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ABSTRACT

Softmax distributions are widely used in machine learning, including Large Lan-
guage Models (LLMs) where the attention unit uses softmax distributions. We
abstract the attention unit as the softmax model, where given a vector input, the
model produces an output drawn from the softmax distribution (which depends on
the vector input). We consider the fundamental problem of binary hypothesis test-
ing in the setting of softmax models. That is, given an unknown softmax model,
which is known to be one of the two given softmax models, how many queries are
needed to determine which one is the truth? We show that the sample complexity
is asymptotically O(ϵ−2) where ϵ is a certain distance between the parameters of
the models.
Furthermore, we draw analogy between the softmax model and the leverage score
model, an important tool for algorithm design in linear algebra and graph theory.
The leverage score model, on a high level, is a model which, given vector input,
produces an output drawn from a distribution dependent on the input. We obtain
similar results for the binary hypothesis testing problem for leverage score models.

1 INTRODUCTION

In transforming various aspects of people’s lives, large language models (LLMs) have exhibited
tremendous potential. In recent years, numerous content learning and LLMs have been developed,
including notable models such as Adobe Firefly, Microsoft 365 Copilot (Spataro, 2023), Adobe Pho-
toshop, and Google’s Meena chatbot (Rathee, 2020), along with the GPT series and others (Radford
et al., 2018; 2019; Devlin et al., 2018; Radford et al., 2019; Yang et al., 2019; Brown et al., 2020;?;
ChatGPT, 2022; OpenAI, 2023). These models, together with those built upon them, have demon-
strated significant prowess across diverse fields. The robustness and vitality of their development
are attested to by the widespread integration of LLMs. In the realm of Natural Language Process-
ing (NLP), evaluations by Liang et al. (2022); Laskar et al. (2023); Choi et al. (2023); Bang et al.
(2023) center around natural language understanding, while Wang et al. (2023); Qin et al. (2023);
Pu & Demberg (2023); Chia et al. (2023); Chen et al. (2023) delve into natural language genera-
tion. LLMs have found applications in diverse fields, including both social science and science (Guo
et al., 2023; Deroy et al., 2023; Ferrara, 2023; Nay et al., 2023), medical applications (Chervenak
et al., 2023; Johnson et al., 2023), and engineering (Pallagani et al., 2023; Sridhara et al., 2023;
Bubeck et al., 2023; Liu et al., 2023b), showcasing their potent capabilities. A consistent theme
among these models is the adoption of the transformer architecture, a proven and highly efficient
framework. The prevailing prevalence of models like ChatGPT (OpenAI, 2023) further underscores
the transformative impact of this architecture.

However, there is a crucial problem with LLMs: their training costs and uncertainty regarding their
inference ability in different parts of the whole. Understanding how different domains work is
important in retrieval argument generation (RAG) (Siriwardhana et al., 2023; Zamani & Bendersky,
2024; Salemi & Zamani, 2024), as well as sparsity for LLMs by identifying the ability domain in
the model which is important in solving the problem above. Then a question arose:

Can we distinguish different ability parts of large language models by limited parameters
sampling?
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We take an initial step toward addressing this question from a theoretical perspective. As we delve
deeper into LLMs, the softmax mechanism is found to play an important role in the computation
of self-attention. Thus, it is imperative to study how the self-attention mechanism works, why it
contributes significantly to the impressive capabilities of LLMs, and what role it plays are still not
fully understood.

Therefore, in this work, we want to explore the mechanism of softmax distribution from a binary
hypothesis testing perspective. By delving into the intricacies of the softmax formulation, we ex-
plore which parameters are important by explaining how the softmax can be distinguished from
each other. By delving into this idea, we can determine how many parameters are important in the
inference of transformers (Vaswani et al., 2017). In continuation of the paper and drawing upon a
formulation similar to softmax, we also direct our attention to the distribution of leverage scores.
Much like softmax, the leverage score is a distribution parameterized by a matrix. Both softmax and
leverage score can be treated as functions of distribution within this context. Importantly, resembling
softmax, leverage score assumes significance across various fields. Leverage scores have demon-
strated their significant utility in both linear algebra and graph theory. In the field of graph theory,
researchers have extensively explored the application of leverage scores in various areas such as the
generation of random spanning trees (Schild, 2018), max-flow problems (Daitch & Spielman, 2008;
Madry, 2013; 2016; Liu & Sidford, 2020), maximum matching (van den Brand et al., 2020a; Liu
et al., 2020), and graph sparsification (Spielman & Srivastava, 2008a). Many studies have delved into
the deep exploration of leverage scores, showcasing their effectiveness in optimization tasks such
as linear programming (Lee & Sidford, 2014; van den Brand et al., 2020b), cutting-plane methods
(Vaidya, 1989; Lee et al., 2015; Jiang et al., 2020b), semi-definite programming (Jiang et al., 2020a),
and the approximation of the John Ellipsoid (Cohen et al., 2019). These applications underscore the
importance of leverage scores in the context of theory of computer science and linear algebra. Based
on the analysis provided, both the leverage score and softmax computation are parameterized by a
single matrix. Given the significance of the application of softmax and computation, understanding
the influence on parameter behavior becomes crucial. Hence, we delve into this inquiry by differ-
entiating the model through parameter sampling and discussing how the number of samples affects
the distinguishing ability.

A softmax model is parameterized by a matrix A ∈ Rn×d, and denoted SoftMaxA. Given x ∈
Rd, the model outputs an element i ∈ [n] with probability pi = ⟨exp(Ax),1n⟩−1 exp(Ax)i. In
the binary hypothesis testing problem, we are given access to a softmax model which is either
SoftMaxA or SoftMaxB . We have query access to the model, that is, we can feed the model
an input x ∈ Rd, and it will produce an output. The goal is to determine whether the model is
SoftMaxA or SoftMaxB , using the fewest number of queries possible. We can similarly define the
question for leverage score models. A leverage score model is parameterized by a matrix A ∈ Rn×d,
and denoted LeverageA. Given input s ∈ (R\{0})n, the model returns an element i ∈ [n] with
probability pi = (As(A

⊤
s As)

−1A⊤
s )i,i/d, where As = S−1A, and S = Diag(s) is the diagonal

matrix with diagonal s. We define the binary hypothesis testing problem for leverage score models
similarly to the softmax case.

1.1 MAIN RESULT.

We state informal versions of our main results.

Theorem 1.1 (Informal statement of Theorem 3.2 and Theorem 3.5). Consider the binary hy-
pothesis testing problem with two softmax models SoftMaxA and SoftMaxB . We have 1). if
∥B − A∥2→∞ ≤ ϵ, then any successful algorithm uses Ω(ϵ−2) queries (Lower bound), and 2).
if B = A + ϵM for some small ϵ then the hypothesis testing problem can be solved in O(ϵ−2ν)
queries, where ν depends on A and M (Upper bound).

Theorem 1.2 (Informal statement of Theorem 4.2 and Theorem 4.3). Consider the binary hypoth-
esis testing problem with two leverage score models LeverageA and LeverageB . We have 1). if∑

i∈[n] ∥B⊤
i,∗Bi,∗ − A⊤

i,∗Ai,∗∥op ≤ ϵ, then any successful algorithm uses Ω(ϵ−1) queries (Lower
bound), and 2). if B = A+ ϵM for some small ϵ then the hypothesis testing problem can be solved
in O(ϵ−2ν) queries, where ν depends on A and M (Upper bound).
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1.2 RELATED WORK

Theoretical LLMs Several investigations (Cai et al., 2021; Liu et al., 2023a; Reif et al., 2019; He-
witt & Manning, 2019) have concentrated on theoretical analyses concerning LLMs. The algorithm
presented by Cai et al. (2021), named ZO-BCD, introduces a novel approach characterized by ad-
vantageous overall query complexity and reduced computational complexity in each iteration. The
work by Liu et al. (2023a) introduces Sophia, a straightforward yet scalable second-order optimizer.
Sophia demonstrates adaptability to curvature variations across different parameter regions, a feature
particularly advantageous for language modeling tasks with strong heterogeneity. Importantly, the
runtime bounds of Sophia are independent of the condition number of the loss function. Studies by
Wang et al. (2022); Li & Liang (2021); Dai et al. (2021); Burns et al. (2022); Hase et al. (2023); Xie
et al. (2022) investigate the knowledge and skills of LLMs. In the realm of optimization for LLMs,
Kaplan et al. (2020); Cai et al. (2021); Rafailov et al. (2023); Liu et al. (2023a) have delved into this
domain. Demonstrating the effectiveness of pre-trained models in localizing knowledge within their
feed-forward layers, both Hase et al. (2023) and Meng et al. (2022) contribute valuable insights to
the field. The exploration of distinct ”skill” neurons and their significance in soft prompt-tuning for
language models is a central theme in the analysis conducted by Wang et al. (2022), building upon
the groundwork laid out in a prior discussion by Li & Liang (2021). The activation of skill neurons
and their correlation with the expression of relevant facts is a focal point in the research presented
by Dai et al. (2021), particularly in the context of BERT. In contrast, the work of Burns et al. (2022)
takes an entirely unsupervised approach, leveraging the internal activations of a language model to
extract latent knowledge. Lastly, the investigation by Li et al. (2022) sheds light on the sparsity
observed in feedforward activations of large trained transformers, uncovering noteworthy patterns
in their behavior. In addition to the above, Malladi et al. (2023); Deng et al. (2023a); Zelikman et al.
(2023) explore Zero-th order algorithms for LLMs.

Leverage Scores Given A ∈ Rn×d and i ∈ [n], ai represents the i-th row of matrix A. We use
σi(A) = a⊤i (A

⊤A)†ai to denote the leverage score for the i-th row of matrix A. The concept of
leverage score finds extensive applications in the domains of machine learning and linear algebra.
In numerical linear algebra and graph theory, leverage scores serve as fundamental tools. In the
context of matrices, both the tensor CURT decomposition (Song et al., 2019) and the matrix CUR
decomposition (Boutsidis & Woodruff, 2014; Song et al., 2017; 2019) heavily rely on leverage
scores. In optimization, areas such as linear programming (Lee & Sidford, 2014; van den Brand
et al., 2020b), the approximation of the John Ellipsoid (Cohen et al., 2019), cutting-plane methods
(Vaidya, 1989; Lee et al., 2015; Jiang et al., 2020b), and semi-definite programming (Jiang et al.,
2020a) incorporate leverage scores. Within graph theory applications, leverage scores play a crucial
role in max-flow problems (Daitch & Spielman, 2008; Madry, 2013; 2016; Liu & Sidford, 2020),
maximum matching (van den Brand et al., 2020a; Liu et al., 2020), graph sparsification (Spielman
& Srivastava, 2008a), and the generation of random spanning trees (Schild, 2018). Several studies,
such as Spielman & Srivastava (2008b); Drineas et al. (2012); Clarkson & Woodruff (2013), focus
on the approximation of leverage scores. Simultaneously, Lewis weights, serving as a generalization
of leverage scores, are explored in depth by Bourgain et al. (1989); Cohen & Peng (2015).

Hypothesis Testing Hypothesis testing is a central problem in statistics. In hypothesis testing,
two (or more) hypotheses about the truth are given and an algorithm needs to distinguish which
hypothesis is true. The most classic testing problem is the binary hypothesis testing. In this problem,
two distributions P0 and P1 are given, and there is an unknown distribution P which is either P0 or
P1. The goal is to distinguish whether P = P0 or P = P1 by drawing samples from P . This problem
is well-studied, with Neyman & Pearson (1933) giving tight characterization of the possible error
regions in terms of the likelihood ratio. It is known that the asymptotic sample complexity of binary
hypothesis testing for distributions is given by Θ(H−2(P0, P1)), where H denotes the Hellinger
distance, see e.g., Polyanskiy & Wu (2023+). There are other important kinds of hypothesis testing
problems. In the goodness-of-fit testing problem, a distribution Q is given, and there is an unknown
distribution P which is known to be either equal to Q or far away from Q. The goal is to distinguish
which is the true by drawing samples from P . In the two-sample testing problem, two unknown
distributions P and Q are given, and it is known that either P = Q or P and Q are far away from
each other. The goal is to distinguish which is true by drawing samples from P and Q. For these
problems there are no simple general characterization as in the binary hypothesis testing. However,
for reasonable classes of distributions such as Gaussian distributions or distributions on discrete
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spaces, a lot of nice results are known (Ingster, 1987; 1982; Goldreich & Ron, 2011; Valiant &
Valiant, 2017; Chan et al., 2014; Arias-Castro et al., 2018; Li & Yuan, 2019). We are not aware
of any previous work that studies hypothesis testing problems for the class of softmax models or
leverage score models.

Roadmap. In Section 2, we introduce notation and concepts related to information theory and
hypothesis testing. Our results are presented in Section 3 and Section 4: Section 3 establishes upper
and lower bounds on the sample complexity for distinguishing two different softmax models, and
Section 4 delves into the case of leverage scores. We conclude and make further discussions in
Section 5.

2 PRELIMINARIES

Notation Given x ∈ Rn, we use ∥x∥p to denote ℓp norm of x, where ∥x∥0 =
∑n

i=1 1(xi ̸= 0),
∥x∥1 :=

∑n
i=1 |xi| (ℓ1 norm), ∥x∥2 := (

∑n
i=1 x

2
i )

1/2 (ℓ2 norm), and ∥x∥∞ := maxi∈[n] |xi| (ℓ∞
norm). For a square matrix, tr[A] is used to represent the trace of A. Given 1 ≤ p ≤ ∞ and
1 ≤ q ≤ ∞, ∥A∥p→q represents the p-to-q operator norm ∥A∥p→q = supx:∥x∥p≤1 ∥Ax∥q . In
particular, ∥A∥2→∞ = maxi∈[n] ∥Ai,∗∥2. For x ∈ Rn, let Diag(x) ∈ Rn×n denote the diagonal
matrix with diagonal x. For square matrix A ∈ Rn×n, let diag(A) ∈ Rn denote the diagonal of
A. For a non-negative integer n, let [n] denote the set {1, . . . , n}. For a sequence X1, . . . , Xm of
random variables, we use Xm to denote the whole sequence (X1, . . . , Xm).

2.1 INFORMATION THEORY

Definition 2.1 (TV distance). For two distributions P,Q on the same measurable space, their total
variation (TV) distance is TV(P,Q) = 1

2

∫
|P (dx)−Q(dx)|. In particular, if P and Q are on the

discrete space [n] and P = (p1, . . . , pn), Q = (q1, . . . , qn), then TV(P,Q)) = 1
2

∑n
i=1 |pi − qi|.

Definition 2.2 (Hellinger distance). For two distributions P,Q on the same measurable space, their
squared Hellinger distance is H2(P,Q) = 1

2

∫
(
√
P (dx) −

√
Q(dx))2. In particular, if P and Q

are on the discrete space [n] and P = (p1, . . . , pn), Q = (q1, . . . , qn), then

H2(P,Q) =
1

2

n∑
i=1

(
√
pi −

√
qi)

2 = 1−
n∑

i=1

√
piqi.

The Hellinger distance H(P,Q) is the square root of the squared Hellinger distance H2(P,Q).

We recall the following relationship between the Hellinger distance and the TV distance. For any
distributions P,Q on the same space, we have H2(P,Q) ≤ TV(P,Q) ≤

√
2H(P,Q).

Definition 2.3 (Expectation and variance). Let P be a distribution on a measurable space X and
f be a continuous function on X . Then EP [f ] is the expectation of f under P and VarP (f) is the
variance of f under P . In particular, if X = [n], P = (p1, . . . , pn) ∈ Rn, and x ∈ Rn, then
EP [x] =

∑n
i=1 pixi and VarP (x) =

∑n
i=1 pi(x− EP [x])

2.

2.2 HYPOTHESIS TESTING

We review the classic hypothesis testing problem for distributions.
Definition 2.4 (Binary hypothesis testing for distributions). Let P0, P1 be two distributions on the
same space. We have sample access to a distribution P , which is known to be either P0 or P1. The
goal is to determine whether P = P0 or P = P1, using as few samples as possible. We say an
algorithm successfully distinguishes P0 and P1 is at least 2/3 under both hypotheses.

In the above definition, the constant 2/3 can be replaced by any constant > 1/2, and the asymptotic
sample complexity of the binary hypothesis testing problem does not change. The reason is that if
we have an algorithm that achieves success probability δ > 1

2 , then we can run it independently
a constant number of times and take the majority of the outputs. Thus, we can boost the success
probability to an arbitrarily high constant. A classic result in information theory states that the
sample complexity of the binary hypothesis testing problem is determined by the Hellinger distance.
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Lemma 2.5 (e.g., Polyanskiy & Wu (2023+)). The sample complexity of the binary hypothesis
testing problem for distributions is Θ(H−2(P0, P1)). That is, there is an algorithm that solves
the problem using O(H−2(P0, P1)) queries, and any algorithm that solves the problem uses
Ω(H−2(P0, P1)) queries.

2.3 SOFTMAX MODEL

Definition 2.6 (Softmax model). The softmax model SoftMaxA associated with A ∈ Rn×d is a
model such that on input x ∈ Rd, it outputs a sample y ∈ [n] from the distribution SoftMaxA(x),
defined as follows: the probability mass of i ∈ [n] is equal to ⟨exp(Ax),1n⟩−1 exp(Ax)i.

Note that
∑n

i=1⟨exp(Ax),1n⟩−1 exp(Ax)i = 1, so the above definition gives a valid distribution.

Definition 2.7 (Binary hypothesis testing for softmax models). Let A,B ∈ Rn×d be two matrices.
Let P0 = SoftMaxA, P1 = SoftMaxB be two softmax models. Let P be the softmax model which
is either P0 or P1. In each query, we can feed x ∈ Rd into P , and retrieve a sample y ∈ [n] from
P (x). The goal is to determine whether the model P is P0 or P1 in as few samples as possible. We
say an algorithm successfully distinguishes P0 and P1, if the correctness probability is at least 2/3
under both hypotheses.

The above definition is valid. However, if we make no restrictions on the input x, then there would

be undesirable consequences. For example, suppose n = 2, d = 1, A =

[
ϵ
0

]
, B =

[
0
ϵ

]
for some

very small ϵ > 0. Because A and B are close to each other, we should expect it to be difficult to
distinguish SoftMaxA and SoftMaxB . However, if we allow any x ∈ Rd as input, then we could
take x to be a very large real number. Then SoftMaxA(x) has almost all mass on 1 ∈ [n], while
SoftMaxB(x) has almost all mass on 2 ∈ [n], and we can distinguish the two models using only
one query. To avoid this peculiarity, we assume that there is an energy constraint on x.
Definition 2.8 (Energy constraint for softmax model). We assume that there is an energy constraint,
that is, input x ∈ Rn should satisfy ∥x∥2 ≤ E, for some given constant E.

The energy constraint is a reasonable assumption in the context of LLMs and more generally neural
networks, because of the widely used batch normalization technique (Ioffe & Szegedy, 2015).

2.4 LEVERAGE SCORE MODEL

Definition 2.9 (Leverage score model). The leverage score model LeverageA associated with A ∈
Rn×d is a model such that on input s ∈ (R\{0})n, it outputs a sample y ∈ [n] from the distribution
LeverageA(s), defined as follows: the probability mass of i ∈ [n] is equal to

∥(A⊤
s As)

−1/2(As)∗,i∥22/d = (As(A
⊤
s As)

−1A⊤
s )i,i/d,

where As = S−1A, and S = Diag(s).
Definition 2.10 (Binary hypothesis testing for leverage score model). Let A,B ∈ Rn×d be two
matrices. Let P0 = LeverageA, P1 = LeverageB be two leverage score models. Let P be the
leverage score model which is either P0 or P1. In each query, we can feed s ∈ (R\{0})n into P ,
and retrieve a sample y ∈ [n] from P (s). The goal is to determine whether the model P is P0 or
P1 in as few samples as possible. We say an algorithm successfully distinguishes P0 and P1, if the
correctness probability is at least 2/3 under both hypotheses.

Similar to the softmax model case, if we do not put any restrictions on s, then there will be certain

weird behavior. For example, if we take n = 2, d = 1, A =

[
1
0

]
and B =

[
1
ϵ

]
for some small

ϵ > 0. Because A and B are close to each other, we should expect it to be difficult to distinguish
LeverageA and LeverageB . However, if we allow any s ∈ (R\{0})n as input, then we can take
s = [1 δ] for some very small δ > 0. In this way, we can verify that LeverageA(s) has all mass
on 1 ∈ [n], while LeverageB(s) has almost all mass on 2 ∈ [n]. So we can distinguish the two
models using only one query. To avoid such cases we put additional constraints on s.
Definition 2.11 (Constraint for leverage score model). We assume that input s ∈ (R\{0})d should
satisfy the constraint such that c ≤ s2i ≤ C for some given constants 0 < c < C.

5
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3 SOFTMAX MODEL

3.1 GENERAL RESULT

We first prove a general result that relates the binary hypothesis testing problem with Hellinger
distance, and the proof is deferred to Appendix A.1.
Theorem 3.1. Let A,B ∈ Rn×d be two matrices. Consider the binary hypothesis testing problem
of distinguishing SoftMaxA and SoftMaxB using energy-constrained queries (Definition 2.8). De-
fine δ = supx:∥x∥2≤E H(SoftMaxA(x), SoftMaxB(x)). Then the sample complexity of the binary
hypothesis testing problem is Θ(δ−2). That is, there is an algorithm that successfully solves the
problem using O(δ−2) energy-constrained queries, and any algorithm that successfully solves the
problem uses Ω(δ−2) energy-constrained queries.

3.2 LOWER BOUND

Now, we prove the following lower bound for binary hypothesis testing for softmax models.
Theorem 3.2 (Lower bound). If two softmax models (Definition 2.6) with parameters A ∈ Rn×d

and B ∈ Rn×d satisfy ∥A − B∥2→∞ ≤ ϵ (i.e., maxj∈[n] ∥Aj,∗ − Bj,∗∥2 ≤ ϵ), then any algorithm
with energy constraint E that distinguishes the two models with success probability ≥ 2

3 uses at
least Ω(ϵ−2E−2) samples.

Before giving the proof of Theorem 3.2, we state a lemma, and the proof is deferred to Appendix A.2.
Lemma 3.3. Let a, b ∈ Rn be such that ∥a − b∥∞ ≤ ϵ. Let P be the distribution on [n] with
pi = exp(ai)/⟨exp(a),1n⟩. Let Q be the distribution on [n] with qi = exp(bi)/⟨exp(b),1n⟩. Then

H2(P,Q) = O(ϵ2) TV(P,Q) = O(ϵ).

Corollary 3.4. If matrices A ∈ Rn×d, B ∈ Rn×d satisfy maxj∈[n] ∥Aj,∗ − Bj,∗∥2 ≤ ϵ, then for
any x ∈ Rd, the distributions P = SoftMaxA(x) and Q = SoftMaxB(x) satisfy

H2(P,Q) = O(ϵ2∥x∥22), TV(P,Q) = O(ϵ∥x∥2).

Proof. For any x ∈ Rn, we have

∥Ax−Bx∥∞ = max
j∈[n]

|Aj,∗x−Bj,∗x| ≤ max
h∈[n]

∥Aj,∗ −Bj,∗∥2∥x∥2 ≤ ϵ∥x∥2.

The result then follows from Lemma 3.3.

Proof of Theorem 3.2. By Corollary 3.4, we have H2(SoftMaxA(x), SoftMaxB(x)) = O(ϵ2E2)
for any ∥x∥2 ≤ E. Therefore δ in the statement of Theorem 3.1 satisfies δ2 = O(ϵ2E2). Applying
Theorem 3.1 we finish the proof.

3.3 UPPER BOUND

In the previous section, we established an Ω(ϵ−2) lower bound for solving the hypothesis testing
problem for the softmax model. The upper bound is more subtle. Let us discuss a few difficulties in
establishing the upper bound. Let A,B ∈ Rn×d be parameters of the softmax models, x ∈ Rd be
the input vector, P = SoftMaxA(x) = (p1, . . . , pn), Q = SoftMaxB(x) = (q1, . . . , qn). First, two
different matrices A and B could give rise to the same softmax model. If B = A + 1⊤

nw for some
w ∈ Rd, then for any x ∈ Rd, we have

qi =
exp(Bx)i

⟨exp(Bx),1n⟩
=

exp(Ax)i exp(w
⊤x)

⟨exp(Ax) exp(w⊤x),1n⟩
=

exp(Ax)i
⟨exp(Ax),1n⟩

= pi

for all i ∈ [d]. Therefore in this case SoftMaxA(x) = SoftMaxB(x) for all x ∈ Rd and it is
impossible to distinguish the two models. This issue may be resolved by adding additional assump-
tions such as 1⊤

nA = 1⊤
nB. A more important issue is that A and B may differ only in rows with

very small probability weight under any input x. For example, suppose A is the zero matrix, and B

6
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differ with A only in the first row. For any x ∈ Rd, the distribution SoftMaxA(x) is the uniform
distribution on [d]. If ∥B1,∗ −A1,∗∥2 = ϵ, then for any x with ∥x∥2 ≤ E, we have

exp(−ϵE) ≤ exp(Bx)1
exp(Ax)1

≤ exp(ϵE).

A simple calculation shows that in this case, H2(P,Q) = O(ϵ2E2/n). So the sample complexity
of any hypothesis testing algorithm is at least Ω(n/(ϵ2E2)), which grows with n. This shows that
the sample complexity may depend on n. Nevertheless, using Theorem 3.1, we show a local upper
bound, which says that for fixed A and fixed direction M , there is an algorithm that distinguishes
SoftMaxA and SoftMaxA+ϵM using O(ϵ−2) queries, for small enough ϵ > 0.

Theorem 3.5. Fix A,M ∈ Rn×d where ∥M∥2→∞ = O(1). For ϵ > 0, define Bϵ = A + ϵM .
We consider the binary hypothesis testing problem with SoftMaxA and SoftMaxBϵ

, for small ϵ.
Let ν = supx:∥x∥2≤E VarSoftMaxA(x)(Mx). Then for ϵ > 0 small enough, there is an algorithm that
uses O(ϵ−2ν−1) energy-constrained queries and distinguishes between SoftMaxA and SoftMaxBϵ .

Proof of Theorem 3.5 is deferred to Appendix A.3. From Theorem 3.5 we see that it is an interesting
problem to bound ν = supx:∥x∥2≤E VarSoftMaxA(x)(Mx) for fixed A,M ∈ Rn×d. For different A
and M the value of ν can be quite different. For example, if A is the all zero matrix and M is zero
except for row 1 (and ∥M∥2→∞ = O(1)), then ν = O(E2/n) for any ∥x∥2 ≤ E. On the other
hand, if A is the zero matrix, and the first column M are i.i.d. Gaussian N (0,Θ(1)), then with high
probability, ν = Ω(E2) for x = (E, 0, . . . , 0). We remark that Theorem 3.5 is in fact tight. We have
a matching lower bound.

Theorem 3.6. Under the same setting as Theorem 3.5, for sufficient small ϵ > 0, any algorithm that
distinguishes between SoftMaxA and SoftMaxBϵ

must use Ω(ϵ−2ν−1) energy-constrained queries.

Proof. It follows from combining the proof of Theorem 3.5 and Theorem 3.1.

4 LEVERAGE SCORE MODEL

4.1 GENERAL RESULT

We first prove a general result which is the leverage score version of Theorem 3.1.

Theorem 4.1. Let A,B ∈ Rn×d be two matrices. Consider the binary hypothesis testing problem
of distinguishing LeverageA and LeverageB using constrained queries (Definition 2.11). Define
δ = sups:c≤s2i≤C∀i H(LeverageA(s), LeverageB(s)). Then the sample complexity of the binary
hypothesis testing problem is Θ(δ−2). That is, there is an algorithm that successfully solves the
problem using O(δ−2) energy-constrained queries, and any algorithm that successfully solves the
problem uses Ω(δ−2) energy-constrained queries.

Proof. The proof is similar to Theorem 3.1 and omitted.

4.2 LOWER BOUND

The goal of this section is to prove the following lower bound for binary hypothesis testing for
leverage score models.

Theorem 4.2. Consider two leverage score model LeverageA and LeverageB . Assume that there
exists δ > 0 such that A⊤A ⪰ δI . If

∑
i∈[n] ∥B⊤

i,∗Bi,∗−A⊤
i,∗Ai,∗∥op ≤ ϵ (where ∥ · ∥op denotes the

2-to-2 operator norm), then any algorithm that solves the binary hypothesis testing problem takes
at least Ω(cδ/(Cϵ)) constrained queries.

Proof. Let P = LeverageA(s) = (p1, . . . , pn) and Q = LeverageB(s) = (q1, . . . , qn). By
Theorem 4.1, it suffices to prove that H2(P,Q) = O(ϵC/(cδ)). We first consider the case where A
and B differ in exactly one row i. Fix s ∈ Rd with c ≤ sj ≤ C for all j ∈ [n]. Let As = S−1A and
Bs = S−1B, where S = Diag(s).
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Because A⊤A ⪰ δI , we have A⊤
s As ⪰ (δ/C) · I . Because ∥B⊤

i,∗Bi,∗ −A⊤
i,∗Ai,∗∥op ≤ ϵ, we have

−ϵiC/δA⊤
s As ⪯ B⊤

i,∗Bi,∗ −A⊤
i,∗Ai,∗ ⪯ ϵiC/δA⊤

s As.

Recall that A and B differ in exactly one row i. Therefore

(1− ϵC

cδ
)A⊤

s As ⪯ B⊤
s Bs ⪯ (1 +

ϵC

cδ
)A⊤

s As. (1)

For j ̸= i, we have

qj = s−2
j Bj,∗(B

⊤
s Bs)

−1(B⊤)∗,j/d

= tr[s−2
j (B⊤)∗,jBj,∗(B

⊤
s Bs)

−1]/d

= (1±O(ϵC/(cδ))) tr[s−2
j A⊤

j,∗Aj,∗(A
⊤
s As)

−1]/d

= (1±O(ϵC/(cδ)))pj , (2)

where the first step is by definition of the leverage score model, the second step is by property of
trace, the third step is Eq. (1), the fourth step is by definition of the leverage score model.

Upper bound for TV. For the TV distance, we have

TV(P,Q) =
1

2

n∑
j=1

|pj − qj | ≤
∑
j ̸=i

|pj − qj | ≤
∑
j ̸=i

O(ϵC/(cδ))pi ≤ O(ϵC/(cδ)).

where the first step is by definition of TV distance, the third step is by Eq. (2). Therefore
TV(P,Q) ≤ O(ϵC/(cδ)).

Upper bound for H2(P,Q). Using H2(P,Q) ≤ TV(P,Q) we also get H2(P,Q) ≤ O(ϵC/(cδ)).

Now we have established the result when A and B differ in exactly one row. Let us now consider
general case. If ϵ ≥ 0.1δ, then cδ/(Cϵ) = O(1) and there is nothing to prove. In the following,
assume that ϵ ≤ 0.1δ. For 0 ≤ k ≤ n, define Bk ∈ Rn×d be the matrix with Bk

i,∗ = Bi,∗ for i ≤ k

and Bk
i,∗ = Ai,∗ for i ≥ k. Then B0 = A, Bn = B, and Bk and Bk+1 differ exactly in one row.

Let ϵi = ∥B⊤
i,∗Bi,∗ −A⊤

i,∗Ai,∗∥op. Then by the above discussion, we have

TV(LeverageBk(s), LeverageBk+1(s)) = O(ϵkC/(cδ))

for all 0 ≤ k ≤ n− 1. By metric property of TV, we have

TV(P,Q) ≤
∑

0≤k≤n−1

TV(LeverageBk(s), LeverageBk+1(s))

=
∑

0≤k≤n−1

O(ϵiC/(cδ))

= O(ϵC/(cδ)).

Using H2(P,Q) ≤ TV(P,Q) we also get H2(P,Q) = O(ϵC/(cδ)). This finishes the proof.

In Theorem 4.2, the bound has linear dependence in ϵ−1. An interesting question is the improve the
bound to quadratic dependence ϵ−2.

4.3 UPPER BOUND

Let A,B ∈ Rn×d be parameters of the leverage score models, s ∈ Rn be the input vector, P =
LeverageA(s) = (p1, . . . , pn), Q = LeverageB(s) = (q1, . . . , qn). For the upper bounds of the
leverage score model, we run into similar difficulties as for the softmax model. Firstly, different
matrices A and B could give rise to the same leverage score model. If B = AR for some invertible
matrix R ∈ Rd×d, then we have

qi = (Bs(B
⊤
s Bs)

−1B⊤
s )i,i/d = (AsR(R⊤A⊤

s AsR)−1R⊤A⊤
s )i,i/d = (As(A

⊤
s As)

−1A⊤
s )i,i/d = pi.

Then LeverageA(s) = LeverageB(s) for all s ∈ (R\{0})n and it is impossible to distinguish the
two models. Furthermore, there exist scenarios where A and B differ only in rows with very small
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probability weight under any input s. We now give an example where ∥A⊤
1,∗A1,∗ − B⊤

1,∗B1,∗∥ =

Ω(1) but TV(LeverageA(s), LeverageB(s)) = O(1/n) for any s satisfying c ≤ s2i ≤ C for
all i ∈ [n]. Suppose A = [Id e1 · · · e1]

⊤ (that is, the first d rows of A is equal to Id, and
all remaining rows are equal to e⊤1 = (1, 0, . . . , 0)). Then for s satisfying c ≤ s2i ≤ C for all
i ∈ [n], the distribution P = LeverageA(s) has probability mass O(1/n) on every element i ∈
{1, d + 1, d + 2 . . . , n} (hiding constants depending on c and C). Now suppose B differs with A
only in the first entry (1, 1), and B1,1 = A1,1 +Θ(1). Then for fixed s, qj = pj for j ∈ {2, . . . , d},
q1 ≥ p1, and qj ≤ pj for j ∈ {d+1, . . . , n}. So H2(P,Q) ≤ TV(P,Q) = q1−p1 = Θ(1/n). This
shows that the sample complexity may depend on n. After discussing the difficulties in establishing
an upper bound, we now show a local upper bound, which says for fixed A and fixed direction M ,
there is an algorithm that distinguishes LeverageA and LeverageA+ϵM using O(ϵ−2) queries, for
small enough ϵ > 0.

Theorem 4.3. Fix A,M ∈ Rn×d where ∥M∥2→∞ = O(1). For ϵ > 0, define Bϵ = A + ϵM . We
consider the binary hypothesis testing problem with LeverageA and LeverageBϵ

, for small ϵ. Let
ν = sups VarLeverageA(s)(ws) where

ws =
diag((I −As(A

⊤
s As)

−1A⊤
s )(Ms(A

⊤
s As)

−1A⊤
s ))

diag(As(A⊤
s As)−1A⊤

s )

where the division between vectors is entrywise division. Then for ϵ > 0 small enough, there is an
algorithm that uses O(ϵ−2ν−1) queries and distinguishes between LeverageA and LeverageBϵ

.

Proof of Theorem 4.3 is deferred to Appendix A.4. Similarly to the softmax model case, Theo-
rem 4.3 is also tight.

Theorem 4.4. Work under the same setting as Theorem 4.3. For ϵ > 0 small enough, any algorithm
that distinguishes between SoftMaxA and SoftMaxBϵ

must use Ω(ϵ−2ν−1) energy-constrained
queries.

Proof. The proof is by combining the proof of Theorem 4.3 and Theorem 4.1. We omit the details.

5 CONCLUSION AND FUTURE DIRECTIONS

Widely applied across various domains, softmax and leverage scores play crucial roles in machine
learning and linear algebra. This study delves into the testing problem aimed at distinguishing
between different models of softmax and leverage score distributions, each parameterized by distinct
matrices. We establish bounds on the number of samples within the defined testing problem. With
the rapidly escalating computational costs in current machine learning research, our work holds
the potential to offer valuable insights and guidance for distinguishing between the distributions of
different models. We discuss a few possible directions for further research. In Theorem 3.5 and
Theorem 4.3, we determine the local sample complexity of the binary hypothesis testing problems
for softmax models and leverage score models. In particular, the sample complexity is Θ(ϵ−2ν),
where ν is a certain function depending on A and M (where B = A + ϵM ). The form of ν is an
optimization problem over the space of possible inputs. An interesting question is to provide bounds
on the quantity ν, or to provide computation-efficient algorithms for determining the value of ν of
finding the optimal input (x for softmax, s for leverage score). This will lead to computation-efficient
algorithms for solving the binary hypothesis testing problem in practice.

In this paper, we focused on the binary hypothesis testing problem, where the goal is to distinguish
two models with different parameters. There are other hypothesis testing problems that are of interest
both in theory and practice. For example, in the goodness-of-fit problem, the goal is to determine
whether an unknown model is equal to or far away from a given model. In the two-sample testing
problem, the goal is to determine whether two unknown models are the same or far away from each
other. These problems have potential practical applications and we leave them as an interesting
future direction.
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APPENDIX

A MISSING PROOFS

A.1 GENERAL RESULT FOR SOFTMAX MODEL

Proof of Theorem 3.1. Lower bound. If δ ≥ 0.1 then there is nothing to prove. In the following
assume that δ < 0.1. Suppose that there is an algorithm that successfully solves the binary hy-
pothesis testing problem. Suppose it makes queries x1, . . . , xm ∈ Rd where xi may depend on
previous query results. Let Y1, . . . , Ym ∈ [n] denote the query results. Let PY m and QY m denote
the distribution of Y m under P and Q, respectively. By definition of δ, we have

H2(PYk|Y k−1 , QYk|Y k−1) ≤ δ2.

for any k ∈ [m] and Y k−1. Then

1−H2(PY m , QY m)

=

∫ √
PymQymdym

=

∫ √
Pym−1Qym−1(∫ √
Pym|ym−1Qym|ym−1dym

)
dym−1

≥
∫ √

Pym−1Qym−1(1− δ2)dym−1.

Repeating this computation, in the end we get

1−H2(PY m , QY m) ≥ (1− δ2)m.

Because δ ≤ 0.1, we have 1− δ2 ≥ exp(−2δ2). If m ≤ 0.01δ−2, then

1−H2(PY m , QY m) ≥ exp(−2δ2m)

≥ exp(−0.02) > 0.98,

and

H2(PY m , QY m) ≤ 0.02.

This implies

TV(PY m , QY m) ≤
√
2H(PY m , QY m) ≤ 0.2,

which implies the success rate for binary hypothesis testing cannot be ≥ 2
3 .

In conclusion, any algorithm that successfully solves the hypothesis testing problem need to use
Ω(δ−2) queries.

Upper bound. Take x ∈ Rd such that ∥x∥2 ≤ E and δ = H(SoftMaxA(x), SoftMaxB(x)). By
Lemma 2.5, using O(δ−2) samples we can distinguish SoftMaxA(x) and SoftMaxB(x). Therefore
we can distinguish SoftMaxA and SoftMaxB in O(δ−2) queries by repeatedly querying x.

A.2 LOWER BOUND FOR SOFTMAX MODEL

Before giving the proof of Lemma 3.3, we prove a weaker version of the lemma.
Lemma A.1. Let a, b ∈ Rn. Suppose there exists an ϵ ≥ 0 such that for every i ∈ [n], bi − ai ∈
{0, ϵ}. Let P be the distribution on [n] with pi = exp(ai)/⟨exp(a),1n⟩. Let Q be the distribution
on [n] with qi = exp(bi)/⟨exp(b),1n⟩. Then

H2(P,Q) =
(1− exp(ϵ/4))2

1 + exp(ϵ/2)
= O(ϵ2),

TV(P,Q) = tanh(ϵ/4) = O(ϵ).
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Proof. Assume that a and b differ in m coordinates. By permuting the coordinates, WLOG assume
that bi = ai + ϵ for 1 ≤ i ≤ m and bi = ai for m+ 1 ≤ i ≤ n.

Write

s =

m∑
i=1

exp(ai)

and

t =

n∑
i=m+1

exp(ai).

Then

H2(P,Q) = 1−
∑
i∈[n]

√
piqi

= 1− s exp(ϵ/2) + t√
(s+ t)(s exp(ϵ) + t)

.

For fixed t and ϵ, the above is maximized at

s = t exp(−ϵ/2).

Plugging in the above s, we get

H2(P,Q) ≤ 1− 2√
(exp(−ϵ/2) + 1)(exp(ϵ/2) + 1)

=
(1− exp(ϵ/4))2

1 + exp(ϵ/2)
.

For TV, we have

TV(P,Q) =
∑

m+1≤i≤n

(qi − pi)

=
t

s+ t
− t

s exp(ϵ) + t
.

For fixed t and ϵ the above is maximized at s = t exp(−ϵ/2). Plugging in this s, we get

TV(P,Q) ≤ tanh(ϵ/4).

Proof of Lemma 3.3. We first prove the case where bi ≥ ai for all i ∈ [n]. Define ϵi = bi−ai for all
i ∈ [n]. By permuting the coordinates, WLOG assume that ϵ1 ≤ · · · ≤ ϵn. Specially, define ϵ0 = 0.
For 0 ≤ k ≤ n, let bk ∈ Rn denote the vector where bki = ai + min{ϵi, ϵk} for all i ∈ [k]. Then
we can see that b0 = a and bn = b, and for every 0 ≤ k ≤ n − 1, the pair (bk, bk+1) satisfies the
assumption in Lemma A.1. For 0 ≤ k ≤ n, let P k denote the softmax distribution corresponding to
bk. By Lemma A.1, for every 0 ≤ k ≤ n− 1, we have

H(P k, P k+1) = O(ϵk+1 − ϵk),

TV(P k, P k+1) = O(ϵk+1 − ϵk).

Because Hellinger distance and TV distance are both metrics, we have

H(P,Q) = H(P 0, Pn)

≤
n−1∑
k=0

H(P k, P k+1)
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= O(ϵ),

and

TV(P,Q) = TV(P 0, Pn)

≤
n−1∑
k=0

TV(P k, P k+1)

= O(ϵ).

This finishes the proof of the result when bi ≥ ai for all i ∈ [n].

Now let us consider the general case. Let c ∈ Rn be defined as ci = max{ai, bi} for all i ∈ [n].
Then

max{∥a− c∥∞, ∥c− b∥∞} ≤ ∥a− b∥∞ ≤ ϵ.

Let R be the softmax distribution corresponding to c. By our previous discussion, we have

H(P,R), H(R,Q),TV(P,R),TV(R,Q) = O(ϵ).

By metric property of Hellinger distance and TV distance, we get

H(P,Q), H(P,Q) = O(ϵ)

as desired.

A.3 LOCAL UPPER BOUND FOR SOFTMAX MODEL

Proof of Theorem 3.5. We take an x satisfying ∥x∥2 ≤ E that maximizes VarSoftMaxA(x)(Mx) and
repeatedly query x. We would like to apply Theorem 3.1. To do that, we need to show that

H2(SoftMaxA(x), SoftMaxBϵ(x)) = Ω(ϵ2ν).

Let P = SoftMaxA(x) = (p1, . . . , pn), Qϵ = SoftMaxBϵ
(x) = (qϵ,1, . . . , qϵ,n). Write ZA =

⟨exp(Ax),1n⟩, ZBϵ
= ⟨exp(Bϵx),1n⟩.

Then, it follows that

ZB =
∑
j∈[n]

exp(Ax)j exp(ϵ(Mx)j)

=
∑
j∈[n]

exp(Ax)j +
∑
j∈[n]

exp(Ax)j(exp(ϵ(Mx)j)− 1)

=
∑
j∈[n]

exp(Ax)j +
∑
j∈[n]

exp(Ax)j(ϵ(Mx)j +O(ϵ2))

= ZA(1 + ϵ⟨p,Mx⟩+O(ϵ2)). (3)

where the initial step is because of B = A + ϵM , the second step is a result of simple algebra,
the third step is a consequence of the Taylor expansion of exp(·), assuming ϵ is sufficiently small
and the fourth step is the result of the definition of ZA and involves the consolidation of addition,
introducing the common term ZA.

Then

qϵ,i =
exp(Bϵx)i

ZB

=
exp(Ax)i exp(ϵMx)i

ZA(1 + ϵ⟨p,Mx⟩+O(ϵ2))

= pi(1 + ϵ((Mx)i − ⟨p,Mx⟩) +O(ϵ2)). (4)

where the initial step is because of the definition of qϵ,i, the subsequent step is a result of Eq.(3), and
the third step is due to the definition of qi along with the Taylor expansion of f(x) = 1/(1+ x) and
exp(·), considering ϵ as a sufficiently small value.
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So, we have that

H2(P,Qϵ) =
1

2

n∑
i=1

(
√
pi −

√
qϵ,i)

2

=
1

2

n∑
i=1

pi(ϵ
2((Mx)i − ⟨p,Mx⟩)2 +O(ϵ3))

=
1

2
ϵ2 VarP (Mx) +O(ϵ3)

=
1

2
ϵ2ν +O(ϵ3).

where the first step is the result of Definition 2.2, the second step is because of Eq.(4), the third
step the result of definition of VarP (Mx) (See Definition 2.3) and the forth step follows from the
expression ν = supx:∥x∥2≤E VarSoftMaxA(x)(Mx).

Applying Theorem 3.1 we finish the proof.

A.4 LOCAL UPPER BOUND FOR LEVERAGE SCORE MODEL

Proof of Theorem 4.3. We take an s satisfying c ≤ s2i ≤ C and ∀i ∈ [n] that maximizes
sups VarLeverageA(s)(ws) and repeatedly query s. We need to show that

H2(LeverageA(s), LeverageBϵ
(s)) = Ω(ϵ2ν).

Let P = LeverageA(s) = (p1, . . . , pn), Qϵ = LeverageBϵ
(x) = (qϵ,1, . . . , qϵ,n). We can com-

pute that
d

dϵ
qϵ,i = (2(I −As(A

⊤
s As)

−1A⊤
s )(Ms(A

⊤
s As)

−1A⊤
s ))i,i.

Define W = (I −As(A
⊤
s As)

−1A⊤
s )(Ms(A

⊤
s As)

−1A⊤
s ). Then

qϵ,i = pi + 2Wi,iϵ+O(ϵ2).

Computing H2(P,Qϵ) we get

H2(P,Qϵ) =
1

2

∑
i∈[n]

(
√
qϵ,i −

√
pi)

2

=
∑
i∈[n]

pi

(
Wi,i

pi
ϵ+O(ϵ2)

)2

=
∑
i∈[n]

Wi,iϵ
2

pi
+O(ϵ3)

= ϵ2ν +O(ϵ3).

B MORE RELATED WORK

Softmax Computation and Regression Softmax computation, a crucial element in attention com-
putation (Vaswani et al., 2017), plays a pivotal role in the development of LLMs. Several studies
Alman & Song (2023); Brand et al. (2023); Liu et al. (2023c); Deng et al. (2023c) delve into the
efficiency of softmax computation. To improve computational efficiency, Alman & Song (2023)
presents a quicker attention computation algorithm utilizing implicit matrices. Similarly, Brand
et al. (2023) utilizes lazy updates to speed up dynamic computation, while Deng et al. (2023c) em-
ploys a randomized algorithm for similar efficiency gains. Conversely, Liu et al. (2023c) utilizes an
approximate Newton method that operates in nearly linear time. Gao et al. (2023) centers on the con-
vergence of overparameterized two-layer networks with exponential activation functions, whereas
Deng et al. (2023b); Liu et al. (2023c) explore regression analysis within the framework of attention
computation. All of these studies specifically focus on softmax-based regression problems.
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