
one query. To avoid this peculiarity, we assume that there is an energy constraint on x.
Definition 2.8 (Energy constraint for softmax model). We assume that there is an energy constraint,
that is, input x ∈ Rn should satisfy ∥x∥2 ≤ E, for some given constant E.

The energy constraint is a reasonable assumption in the context of LLMs and more generally neural
networks, because of the widely used batch normalization technique (Ioffe & Szegedy, 2015).

2.4 LEVERAGE SCORE MODEL

Definition 2.9 (Leverage score model). The leverage score model LeverageA associated with A ∈
Rn×d is a model such that on input s ∈ (R\{0})n, it outputs a sample y ∈ [n] from the distribution
LeverageA(s), defined as follows: the probability mass of i ∈ [n] is equal to

∥(A⊤
s As)

−1/2(As)∗,i∥22/d = (As(A
⊤
s As)

−1A⊤
s)i,i/d,

where As = S−1A, and S = Diag(s).
Definition 2.10 (Binary hypothesis testing for leverage score model). Let A,B ∈ Rn×d be two
matrices. Let P0 = LeverageA, P1 = LeverageB be two leverage score models. Let P be the
leverage score model which is either P0 or P1. In each query, we can feed s ∈ (R\{0})n into P ,
and retrieve a sample y ∈ [n] from P (s). The goal is to determine whether the model P is P0 or
P1 in as few samples as possible. We say an algorithm successfully distinguishes P0 and P1, if the
correctness probability is at least 2/3 under both hypotheses.

Similar to the softmax model case, if we do not put any restrictions on s, then there will be certain

weird behavior. For example, if we take n = 2, d = 1, A =

[
1
0

]
and B =

[
1
ϵ

]
for some small

ϵ > 0. Because A and B are close to each other, we should expect it to be difficult to distinguish
LeverageA and LeverageB . However, if we allow any s ∈ (R\{0})n as input, then we can take
s = [1 δ] for some very small δ > 0. In this way, we can verify that LeverageA(s) has all mass
on 1 ∈ [n], while LeverageB(s) has almost all mass on 2 ∈ [n]. So we can distinguish the two
models using only one query. To avoid such cases we put additional constraints on s.
Definition 2.11 (Constraint for leverage score model). We assume that input s ∈ (R\{0})d should
satisfy the constraint such that c ≤ s2i ≤ C for some given constants 0 < c < C.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

3 SOFTMAX MODEL

3.1 GENERAL RESULT

We first prove a general result that relates the binary hypothesis testing problem with Hellinger
distance, and the proof is deferred to Appendix A.1.
Theorem 3.1. Let A,B ∈ Rn×d be two matrices. Consider the binary hypothesis testing problem
of distinguishing SoftMaxA and SoftMaxB using energy-constrained queries (Definition 2.8). De-
fine δ = supx:∥x∥2≤E H(SoftMaxA(x), SoftMaxB(x)). Then the sample complexity of the binary
hypothesis testing problem is Θ(δ−2). That is, there is an algorithm that successfully solves the
problem using O(δ−2) energy-constrained queries, and any algorithm that successfully solves the
problem uses Ω(δ−2) energy-constrained queries.

3.2 LOWER BOUND

Now, we prove the following lower bound for binary hypothesis testing for softmax models.
Theorem 3.2 (Lower bound). If two softmax models (Definition 2.6) with parameters A ∈ Rn×d

and B ∈ Rn×d satisfy ∥A − B∥2→∞ ≤ ϵ (i.e., maxj∈[n] ∥Aj,∗ − Bj,∗∥2 ≤ ϵ), then any algorithm
with energy constraint E that distinguishes the two models with success probability ≥ 2

3 uses at
least Ω(ϵ−2E−2) samples.

Before giving the proof of Theorem 3.2, we state a lemma, and the proof is deferred to Appendix A.2.
Lemma 3.3. Let a, b ∈ Rn be such that ∥a − b∥∞ ≤ ϵ. Let P be the distribution on [n] with
pi = exp(ai)/⟨exp(a),1n⟩. Let Q be the distribution on [n] with qi = exp(bi)/⟨exp(b),1n⟩. Then

H2(P,Q) = O(ϵ2) TV(P,Q) = O(ϵ).

Corollary 3.4. If matrices A ∈ Rn×d, B ∈ Rn×d satisfy maxj∈[n] ∥Aj,∗ − Bj,∗∥2 ≤ ϵ, then for
any x ∈ Rd, the distributions P = SoftMaxA(x) and Q = SoftMaxB(x) satisfy

H2(P,Q) = O(ϵ2∥x∥22), TV(P,Q) = O(ϵ∥x∥2).

Proof. For any x ∈ Rn, we have

∥Ax−Bx∥∞ = max
j∈[n]

|Aj,∗x−Bj,∗x| ≤ max
h∈[n]

∥Aj,∗ −Bj,∗∥2∥x∥2 ≤ ϵ∥x∥2.

The result then follows from Lemma 3.3.

Proof of Theorem 3.2. By Corollary 3.4, we have H2(SoftMaxA(x), SoftMaxB(x)) = O(ϵ2E2)
for any ∥x∥2 ≤ E. Therefore δ in the statement of Theorem 3.1 satisfies δ2 = O(ϵ2E2). Applying
Theorem 3.1 we finish the proof.

3.3 UPPER BOUND

In the previous section, we established an Ω(ϵ−2) lower bound for solving the hypothesis testing
problem for the softmax model. The upper bound is more subtle. Let us discuss a few difficulties in
establishing the upper bound. Let A,B ∈ Rn×d be parameters of the softmax models, x ∈ Rd be
the input vector, P = SoftMaxA(x) = (p1, . . . , pn), Q = SoftMaxB(x) = (q1, . . . , qn). First, two
different matrices A and B could give rise to the same softmax model. If B = A + 1⊤

nw for some
w ∈ Rd, then for any x ∈ Rd, we have

qi =
exp(Bx)i

⟨exp(Bx),1n⟩
=

exp(Ax)i exp(w
⊤x)

⟨exp(Ax) exp(w⊤x),1n⟩
=

exp(Ax)i
⟨exp(Ax),1n⟩

= pi

for all i ∈ [d]. Therefore in this case SoftMaxA(x) = SoftMaxB(x) for all x ∈ Rd and it is
impossible to distinguish the two models. This issue may be resolved by adding additional assump-
tions such as 1⊤

nA = 1⊤
nB. A more important issue is that A and B may differ only in rows with

very small probability weight under any input x. For example, suppose A is the zero matrix, and B

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

differ with A only in the first row. For any x ∈ Rd, the distribution SoftMaxA(x) is the uniform
distribution on [d]. If ∥B1,∗ −A1,∗∥2 = ϵ, then for any x with ∥x∥2 ≤ E, we have

exp(−ϵE) ≤ exp(Bx)1
exp(Ax)1

≤ exp(ϵE).

A simple calculation shows that in this case, H2(P,Q) = O(ϵ2E2/n). So the sample complexity
of any hypothesis testing algorithm is at least Ω(n/(ϵ2E2)), which grows with n. This shows that
the sample complexity may depend on n. Nevertheless, using Theorem 3.1, we show a local upper
bound, which says that for fixed A and fixed direction M , there is an algorithm that distinguishes
SoftMaxA and SoftMaxA+ϵM using O(ϵ−2) queries, for small enough ϵ > 0.

Theorem 3.5. Fix A,M ∈ Rn×d where ∥M∥2→∞ = O(1). For ϵ > 0, define Bϵ = A + ϵM .
We consider the binary hypothesis testing problem with SoftMaxA and SoftMaxBϵ

, for small ϵ.
Let ν = supx:∥x∥2≤E VarSoftMaxA(x)(Mx). Then for ϵ > 0 small enough, there is an algorithm that
uses O(ϵ−2ν−1) energy-constrained queries and distinguishes between SoftMaxA and SoftMaxBϵ .

Proof of Theorem 3.5 is deferred to Appendix A.3. From Theorem 3.5 we see that it is an interesting
problem to bound ν = supx:∥x∥2≤E VarSoftMaxA(x)(Mx) for fixed A,M ∈ Rn×d. For different A
and M the value of ν can be quite different. For example, if A is the all zero matrix and M is zero
except for row 1 (and ∥M∥2→∞ = O(1)), then ν = O(E2/n) for any ∥x∥2 ≤ E. On the other
hand, if A is the zero matrix, and the first column M are i.i.d. Gaussian N (0,Θ(1)), then with high
probability, ν = Ω(E2) for x = (E, 0, . . . , 0). We remark that Theorem 3.5 is in fact tight. We have
a matching lower bound.

Theorem 3.6. Under the same setting as Theorem 3.5, for sufficient small ϵ > 0, any algorithm that
distinguishes between SoftMaxA and SoftMaxBϵ

must use Ω(ϵ−2ν−1) energy-constrained queries.

Proof. It follows from combining the proof of Theorem 3.5 and Theorem 3.1.

4 LEVERAGE SCORE MODEL

4.1 GENERAL RESULT

We first prove a general result which is the leverage score version of Theorem 3.1.

Theorem 4.1. Let A,B ∈ Rn×d be two matrices. Consider the binary hypothesis testing problem
of distinguishing LeverageA and LeverageB using constrained queries (Definition 2.11). Define
δ = sups:c≤s2i≤C∀i H(LeverageA(s), LeverageB(s)). Then the sample complexity of the binary
hypothesis testing problem is Θ(δ−2). That is, there is an algorithm that successfully solves the
problem using O(δ−2) energy-constrained queries, and any algorithm that successfully solves the
problem uses Ω(δ−2) energy-constrained queries.

Proof. The proof is similar to Theorem 3.1 and omitted.

4.2 LOWER BOUND

The goal of this section is to prove the following lower bound for binary hypothesis testing for
leverage score models.

Theorem 4.2. Consider two leverage score model LeverageA and LeverageB . Assume that there
exists δ > 0 such that A⊤A ⪰ δI . If

∑
i∈[n] ∥B⊤

i,∗Bi,∗−A⊤
i,∗Ai,∗∥op ≤ ϵ (where ∥ · ∥op denotes the

2-to-2 operator norm), then any algorithm that solves the binary hypothesis testing problem takes
at least Ω(cδ/(Cϵ)) constrained queries.

Proof. Let P = LeverageA(s) = (p1, . . . , pn) and Q = LeverageB(s) = (q1, . . . , qn). By
Theorem 4.1, it suffices to prove that H2(P,Q) = O(ϵC/(cδ)). We first consider the case where A
and B differ in exactly one row i. Fix s ∈ Rd with c ≤ sj ≤ C for all j ∈ [n]. Let As = S−1A and
Bs = S−1B, where S = Diag(s).

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Because A⊤A ⪰ δI , we have A⊤
s As ⪰ (δ/C) · I . Because ∥B⊤

i,∗Bi,∗ −A⊤
i,∗Ai,∗∥op ≤ ϵ, we have

−ϵiC/δA⊤
s As ⪯ B⊤

i,∗Bi,∗ −A⊤
i,∗Ai,∗ ⪯ ϵiC/δA⊤

s As.

Recall that A and B differ in exactly one row i. Therefore

(1− ϵC

cδ
)A⊤

s As ⪯ B⊤
s Bs ⪯ (1 +

ϵC

cδ
)A⊤

s As. (1)

For j ̸= i, we have

qj = s−2
j Bj,∗(B

⊤
s Bs)

−1(B⊤)∗,j/d

= tr[s−2
j (B⊤)∗,jBj,∗(B

⊤
s Bs)

−1]/d

= (1±O(ϵC/(cδ))) tr[s−2
j A⊤

j,∗Aj,∗(A
⊤
s As)

−1]/d

= (1±O(ϵC/(cδ)))pj , (2)

where the first step is by definition of the leverage score model, the second step is by property of
trace, the third step is Eq. (1), the fourth step is by definition of the leverage score model.

Upper bound for TV. For the TV distance, we have

TV(P,Q) =
1

2

n∑
j=1

|pj − qj | ≤
∑
j ̸=i

|pj − qj | ≤
∑
j ̸=i

O(ϵC/(cδ))pi ≤ O(ϵC/(cδ)).

where the first step is by definition of TV distance, the third step is by Eq. (2). Therefore
TV(P,Q) ≤ O(ϵC/(cδ)).

Upper bound for H2(P,Q). Using H2(P,Q) ≤ TV(P,Q) we also get H2(P,Q) ≤ O(ϵC/(cδ)).

Now we have established the result when A and B differ in exactly one row. Let us now consider
general case. If ϵ ≥ 0.1δ, then cδ/(Cϵ) = O(1) and there is nothing to prove. In the following,
assume that ϵ ≤ 0.1δ. For 0 ≤ k ≤ n, define Bk ∈ Rn×d be the matrix with Bk

i,∗ = Bi,∗ for i ≤ k

and Bk
i,∗ = Ai,∗ for i ≥ k. Then B0 = A, Bn = B, and Bk and Bk+1 differ exactly in one row.

Let ϵi = ∥B⊤
i,∗Bi,∗ −A⊤

i,∗Ai,∗∥op. Then by the above discussion, we have

TV(LeverageBk(s), LeverageBk+1(s)) = O(ϵkC/(cδ))

for all 0 ≤ k ≤ n− 1. By metric property of TV, we have

TV(P,Q) ≤
∑

0≤k≤n−1

TV(LeverageBk(s), LeverageBk+1(s))

=
∑

0≤k≤n−1

O(ϵiC/(cδ))

= O(ϵC/(cδ)).

Using H2(P,Q) ≤ TV(P,Q) we also get H2(P,Q) = O(ϵC/(cδ)). This finishes the proof.

In Theorem 4.2, the bound has linear dependence in ϵ−1. An interesting question is the improve the
bound to quadratic dependence ϵ−2.

4.3 UPPER BOUND

Let A,B ∈ Rn×d be parameters of the leverage score models, s ∈ Rn be the input vector, P =
LeverageA(s) = (p1, . . . , pn), Q = LeverageB(s) = (q1, . . . , qn). For the upper bounds of the
leverage score model, we run into similar difficulties as for the softmax model. Firstly, different
matrices A and B could give rise to the same leverage score model. If B = AR for some invertible
matrix R ∈ Rd×d, then we have

qi = (Bs(B
⊤
s Bs)

−1B⊤
s)i,i/d = (AsR(R⊤A⊤

s AsR)−1R⊤A⊤
s)i,i/d = (As(A

⊤
s As)

−1A⊤
s)i,i/d = pi.

Then LeverageA(s) = LeverageB(s) for all s ∈ (R\{0})n and it is impossible to distinguish the
two models. Furthermore, there exist scenarios where A and B differ only in rows with very small

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

probability weight under any input s. We now give an example where ∥A⊤
1,∗A1,∗ − B⊤

1,∗B1,∗∥ =

Ω(1) but TV(LeverageA(s), LeverageB(s)) = O(1/n) for any s satisfying c ≤ s2i ≤ C for
all i ∈ [n]. Suppose A = [Id e1 · · · e1]

⊤ (that is, the first d rows of A is equal to Id, and
all remaining rows are equal to e⊤1 = (1, 0, . . . , 0)). Then for s satisfying c ≤ s2i ≤ C for all
i ∈ [n], the distribution P = LeverageA(s) has probability mass O(1/n) on every element i ∈
{1, d + 1, d + 2 . . . , n} (hiding constants depending on c and C). Now suppose B differs with A
only in the first entry (1, 1), and B1,1 = A1,1 +Θ(1). Then for fixed s, qj = pj for j ∈ {2, . . . , d},
q1 ≥ p1, and qj ≤ pj for j ∈ {d+1, . . . , n}. So H2(P,Q) ≤ TV(P,Q) = q1−p1 = Θ(1/n). This
shows that the sample complexity may depend on n. After discussing the difficulties in establishing
an upper bound, we now show a local upper bound, which says for fixed A and fixed direction M ,
there is an algorithm that distinguishes LeverageA and LeverageA+ϵM using O(ϵ−2) queries, for
small enough ϵ > 0.

Theorem 4.3. Fix A,M ∈ Rn×d where ∥M∥2→∞ = O(1). For ϵ > 0, define Bϵ = A + ϵM . We
consider the binary hypothesis testing problem with LeverageA and LeverageBϵ

, for small ϵ. Let
ν = sups VarLeverageA(s)(ws) where

ws =
diag((I −As(A

⊤
s As)

−1A⊤
s)(Ms(A

⊤
s As)

−1A⊤
s))

diag(As(A⊤
s As)−1A⊤

s)

where the division between vectors is entrywise division. Then for ϵ > 0 small enough, there is an
algorithm that uses O(ϵ−2ν−1) queries and distinguishes between LeverageA and LeverageBϵ

.

Proof of Theorem 4.3 is deferred to Appendix A.4. Similarly to the softmax model case, Theo-
rem 4.3 is also tight.

Theorem 4.4. Work under the same setting as Theorem 4.3. For ϵ > 0 small enough, any algorithm
that distinguishes between SoftMaxA and SoftMaxBϵ

must use Ω(ϵ−2ν−1) energy-constrained
queries.

Proof. The proof is by combining the proof of Theorem 4.3 and Theorem 4.1. We omit the details.

5 CONCLUSION AND FUTURE DIRECTIONS

Widely applied across various domains, softmax and leverage scores play crucial roles in machine
learning and linear algebra. This study delves into the testing problem aimed at distinguishing
between different models of softmax and leverage score distributions, each parameterized by distinct
matrices. We establish bounds on the number of samples within the defined testing problem. With
the rapidly escalating computational costs in current machine learning research, our work holds
the potential to offer valuable insights and guidance for distinguishing between the distributions of
different models. We discuss a few possible directions for further research. In Theorem 3.5 and
Theorem 4.3, we determine the local sample complexity of the binary hypothesis testing problems
for softmax models and leverage score models. In particular, the sample complexity is Θ(ϵ−2ν),
where ν is a certain function depending on A and M (where B = A + ϵM). The form of ν is an
optimization problem over the space of possible inputs. An interesting question is to provide bounds
on the quantity ν, or to provide computation-efficient algorithms for determining the value of ν of
finding the optimal input (x for softmax, s for leverage score). This will lead to computation-efficient
algorithms for solving the binary hypothesis testing problem in practice.

In this paper, we focused on the binary hypothesis testing problem, where the goal is to distinguish
two models with different parameters. There are other hypothesis testing problems that are of interest
both in theory and practice. For example, in the goodness-of-fit problem, the goal is to determine
whether an unknown model is equal to or far away from a given model. In the two-sample testing
problem, the goal is to determine whether two unknown models are the same or far away from each
other. These problems have potential practical applications and we leave them as an interesting
future direction.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

REFERENCES

Josh Alman and Zhao Song. Fast attention requires bounded entries. arXiv preprint
arXiv:2302.13214, 2023.

Ery Arias-Castro, Bruno Pelletier, and Venkatesh Saligrama. Remember the curse of dimensionality:
The case of goodness-of-fit testing in arbitrary dimension. Journal of Nonparametric Statistics,
30(2):448–471, 2018.

Yejin Bang, Samuel Cahyawijaya, Nayeon Lee, Wenliang Dai, Dan Su, Bryan Wilie, Holy Lovenia,
Ziwei Ji, Tiezheng Yu, Willy Chung, et al. A multitask, multilingual, multimodal evaluation of
chatgpt on reasoning, hallucination, and interactivity. arXiv preprint arXiv:2302.04023, 2023.

Jean Bourgain, Joram Lindenstrauss, and Vitali Milman. Approximation of zonoids by zonotopes.
1989.

Christos Boutsidis and David P Woodruff. Optimal cur matrix decompositions. In Proceedings of
the forty-sixth annual ACM symposium on Theory of computing, pp. 353–362, 2014.

Jan van den Brand, Zhao Song, and Tianyi Zhou. Algorithm and hardness for dynamic attention
maintenance in large language models. arXiv preprint arXiv:2304.02207, 2023.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Sébastien Bubeck, Varun Chandrasekaran, Ronen Eldan, Johannes Gehrke, Eric Horvitz, Ece Ka-
mar, Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lundberg, et al. Sparks of artificial general
intelligence: Early experiments with gpt-4. arXiv preprint arXiv:2303.12712, 2023.

Collin Burns, Haotian Ye, Dan Klein, and Jacob Steinhardt. Discovering latent knowledge in lan-
guage models without supervision. arXiv preprint arXiv:2212.03827, 2022.

HanQin Cai, Yuchen Lou, Daniel McKenzie, and Wotao Yin. A zeroth-order block coordinate
descent algorithm for huge-scale black-box optimization. In International Conference on Machine
Learning, pp. 1193–1203. PMLR, 2021.

Siu-On Chan, Ilias Diakonikolas, Paul Valiant, and Gregory Valiant. Optimal algorithms for testing
closeness of discrete distributions. In Proceedings of the twenty-fifth annual ACM-SIAM sympo-
sium on Discrete algorithms, pp. 1193–1203. SIAM, 2014.

ChatGPT. Optimizing language models for dialogue. OpenAI Blog, November 2022. URL https:
//openai.com/blog/chatgpt/.

Yi Chen, Rui Wang, Haiyun Jiang, Shuming Shi, and Ruifeng Xu. Exploring the use of large
language models for reference-free text quality evaluation: A preliminary empirical study. arXiv
preprint arXiv:2304.00723, 2023.

Joseph Chervenak, Harry Lieman, Miranda Blanco-Breindel, and Sangita Jindal. The promise and
peril of using a large language model to obtain clinical information: Chatgpt performs strongly as
a fertility counseling tool with limitations. Fertility and Sterility, 2023.

Yew Ken Chia, Pengfei Hong, Lidong Bing, and Soujanya Poria. Instructeval: Towards holistic
evaluation of instruction-tuned large language models. arXiv preprint arXiv:2306.04757, 2023.

Minje Choi, Jiaxin Pei, Sagar Kumar, Chang Shu, and David Jurgens. Do llms understand social
knowledge? evaluating the sociability of large language models with socket benchmark. arXiv
preprint arXiv:2305.14938, 2023.

Kenneth L Clarkson and David P Woodruff. Low-rank approximation and regression in input spar-
sity time. In STOC, 2013.

Michael B Cohen and Richard Peng. Lp row sampling by lewis weights. In Proceedings of the
forty-seventh annual ACM symposium on Theory of computing, pp. 183–192, 2015.

10

https://openai.com/blog/chatgpt/
https://openai.com/blog/chatgpt/

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Michael B Cohen, Ben Cousins, Yin Tat Lee, and Xin Yang. A near-optimal algorithm for approxi-
mating the john ellipsoid. In Conference on Learning Theory, pp. 849–873. PMLR, 2019.

Damai Dai, Li Dong, Yaru Hao, Zhifang Sui, Baobao Chang, and Furu Wei. Knowledge neurons in
pretrained transformers. arXiv preprint arXiv:2104.08696, 2021.

Samuel I Daitch and Daniel A Spielman. Faster approximate lossy generalized flow via interior
point algorithms. In Proceedings of the fortieth annual ACM symposium on Theory of computing,
pp. 451–460, 2008.

Yichuan Deng, Zhihang Li, Sridhar Mahadevan, and Zhao Song. Zero-th order algorithm for soft-
max attention optimization. arXiv preprint arXiv:2307.08352, 2023a.

Yichuan Deng, Zhihang Li, and Zhao Song. Attention scheme inspired softmax regression. arXiv
preprint arXiv:2304.10411, 2023b.

Yichuan Deng, Sridhar Mahadevan, and Zhao Song. Randomized and deterministic attention sparsi-
fication algorithms for over-parameterized feature dimension. arxiv preprint: arxiv 2304.03426,
2023c.

Aniket Deroy, Kripabandhu Ghosh, and Saptarshi Ghosh. How ready are pre-trained abstractive
models and llms for legal case judgement summarization? arXiv preprint arXiv:2306.01248,
2023.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

Petros Drineas, Malik Magdon-Ismail, Michael W Mahoney, and David P Woodruff. Fast approxi-
mation of matrix coherence and statistical leverage. The Journal of Machine Learning Research,
13(1):3475–3506, 2012.

Emilio Ferrara. Should chatgpt be biased? challenges and risks of bias in large language models.
arXiv preprint arXiv:2304.03738, 2023.

Yeqi Gao, Sridhar Mahadevan, and Zhao Song. An over-parameterized exponential regression.
arXiv preprint arXiv:2303.16504, 2023.

Oded Goldreich and Dana Ron. On testing expansion in bounded-degree graphs. Studies in Com-
plexity and Cryptography. Miscellanea on the Interplay between Randomness and Computation:
In Collaboration with Lidor Avigad, Mihir Bellare, Zvika Brakerski, Shafi Goldwasser, Shai
Halevi, Tali Kaufman, Leonid Levin, Noam Nisan, Dana Ron, Madhu Sudan, Luca Trevisan,
Salil Vadhan, Avi Wigderson, David Zuckerman, pp. 68–75, 2011.

Taicheng Guo, Kehan Guo, Zhengwen Liang, Zhichun Guo, Nitesh V Chawla, Olaf Wiest, Xian-
gliang Zhang, et al. What indeed can gpt models do in chemistry? a comprehensive benchmark
on eight tasks. arXiv preprint arXiv:2305.18365, 2023.

Peter Hase, Mohit Bansal, Been Kim, and Asma Ghandeharioun. Does localization inform editing?
surprising differences in causality-based localization vs. knowledge editing in language models.
arXiv preprint arXiv:2301.04213, 2023.

John Hewitt and Christopher D Manning. A structural probe for finding syntax in word representa-
tions. In Proceedings of the 2019 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Pa-
pers), pp. 4129–4138, 2019.

Yu I Ingster. Minimax testing of nonparametric hypotheses on a distribution density in the l p
metrics. Theory of Probability & Its Applications, 31(2):333–337, 1987.

Yuri Izmailovich Ingster. On the minimax nonparametric detection of signals in white gaussian
noise. Problemy Peredachi Informatsii, 18(2):61–73, 1982.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In International conference on machine learning, pp. 448–456.
pmlr, 2015.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Haotian Jiang, Tarun Kathuria, Yin Tat Lee, Swati Padmanabhan, and Zhao Song. A faster interior
point method for semidefinite programming. In 2020 IEEE 61st annual symposium on foundations
of computer science (FOCS), pp. 910–918. IEEE, 2020a.

Haotian Jiang, Yin Tat Lee, Zhao Song, and Sam Chiu-wai Wong. An improved cutting plane
method for convex optimization, convex-concave games and its applications. In STOC, 2020b.

Douglas Johnson, Rachel Goodman, J Patrinely, Cosby Stone, Eli Zimmerman, Rebecca Donald,
Sam Chang, Sean Berkowitz, Avni Finn, Eiman Jahangir, et al. Assessing the accuracy and
reliability of ai-generated medical responses: an evaluation of the chat-gpt model. ., 2023.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
models. arXiv preprint arXiv:2001.08361, 2020.

Md Tahmid Rahman Laskar, M Saiful Bari, Mizanur Rahman, Md Amran Hossen Bhuiyan, Shafiq
Joty, and Jimmy Xiangji Huang. A systematic study and comprehensive evaluation of chatgpt on
benchmark datasets. arXiv preprint arXiv:2305.18486, 2023.

Yin Tat Lee and Aaron Sidford. Path finding methods for linear programming: Solving linear
programs in o (vrank) iterations and faster algorithms for maximum flow. In 2014 IEEE 55th
Annual Symposium on Foundations of Computer Science, pp. 424–433. IEEE, 2014.

Yin Tat Lee, Aaron Sidford, and Sam Chiu-wai Wong. A faster cutting plane method and its im-
plications for combinatorial and convex optimization. In 2015 IEEE 56th Annual Symposium on
Foundations of Computer Science, pp. 1049–1065. IEEE, 2015.

Tong Li and Ming Yuan. On the optimality of gaussian kernel based nonparametric tests against
smooth alternatives. arXiv preprint arXiv:1909.03302, 2019.

Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation. arXiv
preprint arXiv:2101.00190, 2021.

Zonglin Li, Chong You, Srinadh Bhojanapalli, Daliang Li, Ankit Singh Rawat, Sashank J Reddi,
Ke Ye, Felix Chern, Felix Yu, Ruiqi Guo, et al. Large models are parsimonious learners: Activa-
tion sparsity in trained transformers. arXiv preprint arXiv:2210.06313, 2022.

Percy Liang, Rishi Bommasani, Tony Lee, Dimitris Tsipras, Dilara Soylu, Michihiro Yasunaga, Yian
Zhang, Deepak Narayanan, Yuhuai Wu, Ananya Kumar, et al. Holistic evaluation of language
models. arXiv preprint arXiv:2211.09110, 2022.

Hong Liu, Zhiyuan Li, David Hall, Percy Liang, and Tengyu Ma. Sophia: A scalable stochas-
tic second-order optimizer for language model pre-training. arXiv preprint arXiv:2305.14342,
2023a.

Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and Lingming Zhang. Is your code generated by
chatgpt really correct? rigorous evaluation of large language models for code generation. arXiv
preprint arXiv:2305.01210, 2023b.

S Cliff Liu, Zhao Song, and Hengjie Zhang. Breaking the n-pass barrier: A streaming algorithm for
maximum weight bipartite matching. arXiv preprint arXiv:2009.06106, 2020.

S Cliff Liu, Zhao Song, Hengjie Zhang, Lichen Zhang, and Tianyi Zhou. Space-efficient interior
point method, with applications to linear programming and maximum weight bipartite matching.
In ICALP, 2023c.

Yang P Liu and Aaron Sidford. Faster energy maximization for faster maximum flow. In Proceedings
of the 52nd Annual ACM SIGACT Symposium on Theory of Computing, pp. 803–814, 2020.

Aleksander Madry. Navigating central path with electrical flows: From flows to matchings, and
back. In 2013 IEEE 54th Annual Symposium on Foundations of Computer Science, pp. 253–262.
IEEE, 2013.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Aleksander Madry. Computing maximum flow with augmenting electrical flows. In 2016 IEEE 57th
Annual Symposium on Foundations of Computer Science (FOCS), pp. 593–602. IEEE, 2016.

Sadhika Malladi, Tianyu Gao, Eshaan Nichani, Alex Damian, Jason D Lee, Danqi Chen, and Sanjeev
Arora. Fine-tuning language models with just forward passes. arXiv preprint arXiv:2305.17333,
2023.

Kevin Meng, David Bau, Alex Andonian, and Yonatan Belinkov. Locating and editing factual
associations in gpt. Advances in Neural Information Processing Systems, 35:17359–17372, 2022.

John J Nay, David Karamardian, Sarah B Lawsky, Wenting Tao, Meghana Bhat, Raghav Jain,
Aaron Travis Lee, Jonathan H Choi, and Jungo Kasai. Large language models as tax attorneys: A
case study in legal capabilities emergence. arXiv preprint arXiv:2306.07075, 2023.

Jerzy Neyman and Egon Sharpe Pearson. Ix. on the problem of the most efficient tests of statistical
hypotheses. Philosophical Transactions of the Royal Society of London. Series A, Containing
Papers of a Mathematical or Physical Character, 231(694-706):289–337, 1933.

OpenAI. Gpt-4 technical report. arXiv preprint arXiv:2303.08774, 2023.

Vishal Pallagani, Bharath Muppasani, Keerthiram Murugesan, Francesca Rossi, Biplav Srivastava,
Lior Horesh, Francesco Fabiano, and Andrea Loreggia. Understanding the capabilities of large
language models for automated planning. arXiv preprint arXiv:2305.16151, 2023.

Yury Polyanskiy and Yihong Wu. Information Theory: From Coding to Learning. Cambridge
University Press, 2023+.

Dongqi Pu and Vera Demberg. Chatgpt vs human-authored text: Insights into controllable text
summarization and sentence style transfer. arXiv preprint arXiv:2306.07799, 2023.

Chengwei Qin, Aston Zhang, Zhuosheng Zhang, Jiaao Chen, Michihiro Yasunaga, and Diyi
Yang. Is chatgpt a general-purpose natural language processing task solver? arXiv preprint
arXiv:2302.06476, 2023.

Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al. Improving language under-
standing by generative pre-training. ., 2018.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Stefano Ermon, Christopher D Manning, and Chelsea
Finn. Direct preference optimization: Your language model is secretly a reward model. arXiv
preprint arXiv:2305.18290, 2023.

Kovid Rathee. Meet google meena, 2020.

Emily Reif, Ann Yuan, Martin Wattenberg, Fernanda B Viegas, Andy Coenen, Adam Pearce, and
Been Kim. Visualizing and measuring the geometry of bert. Advances in Neural Information
Processing Systems, 32, 2019.

Alireza Salemi and Hamed Zamani. Evaluating retrieval quality in retrieval-augmented generation.
arXiv preprint arXiv:2404.13781, 2024.

Aaron Schild. An almost-linear time algorithm for uniform random spanning tree generation. In
Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing, pp. 214–227,
2018.

Shamane Siriwardhana, Rivindu Weerasekera, Elliott Wen, Tharindu Kaluarachchi, Rajib Rana, and
Suranga Nanayakkara. Improving the domain adaptation of retrieval augmented generation (rag)
models for open domain question answering. Transactions of the Association for Computational
Linguistics, 11:1–17, 2023.

Zhao Song, David P Woodruff, and Peilin Zhong. Low rank approximation with entrywise l1-norm
error. In Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing, pp.
688–701, 2017.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Zhao Song, David P Woodruff, and Peilin Zhong. Relative error tensor low rank approximation. In
Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 2772–
2789. SIAM, 2019.

Jared Spataro. Introducing microsoft 365 copilot – your copilot for work, 2023.

Daniel A Spielman and Nikhil Srivastava. Graph sparsification by effective resistances. In Proceed-
ings of the fortieth annual ACM symposium on Theory of computing, pp. 563–568, 2008a.

Daniel A Spielman and Nikhil Srivastava. Graph sparsification by effective resistances. In Proceed-
ings of the fortieth annual ACM symposium on Theory of computing, pp. 563–568, 2008b.

Giriprasad Sridhara, Sourav Mazumdar, et al. Chatgpt: A study on its utility for ubiquitous software
engineering tasks. arXiv preprint arXiv:2305.16837, 2023.

Pravin M Vaidya. A new algorithm for minimizing convex functions over convex sets. In 30th
Annual Symposium on Foundations of Computer Science, pp. 338–343. IEEE Computer Society,
1989.

Gregory Valiant and Paul Valiant. An automatic inequality prover and instance optimal identity
testing. SIAM Journal on Computing, 46(1):429–455, 2017.

Jan van den Brand, Yin-Tat Lee, Danupon Nanongkai, Richard Peng, Thatchaphol Saranurak, Aaron
Sidford, Zhao Song, and Di Wang. Bipartite matching in nearly-linear time on moderately dense
graphs. In 2020 IEEE 61st Annual Symposium on Foundations of Computer Science (FOCS), pp.
919–930. IEEE, 2020a.

Jan van den Brand, Yin Tat Lee, Aaron Sidford, and Zhao Song. Solving tall dense linear programs
in nearly linear time. In Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory of
Computing, pp. 775–788, 2020b.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Longyue Wang, Chenyang Lyu, Tianbo Ji, Zhirui Zhang, Dian Yu, Shuming Shi, and Zhaopeng
Tu. Document-level machine translation with large language models. arXiv preprint
arXiv:2304.02210, 2023.

Xiaozhi Wang, Kaiyue Wen, Zhengyan Zhang, Lei Hou, Zhiyuan Liu, and Juanzi Li. Finding skill
neurons in pre-trained transformer-based language models. arXiv preprint arXiv:2211.07349,
2022.

Shuo Xie, Jiahao Qiu, Ankita Pasad, Li Du, Qing Qu, and Hongyuan Mei. Hidden state variability of
pretrained language models can guide computation reduction for transfer learning. arXiv preprint
arXiv:2210.10041, 2022.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Russ R Salakhutdinov, and Quoc V Le.
Xlnet: Generalized autoregressive pretraining for language understanding. Advances in neural
information processing systems, 32, 2019.

Hamed Zamani and Michael Bendersky. Stochastic rag: End-to-end retrieval-augmented generation
through expected utility maximization. arXiv preprint arXiv:2405.02816, 2024.

Eric Zelikman, Qian Huang, Percy Liang, Nick Haber, and Noah D Goodman. Just one byte (per
gradient): A note on low-bandwidth decentralized language model finetuning using shared ran-
domness. arXiv preprint arXiv:2306.10015, 2023.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

APPENDIX

A MISSING PROOFS

A.1 GENERAL RESULT FOR SOFTMAX MODEL

Proof of Theorem 3.1. Lower bound. If δ ≥ 0.1 then there is nothing to prove. In the following
assume that δ < 0.1. Suppose that there is an algorithm that successfully solves the binary hy-
pothesis testing problem. Suppose it makes queries x1, . . . , xm ∈ Rd where xi may depend on
previous query results. Let Y1, . . . , Ym ∈ [n] denote the query results. Let PY m and QY m denote
the distribution of Y m under P and Q, respectively. By definition of δ, we have

H2(PYk|Y k−1 , QYk|Y k−1) ≤ δ2.

for any k ∈ [m] and Y k−1. Then

1−H2(PY m , QY m)

=

∫ √
PymQymdym

=

∫ √
Pym−1Qym−1(∫ √
Pym|ym−1Qym|ym−1dym

)
dym−1

≥
∫ √

Pym−1Qym−1(1− δ2)dym−1.

Repeating this computation, in the end we get

1−H2(PY m , QY m) ≥ (1− δ2)m.

Because δ ≤ 0.1, we have 1− δ2 ≥ exp(−2δ2). If m ≤ 0.01δ−2, then

1−H2(PY m , QY m) ≥ exp(−2δ2m)

≥ exp(−0.02) > 0.98,

and

H2(PY m , QY m) ≤ 0.02.

This implies

TV(PY m , QY m) ≤
√
2H(PY m , QY m) ≤ 0.2,

which implies the success rate for binary hypothesis testing cannot be ≥ 2
3 .

In conclusion, any algorithm that successfully solves the hypothesis testing problem need to use
Ω(δ−2) queries.

Upper bound. Take x ∈ Rd such that ∥x∥2 ≤ E and δ = H(SoftMaxA(x), SoftMaxB(x)). By
Lemma 2.5, using O(δ−2) samples we can distinguish SoftMaxA(x) and SoftMaxB(x). Therefore
we can distinguish SoftMaxA and SoftMaxB in O(δ−2) queries by repeatedly querying x.

A.2 LOWER BOUND FOR SOFTMAX MODEL

Before giving the proof of Lemma 3.3, we prove a weaker version of the lemma.
Lemma A.1. Let a, b ∈ Rn. Suppose there exists an ϵ ≥ 0 such that for every i ∈ [n], bi − ai ∈
{0, ϵ}. Let P be the distribution on [n] with pi = exp(ai)/⟨exp(a),1n⟩. Let Q be the distribution
on [n] with qi = exp(bi)/⟨exp(b),1n⟩. Then

H2(P,Q) =
(1− exp(ϵ/4))2

1 + exp(ϵ/2)
= O(ϵ2),

TV(P,Q) = tanh(ϵ/4) = O(ϵ).

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Proof. Assume that a and b differ in m coordinates. By permuting the coordinates, WLOG assume
that bi = ai + ϵ for 1 ≤ i ≤ m and bi = ai for m+ 1 ≤ i ≤ n.

Write

s =

m∑
i=1

exp(ai)

and

t =

n∑
i=m+1

exp(ai).

Then

H2(P,Q) = 1−
∑
i∈[n]

√
piqi

= 1− s exp(ϵ/2) + t√
(s+ t)(s exp(ϵ) + t)

.

For fixed t and ϵ, the above is maximized at

s = t exp(−ϵ/2).

Plugging in the above s, we get

H2(P,Q) ≤ 1− 2√
(exp(−ϵ/2) + 1)(exp(ϵ/2) + 1)

=
(1− exp(ϵ/4))2

1 + exp(ϵ/2)
.

For TV, we have

TV(P,Q) =
∑

m+1≤i≤n

(qi − pi)

=
t

s+ t
− t

s exp(ϵ) + t
.

For fixed t and ϵ the above is maximized at s = t exp(−ϵ/2). Plugging in this s, we get

TV(P,Q) ≤ tanh(ϵ/4).

Proof of Lemma 3.3. We first prove the case where bi ≥ ai for all i ∈ [n]. Define ϵi = bi−ai for all
i ∈ [n]. By permuting the coordinates, WLOG assume that ϵ1 ≤ · · · ≤ ϵn. Specially, define ϵ0 = 0.
For 0 ≤ k ≤ n, let bk ∈ Rn denote the vector where bki = ai + min{ϵi, ϵk} for all i ∈ [k]. Then
we can see that b0 = a and bn = b, and for every 0 ≤ k ≤ n − 1, the pair (bk, bk+1) satisfies the
assumption in Lemma A.1. For 0 ≤ k ≤ n, let P k denote the softmax distribution corresponding to
bk. By Lemma A.1, for every 0 ≤ k ≤ n− 1, we have

H(P k, P k+1) = O(ϵk+1 − ϵk),

TV(P k, P k+1) = O(ϵk+1 − ϵk).

Because Hellinger distance and TV distance are both metrics, we have

H(P,Q) = H(P 0, Pn)

≤
n−1∑
k=0

H(P k, P k+1)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

= O(ϵ),

and

TV(P,Q) = TV(P 0, Pn)

≤
n−1∑
k=0

TV(P k, P k+1)

= O(ϵ).

This finishes the proof of the result when bi ≥ ai for all i ∈ [n].

Now let us consider the general case. Let c ∈ Rn be defined as ci = max{ai, bi} for all i ∈ [n].
Then

max{∥a− c∥∞, ∥c− b∥∞} ≤ ∥a− b∥∞ ≤ ϵ.

Let R be the softmax distribution corresponding to c. By our previous discussion, we have

H(P,R), H(R,Q),TV(P,R),TV(R,Q) = O(ϵ).

By metric property of Hellinger distance and TV distance, we get

H(P,Q), H(P,Q) = O(ϵ)

as desired.

A.3 LOCAL UPPER BOUND FOR SOFTMAX MODEL

Proof of Theorem 3.5. We take an x satisfying ∥x∥2 ≤ E that maximizes VarSoftMaxA(x)(Mx) and
repeatedly query x. We would like to apply Theorem 3.1. To do that, we need to show that

H2(SoftMaxA(x), SoftMaxBϵ(x)) = Ω(ϵ2ν).

Let P = SoftMaxA(x) = (p1, . . . , pn), Qϵ = SoftMaxBϵ
(x) = (qϵ,1, . . . , qϵ,n). Write ZA =

⟨exp(Ax),1n⟩, ZBϵ
= ⟨exp(Bϵx),1n⟩.

Then, it follows that

ZB =
∑
j∈[n]

exp(Ax)j exp(ϵ(Mx)j)

=
∑
j∈[n]

exp(Ax)j +
∑
j∈[n]

exp(Ax)j(exp(ϵ(Mx)j)− 1)

=
∑
j∈[n]

exp(Ax)j +
∑
j∈[n]

exp(Ax)j(ϵ(Mx)j +O(ϵ2))

= ZA(1 + ϵ⟨p,Mx⟩+O(ϵ2)). (3)

where the initial step is because of B = A + ϵM , the second step is a result of simple algebra,
the third step is a consequence of the Taylor expansion of exp(·), assuming ϵ is sufficiently small
and the fourth step is the result of the definition of ZA and involves the consolidation of addition,
introducing the common term ZA.

Then

qϵ,i =
exp(Bϵx)i

ZB

=
exp(Ax)i exp(ϵMx)i

ZA(1 + ϵ⟨p,Mx⟩+O(ϵ2))

= pi(1 + ϵ((Mx)i − ⟨p,Mx⟩) +O(ϵ2)). (4)

where the initial step is because of the definition of qϵ,i, the subsequent step is a result of Eq.(3), and
the third step is due to the definition of qi along with the Taylor expansion of f(x) = 1/(1+ x) and
exp(·), considering ϵ as a sufficiently small value.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

So, we have that

H2(P,Qϵ) =
1

2

n∑
i=1

(
√
pi −

√
qϵ,i)

2

=
1

2

n∑
i=1

pi(ϵ
2((Mx)i − ⟨p,Mx⟩)2 +O(ϵ3))

=
1

2
ϵ2 VarP (Mx) +O(ϵ3)

=
1

2
ϵ2ν +O(ϵ3).

where the first step is the result of Definition 2.2, the second step is because of Eq.(4), the third
step the result of definition of VarP (Mx) (See Definition 2.3) and the forth step follows from the
expression ν = supx:∥x∥2≤E VarSoftMaxA(x)(Mx).

Applying Theorem 3.1 we finish the proof.

A.4 LOCAL UPPER BOUND FOR LEVERAGE SCORE MODEL

Proof of Theorem 4.3. We take an s satisfying c ≤ s2i ≤ C and ∀i ∈ [n] that maximizes
sups VarLeverageA(s)(ws) and repeatedly query s. We need to show that

H2(LeverageA(s), LeverageBϵ
(s)) = Ω(ϵ2ν).

Let P = LeverageA(s) = (p1, . . . , pn), Qϵ = LeverageBϵ
(x) = (qϵ,1, . . . , qϵ,n). We can com-

pute that
d

dϵ
qϵ,i = (2(I −As(A

⊤
s As)

−1A⊤
s)(Ms(A

⊤
s As)

−1A⊤
s))i,i.

Define W = (I −As(A
⊤
s As)

−1A⊤
s)(Ms(A

⊤
s As)

−1A⊤
s). Then

qϵ,i = pi + 2Wi,iϵ+O(ϵ2).

Computing H2(P,Qϵ) we get

H2(P,Qϵ) =
1

2

∑
i∈[n]

(
√
qϵ,i −

√
pi)

2

=
∑
i∈[n]

pi

(
Wi,i

pi
ϵ+O(ϵ2)

)2

=
∑
i∈[n]

Wi,iϵ
2

pi
+O(ϵ3)

= ϵ2ν +O(ϵ3).

B MORE RELATED WORK

Softmax Computation and Regression Softmax computation, a crucial element in attention com-
putation (Vaswani et al., 2017), plays a pivotal role in the development of LLMs. Several studies
Alman & Song (2023); Brand et al. (2023); Liu et al. (2023c); Deng et al. (2023c) delve into the
efficiency of softmax computation. To improve computational efficiency, Alman & Song (2023)
presents a quicker attention computation algorithm utilizing implicit matrices. Similarly, Brand
et al. (2023) utilizes lazy updates to speed up dynamic computation, while Deng et al. (2023c) em-
ploys a randomized algorithm for similar efficiency gains. Conversely, Liu et al. (2023c) utilizes an
approximate Newton method that operates in nearly linear time. Gao et al. (2023) centers on the con-
vergence of overparameterized two-layer networks with exponential activation functions, whereas
Deng et al. (2023b); Liu et al. (2023c) explore regression analysis within the framework of attention
computation. All of these studies specifically focus on softmax-based regression problems.

18

	Introduction
	Main Result.
	Related Work

	Preliminaries
	Information Theory
	Hypothesis Testing
	Softmax Model
	Leverage Score Model

	Softmax Model
	General Result
	Lower Bound
	Upper Bound

	Leverage Score Model
	General Result
	Lower Bound
	Upper Bound

	Conclusion and Future Directions
	Missing Proofs
	General Result for Softmax Model
	Lower Bound for Softmax Model
	Local Upper Bound for Softmax Model
	Local Upper Bound for Leverage Score Model

	More Related Work

