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Abstract

This paper introduces a Dual Evaluation Frame-
work to comprehensively assess the multilin-
gual capabilities of LLMs. By decomposing
the evaluation along the dimensions of linguis-
tic medium and cultural context, this frame-
work enables a nuanced analysis of LLMs’
ability to process questions within both native
and cross-cultural contexts cross-lingually. Ex-
tensive evaluations are conducted on a wide
range of models, revealing a notable “Cultural-
Linguistic Synergy” phenomenon, where mod-
els exhibit better performance when questions
are culturally aligned with the language. This
phenomenon is further explored through inter-
pretability probing, which shows that a higher
proportion of specific neurons are activated in
a language’s cultural context. This activation
proportion could serve as a potential indicator
for evaluating multilingual performance dur-
ing model training. Our findings challenge the
prevailing notion that LLMs, primarily trained
on English data, perform uniformly across lan-
guages and highlight the necessity of culturally
and linguistically model evaluations.

1 Introduction

With the rapid development of large language mod-
els (LLMs), increasing efforts have been made to
make these models beneficial for people worldwide.
To achieve this, non-English corpora are also incor-
porated into the training data, enabling LLMs to
understand and generate text in various languages
(i.e., multilingual capabilities) (Xue et al., 2021;
Workshop et al., 2023; Grattafiori et al., 2024; Ope-
nAl et al., 2024; Nguyen et al., 2024).

To evaluate the LLMs’ multilingual capabilities,
researchers primarily rely on translating English-
centric benchmarks into target languages, such as
translating MMLU (Hendrycks et al., 2021) into
MMMLU (OpenAl, 2024). While this approach
allows for efficient cross-lingual comparisons, it
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Figure 1: Dual Evaluation Framework for evaluating
multilingual capabilities of LLMs. The figure is divided
into four quadrants, each showing the model’s perfor-
mance on questions framed in different languages and
cultural contexts. The horizontal-axis represents the lan-
guage of the question, and the vertical-axis represents
the cultural context. The score refers to the aggregate
performance of the model Claude-3.5-Sonnet on these
four question sets.

limits the evaluation to scenarios rooted in English-
speaking cultural contexts, as the original data was
predominantly collected from perspectives preva-
lent in English-speaking countries. In contrast, re-
cent work has developed culture-specific bench-
marks such as M3Exam (Zhang et al., 2023) and
BLEnD (Myung et al., 2024) where evaluation data
are sourced from authentic, real-world scenarios
in native-speaking regions. While these better cap-
ture the majority local usage, they also overlook
that multilingual users frequently ask questions
across cultural boundaries. For example, a Spanish
speaker might inquire about Chinese tea usage in
Spanish, while a user from China could seek de-
tails about Diwali celebrations in Chinese. These
existing evaluations on multilingual capabilities,
however, treat language and cultural context as in-
separable dimensions, restricting analyses to single-
language scenarios.

To comprehensively evaluate multilingual capa-



bility, especially considering the real-world usage,
we propose a Dual Evaluation framework in this
paper, which decomposes the multilingual capabil-
ity evaluation along two critical dimensions: (1)
linguistic medium (the language used for ques-
tioning) and (2) cultural context (the regional and
cultural knowledge being tested). As illustrated in
Figure 1 through a preschool enrollment example,
this framework generates four distinct evaluation
scenarios from a single question template. This
structured decomposition enables multiple essen-
tial multilingual capability assessments, including
native cultural-linguistic alignment (same language
and culture), cross-lingual understanding (different
language, same culture), and cross-cultural ability
(same language, different culture).

With such dual evaluation framework design, we
construct a dataset from adopting and extending
the BLEnD dataset (Myung et al., 2024) which con-
tains every-day questions across different culture
contexts. We then evaluate a wide range of open-
source and close-source models with this newly
constructed benchmark. Our findings indicate that:
1) Models generally perform better on scenarios
rooted in English-speaking culture, a pattern that
persists cross-lingually (Section 3.2), and 2) LLMs
perform better when questions are posed in the lan-
guage that corresponds to the cultural context of
the question, rather than in English (Section 3.3).
The second finding, in particular, draws our atten-
tion because most existing models are primarily
trained on English data and have demonstrated
strong performance in other multilingual evalua-
tions like MMMLU. However, when faced with
real-world culturally relevant questions in the cor-
responding language, these models perform better
in that language than in English. We refer to this
phenomenon as “Cultural-Linguistic Synergy” (as
shown in Figure 1, Claude-3.5-Sonnet has better
performance on Chinese test than English test when
asking Chinese culture question, vice versa).

To understand the underlying causes of this phe-
nomenon, we conduct interpretability probing by
analyzing the activation status of neurons when an-
swering questions in different cultural contexts and
languages, we find that: 1) The proportion of spe-
cific neurons tends to be higher when the question
is in the corresponding language and cultural con-
text, which could explain the observed “Cultural-
Linguistic Synergy” (Section 4.3); 2) Additionally,
this proportion of specific neurons could serve as a
potential indicator for comparing multilingual ca-

pabilities during model training (Section 4.3.1); 3)
The number of neurons activated in the model is
strongly correlated with the model’s performance
in the corresponding language. Specifically, when
the question is in the English-speaking cultural
context, the model tends to activate more neurons,
leading to better performance (Section 4.3.2).
Our main contributions can be summarized as:

* We propose a Dual Evaluation Framework which
decomposes the multilingual capability evalu-
ation along two critical dimension linguistic
medium and cultural context.

* Through extensive experiments, we find the
“Cultural-Linguistic Synergy” phenomenon —
the selected models perform better on native us-
age scenario questions when asked in the corre-
sponding language, compared to English.

* We demonstrate that the proportion of specific
neurons activated for a given language can ex-
plain the observed Cultural-Linguistic Synergy,
and that this proportion can serve as a potential
indicator for comparing multilingual capabilities.

2 Dual Evaluation Framework

To comprehensively assess the multilingual ca-
pabilities of LLMs, we propose a Dual Evaluation
framework that evaluates along two critical dimen-
sions: (1) linguistic medium (the language used
to pose questions) and (2) cultural context (the re-
gional and cultural knowledge being tested). This
dual-axis approach reflects two fundamental re-
quirements for real-world applications: first, the
ability to handle native language queries within
their cultural context (e.g., answering “What is a
common children’s snack in Spain?” in Spanish),
and second, the capability to address cross-cultural
inquiries through a single linguistic medium (e.g.,
answering “What is a traditional festival in Japan?”
in English). By evaluating both dimensions, we
measure how well LLMs adapt to language-specific
usage scenarios while maintaining cross-lingual
and cross-cultural competence.

Formally, we represent evaluation question as
Q;,;, where 7 denotes the cultural context and j
specifies the linguistic medium of the question.
To construct a question set, we conduct a system-
atic adaptation of a culture-specific benchmark
BLEnD (Myung et al., 2024) testing everyday
knowledge across diverse cultures and languages.



Specifically, for native cultural-linguistic pairs (i.e.,
Qi.i), we used the localized questions in BLEnD,
which are constructed based on a template question
with three key modifications: replacing country
or region references, adapting phrasing to match
linguistic norms, and curating culture-specific an-
swer sets. The localized evaluation sets (); ; for
language ¢ are denoted by:

Qi = {(ai, )| (i, a;i) = Adapt;(q), q € Template}, (1)

where Adapt; represents the localized modifica-
tions for language 7, and g represents the template
question from the Template set in BLEnD. For ex-
ample, by adapting the original question “What
is the most popular sports team in your country?”
into “What is the most popular sports team in the
US?”, where i = en, we can test the model’s abil-
ity to handle English in the US context. Using these
adapted questions for different languages, we can
assess the model’s ability to handle native-language
queries within various cultural environments.

One the other hand, to assess the model’s ability
to handle questions across multiple cultural con-
texts when asked in a single language, we extend
the (); ; sets into localized transformations (); ; for
each language pair (7, j), where ¢ # j. The orig-
inal BLEnD includes, for each language-specific
evaluation set (); ; (except for English), an English
translation evaluation dataset ); .,,. Specifically:

Qien = {Transe, (g, ai) | (qi,ai) € Qiyyi #en}. (2)

For other language pairs (i, j), we use the GPT-4o0
model, known for its strong multilingual capabili-
ties, to construct these cross-lingual datasets.

Qij = {Trans;(g;, a;) | (¢i;a:) € Qi,j #en}. (3)

This setup enables assessing how well the model
can adapt to answering questions posed in one lan-
guage about the cultural context of another.

Combing the two evaluation scenarios, the com-
plete evaluation set () is thus represented as:

Q=U;zQiiVQ;; UQi; UQj:i.  (4)

This Dual Evaluation framework, where questions
are tailored to the linguistic medium and the cor-
responding cultural contexts of usage, not only as-
sesses LLMs’ multilingual abilities from both na-
tive usage scenarios ((); ;) and cross-cultural con-
texts (Q;,;) but also employs a completely dual-
format question approach. Specifically, @); ; and

()j; are constructed using the same template ques-
tion, and tailored to different linguistic and cul-
tural contexts. This approach allows us to quantita-
tively compare the multilingual capabilities cross-
culturally within the same language (by comparing
Q;,; and @)} ;), and cross-lingually (by comparing
Qi with Q) 5, or Q; ; with ); ;). An example of
this dual evaluation sample is shown in Figure 1,
and the detailes of the completion for (); ; are pre-
sented in Appendix A.4.

Linguistic Medium  Cultural Context # Data Sample
English (en) United States (US), CN, ES, ID, KR, IR, JB 3,500
Chinese (zh) China (CN), US) 1,000
Spanish (es) Spain (ES), US 1,000
Indonesian (id) Indonesia (ID), US 1,000
Korean (ko) South Korea (KR), US 1,000
Persian (fa) Iran (IR), US 1,000
Sundanese (su) West Java (JB), US 1,000
Total 9,500

Table 1: Overview of the evaluation dataset, detail-
ing the language, corresponding question context coun-
tries/regions, and the number of data samples. Bolded
countries/regions indicate where the corresponding lan-
guage is spoken natively, while the others are trans-
formed for cross-cultural evaluation. Each language
has 500 data samples per country/region. The parts we
added on the original BLEnD are marked in green.

3 Multilingual Capabilities Evaluation

3.1 Experiment setting

We selected a series of LLMs from dif-
ferent size to evaluate their multilingual ca-
pabilities, including GPT-40 (OpenAl et al.,
2024), Claude-3.5-Sonnet (Anthropic, 2024), Com-
mandR (Cohere, 2024), Llama-3-8B-Instruction,
Llama-3-70B-Instruction(Grattafiori et al., 2024),
Gemma-2-9B (Team et al.,, 2024), Qwen2.5-
7B-Instruct (Qwen et al., 2025), and Bloomz-
7B (Muennighoff et al., 2022). The experiment
is conducted across seven languages, with culture
content sourced from one of the typical countries
where each language is widely spoken. Consider-
ing the current performance of the model (primarily
strong in English), and taking cost and time con-
straints into account, we only construct evaluation
data @); ; for the language pairs (4, j) where ei-
ther language ¢ or j is English. The language and
culture information for the evaluation dataset are
provided in Table 1. The questions used in eval-
uation is short-answer questions (SAQs) aligned
with the BLEnD (Myung et al., 2024) benchmark.
We apply non-weighted scores for the evaluation
metrics. During inference, all models are tested
in a zero-shot setting. The question prompts are



derived from the original BLEnD instruction set.
More details are shown in Appendix B.

3.2 Finding 1: LLMs’ Performance Declines
as the Cultural Context Shifts from
English to Cross-Cultural Scenarios.

Using our Dual Evaluation Framework, we eval-
uate the performance of the selected LLMs. As
mentioned in Section 2, one of the key advantages
of this framework is its ability to compare mod-
els’ adaptability in cross-cultural contexts (com-
paring (0;; & ();;), given that the questions are
presented in a dual format. Since most of the se-
lected models primarily use English as their train-
ing corpus, we first compare the performance on
Qen,en and Q; e, (Where @ # en). The results
in Figure 2 (full result in Append A.2), for each
bar, represent the performance in specific culture-
contexts. By comparing the bars’ height across
different context, we observe that models perform
best for English-speaking culture context, when
asking questions in English and performance de-
clines in other language-speaking cultural context,
with the drop becoming more pronounced as the
language’s resource availability decreases.

English Asking
@ Spanish Culture

7 American Culture O Sundanese Culture

Performance

Figure 2: The performance of the selected models on
American, Spanish, and Sundanese culture questions
when asked in English. We find that models perform
best on American culture.

While this trend echoes previous findings with
translated datasets from English culture (Myung
et al., 2024; OpenAl, 2024), it raises further ques-
tion: Does this phenomenon also hold in other
languages? To explore more, we expanded the
comparison to include Q);; and Q; ¢, especially
when ¢ # en. The results for i = es (Spanish) are
shown in Table 2, considering the high availability
of resources of it. Additional results, demonstrating
same phenomena, are available in Appendix A.2.
The results indicate that, in general, the selected

Question Content Spanish Culture | American Culture

Claude-3.5-Sonnet 81.0 82.0
GPT-40 76.5 77.6
Command-r 69.9 734
Gemma-2-9b-Instruction 70.9 72.7
Llama-3-70b-Instruct 72.0 79.6
Qwen2.5-7b-Instruct 62.0 70.5
Llama-3-8b-Instruct 58.9 74.5
Bloomz-7b 53.6 52.8

Table 2: The performance of selected models on every-
day questions about Spain and the US when asked in
Spanish. Generally models perform best when asking
questions about US culture in Spanish.

models perform better on English-speaking culture
question compared to other languages when asked
in the respective language. Since the training data
for these models is not fully open-source, we hy-
pothesize that, for each language in the training
corpus, the models are trained on a larger volume
of English-language usage scenarios. As a result,
the models exhibit better performance on English-
speaking culture questions across all languages.
In the following interpretability Section 4.3.2, we
delve deeper into the model’s internal workings to
explore the reasons behind this observed behavior.

3.3 Finding 2: LLMs perform better when
asking in corresponding language.

In addition to enabling comparisons of behavior in
cross-cultural contexts within the same language
(as discussed in Section 3.2), we can evaluate how
models perform cross-lingually using Dual Evalu-
ation Framework. Specifically, by comparing @); ;
and Q; j (¢ # j), we get the result shown in Fig-
ure 3. We surprisingly find that asking culture-
related questions in the corresponding language
outperforms asking in English, as indicated by the
bars with patterns being higher than those without.
Specifically, across the eight selected models, the
average performance for questions related to Chi-
nese culture when asked in Chinese exceeded that
of asking in English by 8.8 points. Similarly, ques-
tions related to Indonesian culture posed in Indone-
sian outperformed those asked in English by 15.7
points. While this advantage diminishes when deal-
ing with lower-resource languages. For instance,
in Persian, the performance gap is -0.95 points.
This can be attributed to models like Bloomz-7B,
which have limited or no training data for Persian,
resulting in better performance when asking ques-
tions in English instead. On the other hand, this
corresponding advantage also appears in American
culture questions, as shown in Figure 17.
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Figure 3: The performance of the selected models on Chinese, Indonesian, and Iranian culture question when asked
in the corresponding language versus English. We generally find that models perform better when asking questions

in the corresponding language compared to English.

From these observations, we can generally sum-
marize that asking culture-specific questions in
their corresponding language tends to outperform
answering them in English. We refer to this coun-
terintuitive phenomenon as “Cultural-Linguistic
Synergy”. That is, aligning the cultural context
with the appropriate linguistic medium, we can
achieve superior performance — even for models
primarily trained on English data, which perform
better on English-specific tasks than on other lan-
guage benchmarks like MMMLU and translated
GSMB8K (Shi et al., 2022) An intuitive explanation
for this Cultural-Linguistic Synergy could lie in the
training data. However, due to the lack of access to
the training data and the massive scale of the train-
ing corpus, further exploration in this direction can
be challenging. Thus, in the following sections,
we proceed with interpretability analysis to under-
stand the mechanisms of this Cultural-Linguistic
Synergy, starting with the preliminarily.

4 Interpretation for Cultural-Linguistic
Synergy

4.1 Preliminary

Neurons in FFN Module: Recent interpretability
studies suggest that factual knowledge is stored in
the FFN memories and represented by neurons in
the network (Geva et al., 2021). Given the input to-
ken z, the FFN module of layer [ in a decoder-only
Transformer can be represented as (outer activation
functions and bias terms are omitted for clarity):

FEN!(R!) = (W}, - Activation(WY,, - hh) (5)

where h! is the input to the FFN, me and Wcll own
are the weight matrices, and Activation is the ac-
tivation function. Following previous works, the
i-th element of Actz’vation(Wzip - hl) € RI™ is

considered the ¢-th neuron in layer [ (a simple il-
lustration of neuron in Figure 4). The value of this
neuron for the input token x can be represented by
its corresponding activation value va %

Key Neuron Set: Following previous work, neu-
rons with higher activation values when answering
a question are considered more important (Tang
et al., 2024a; Zhao et al., 2024). Therefore, given
a question ¢ , we can identify the “Key Neurons’
N, by selecting neurons that are highly activated in
the model’s response r = {ry,r2,...,r,}, where
r; denotes the i-th token in the response, based on
a threshold function (threshold) as:

bl

N, = {(17 0| sz?,l) > threshold, r; € r} (6)

By aggregating these key neurons for each ques-
tion ¢ in the dataset Q = {q}, we obtain the Key
Neuron set for the entire dataset Q) as (ref Figure 4
for illustration for getting key neurons):

Ng = {(i,1)[(i,1) € Ny, q € Q} (7

4.2 Experiment Setup

Considering that the Cultural-Linguistic Synergy
arises from variations in cultural context, we in-
vestigate how the model’s internal behavior differs
when asking questions in language 7. Specifically,
we focus on two types of question content: one re-
lated to the American cultural context and the other
to the cultural context of language ¢. By comparing
these two contexts, we aim to uncover why, in the
latter case, asking questions in the corresponding
language leads to better performance than asking
them in English. To explore this, we focus on cal-
culating the “specialized neurons” activated in each
context. These specialized neurons refer to the Key
Neurons that activate when answering in language
1, as opposed to English. For American cultural
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Figure 4: Illustration the possess of Interpretation for Cultural-Linguistic Synergy. Interpreting the dual-ed question
pair, we get the proportion of the Langue (Chinese in the figure) “specialized” neuron when asking the questions.

context, we obtain the Key Neuron sets Ny, .., and
qu , for the dual-ed questions g, and gey, ; from

Qen,en and Qe i, respectively. By gathering the
neuron only activate when asking g, ; , we can
determine the proportion of specialized language @
neurons for the question pair (Gen,en, Gen,i) as:

Nl]gn,iiNIZen,en (8)

p(Qen,ena Qen,i) = No |
en,i

For example, as shown in Figure 4, we calculate
the key neurons for the paired question “Af what
age do kids start preschool in the US?” in both
English and Chinese, to identify the specialized
Chinese neurons (depicted in red). We then repeat
for every question pair (gen,en; en,i)» and com-
pute the average proportion of specialized neurons
P(Gen,en, Gen,i) across all dual-ed question pairs.
This gives us the proportion of specialized neurons
for language ¢ in the American cultural context,
denoted as P, ;. Similarly, we calculate the pro-
portion of specialized neurons for ¢ in the cultural
context of language 7, denoted as F; ;. By compar-
ing the proportions of specialized neurons between
these two contexts, we aim to find the underlying
factors contributing to Cultural-Linguistic Synergy.

For time and cost efficiency consideration, we
deploy Qwen2.5-7B-Instruction and Llama-3-8B-
Instruction models as the target model. To obtain
the Key Neuron Set, we using the instruction 2
(Appdenx B) to get the response r and apply the
top-k (k = 5) threshold for each layer, as defined
in Equation 6. The details of the selection for this
hyperparameter can be found in Section 5.

4.3 Analyzing

We compare P, ; between P; ; (¢ # en) across the
seven languages. As shown in Figure 5, generally,
P; ; (bars with patterns) is higher than P, ; (bars
without patterns) in the scenarios where model
demonstrates the Cultural-Linguistic Synergy (e.g.,
Llama-3-8B in Chinese, Indonesian, Persian, and
Korean, Qwen2.5-7B in Chinese, Korean). Con-
versely, when no Cultural-Linguistic Synergy is
observed, P; ; is lower than P, ; (e.g., Llama-3-
8B in Sundanese, Qwen2.5-7B in Persian, Sun-
danese). This suggests that models tend to ac-
tivate a higher proportion of neurons special-
ized for the target language when the cultural
context aligns with the corresponding linguistic
medium, compared to when this alignment is ab-
sent. The activation of these specialized neurons al-
lows the model to better utilize knowledge specific
to the cultural and the target language. This knowl-
edge, which may not be fully accessed when asking
in English, contributes to the model’s better perfor-
mance in the target language. However, Spanish
stands as an exception, which we attribute to the
high similarity between Spanish and English in
terms of language structure, thus may have greater
overlap of the knowledge-storing neurons.

4.3.1 Hypothesis 1 and Validation

Previous analysis (Section 4.3) suggests that when
Cultural-Linguistic Synergy occurs, the model ac-
tivates a higher proportion of neurons specialized
for the language and culture. This ability to better
utilize knowledge aligned with the corresponding
cultural context helps guide the model to perform
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Figure 5: Comparison of the proportion of specialize
neurons for language Chinese(zh), Spanish(es), Indone-
sian(id), Korean(ko), Persian(fa), and Sundanese(su)
between different cultural context. It indicate that when
Cultural-Linguistic Synergy happens, models generally
activate a higher proportion of specialize neurons.

better than when asking in English. Building on
this, we further consider whether more powerful
multilingual models have a better ability to uti-
lize culture and language specific knowledge. This
could, in turn, serve as a valuable metric for evalu-
ating model performance during training.

Hypothesis 1: Models with stronger capa-
bilities will activate a higher proportion of
specific neurons when the cultural context
aligns with linguistic medium

Figure 5 indicates that Qwen2.5 utilize more spe-
cialized neurons (66 %) than Llama-3 (57%) across
the six languages, which may provides evidence
for this hypothesis. However, note that differences
in training data and model architectures between
different series may limit the direct comparability.
On the other hand, validating this hypothesis by
improving one model with additional training data
may present challenges. This is due to the limited
availability of language resources and the poten-
tial risk of benchmark leakage, which could affect
the analysis. Thus we use well-recognized multi-
lingual same series models with distinct language
capabilities, such as the open-source multilingual
extension of the Llama-3 model, Llama-3.1-8B-
Instruction, for comparative analysis with Llama-
3-8B-Instruction in the validation experiment.

B Llama-3.1-8b-Instruct
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Figure 6: Comparison of proportion of specialize
neurons for Llama-3-8B-instruct and Llama-3.1-8B-
instruct. The result shows that Llama-3.1-8B-instruct,
the multilingual extension for Llama-3-8B-instruction,
have higher proportion of specialize neurons.

The results shown in Figure 6 indicate that
Llama-3.1-8B-Instruction activates a higher pro-
portion of specialized neurons (67%) compared to
Llama-3-8B-Instruction (57%), supporting our hy-
pothesis that models with stronger capabilities in
the corresponding language are better at leverag-
ing language-specific neurons. Furthermore, this
proportion of the specific neurons could be utilized
as a potential indicator for evaluating a model’s
ability to effectively leverage multilingual knowl-
edge during the training phase.

4.3.2 Hypothesis 2 and Validation

Through previous analysis (Section 4.3), we find
that the proportion of specific neurons may be in-
dicative of the Cultural-Linguistic Synergy. It left
us thinking: If a higher proportion of neurons cor-
responds to greater knowledge neuron utilization
by the model, then assuming a consistent increase
in the proportion of language-specific neurons for
one specific model, we expect that an increase in
the number of neurons should lead to better perfor-
mance for the corresponding language.

Hypothesis 2: The greater the number of
neurons activated for questions in a given
language, the better the performance.

Since there is no consensus on how to definitively
measure the importance of individual neurons, we
take a different perspective. Instead of focusing on
neuron quantity directly, we explore whether the
total number of neurons activated across the dataset
is correlated with the model’s performance.

From Section 4.3, we notices that knowledge
representation may vary across languages. There-
fore, in this validation study, we focus on compar-
isons within the same language. Specifically, we
investigate the relationship between the set of Key



Neurons set, | Ng, ;| and [N, ,|, and the model’s
performance on the corresponding evaluation data.
The results, shown in Figure 7, indicate that the
total number of activated neurons is highly corre-
lated with the model’s performance, with Pearson
correlation coefficient of 0.95 for English questions
(more results is in Appendix A.2). This suggests
that when more neurons are activated, the model is
likely utilizing more relevant knowledge, leading
to better performance. This finding aligns with the
observation in Section 3.2, where, in American cul-
tural context, the model activates the most neurons.
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Figure 7: The performance and the number of Key
Neurons for the Llama-3-8B on cross-cultural contexts.

5 Ablation Study
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Figure 8: Performance for Llama-3-8B-Instruction on
ARC and Q¢ e, when masking Key Neurons with dif-
ferent threshold.

In our experimental setup (Section 4.2), we se-
lect k = 5 as the threshold. The threshold is set to
ensure that the selected key neurons accurately rep-
resent the model’s knowledge on the given question.
To determine the optimal threshold, we measure the
performance drop when masking the corresponding
neurons on the selected task. We choose the thresh-
old where the performance drops significantly for
the masked neurons, while the performance on out-
of-distribution (OOD) knowledge (here we use the
ARC (Clark et al., 2018) dataset), is largely unaf-
fected. As shown in Figure 8, we draws in blue and
red respestively. We also use a random mask with
the same number of neurons as a baseline (dash

line). The selected threshold is depicted in green.

6 Related Work

Multilingual Capabilities Evaluation To evaluate
the LLMs’ multilingual capabilities, researchers
use translating English-centric benchmarks such
as MMMLU (OpenAl, 2024), MGSM (Shi et al.,
2022) and Multilingual MT-Bench (Zheng et al.,
2023). Recent work also developed culture-specific
benchmarks (Zhang et al., 2023; Myung et al.,
2024; Leong et al., 2023; Liu et al., 2025). For
example, M3Exam (Zhang et al., 2023) sourced
from real and official human exam questions,
BLEnD (Myung et al., 2024) where evaluation data
are crafted from real-world scenarios and Cultur-
alBench (Chiu et al., 2024) with human-written
questions covering 45 global regions. These exist-
ing evaluations, however, treat language and cul-
tural context as inseparable dimensions, restricting
analyses to single-language scenarios.
Multilingual Capabilities Interpretation Re-
cently, some work (Wang et al., 2024a; Kojima
et al., 2024; Wang et al., 2024b) use the Mecha-
nistic interpretability to analyze the model’s mul-
tilingual capabilities. Work (Tang et al., 2024b)
shows proficiency in processing a particular lan-
guage is predominantly due to a small subset of neu-
rons. Work (Wendler et al., 2024) projects the hid-
den state into vocabulary to investigate the Latent
Language. Work (Zhao et al., 2024) further pro-
posed the multilingual workflow to understand how
LLMs Handle Multilingualism. However, these
studies do not investigate model’s behavior across
different cultural contexts and languages.

7 Conclusion

This study introduced a Dual Evaluation Frame-
work specifically designed to comprehensively as-
sess LLMs across linguistic mediums and cultural
contexts. Our findings reveal “Cultural-Linguistic
Synergy,” phenomenon where models perform op-
timally when questions are culturally aligned with
the language, challenging the prevailing assump-
tion that LLMs, primarily trained on English data,
perform uniformly across different languages. Uti-
lizing interpretative methods, we delved deeper
into this phenomenon and found it is related to the
Key Neurons. As the field of interpretability in
Al continues to evolve, we plan to further expand
this framework to enable more comprehensive and
nuanced evaluations of multilingual models.



8 Limination

While the Dual Evaluation Framework is flexi-
ble enough to incorporate additional benchmarks,
the prerequisite for conducting meaningful cross-
cultural comparisons, especially to conduct neuron
probing, lies in having dual-format question con-
tent. This content needs to capture both linguistic
and cultural nuances. Without this dual-format
structure, performing robust and quantitative cross-
cultural comparisons remains limited.

In our current experimental design, we focus on
a single cultural context for each language, based
on typical countries or regions where the language
is spoken. However, given the widespread usage of
some languages, especially in regions with diverse
cultural contexts, we plan to expand the framework
in the future to incorporate more varied cultural
contexts to make our conclusions more robust.

Due to time and computational cost constraints,
we limited our probing validation to models
like Qwen2.5-7B-Instruction and Llama-3-8B-
Instruction. As LLMs interpretation techniques
continue to evolve and improve, we plan to expand
the range of models included in future studies, espe-
cially larger models with more parameters, to gain
deeper insights into multilingual and cross-cultural
model behavior.
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A More Experiment Detail

A.1 Response Generation Setting

Answer generation across the involved models is conducted in a zero-shot setting, with all models set to a
temperature of 0.0 and a maximum token length of 1024.

A.2 Result Display Setting

The results presented in Section 3.2 and Section 3.3 are based on Instruction 1 (as shown in Appendix B).
All other results are displayed in an averaged format in Figures 9, 10, 11, 12, 13, 14, 15, 16, and 17 for
each model on every Q; ;.

For the results in Section 4.3, Section 4.3.1, and Section 4.3.2, we conducted evaluations using
Instruction 2 (as shown in Appendix B) to manage computational costs. This is particularly relevant
for certain questions where the model might generate lengthy responses, making the interpretation of
results impractical without these adjustments. For results in other languages, except English, which are
not shown in Section 4.3.2, please refer to Figures 18 and 19.

A.3 The primarily experiment result

Table 3 shows the performance of the models Llama-3-8B-Instruct, Gemma-2-9B-Instruct, and Qwen2.5-
7B-Instruct on multilingual benchmarks: GSM8K and MMMLU. The experiment is conducted in a
zero-shot setting, and the results suggest that the models perform better when the questions are asked in
English compared to other languages.

Model GSMS8K,., GSMSK., GSMS8K, ‘ MMMLU,, MMMLU,;, MMMLU,,
Llama-3-8B-Instruct 771 60.2 66.7 64.4 52.4 54.5
Gemma-2-9B-Instruct 81.2 77.9 75.1 73.4 64.4 64.0
Qwen?2.5-7B-Instruct 84.3 80.3 71.1 71.3 56.8 60.8

Table 3: The performance for mode Llama-3-8B-Instruct, Gemma-2-9B-Instruct and Qwen2.5-7B-Instruct on
MMMLU (OpenAl, 2024), MGSM (Shi et al., 2022). The experiment is conducted in a zero-shot setting. The
language we select are English(en), Chinese(cn), Spanish(es), and Indonesian(id).We find models have better
performacne when the question is asked in English.

A.4 The completion for Dataset

The original BLEnD includes, for each language-specific evaluation set (); ; (except for English), an
English translation evaluation dataset @; c,,. For the rest language (i, j) pair (when ¢ = en), we deloy
GPT-40 to conduct the translation. To ensure the translated question gy, ; aligns g; ; with the dual-format
structure, we prompt GPT-4 with a one-shot example using the question pair ¢; ¢, g;; to obtain the
translated version gep, ¢, for language ¢ , which we then use as gey, ;.

B Instruction

We mainly use the instruction from the orginal benchmark BIEnD (Myung et al., 2024). However, some
models’ responses are longer due to the nature of the instruction, so to better match each question with
candidate answers and help use the conduct the interpretation experiment, we manually add additional
instructions (instruction 2 for each language).

15



Claude-3.5-sonnet

Content Content, Content Content Content Content
us cN Us 1D Us ES
100
© 2] 2]
=) =] =} 80
> 82.33% 70.15% S 8233% 73.77% S| 8233% o
3 3 3
~ ~ ~
6o
g
inter:0.59 inter:0.46 inter:0.59 inter:0.53 inter:0.60 inter:0.54 é
40 g
5 S 2
g: 82.21% 76.51% g) 79.42% 80.41% g) 80.87% 80.99%
S 3 3 2
~ ~ ~
3
Contentys  Contentg Contentysg Contentygp Contentys Content;p
100
i< “© |2}
=] =} =} 80
] 82.33% 64.80% gﬁ 82.33% 69.57% g 82.33% 57.33%
3 3 3
= = =
6o
8
inter:0.59 inter:0.45 inter:0.59 inter:0.46 inter:0.52 inter:0.33 é
40 g
& & @
= ] =
] 81.99% 79.71% > 81.10 79.02% S 78.41% 60.56%
3 3 -
~ 3 ~
o

Figure 9: The average performance of Claude-3.5-sonnet on Instruction set B. The C'ontent; represents languei-
speaking culture context, Lang; represents the linguistic medium for language 1.
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Figure 10: The average performance of GPT-40 on Instruction set B. The Content; represents the languei-speaking
culture context, Lang; represents the linguistic medium for language <.
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Llama-3-70b-Instruct
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Figure 13: The average performance of Llama-3-70b-Instruct on Instruction set B. The Content; represents the
languei-speaking culture context, Lang; represents the linguistic medium for language .
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Figure 14: The average performance of Qwen-2.5-7b-Instruct on Instruction set B. The C'ontent; represents the
languei-speaking culture context, Lang; represents the linguistic medium for language .
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Llama-3-8b-Instruct
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Figure 15: The average performance of Llama-3-8b-Instruct on Instruction set B. The C'ontent; represents the
languei-speaking culture context, Lang; represents the linguistic medium for language .
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Figure 16: The average performance of Bloomz-7b on Instruction set B. The Content, represents the culture
context, Lang; represents the linguistic medium language.
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Figure 17: The performance of the selected models on American culture question when asked in the other six
languages versus English. Models perform the best when asking questions in English.
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Figure 18: The performance and the number of Key Neurons for the Llama-3-8B-Instruction on cross-cultural
contexts.
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Figure 19: The performance and the number of Key Neurons for the Qwen-2.5-7B-Instruction on cross-cultural
contexts.

20



English Instruction 1:
Read the following question and provide a single answer

without any explanations.

- J
/,English Instruction 2: N
Read the following question and return only ONE answer in a

single word or an unbroken phrase, avoiding splitting any

proper nouns or named entities.

VAN

English Instruction 3:

Read the following question and provide the single answer

you think is most appropriate without any explanations.

o %
Chinese Instruction 1: A
IR T EBIFNRE—NER, THEARE.

o J

~

Chinese Instruction 2:
FEIMTEE, FNXA—PBEES—ANRNEOZERE—NER, BEEoEe
\?ﬁ%ﬂﬁ RSN N

e N
Chinese Instruction 3:

FEN T EEF IR R MR B RABNER, EREEARE.

N J
. . )
Spanish Instruction 1:
Lee la siguiente pregunta y contesta con una sola respuesta
sin explicaciones.
& J
\

Spanish Instruction 2:
Lee la siguiente pregunta y devuelve solo UNA respuesta en

una sola palabra o una frase sin dividir ningdn nombre

propio o entidad nombrada.

o

o

o

Spanish Instruction 3:
Lee la siguiente pregunta y proporciona la respuesta Unica

que consideres mas apropiada sin ninguna explicacién.
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Indonesian Instruction 1:
Bacalah pertanyaan berikut dan berikan satu jawaban tanpa
penjelasan apa pun.

-
-~

J
Indonesian Instruction 2: \\
Bacalah pertanyaan berikut dan berikan hanya SATU jawaban
dalam satu kata atau frasa utuh, hindari memisahkan nama

diri atau entitas bernama.

- A/
N

Indonesian Instruction 3:
Read the following question and provide the single answer you

think is most appropriate (one word) without any explanations.

- J

s N
Korean Instruction 1:

ChE EE2 o A% 20| Tt iLto| HEES XN SSHAIRL.

\_ J
Korean Instruction 2: h
A2 A=QIofAH Aol Ltzte| E2tE HYSIH= CHDHTI= AFEHYLCE,
Cte 22 40 49 o] 7t& MHESICtn 2 E|l= T StLte| HEZS

\_HIB8HAI, D

4 . N
Korean Instruction 3:

Cte 222 0 A% 90| 7t& HMASICHD dZtx|= T StLte| BHHEHS
NZ23HA| 2.,

A3 y

4 . . N\
Persian Instruction 1:

2280 ) ) aia B s e Fuly SO g il s 1) ) s

g J
Persian Instruction 2:

L pald el GRSl G5 Colie SO L AalS SO QB 0 ) ) gy S hadé g anl a1 ) s
ma«jb\ aéﬁad)\ﬁ?h LﬁlAU_\:\J};jA

Persian Instruction 3:

a3 Al a6 (s Sl (p cialie WS e K4S Al gl saa )y ) e
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Sundanese Instruction 1:
Bacalah pertanyaan berikut dan berikan satu jawaban tanpa
penjelasan apa pun.

- J
/,Sundanese Instruction 2: N
Bacakeun pananya di handap ieu jeung pasih hiji jawaban dina

hiji kecap atawa frasa anu teu dipisah, ulah misahkeun

ngaran sorangan atawa entitas anu dingaranan.
\

Sundanese Instruction 3:

Bacakeun pananya di handap ieu jeung pasih hiji jawaban anu

anjeun anggap paling cocog tanpa penjelasan nanaon.

\_ )
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