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Abstract

We consider representation learning on periodic graphs encoding crystal materials.
Different from regular graphs, periodic graphs consist of a minimum unit cell
repeating itself on a regular lattice in 3D space. How to effectively encode these pe-
riodic structures poses unique challenges not present in regular graph representation
learning. In addition to being E(3) invariant, periodic graph representations need
to be periodic invariant. That is, the learned representations should be invariant to
shifts of cell boundaries as they are artificially imposed. Furthermore, the periodic
repeating patterns need to be captured explicitly as lattices of different sizes and
orientations may correspond to different materials. In this work, we propose a
transformer architecture, known as Matformer, for periodic graph representation
learning. Our Matformer is designed to be invariant to periodicity and can capture
repeating patterns explicitly. In particular, Matformer encodes periodic patterns
by efficient use of geometric distances between the same atoms in neighboring
cells. Experimental results on multiple common benchmark datasets show that
our Matformer outperforms baseline methods consistently. In addition, our results
demonstrate the importance of periodic invariance and explicit repeating pattern
encoding for crystal representation learning. Our code is publicly available at
https://github.com/YKQ98/Matformer,

1 Introduction

Crystal material property prediction is important for the discovery of new materials with desirable
properties [38), 35137, 150, 152] 41}, 14, 133| |6]. Different from molecules and proteins [[15} [51} 42}
9, 149, 26| 44], which are commonly represented as graphs [45) |29} [11} [12, 25} 127} 134], crystals
consist of a minimum unit cell repeating itself on a regular lattice in 3D space. Thus, crystals are
naturally represented as periodic graphs. A key challenge of crystal material property prediction
lies in how to effectively encode periodic structures that are not present in regular molecular graph
representations [[10} 20} 1411 23} 122} 31, 24} 139, [17, |13} |1, 47]]. E(3) invariance for molecular graphs
requires the representation for a given molecule to be invariant to translation, rotation and reflection
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Figure 1: Illustrations of periodic patterns and the multi-edge graph construction method. Green
lines are artificial boundaries to form one possible unit cell that repeats in infinite space for the given
crystal. (a). An illustration of periodic patterns in 2D space. We use blue and red arrows to show
how the blue atom repeats itself along ¢; and /5. We show a general case in nature that ¢; and ¢, are
not orthogonal. In this specific example, 0 is less than 5. (b) and (c). Illustrations of the multi-edge
graph construction method and the constructed graph. The green circle shows atom ¢’s neighborhood
N;, and black arrows are edges from atom 7’s neighbors to itself. As atom j repeats twice within 7’s
neighborhood in this example, the multi-edge graph construction method builds two edges from atom
7 to atom ¢. The crystals are 3D structures in practice, and we use illustrations in 2D for simplicity.

transformations in 3D space. Beyond that, periodic graphs of crystals require unique periodic
invariance. Periodic invariance has two facets; those are, the learned representations should be
invariant to both the scaling up of the minimum repeatable unit cells and shifts of periodic boundaries.
Although the former has been considered in Xie et al. [52} 53], the later is rarely identified explicitly
and sometimes not considered by previous studies [52} 14} 146} 141} 16} 1531331154} |1} I5]. Furthermore, the
repeating patterns of periodic graphs should be captured explicitly. Given a fixed minimum unit cell
structure, lattices of different sizes and orientations may correspond to different materials. Without
such periodic patterns, the infinite structures of crystals may not be represented accurately. However,
the explicit encoding of periodic patterns is not explored in previous studies [52} 4} 141} |6l 33} [1]].

In this work, we propose to tackle periodic graph representation learning by incorporating both
periodic invariance and periodic pattern encoding. We propose a periodic graph transformer, known as
Matformer, that is periodic invariant and can capture periodic repeating patterns explicitly for crystal
representation learning. Matformer achieves periodic invariance through two uniquely designed graph
construction methods. It further encodes periodic patterns by efficient use of geometric distances
between the same atoms in neighboring cells, thereby capturing the lattice size and orientation
of a given crystal. We conduct experiments on two commonly used material benchmark datasets,
including the Materials Project [[16] and Jarvis [8]. Results show that Matformer outperforms baseline
methods consistently on various tasks. In addition, our results demonstrate the importance of both
periodic invariance and periodic pattern encoding for crystal representation learning.

2 Background

Crystal property prediction and crystal structures. Given a crystal represented as (A, P, L),
crystal property prediction aims to predict a target property value y, which is either real as y € R or
categorical as y € {1,2,--- ,C}, for regression or classification task with C classes, respectively.
Specifically, a crystal is represented as a unit cell with periodic patterns. A unit cell is a minimum
repeatable structure for the given crystal, and it can be described by matrices A and P. A =
[@1,as, - ,a,]T € R"*da is the atom feature matrix, where a; € R% is the d,-dimensional
feature vector for atom i in the unit cell. P = [p;,p,, - ,p,]T € R"*3 is the position matrix,
where p; € R contains the Cartesian coordinates for atom 7 in 3D space. To further encode periodic
patterns, an additional lattice matrix L = [£y, £, £3]7 € R3*3 is used to describe how a unit cell
repeats itself in three directions, including £;, €5, and £5. We show a 2D case of periodic patterns
for easy illustration in Fig. [T (a). Note that crystals usually possess irregular shapes in practice.
Hence, £;, £2, and €3 are not always orthogonal in 3D space. Formally, given a crystal representation



(A, P, L), the infinite crystal structure can be represented as
P ={p;|p, = p; + k1£1 + koly + ksls, ki, ko, ks € Z,i € Z,1 <i<n},

A AN ) . ey
A ={d;la; = a;,i € Z,1 <i<n}.

Here, P contains all possible positions for each atom ¢, associated with the same a,; in A.

Multi-edge graph construction for crystals. The multi-edge graph construction proposed by Xie and
Grossman [52] aims to capture atom interactions across cell boundaries, which are imposed artificially.
In a regular molecular graph, a node corresponds to a single atom. In contrast, in a multi-edge graph,
node ¢ represents atom ¢ and all its duplicates in the infinite 3D space. Apparently, node 7 contains the
atom features vector a,; and all positions in the set {p;|D; = p; +k1€1 +kolo+ksls, ki, ko, ks € Z}.
Formally, the multi-edge graph construction method builds edges between nodes as follows. Given
a prefixed radius r € R, if there exists any 3-tuple (kll, k;, ké) where k:ll, k:lz, ké € R, such that the
Euclidean distance d;¢ € R satisfies d;-,t- =|lp; + k€1 + kyly + kols — p,|]a < 7, an edge is built

from j to ¢ with the initial edge feature d;l An example of the edge construction is shown in Fig.
(b). Intuitively, if there exist m positions of node j within the radius of the center node %, this method

builds m edges from node j to node i. By considering all possible positions of every node within a
predefined radius in 3D space, the multi-edge graph construction method can in essence capture atom
interactions across cell boundaries [40, 33, 4,141, 16].

3 Periodic invariance and periodic pattern encoding for crystals

Different from molecular graphs, crystal graphs consist of a minimum unit cell repeating itself on a
regular lattice in 3D space. When encoding such periodic structures, unique challenges lie in periodic
invariance and periodic pattern encoding. In this section, we propose to formally define and analyze
the importance of these two components.

3.1 Periodic invariance for crystals

Periodic invariance is proposed based on E(3) invariance, which is defined as below.

Definition 1 (Unit Cell E(3) Invariance). A function f : (A, P,L) — X is unit cell E(3) invariant
such that for all Q € R3*3,|Q| = &1 and b € R3, we have f(A,P,L) = f(A,QP + b,QL),
where @ is rotation and reflection transformations, and b is translation transformations in 3D space.

Intuitively, the structure of a cell remains the same when either applying rotations and reflections to
position matrix P and lattice matrix L together, or applying translations to P only. Correspondingly,
the output of the unit cell E(3) invariant function should remain the same.

In addition to unit cell E(3) in- / | /
variance, periodic invariance is ¥ e“O © @ o *“Q Q C Q O Q
also shown necessary for generat-
ing valid crystal representations.
Specifically, when the lattice ma-
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cell structures by shifting the pe-
riod boundaries. As shown in
Fig.[2](a) and (b), the formed unit
cell structures are different for
the same crystal by shifting pe-
riod boundaries. To this end, we
further introduce periodic invari-
ance, which shows that when the
periodic boundaries are shifted
or scaled up, the periodic invariant representation should remain the same. Formally, based on Sec. [2}

we further define a function @ : (A, P.L, p) — (A, P) simulating how to form different unit cells

Figure 2: Illustrat1on of periodic invariance. Purple lines are
the edges between nodes inside a unit cell. Red points are the
corner points of the unit cells. For example, p; and ps are for unit
cells in (a) and (b), respectively. (a) and (b) show different unit
cells describing the same crystal, caused by shifting the period
boundaries along z axis from p; to pe. By comparing (a) and
(b), we show a graph construction method that breaks periodic
invariance.
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Figure 4: Illustrations of the used radius-based graph construction method and the proposed peri-
odic pattern encoding for Matformer. Black arrows are the formed edges by radius-based graph
construction and brown arrows are self-connecting edges. (a). [llustration that the used radius-based
graph construction satisfies periodic invariance. (b). Illustration of periodic pattern encoding using
self-connecting edges. On the left, we show the designed self-connecting edges to encode the lattice
matrix L = [€1, £, £3]7 € R®*3 in 3D space. We design six self-connecting edges |[¢1]|2, ||¢2]|2.
[1€3]]2, |41 + £2||25 |41 + £3]|2, ||€2 + £3]|2- The geometric shape of L can be determined by these
six edges. On the right, we show the added self-connecting edges in 2D space for easy illustration.
(c). Illustration of the constructed graph with periodic pattern encoding for the above 2D case.

from a given infinite crystal structure. For an infinite crystal structure represented as (A, P), ® uses
a corner point p and shape matrix L to form a unit cell represented as (A, P). In addition, we use
aceN i to indicate the scaling up of a repeating unit cell formed by periodic boundaries. Then the
formal definition of periodic invariance is below.

Definition 2 (Periodic Invariance). A unit cell E(3) invariant function f : (A, P, L) — X is periodic
invariant if f(A,P,L) = f(®(A,P,aL,p),aL) holds for all p € R? and o € N3..

Significance of periodic invariance. Breaking periodic invariance will result in different crystal
graphs for the same crystal. In Fig. |2| (a) and (b), we show a graph construction method that
breaks periodic invariance. This method is employed by a transformer-based model, known as
Graphormer [34], which first uses radius to include all the atoms of interest in nearby cells and
then builds a fully connected graph. A detailed illustration is shown in Appendix. A.1. Based on
the formal definition of periodic invariance, in this study, we aim to integrate such an important
component in our Matformer. By doing this, our model is able to construct a distinct crystal graph for
a given crystal structure, resulting in a more informative and discriminative crystal learning scheme.

3.2 Periodic pattern encoding i ‘f /

As introduced in Sec. 2} L = [€1,£,,£3]T €
R3*3 containing periodic patterns is another key
component to describe crystal structures. Essen-
tially, periodic patterns show how the minimum
repeatable structure (A, P) expands itself in in- !
finite 3D space. Without such periodic pattern /
encoding in L, crystal structures are treated as :
finite structures similar to molecules. As shown
in Fig. 3] the widely used multi-edge graph con-
struction method [52, 14,41} 140} 6] only captures
local interactions among atoms but ignores the
important periodic patterns. However, such pe-
riodic repeating patterns need to be captured
explicitly, as lattices of different sizes and ori-
entations may correspond to different materials.
Hence, To better represent the infinite structures
of crystals, we argue that the periodic patterns
L € R3*3 should be explicitly taken into consideration in crystal learning.

(@) (b)

Figure 3: Illustration that periodic patterns are not
encoded in a multi-edge graph. Grey lines show the
captured topology information by the multi-edge
graph construction. We use three radius circles
because there are three atoms in a unit cell. (a). II-
lustration of the multi-edge graph construction. (b).
Mlustration that the multi-edge graph method only
captures local geometric information but ignores
periodic patterns for the infinite structure.



4 The proposed Matformer

4.1 The proposed graph construction methods

In this section, we introduce the proposed graph construction methods for Matformer. Our methods
effectively integrate periodic invariance and periodic pattern encoding.

Invariant crystal graph construction. We consider two crystal graph construction methods, includ-
ing radius-based graph construction and fully connected graph construction. Both of them satisfy
periodic invariance, and mathematical proofs can be found in Appendix. A.2. In Fig.[2] we show by
example that treating atoms as single nodes breaks periodic invariance. Instead, our methods follow
the fashion introduced in Sec. [2]to treat node ¢ as atom ¢ and all its repeated duplicates.

We use the multi-edge graph construction [52]] introduced in Sec.[2]as an alternative crystal graph
construction method. Note that although the multi-edge graph construction satisfies periodic invari-
ance as in Fig. [ (a), several existing works [52,[33]] do not follow the settings exactly thus breaking
periodic invariance. Within the given radius shown in Fig.[d](a), these studies form the neighborhood
of node 7 by selecting ¢ nearest neighbors ranked by geometric distances. If there exist several
different atoms with the same distance to node i, there is no deterministic way to select from them, as
shown in Appendix. A.1. As a result, periodic invariance cannot be guaranteed.

Given the fully-connected fashion employed in Graphormer has achieved impressive performance on
molecular learning, we further propose another graph construction method for Matformer, known as
the fully connected graph construction. This method uses a different strategy to determine neighbors
for each center node. Specifically, for node ¢ and j, it builds edges for the entries corresponding to
the ¢ smallest distances in {d;;|d;; = ||p; — p; + k€1 + kol + kals||o, k), Ky, ky € Z}. It can be
seen every pair ¢ and j is connected in the constructed graph and there are ¢ edges between them.

Overall, the used multi-edge graph construction and proposed fully-connected graph construction both
satisfy the important periodic invariance. Particularly, they possess great flexibility to be used in future
studies for crystal learning. In this study, we employ both methods as part of our proposed Matformer,
and in main experiments, the radius-based method is used due to better empirical performance.

Periodic pattern encoding with self-connecting edges. In this study, we propose to encode the
important L = [£1,£5,£3]7 € R®>*3 into crystal graphs by adding self-connecting edges. As
mentioned in Sec. [3.2] periodic patterns describe sizes and orientations of lattices of a crystal
structure, eventually determining the properties of this crystal. A natural step for encoding such
repeating periodic patterns is to consider the relative positions between an atom and its nearby
repeated duplicates. Formally, given an atom i with position p; and L = [€, £, £3]T € R3*3, we
need to encode the atom’s three nearby duplicates with positions p; + £1, p; + €2, and p; + £3. It
is widely known that a direction vector £; is determined by both its length ||£;||> and orientation.
Essentially, ||£;||2 indicates the geometric distance between atom 4 and its corresponding duplicate.
However, the computing of orientation information, such as angles, usually induces high complexity.
Hence, it is not practical to encode such orientation information into transformer architectures. To this
end, we propose to use geometric distances solely to implicitly consider the orientation information.

Specifically, we use additional distances to determine angles between any two direction vectors in L.
For example, the angle between £; and £5 can be easily computed by ||£1||2, ||€2]]2, and an additional
distance ||€; + £2||2. Hence, based on these three distances, we can determine lengths of £; and £,
and the relative orientation between them. Extensively, we use six geometric distances, including
||£1 | |2, HEQHQ, ||£3||2, ||£1 —+ £2H2, HEQ + £3| |2, and H@l + £3| |2 in our study, as shown in Flg E](b)
By doing this, the length of each direction vector and the angle between any two direction vectors can
all be determined. As a result, the shape formed by lattice matrix L is then fixed. Overall, we build
the aforementioned six geometric distances as six self-connecting edges for node . By doing this, our
model is capable of encoding periodic patterns in L completely, resulting in a more accurate crystal
representation learning scheme. Importantly, our approach also guarantees periodic invariance.

Overall, the graph construction for Matformer consists of two necessary stages, including invariant
graph construction and periodic pattern encoding. For the first stage, we rigorously prove that the
multi-edge graph construction satisfies periodic invariance in Appendix. A.2 and show that several
previous works [52| [33]] break periodic invariance using a different neighbor selection strategy.
Additionally, we propose a fully-connected crystal graph construction method satisfying periodic
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Figure 5: Illustration of detailed Architecture of Matformer. The overlapping graphics are used to
denote two different attention heads. (a). Illustration of Matformer pipeline. (b). Illustration of the
detailed Matformer layer in (a). We show the case with two attention heads for simplicity.

invariance, and the method could be used in future studies for crystal representation learning. For the
second stage, we naturally encode periodic patterns into constructed graphs by adding self-connecting
edges without breaking periodic invariance. A constructed graph in 2D case is shown in Fig.[4] (c).

4.2 Message passing scheme

Building on constructed graphs introduced in Sec. .1} we propose our message passing scheme for
Matformer. Formally, we denote a constructed crystal graph as G = (A, E). Here, each a; € A
is the d,-dimensional feature vector for atom ¢, as introduced in Sec. |2| Particularly, efbj € Eis
d.-dimensional feature vector for the h-th edge between nodes ¢ and j. We tollow the regular attention
mechanism that computes query, key, and value [30, 28]]. Our proposed message passing scheme
is composed of three steps; those are, edge-wise attention coefficients computing, edge-wise value
message computing, and node updating. Formally, we let ffe denote the input feature vector of node
i for the /-th layer of Matformer. The message passing scheme of the ¢-th layer is described as below.

In the first step, q?j, k:Z and afj for the h-th edge between i and j are computed as
a; =LNQ(f{"), ki = LNk (f"), k; = LNk (f}"), el; = LNg(el}),
h
UL @)

h h R’
q;; = (g;la:19:), kij = (ki|kj|eij)v 18277 \/T )
kh
ij

where LN, LNk, and LNg denote the linear transformations to compute query, key, and edge
embedding in /-th layer, respectively. el}-’; is the intermediate output for e?j. We use o and | to denote
Hadamard Product and concatenation. Note that qu is the concatenation of three g, vectors to match

Fhe dim.ension of.k:?j. By. doi.ng this, .When computing afj g, attends each of k;, k;, and e?j' for
integrating more information in attention.

Particularly, we omit the softmax to enhance the model’s capability to distinguish nodes with different
degrees, and to make the whole network more efficient.

h

After obtaining coefficients ov;;, in the second step, we compute mfj that is the message of e?j as

v; ZLNv(f;Z), v; = LNV(f;z),mh. sigmoid(LNorm(a?j)) o LNupda;e('Uil'Uj|e7};;‘,)7 3)

¥} =



where LNy and LNypdaee are the linear transformations to compute value and the updated message,
and LNorm denotes the layer normalization operation.

Finally, in the third step, we compute node i’s feature vector ff. Specifically, we first obtain message
m,; by aggregating information from node ¢’s neighborhood over multiple edges, then achieve ff as

m; = Y > LNorm(LNuy(ml})), fi = LNwa(f]") + o(BN(m,)), @)
jGNi h

where o is the used activation function, and BN indicates batch normalization. In addition, LNy
and LNy, are linear transformations to update the messages on edges and the old atom features.

Graphormer represents an effective transformer variant for molecular graph learning. The differences
between Graphormer and the proposed Matformer lie in both graph construction and message passing
scheme. Firstly, Graphormer treats every atom as a single node and breaks periodic invariance,
as mentioned in Sec. [3.1I] For the message passing, Graphormer uses the node-wise attention and
encodes pairwise distances as attention bias. It cannot work properly on multi-edge graphs for crystals.
While Matformer is specifically designed for multi-edge crystal graphs by performing edge-wise
attention and encoding geometric information into edge-wise messages, as described above. The
detailed architecture of our Matformer is shown in Fig. 3]

5 Related work

Crystal property prediction. Several existing methods [46, |18, 19} [14] model crystals as chemical
formulas and employ sequence models to process them. Other studies [52} 140} 33| 14,41} 6] consider
3D structures and formulate crystals as 3D graphs, then apply GNNs to learn from crystal graphs.
As crystals are essentially periodically repeated structures, the graph construction needs to consider
periodic invariance and periodic pattern encoding. There are limited efforts to identify these two
unique components. As an early work, CGCNN [52] proposes to capture atom interactions across
artificial cell boundaries by using multi-edge graphs described in Sec. 2] The multi-edge graph
satisfies periodic invariance as described in Sec. but fails to consider the important periodic
patterns, as described in Sec.[3.2] The multi-edge graph construction method is widely used in the
following studies [40, 33,14, 41, 6l 1]. Based on the constructed crystal graphs, many GNN variants
have been proposed for effective crystal representation learning 52,40, 33,14} 1411 16, [1]. Specifically,
Nequip [1]] considers E(3) equivariance for materials, and satisfies periodic invariance using multi-
edge graphs, but fails to capture periodic repeating patterns. We also notice a recent work [48]] for
periodic graph generation, which considers periodic graphs as finite graphs and breaks periodic
invariance. Recently, ALIGNN [6] achieves the best performance on two major material datasets.
It uses angle information in the message passing to generate more informative and discriminative
representations. However, the use of angles introduces excessive time complexity.

Geometric GNNs and graph transformer. Many efforts have been made to incorporate 3D geomet-
ric information in molecular learning. Exemplary studies include SchNet [41], DimeNet [23} 22]],
SphereNet [31]], GemNet [24], etc. However, these methods are designed for molecules without peri-
odic patterns. Recently, graph transformers [54] using geometric information, e.g., Graphormer [54],
have shown great potential on real-world graph data. However, Graphormer considers neither periodic
invariance nor periodic pattern encoding.

Differences with our method. To the best of our knowledge, periodic invariance and periodic pattern
encoding described in Sec. [3|are rarely identified and explored in existing works for crystal property
prediction. CGCNN [52] breaks periodic invariance on some corner cases because it uses twelve
nearest neighbors determined only by distances as described in Sec.[d.1] In addition, previous methods
including CGCNN [52]], SchNet [41], MEGNET [4]], CYATT [40], GATGNN [33]], NEQUIP [1]] and
ALIGNN [6]], all fail to consider the important periodic pattern encoding as introduced in Sec. [3.2}
Especially, following GAT [45]], GATGNN [33]] employs a very limited kind of attention mechanism
that is not conditioned on query, as explained in GATv2 [2]. As a result, the model capacity is
reduced compared with the self attention mechanism employed in Matformer. In addition, the usage
of softmax limits the capability of GATGNN of distinguishing nodes with different degrees, as
mentioned in Sec.[4.2] For Graphormer [54]], although it achieved remarkable success on the Open
Catalyst Challenge [3], the employed graph construction method breaks periodic invariance when



Table 1: Comparison in terms of test MAE on The Materials Project dataset. To make the comparison
clear and fair, We show results from retrained models using exactly the same training, validation, and
test sets. Results from original papers are shown in Appendix A.5. The best results are shown in bold
and the second best results are shown with underlines.

Formation Energy Band Gap Bulk Moduli  Shear Moduli

Method eV/atom eV log(GPa) log(GPa)
CGCNN [52]] 0.031 0.292 0.047 0.077
SchNet [41]] 0.033 0.345 0.066 0.099
MEGNET [4] 0.030 0.307 0.060 0.099
GATGNN [33]] 0.033 0.280 0.045 0.075
ALIGNN [6] 0.022 0.218 0.051 0.078
Matformer 0.021 0.211 0.043 0.073

applied to crystals. Compared with Graphormer, Matformer is specifically designed for crystals
considering both periodic invariance and periodic patterns.

6 Experimental studies

6.1 Experimental setup

We conduct experiments on two material benchmark datasets, including The Materials Project [[L6]
and JARVIS [8]. The detailed descriptions for The Materials Project and JARVIS datasets are shown
in Appendix. A.3. Baseline methods include CFID [7], CGCNN [52], SchNet [41], MEGNET [4],
GATGNN [33]], and ALIGNN [6]]. Unless otherwise specified, for all the baseline methods, we
report the results taken from the referred papers or provided by original authors. All Matformer
models are trained using the Adam optimizer [21] with weight decay [32] and one cycle learning rate
scheduler [43]. We only slightly adjust learning rates from 0.001 and training epochs from 500 for
different tasks. Detailed Matformer configurations for different tasks are provided in Appendix. A.4.

6.2 Experimental results

The Materials Project. We first use The Materials Project-2018.6.1 dataset [4], which contains
69239 crystals, to evaluate Matformer. We notice that previous works [52} 1411 4,133} 6] compare with
each other either using datasets of different sizes, or using datasets with the same size but splitting
the datasets with different random seeds. To make the comparison clear and fair, we retrain all
corresponding models using exactly the same training, validation and test sets across all methods and
report the results in Table.[T] To avoid confusion, we still put original results from referred papers in
Table.|l|inside parentheses. For retrained baseline models, we provide the detailed configurations in
Appendix. A.5. The used metric is test MAE following previous studies [52| 411 4, 33} 16].

It can be seen from Table. [I] that Matformer achieves the best performances on all tasks consistently
by significant margins. Specifically, it reduces the formation energy by 4.5% of the second best
model, which is a significant margin. Furthermore, for Bulk Moduli and Shear Moduli tasks with only
4664 training samples, Matformer achieves the best performances, indicating Matformer’s adaptive
ability to tasks of small training scales.

JARVIS dataset. The quantitative results for Jarvis are shown in Table. 2| Matformer outperforms
the baseline methods significantly on all of these five tasks. Compared with ALIGNN, Matformer has
stronger discriminative ability due to explicit encoding of periodic patterns. Specifically, Matformer
reduces Jarvis Ehull by 0.012, which is 15.8% of ALIGNN. Furthermore, Matformer achieves the
best performances for Bulk Moduli and Shear Moduli in the Mateirals Project with 4664 training
samples, and Bandgap(MBJ) in JARVIS with 14537 training samples, indicating its adaptive ability
to tasks of various data scales. Overall, the superior performances show the effectiveness of periodic
pattern encoding in our Matformer message passing. In addition, compared with ALIGNN, our
Matformer is more efficient. We evaluate the efficiency of Matformer by comparing with ALIGNN
using JARVIS formation energy dataset. The mean time of ten runs for training and inference using
best model configurations of ALIGNN and Matformer are reported. We also report the total number
of parameters of each model. In Table. 3| we show that Matformer is three times faster than ALIGNN



Table 2: Comparison between Matformer and other baselines in terms of test MAE on JARVIS
dataset. The best results are shown in bold and the second best results are shown with underlines.

Formation Energy = Bandgap(OPT) Total Energy Ehull Bandgap(MBIJ)

Method eV/atom eV eV/atom eV eV
CFID [[7] 0.14 0.30 0.24 0.22 0.53
CGCNN [52] 0.063 0.20 0.078 0.17 0.41
SchNet [41]] 0.045 0.19 0.047 0.14 0.43
MEGNET [4] 0.047 0.145 0.058 0.084 0.34
GATGNN [33] 0.047 0.17 0.056 0.12 0.51
ALIGNN [6] 0.0331 0.142 0.037 0.076 0.31
Matformer 0.0325 0.137 0.035 0.064 0.30

Table 3: Efficiency comparison with ALIGNN on Jarvis Formation Energy task. We show the
training time per epoch, total training time, inference time for the whole test set, and total number of
parameters.

Models Time/epoch  Total Inference Model Para.

ALIGNN 327s 27.3h 156 15.4 MB
Matformer 64s 89h 59s 11.0 MB

in total training time and near three times faster in inference time, for the whole test set. Matformer
is also much lighter than ALIGNN in terms of model size.

Energy within Threshold. Following OC20 [3]], we use energy within threshold (EwT), which
measures the percentage of estimated energies that are likely to be practically useful when the absolute
error is within a certain threshold, to evaluate Matformer’s capability for periodic graph learning. This
metric is new, but is well recognized by the community as it is useful in practice. Due to significant
performance gaps between ALIGNN and other baseline methods on formation energy and total
energy for these two datasets in terms of mean absolute error (MAE), we only compare Matformer
with ALIGNN. Table. 4] shows that Matformer outperforms ALIGNN consistently for all three energy
prediction tasks. Interestingly, the performance gains of our Matformer beyond ALIGNN in terms of
EwT mainly come from more accurate energy predictions within absolute error of 0.01. Compared
with JARVIS, the Materials Project has 15422 more traning samples. As a result, the percentage of
predicted energies obtained by Matformer within 0.01 increases by 14.69%, which is much better
than ALIGNN, revealing the huge potential of Matformer when larger crystal dataset is available.

6.3 Ablation studies

In this section, we demonstrate the importance of periodic invariance and explicit repeating pattern
encoding for crystal representation learning by ablation studies. We also evaluate the building blocks
particularly designed for our Matformer. Specifically, we conduct experiments on JARVIS formation
energy, and the test MAE is used as the quantitative evaluation metric. We also provide ablation
studies on the use of sigmoid and layernorm instead of softmax in Matformer layer in Appendix A.6.

Periodic invariant graph construction. We demonstrate the importance of periodic invariant graph
construction by comparing radius multi-edge graph, denoted as Radius, with the graph construction
method proposed by Graphormer, denoted as OCgraph, on the exactly same Matformer architecture.
Note that the constructed crystal graphs by OCgraph are super large, containing more than n? edges,

Table 4: Comparison between Matformer and ALIGNN in terms of EwT on JARVIS Formation
Energy, JARVIS Total Energy and The Materials Project Formation Energy. We use EwT (0.02) to
mark the threshold of 0.02 and EwT (0.01) to mark the threshold of 0.01. The best results are in bold.

Formation MP Formation JARVIS Total JARVIS
Method EwT (0.01) EwT (0.02) EwT (0.01) EwT (0.02) EwT (0.01) EwT (0.02)
ALIGNN 49.94% 71.10% 39.59% 59.64% 35.09% 55.20%
Matformer 55.86% 75.02% 41.17% 60.25% 36.84% 57.36%
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Table 5: Ablation studies on periodic invariance and periodic pattern encoding. We use OCgraph to
denote graph construction method proposed by Graphormer. PI denotes periodic invariance and PE
denotes periodic encoding.

Graph PI PE layer head batch Test MAE
OCgraph X X 3 1 32 0.0530
Radius woPE v X 3 1 32 0.0348
Radius woPE v X 5 4 64 0.0337
T-fully w PE v v 5 4 64 0.0402
Radius w PE v v 5 4 64 0.0325

where n is the atom number in a cell. We adjust the Matformer configurations to train these large
graphs on a single RTX A6000 GPU. It can be seen from Table. [5] that when using OCgraph to
our Matformer, the test MAE drops dramatically of 53% because of breaking periodic invariance,
compared with radius-based multi-edge graphs in Matformer. We also compare two periodic invariant
graph construction methods described in Sec.[d.1] We denote fully connected graph with ¢ smallest
pairwise distances as T-fully, and use ¢ = 3. The result shows that Radius is better than T-fully.

Encoding of repeating patterns. We denote periodic pattern encoding as PE. In Table. [5} we show
that omitting the periodic pattern encoding results in a significant drop of test MAE from 0.0325 to
0.0337, revealing the importance of periodic patterns for crystal representation learning.

Complexity of introducing angular informa- Tape 6: Ablation studies on angular information.

tion. Dropping angular information largely im-  ye show the training time per epoch, total training
proves running efficiency of Matformer com- je and test MAE.

pared with ALIGNN. We show that for the orig-
inal crystal graph with n nodes and 6n edges, _Models MAE Time/epoch Total
the corresponding line graph with angles will ~ Matformer 0325 64 s 8.9h
have 6n nodes and 66n edges, leading to high ~ Matformer + Angle SBF 0332 173s ~ 238h

. . . Matformer + Angle RBF  .0325 165 s 229h
computational cost. The detailed complexity
analysis of adding angular information are provided in Appendix. A.7. Additionally, we provide the
running time and performance analysis of Matformer with angle information in Table.[§] We use two
Matformer layers to process extra angular information, and use Radial Basis Function kernels [6]
and Spherical Bessel Functions with Spherical Harmonics [23} 131} 24] to encode angles, denoted
as Matformer + Angle RBF and Matformer + Angle SBF. Table. [6|shows that introducing angular
information will increase both the training time per epoch and in total by around 3 times, without
much performance gain. This may due to the periodic invariant graph construction and periodic
patterns encoding in Matformer already capture sufficient information to identify crystal structures.

7 Conclusions and discussions

In this work, we first propose to formally define periodic invariance and periodic pattern encoding
for periodic graph learning. We then propose Matformer for periodic graph representation learning,
which is invariant to periodicity and can capture repeating patterns explicitly. Experimental results on
common benchmark datasets show that our Matformer outperforms baseline methods consistently. In
addition, our results demonstrate the importance of periodic invariance and explicit periodic pattern
encoding for crystal representation learning. One potential direction beyond this work is to include
angular information properly to satisfy both periodic invariance and to encode periodic patterns with
relatively low time complexity, and this is one limitation of our work. Besides, negative societal
impacts of material discovery may apply to our work.
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