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Abstract

Deep neural networks have been known to be vulnerable to adversarial examples,
which are inputs that are modified slightly to fool the network into making incorrect
predictions. This has led to a significant amount of research on evaluating the
robustness of these networks against such perturbations. One particularly important
robustness metric is the robustness to minimal ℓ2 adversarial perturbations.
However, existing methods for evaluating this robustness metric are either compu-
tationally expensive or not very accurate. In this paper, we introduce a new family
of adversarial attacks that strike a balance between effectiveness and computational
efficiency. Our proposed attacks are generalizations of the well-known DeepFool
(DF) attack, while they remain simple to understand and implement. We demon-
strate that our attacks outperform existing methods in terms of both effectiveness
and computational efficiency. Our proposed attacks are also suitable for evaluating
the robustness of large models and can be used to perform adversarial training
(AT) to achieve state-of-the-art robustness to minimal ℓ2 adversarial perturbations.

1 Introduction
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Figure 1: The average number of gradient com-
putations vs the mean ℓ2-norm of perturbations.
It shows that our novel fast and accurate method,
SDF, outperforms other minimum-norm attacks.
SDF finds significantly smaller perturbations com-
pared to DF, with only a small increase in computa-
tional cost. SDF also outperforms other algorithms
in optimality and speed. The numbers are taken
from Table 5.

Deep learning has achieved breakthrough im-
provement in numerous tasks and has developed
as a powerful tool in various applications, in-
cluding computer vision [32] and speech pro-
cessing [35]. Despite their success, deep neu-
ral networks are known to be vulnerable to ad-
versarial examples, carefully perturbed exam-
ples perceptually indistinguishable from origi-
nal samples [54]. This can lead to a significant
disruption of the inference result of deep neu-
ral networks. It has important implications for
safety and security-critical applications of ma-
chine learning models.

Our goal in this paper is to introduce a
parameter-free and simple method for accu-
rately and reliably evaluating the adversarial
robustness of deep networks in a fast and
geometrically-based fashion. Most of the current attack methods rely on general-purpose optimization
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techniques, such as Projected Gradient Descent (PGD) [33] and Augmented Lagrangian [49], which
are oblivious to the geometric properties of models. However, deep neural networks’ robustness to
adversarial perturbations is closely tied to their geometric landscape [14, 29, 38, 41]. Given this, it
would be beneficial to exploit such properties when designing and implementing adversarial attacks.
This allows to create more effective and computationally efficient attacks on classifiers. Formally, for
a given classifier k̂ and input x, we define an adversarial perturbation as the minimal perturbation r

that is sufficient to change the estimated label k̂(x):

∆(x; k̂) := min
r
∥r∥2 s.t k̂(x+ r) ̸= k̂(x). (1)

DeepFool (DF) [36] was among the earliest attempts to exploit the “excessive linearity” [23] of deep
networks to find minimum-norm adversarial perturbations. However, more sophisticated attacks
were later developed that could find smaller perturbations at the expense of significantly greater
computation time.

In this paper, we exploit the geometric characteristics of minimum-norm adversarial perturbations to
design a family of fast yet simple algorithms that achieves a better trade-off between computational
cost and accuracy in finding ℓ2 adversarial perturbations (see Fig. 1). Our proposed algorithm, guided
by the characteristics of the optimal solution to Eq. (1), enhances DF to obtain smaller perturbations,
while maintaining simplicity and computational efficiency that are only slightly inferior to those of
DF. Our main contributions are summarized as follows:

• We introduce a novel family of fast yet accurate algorithms to find minimal adversarial
perturbations. We conduct a comprehensive evaluation of our algorithms against state-of-the-
art (SOTA) adversarial attack methods across multiple scenarios. Our findings demonstrate
that our algorithm identifies minimal yet accurate perturbations with significantly greater
efficiency than competing SOTA approaches (4).

• Our algorithms are developed in a systematic and well-grounded manner, based on theoreti-
cal analysis (3).

• We further improve the robustness of state-of-the-art image classifiers to minimum-norm
adversarial attacks via adversarial training on the examples obtained by our algorithms (4.3).

• We significantly improve the time efficiency of the state-of-the-art Auto-Attack (AA) [12]
by adding our proposed method to the set of attacks in AA (4.3).

• We revisit the importance of minimal adversarial perturbations as a proxy to demystify deep
neural network properties (Appendix G, Appendix O).

Related works. It has been observed that deep neural networks are vulnerable to adversarial
examples [23, 36, 54]. To exploit this vulnerability, a range of methods have been developed for
generating adversarial perturbations for image classifiers. These attacks occur in two settings: white-
box, where the attacker has complete knowledge of the model, including its architecture, parameters,
defense mechanisms, etc.; and black-box, where the attacker’s knowledge is limited, mostly relying
on input queries to observe outputs [10, 44]. Further, adversarial attacks can be broadly categorized
into two categories: bounded-norm attacks (such as FGSM [23] and PGD [33]) and minimum-
norm attacks (such as DF and C&W [6]) with the latter aimed at solving Eq. (1). In this work, we
specifically focus on white-box minimum ℓ2-norm attacks.

The authors in [54] studied adversarial examples by solving a penalized optimization problem. The
optimization approach used in [54] is complex and computationally inefficient; therefore, it cannot
scale to large datasets. The method proposed in [23] applied a single-step of the input gradient to
generate adversarial examples efficiently. DF was the first method to seek minimum-norm adversarial
perturbations, employing an iterative approach. It linearizes the classifier at each step to estimate the
minimal adversarial perturbations efficiently. C&W attack [6] transform the optimization problem
in [54] into an unconstrained optimization problem. C&W leverages the first-order gradient-based
optimizers to minimize a balanced loss between the norm of the perturbation and misclassification
confidence. Inspired by the geometric idea of DF, FAB [11] presents an approach to minimize the
norm of adversarial perturbations by employing complex projections and approximations while
maintaining proximity to the decision boundary. By utilizing gradients to estimate the local geometry
of the boundary, this method formulates minimum-norm optimization without the need for tuning a
weighting term. DDN [48] uses projections on the ℓ2-ball for a given perturbation budget ϵ. FMN [40]
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extends the DDN attack to other ℓp-norms. By formulating (1) with Lagrange’s method, ALMA [49]
introduced a framework for finding adversarial examples for several distances.
Why does ℓ2 white-box adversarial robustness matter? The reasons for using ℓ2 norm
perturbations are manifold. We acknowledge that ℓ2 threat model may not seem particularly
realistic in practical scenarios (at least for images); however, it can be perceived as a basic threat
model amenable to both theoretical and empirical analyses, potentially leading insights in tackling
adversarial robustness in more complex settings. The fact that, despite considerable advancements
in AI/ML, we are yet to solve adversarial vulnerability, motivates part of our community to return
to the basics and work towards finding fundamental solutions to this issue [9, 25, 34]. In particular,
thanks to their intuitive geometric interpretation, ℓ2 perturbations provide valuable insights into the
geometry of classifiers. They can serve as an effective tool in the "interpretation/explanation" toolbox
to shed light on what/how these models learn. Moreover, it has been demonstrated that [19, 38], ℓ2
robustness has several applications beyond security (for more details on the necessity of robustness
to ℓp norms, please refer to Appendix O).

2 DeepFool (DF) and Minimal Adversarial Perturbations
In this section, we first discuss the geometric interpretation of the minimum-norm adversarial pertur-
bations, i.e., solutions to the optimization problem in Eq. (1). We then examine DF to demonstrate
why it may fail to find the optimal minimum-norm perturbation. Then in the next section, we
introduce our proposed method that exploits DF to find smaller perturbations.

Let f : Rd → RC denote a C-class classifier, where fk represents the classifier’s output associated
to the kth class. Specifically, for a given datapoint x ∈ Rd, the estimated label is obtained by
k̂(x) = argmaxkfk(x), where fk(x) is the kth component of f(x) that corresponds to the kth class.
Note that the classifier f can be seen as a mapping that partitions the input space Rd into classification
regions, each of which has a constant estimated label (i.e., k̂(.) is constant for each such region). The
decision boundary B is defined as the set of points in Rd such that fi(x) = fj(x) = maxk fk(x)
for some distinct i and j. Additive ℓ2-norm adversarial perturbations are inherently related to the
geometry of the decision boundary. More formally, Let x ∈ Rd, and r∗(x) be the minimal adversarial
perturbation defined as the minimizer of Eq. (1). Then:

Properties of minimal adversarial perturbation→ r∗(x):
1 It is orthogonal to the decision boundary of the classifier B.
2 Its norm, i.e., ∥r∗(x)∥2 measures the Euclidean distance between x and B, that is x+ r∗ lies
on B.

We aim to investigate whether the perturbations generated by DF satisfy the aforementioned two
conditions. Let rDF denote the perturbation found by DF for a datapoint x. We expect x+ rDF to
lie on the decision boundary. Hence, if r is the minimal perturbation, for all 0 < γ < 1, we expect
the perturbation γr to remain in the same decision region as of x and thus fail to fool the model.

Figure 2: Illustration of the optimal ad-
versarial example x + r∗ for a binary
classifier f ; the example lies on the de-
cision boundary (set of points where
f(x) = 0) and the perturbation vector
r∗ is orthogonal to this boundary.

Fig. 2 illustrates the two conditions discussed in Section 2.
In the figure, n1 and n2 represent two orthogonal vectors
to the decision boundary. The optimal perturbation vector
r∗ aligns parallel to n2. On the other hand, a non-optimal
perturbation rDF forms an angle α with n1.

In Fig. 3 (left), we consider the fooling rate of γ rDF for
0.2 < γ < 1. For a minimum-norm perturbation, we
expect an immediate sharp decline for γ close to one.
However, in Fig. 3 (top-left) we cannot observe such a
decline (a sharp decline happens close to γ = 0.9, not 1).
This is a confirmation that DF typically finds an overly
perturbed point. One potential reason for this is the fact
that DF stops when a misclassified point is found, and
this point might be an overly perturbed one within the
adversarial region, and not necessarily on the decision
boundary.

Now, let us consider the other characteristic of the minimal adversarial perturbation. That is, the
perturbation should be orthogonal to the decision boundary. We measure the angle between the found
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perturbation rDF and the normal vector orthogonal to the decision boundary (∇f(x + rDF)). To
do so, we first scale rDF such that x + γrDF lies on the decision boundary. It can be simply done
via performing a line search along rDF. We then compute the cosine of the angle between rDF and
the normal to the decision boundary at x + γrDF (this angle is denoted by cos(α)). A necessary
condition for γrDF to be an optimal perturbation is that it must be parallel to the normal vector of the
decision boundary. In Fig. 3 (right) , we show the distribution of cosine of this angle. Ideally, we
wanted this distribution to be accumulated around one. However, it clearly shows that this is not the
case, which is a confirmation that rDF is not necessarily the minimal perturbation.
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Figure 3: (Left) we generated 1000 images with one hundred γ between zero and one, and the fooling
rate of the DeepFool and SuperDeepFool is reported. This experiment is done on the CIFAR10 dataset
and ResNet18 model. (Right) histogram of the cosine angle between the normal to the decision
boundary and the perturbation vector obtained by DeepFool and SuperDeepFool has been showed.

3 SuperDeepFool: Efficient Algorithms to Find Minimal Perturbations
In this section, we propose a new class of methods that modifies DF to address the afore-
mentioned challenges in the previous section. The goal is to maintain the desired character-
istics of DF, i.e., computational efficiency and the fact that it is parameter-free while finding
smaller adversarial perturbations. We achieve this by introducing an additional projection step
which its goal is to steer the direction of perturbation towards the optimal solution of Eq. (1).

FMN

C&W

Figure 4: Histogram of the cosine an-
gle between the normal to the decision
boundary and the perturbation vector ob-
tained by C&W and FMN.

Let us first briefly recall how DF finds an adversarial per-
turbations for a classifier f . Given the current point xi,
DF updates it according to the following equation:

xi+1 = xi −
f(xi)

∥∇f(xi)∥22
∇f(xi). (2)

Here the gradient is taken w.r.t. the input. The intuition is
that, in each iteration, DF finds the minimum perturbation
for a linear classifier that approximates the model around
xi. The below proposition shows that under certain con-
ditions, repeating this update step eventually converges to
a point on the decision boundary.

Proposition 1 Let the binary classifier F1: Rd → R
be continuously differentiable and its gradient ∇F is β-
Lipschitz. For a given input sample x0, suppose B(x0, ε)
is a ball centered around x0 with radius ε, such that there

exists x⋆ ∈ B(x0, ε) that f(x⋆) = 0. If ∥∇F∥2 ≥ ζ for all x ∈ B and ε <

(
ζ

β

)2

, then DF

iterations converge to a point on the decision boundary.

Proof: We defer the proof to the Appendix.

Notice while the proposition guarantees the perturbed sample to lie on the decision boundary, it does
not state anything about the orthogonality of the perturbation to the decision boundary.

To find perturbations that are more aligned with the normal to the decision boundary, we introduce
an additional projection step that steers the perturbation direction towards the optimal solution of

1For the sake of clarity, we use F to denote binary classifiers for this proposition.
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Eq. (1). Formally, the optimal perturbation, r∗, and the normal to the decision boundary at x0 + r∗,
∇f(x0+r∗), should be parallel. Equivalently, r∗ should be a solution of the following maximization
problem:

max
r

r⊤∇f(x0 + r)

∥∇f(x0 + r)∥∥r∥ , (3)

which is the cosine of the angle between r and ∇f(x0 + r). A necessary condition for r∗ to be a
solution of Eq. (3) is that the projection of r∗, i.e, (PS ) on the subspace orthogonal to ∇f(x0 + r∗)
should be zero. Then, r∗ can be seen as a fixed point of the following iterative map:

ri+1 = T (ri) =
ri

⊤∇f(x0 + ri)

∥∇f(x0 + ri)∥
· ∇f(x0 + ri)

∥∇f(x0 + ri)∥
. (4)

The scalar multiplier on the right-hand side of Eq. (4) represents the norm of the projection of the
vector ri along the gradient direction. The following proposition shows that this iterative process can
converge to a solution of Eq. (3).

Proposition 2 For a differentiable f and a given r0, ri in the iterations Eq. (4) either converge to a
solution of Eq. (3) or a trivial solution (i.e., ri → 0).

Proof: We defer the proof to the Appendix.

Intuitively, by the geometrical properties of a decision boundary (B), a small portion of the boundary
can be enclosed between two affine parallel hyperplane. The following proposition from ([5])
states that the angle between ∇f(x) and the optimal direction ∇f(x + r∗) can be bounded in a
neighborhood of the boundary B.

Proposition 3 ([5]) Given a radius r > 0 and Ψr is the set of all samples whose distance from the
decision boundary B is less than r. For each angle |θ| ∈

(
0, π

2

)
, there exists a distance r̃(θ), such

that, for all x ∈ Ψr̃(θ)
, the following inequality holds:

∇f(x)⊤∇f(PS(x))

∥∇f(x)∥∥∇f(PS(x))∥
> cos(θ), (5)

where PS is the unique projection of x on the B.

Proof: We defer the proof to the Appendix.
3.1 A Family of Adversarial Attacks

Algorithm 1: SDF (m,n) for binary clas-
sifiers
Input: image x0, classifier f , m, and n.
Output: perturbation r

1 Initialize: x← x0

2 while sign(f(x)) = sign(f(x0)) do
3 repeat m times

4 x← x− |f(x)|
∥∇f(x)∥2

2
∇f(x)

5 end
6 repeat n times
7 x← x0 +

(x−x0)
⊤∇f(x)

∥∇f(x)∥2 ∇f(x)
8 end
9 end

10 return r = x− x0

Finding minimum-norm adversarial perturbations can
be seen as a multi-objective optimization problem,
where we want f(x + r) = 0 and the perturbation
r to be orthogonal to the decision boundary. So far
we have seen that DF finds a solution satisfying the
former objective and the iterative map Eq. (4) can
be used to find a solution for the latter. A natural
approach to satisfy both objectives is to alternate be-
tween these two iterative steps, namely Eq. (2) and
Eq. (4). We propose a family of adversarial attack
algorithms, coined SuperDeepFool, by varying how
frequently we alternate between these two steps. We
denote this family of algorithms with SDF(m,n),
where m is the number of DF steps Eq. (2) followed
by n repetition of the projection step Eq. (4). This
process is summarized in Algorithm 1. One inter-
esting case is SDF(∞, 1) which, in each iteration,
continues DF steps till a point on the decision bound-
ary is found and then applies the projection step.

This particular case has a resemblance with the strategy used in [44] to find black-box adversarial
perturbations. This algorithm can be interpreted as iteratively approximating the decision boundary
with a hyperplane and then analytically calculating the minimal adversarial perturbation for a linear
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classifier for which this hyperplane is the decision boundary. It is justified by the observation that
the decision boundary of state-of-the-art deep networks has a small mean curvature around data
samples [21, 22]. A geometric illustration of this procedure is shown in Figure 5.

3.2 SDF Attack

We empirically compare the performance of SDF(m,n) for different values of m and n in Section 4.1.
Interestingly, we observe that we get better attack performance when we apply several DF steps
followed by a single projection. Since the standard DF typically finds an adversarial example in less
than four iterations for state-of-the-art image classifiers, one possibility is to continue DF steps till an
adversarial example is found and then apply a single projection step. We simply call this particular
version SDF(∞, 1) of our algorithm SDF, which we will extensively evaluate in Section 4.

SDF can be understood as a generic algorithm that can also work for the multi-class case by simply
substituting the first inner loop of Algorithm 1 with the standard multi-class DF algorithm. The label
of the obtained adversarial example determines the boundary on which the projection step will be
performed. A summary of multi-class SDF is presented in Algorithm 2. Compared to the standard
DF, this algorithm has an additional projection step. We will see later that such a simple modification
leads to significantly smaller perturbations.

Table 1: Comparison of ℓ2-norm perturba-
tions using DF and SDF algorithms on CI-
FAR10, employing consistent model archi-
tectures and hyperparameters as those used
in [6, 48] studies.

Attack Median-ℓ2 Grads

DF 0.15 14
SDF (1,1) 0.13 22
SDF (1,3) 0.14 26
SDF (3,1) 0.11 30
SDF(∞, 1) 0.10 32

Table 1 demonstrates that SDF family outperforms
DF in finding more accurate perturbations, particu-
larly SDF(∞,1) which significantly outperforms DF
at a small cost.

Like any other gradient-based optimization method
tackling a non-convex problem, providing a defini-
tive explanation for why one algorithm outperforms
others is not straightforward. We have the following
speculation on why SDF(∞, 1) consistently outper-
forms the other configurations: Note that each projec-
tion step reduces the perturbation, while each DF step
moves the perturbation nearer to the boundary. So
when projection is repeated multiple times (n > 1),
it might undo the progress made by DF, potentially slowing down the algorithm’s convergence. On
the other hand, by first reaching a boundary point through multiple DF steps and then applying
the projection operator just once, we at least ensure that the algorithm has reached intermediate
adversarial examples. Each subsequent outer loop is hoped to incrementally move the adversarial
example closer to the optimal point (see 5).

Algorithm 2: SDF for multi-class classifiers
Input: image x0, classifier f .
Output: perturbation r

1 Initialize: x← x0

2 while k̂(x) = k̂(x0) do
3 x̃← DeepFool(x)
4 w ← ∇fk̂(x̃)(x̃)−∇fk̂(x0)

(x̃)

5 x← x0 +
(x̃−x0)

⊤w
∥w∥2 w

6 end
7 return r = x− x0

Figure 5: Illustration of two iterations of the
SDF(∞,1) algorithm. Here x0 is the original
data point and x∗ is the minimum-norm ad-
versarial example.4 Experimental Results

In this section, we conduct extensive experiments to demonstrate the effectiveness of our method
in different setups and for several natural and adversarially trained networks. We first introduce our
experimental settings, including datasets, models, and attacks. Next, we compare our method with
state-of-the-art ℓ2-norm adversarial attacks in various settings, demonstrating the superiority of our
simple yet fast algorithm for finding accurate adversarial examples. Moreover, we add SDF to the
collection of attacks used in AutoAttack, and call the new set of attacks AutoAttack++. This setup
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meaningfully speeds up the process of finding norm-bounded adversarial perturbations. We also
demonstrate that a model adversarially training using the SDF perturbations becomes more robust
compared to the models2 trained using other minimum-norm attacks. Please refer to Appendix B for
details of the experimental setup and metrics.

4.1 Comparison with DeepFool (DF)

In this part, we compare our algorithm in terms of orthogonality and size of the ℓ2-norm perturbations
especially with DF. Assume r is the perturbation vector obtained by an adversarial attack. First, we
measure the orthogonality of perturbations by measuring the inner product between ∇f(x+ r) and
r. As we explained in Section 2, a larger inner product between r and the gradient vector at f(x+ r)
indicates that the perturbation vector is closer to the optimal perturbation vector r∗. We compare the
orthogonality of different members of the SDF family and DF.

Table 2: The cosine similarity between the
perturbation vector(r) and ∇f(x + r). We
performed this experiment on three models
trained on CIFAR10.

Attack Models

LeNet RN18 WRN-28-10

DF 0.89 0.14 0.21
SDF (1,1) 0.90 0.63 0.64
SDF (1,3) 0.88 0.61 0.62
SDF (3,1) 0.92 0.70 0.72
SDF (∞, 1) 0.92 0.72 0.80

The results are shown in Table 2. We observe that DF
finds perturbations orthogonal to the decision bound-
ary for low-complexity models such as LeNet, but
fails to perform effectively when evaluated against
more complex ones. In contrast, attacks from the
SDF family consistently found perturbations with a
larger cosine of the angle for all three models.

Verifying optimality conditions for SDF. We val-
idate the optimality conditions of the perturbations
generated by SDF using the procedure outlined in
Section 2. Comparing Fig. 3 DF and SDF, it becomes
evident that our approach effectively mitigates the two issues we previously highlighted for DF.
Namely, the alignment of the perturbation with the normal to the decision boundary and the problem
of over-perturbation. We can see that unlike DF, the cosine of the angle for SDF is more concentrated
around one, which indicates that the SDF perturbations are more aligned with the normal to the deci-
sion boundary. Moreover, Fig. 3 shows a sharper decline in the fooling rate (going down quickly to
zero) when γ decreases. This is consistent with our expectation for an accurate minimal perturbation
attack.

4.2 Comparison with minimum-norm attacks

Table 3: We evaluate the performance of
iteration-based attacks on MNIST using
IBP models, noting the iteration count in
parentheses. Our analysis focuses on the
best-performing versions, highlighting
their significant costs when encountered
powerful robust models.

Attack FR Median-ℓ2 Grads

DF 93.4 5.31 43
ALMA (1000) 100 1.26 1 000
DDN (1000) 99.27 1.46 1 000
FAB (1000) 99.98 3.34 10 000
FMN (1000) 89.08 1.34 1 000
C&W 4.63 – 90 000
SDF 100 1.37 52

We now compare SDF with SOTA minimum ℓ2-norm at-
tacks: C&W, FMN, DDN, ALMA, and FAB. For C&W,
we use the same hyperparameters as in [48]. We use FMN,
FAB, DDN, and ALMA with budgets of 100 and 1000 iter-
ations and report the best performance. For a fair compari-
son, we clip the pixel-values of SDF-generated adversarial
images to [0, 1], consistent with the other minimum-norm
attacks. We report the average number of gradient compu-
tations per sample, as these operations are computationally
intensive and provide a consistent metric unaffected by
hardware differences. We also provide a runtime compar-
ison (Appendix Table 19).

We evaluate the robustness of the IBP model, which is
adversarially trained on the MNIST dataset, against SOTA
attacks in Table 3. We choose this robust model as it allows us to have a more nuanced comparison
between different adversarial attacks. SDF and ALMA are the only attacks that achieve a 100%
percent fooling rate against this model, whereas C&W is unsuccessful on most of the data samples.
The fooling rates of the remaining attacks also degrade when evaluated with 100 iterations. For
instance, FMN’s fooling rate decreases from 89% to 67.8% when the number of iterations is reduced
from 1000 to 100. This observation shows that, unlike SDF, selecting the necessary number of
iterations is critical for the success of fixed-iteration attacks. Even for ALMA which can achieve

2We only compare to publicly available models.
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a nearly perfect FR, decreasing the number of iterations from 1000 to 100 causes the median norm
of perturbations to increase fourfold. In contrast, SDF is able to compute adversarial perturbations
using the fewest number of gradient computations while still outperforming the other algorithms,
except ALMA, in terms of the perturbation norm. However, it is worth noting that ALMA requires
twenty times more gradient computations compared to SDF to achieve a marginal improvement in
the perturbation norm.

Table 4: Performance of attacks on the CIFAR-
10 dataset with naturally trained WRN-28-10.

Attacks FR Median-ℓ2 Grads

DF 100 0.26 14
ALMA 100 0.10 100
DDN 100 0.13 100
FAB 100 0.11 100
FMN 97.3 0.11 100
C&W 100 0.12 90 000
SDF 100 0.09 25

Table 4 compares SDF with SOTA attacks on the
CIFAR10 dataset. The results show that SOTA at-
tacks have a similar norm of perturbations, but an
essential point is the speed of attacks. SDF finds
more accurate adversarial perturbation very quickly
rather than other algorithms.

We also evaluated all attacks on an adversarially
trained model for the CIFAR10 dataset. SDF
achieves smaller perturbations with half the gradient
calculations than other attacks. SDF finds smaller
adversarial perturbations for adversarially trained
networks at a significantly lower cost than other at-
tacks, requiring only 20% of FAB’s cost and 50% of DDN’s and ALMA’s (See Tables 11, 19 in the
Appendix).

Table 5: Performance comparison of SDF with
other SOTA attacks on ImageNet dataset with natu-
ral trained RN-50 and adversarially trained RN-50.

RN-50 RN-50 (AT)

Attack FR Median-ℓ2 Grads FR Median-ℓ2 Grads

DF 99.1 0.31 23 98.8 1.36 34
ALMA 100 0.10 100 100 0.85 100
DDN 99.9 0.17 1, 000 99.7 1.10 1, 000
FAB 99.3 0.10 900 100 0.81 900
FMN 99.3 0.10 1, 000 99.9 0.82 1, 000
C&W 100 0.21 82, 667 99.9 1.17 52, 000
SDF 100 0.09 37 100 0.80 49

Table 5 demonstrates the performance of SDF
on a naturally and adversarially trained models
on ImageNet dataset. Unlike models trained on
CIFAR10, where the attacks typically result in
perturbations with similar norm, the differences
between attacks are more nuanced for ImageNet
models.

In particular, FAB, DDN, and FMN performance
degrades when the dataset changes. In contrast,
SDF achieves smaller perturbations at a signifi-
cantly lower cost than ALMA. This shows that the geometric interpretation of optimal adversarial
perturbation, rather than viewing (1) as a non-convex optimization problem, can lead to an efficient
solution. On the complexity aspect, the proposed approach is substantially faster than the other
methods. In contrast, these approaches involve a costly minimization of a series of objective functions.
We empirically observed that SDF converges in less than 5 or 6 iterations to a fooling perturbation;
our observations show that SDF consistently achieves SOTA minimum-norm perturbations across
different datasets, models, and training strategies, while requiring the least number of gradient com-
putations. This makes it readily suitable to be used as a baseline method to estimate the robustness of
very deep neural networks on large datasets.

4.3 SDF Adversarial Training (AT)

Table 6: The comparison between ℓ2 ro-
bustness of our adversarial trained model
and [48] model.

Attack SDF (Ours) DDN

Mean Median Mean Median

DDN 1.09 1.02 0.86 0.73
FAB 1.12 1.03 0.92 0.75
FMN 1.48 1.43 1.47 1.43
ALMA 1.17 1.06 0.84 0.71
SDF 1.06 1.01 0.81 0.73

In this section, we evaluate the performance of a model
adversarially trained using SDF against minimum-norm
attacks and AutoAttack. Our experiments provide valu-
able insights into the effectiveness of adversarial training
with SDF and sheds light on its potential applications
in building more robust models. Adversarial training
requires computationally efficient attacks, making costly
options such as C&W unsuitable. Therefore, an attack
that is parallelizable (both on batch size and gradient
computation) is desired for successful adversarial train-
ing. SDF possesses these crucial properties, making it a promising candidate for building more robust
models.

We adversarially train a WRN-28-10 on CIFAR10. Similar to the procedure followed in [48], we
restrict ℓ2-norms of perturbation to 2.6 and set the maximum number of iterations for SDF to 6.
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We train the model on clean examples for the first 200 epochs, and we then fine-tune it with SDF
generated adversarial examples for 60 more epochs. Since a model trained using DDN-generated
samples [48] has demonstrated greater robustness compared to a model trained using PGD [33], we
compare our model with that one (for more details about AT please refer to Appendix O). Our model
reaches a test accuracy of 90.8% while the model by [48] obtains 89.0%. SDF adversarially trained
model does not overfit to SDF attack because, as Table 6 shows, SDF obtains the smallest perturbation.
It is evident that SDF adversarially trained model can significantly improve the robustness of model
against minimum-norm attacks up to 30%. In terms of comparison of these two adversarially trained
models with AA, our model outperformed the [48] by improving about 8.4% against ℓ∞-AA, for
ε = 8/255, and 0.6% against ℓ2-AA, for ε = 0.5.

Table 7: Average input curvature of AT
models. According to the measures pro-
posed in [53].

Model Ex∥∇2f(x)∥2 ExCf (x)
Standard 600.06 (29.76) 73.99 (6.62)
DDN AT 2.86 (1.22) 4.32 (2.91)
SDF AT (Ours) 0.73 (0.08) 1.66 (0.86)

Furthermore, compared to a network trained on DDN
samples, our adversarially trained model has a smaller
input curvature (Table 7). The second column shows
the average spectral-norm of the Hessian w.r.t. input,
∥∇2f(x)∥2, and the third column shows the average of
the same quantity normalized by the norm of the input
gradient, Cf (x) = ∥∇2f(x)∥2/∥∇f(x)∥2. The standard
deviation is denoted by numbers enclosed in brackets.

This observation corroborates the idea that a more robust network will exhibit a smaller input
curvature [1, 37, 39, 42, 47, 53].

AutoAttack++
Table 8: Analysis of robust accuracy for various de-
fense strategies against AA++ and AA with ε = 0.5
for six adversarially trained models on CIFAR10.
All models are taken from the RobustBench li-
brary [13].

Models AA AA++

Clean acc. Robust acc. Grads Robust acc. Grads

R1 [45] 95.7% 82.3% 1259.2 82.1% 599.5
R2 [51] 90.3% 76.1% 1469.1 76.1% 667.7
R3 [24] 89.4% 63.4% 1240.4 62.2% 431.5
R4 [46] 88.6% 67.6% 933.7 68.4% 715.3
R5 [46] 89.05% 66.4% 846.3 62.5% 613.7
R6 [15] 88.02% 67.6% 721.4 63.4% 511.1
Natural 94.7% 0.00% 208.6 0.00 121.1

Although it is not the primary focus of this
paper, in this section we notably enhance the
time efficiency of the AA [12] by incorporating
SDF method into the set of attacks in AA.

We introduce a new variant of AA by intro-
ducing AutoAttack++ (AA++). AA is a reli-
able and powerful ensemble attack that con-
tains three types of white-box and a strong
black-box attacks. AA evaluates the robustness
of a trained model to adversarial perturbations
whose ℓ2/ℓ∞-norm is bounded by ε. By sub-
stituting SDF with the attacks in the AA, we
significantly increase the performance of AA
in terms of computational time. Since SDF is an ℓ2-norm attack, we use the ℓ2-norm version of AA
as well. We restrict maximum iterations of SDF to 10. If the norm of perturbations exceeds ε, we
renormalize the perturbation to ensure its norm stays ≤ ε. In this context, we have modified the AA
algorithm by replacing APGD⊤ [12] with SDF due to the former’s cost and computation bottleneck
in the context of AA (See Appendix F.1 for more details). Our decision to replace APGD⊤ with SDF
was primarily motivated by the former being a computational bottleneck in AA. As it is shown in
Table 8, AA and AA++ achieve similar fooling rates, with AA++ being notably faster. We compared
the sets of points that were fooled or not fooled by SDF/APGD⊤ across 1000 samples (ε = 0.5). The
results indicate that both algorithms fool approximately the same set of points, differing only in a
handful of samples for this epsilon value. Therefore, the primary benefit of using SDF is the reduction
in computation time. We compare the fooling rate and computational time of AA++ and AA on the
models from the RobustBench. In Table 8, we observe that AA++ is up to three times faster than AA.
In an alternative scenario, we added the SDF to the beginning of the AA set, resulting in a version that
is up to two times faster than the original AA, despite now containing five attacks (See Appendix F).
This outcome highlights the efficacy of SDF in finding adversarial examples. These experiments
suggest that leveraging efficient minimum-norm and non-fixed iteration attacks, such as SDF, can
enable faster and more reliable evaluation of the robustness of deep models.

5 Conclusion and Future Works

In this work, we have introduced a family of parameter-free, fast, and parallelizable algorithms for
crafting optimal adversarial perturbations. Our proposed algorithm, SDF, consistently finds smaller
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norm perturbations on various networks and datasets with only a small additional computation cost
compared to DF (which is still significantly faster than all SOTA attacks). Furthermore, we have
shown that adversarial training using the examples generated by SDF builds more robust models.
While our primary focus in this work has been on minimal ℓ2 attacks, there exists potential for
extending SDF families to other threat models, including general ℓp-norms and targeted attacks. In
the Appendix, we have demonstrated straightforward modifications that highlight the applicability of
SDF to both targeted and ℓ∞-norm attacks. However, a more comprehensive evaluation remains a
direction for future work. Moreover, further limitations of our proposed method are elaborated upon
in Appendix N. In the end, by revisiting the necessity of ℓp-norm robustness and characterizing a toy
example on robustness-free phenomena, we underscore the pivotal role of minimum-norm attacks in
ensuring secure AI systems.
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A Appendix

A.1 Proofs

Proof of Proposition 1.

Since∇F(x) is Lipschitz-continuous, for x,y ∈ B(x0, ε), we have:

|F(x)−F(y) +∇F(y)T (x− y)| ≤ β

2
∥x− y∥2 (6)

DeepFool updates the new xn in each according to the following equation:

xn = xn−1 +
∇F(xn−1)

∥∇F(xn−1)∥22
F(xn−1) (7)

Hence if we substitute x = xn and y = xn−1 in (6), we get:

|F(xn)| ≤
β

2
∥xn − xn−1∥2. (8)

Now, let sn := ||xn − xn−1||. Using (8) and DeepFool’s step, we get:

sn+1 =
F(xn)

∥∇F(xn)∥
≤ β

2ζ

F(xn)
2

∥∇F(xn)∥2
(9)

sn+1 =
F(xn)

||∇F(xn)||
⩽ snϵ

β2

ζ2
(10)

Using the assumptions of the theorem, we have
βε

ζ2
< 1, and hence sn converges to 0 when n→∞.

We conclude that {xn} is a Cauchy sequence. Denote by x∞ the limit point of {xn}. Using the
continuity of F and Eq.(8), we obtain

lim
n→∞

|F(xn)| = |F(x∞)| = |F(x⋆)| = 0, (11)

Which concludes the proof of the theorem.

Proof of Proposition 2. Let us denote the acute angle between ∇f(x0 + ri) and ri by θi
(0 ≤ θi ≤ π/2). Then from (4) we have |ri+1| = |ri| cos θi. Therefore, we get

|ri+1| =
i∏

i=1

cos θi|r0|. (12)

Now there are two cases, either θi → 0 or not. Let us first consider the case where zero is not the
limit of θi. Then there exists some ϵ0 > 0 such that for any integer N there exists some n > N for
which we have θn > ϵ0. Now for ϵ0, we can have a series of integers ni where for all of them we
have θni

> ϵ0. Since we have 0 ≤ | cos θ| ≤ 1, we have the following inequality:

0 ≤
∞∏
i=0

| cos θi| ≤
∞∏
i=0

| cos θni
| ≤

∞∏
i=0

| cos ϵ0| (13)

The RHS of the above inequality goes to zero which proves that ri → 0. This leaves us with the other
case where θi → 0. This means that cos θi → 1 which is the maximum of Eq. (3), this completes the
proof.

Proof of proposition 3 ([5]) We use assumptions discussed in proposition 1 (the continuity of∇f ).
We derive that there exists a distance r such that ∥∇f(x)∥ ̸= 0 in Ψ̄r (the smallest closed set
containing Ψr), and so we derive that ∇f

∥∇f∥ is uniformly continuous in Ψ̄r . Hence, for each ε, there
exists a distance rε ≤ r such that, for each x,y ∈ Ψ̄r and ∥x− y∥ < rε, the following inequality
holds: ∥∥∥∥ ∇f(x)∥∇f(x)∥ −

∇f(y)
∥∇f(y)∥

∥∥∥∥ < ε, (14)
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Table 9: Comparison of the effectiveness of line search on the CIFAR10 data for SDF and DF. We
use one regularly trained model S (WRN-28-10) and three adversarially trained models (shown with
R1 [48], R2 [3] and R3 [43]). ✓and ✗ indicate the presence and absence of line search respectively.

Model DF SDF

✓ ✗ ✓ ✗

S 0.16 0.19 0.09 0.10
R1 0.87 1.02 0.73 0.76
R2 1.40 1.73 0.91 0.93
R3 1.13 1.36 1.04 1.09

Table 10: Comparison of the effectiveness of line search on the CIFAR-10 data for other attacks. Line
search effects are a little for DDN and ALMA. For FMN and FAB because they use line search at the
end of their algorithms (they remind this algorithm as a binary search and final search, respectively),
line search does not become effective.

MODEL
DDN ALMA FMN FAB

✓ ✗ ✓ ✗ ✓ ✗ ✓ ✗

WRN-28-10 0.12 0.13 0.10 0.10 0.11 0.11 0.11 0.11
R1 [48] 0.73 0.73 0.71 0.71 1.10 1.10 0.75 0.75
R2 [3] 0.96 0.97 0.93 0.94 0.95 0.95 1.03 1.03
R3 [43] 1.04 1.04 1.06 1.06 1.08 1.08 1.07 1.07

from triangle inequality for norms, we can derive:

1− 1

2
ε2 <

∇f(x)T∇f(y)
∥∇f(x)∥∥∇f(y)∥ . (15)

In conclusion, by taking y = PS(x) and by choosing ε =
√
2− 2 cos(θ), we achieve upper bound

for cos(θ) where r̃(θ) = min(rmax, rε). Where rmax is a maximum distance such that for each x in
the Ψrmax there exists a PS(x) ∈ B solves the minimum-norm optimization problem.

B Setup

We test our algorithms on architectures trained on MNIST, CIFAR10, and ImageNet datasets. For
MNIST, we use a robust model called IBP from [60] and naturally trained model called SmallCNN.
For CIFAR10, we use three models: an adversarially trained PreActResNet-18 [27] from [43], a
regularly trained Wide ResNet 28-10 (WRN-28-10) from [58] and LeNet [31]. These models are
obtainable via the RobustBench library [13]. On ImageNet, we test the attacks on two ResNet-50 (RN-
50) models: one regularly trained and one ℓ2 adversarially trained, obtainable through the robustness
library [18]. We additionally evaluate the robustness of Vision Transformers (ViT-B-16 [17]) and
reevaluate the comparative analysis between ViTs and CNNs.

C On the benefits of line search

As we show in Figure 3, DF typically finds an overly perturbed point. SDF’s gradients depend on DF,
so overly perturbing DF is problematic. Line search is a mechanism that we add to the end of our
algorithms to tackle this problem. For a fair comparison between adversarial attacks, we add this
algorithm to the end of other algorithms to investigate the effectiveness of line search. As shown in
Table 9, we observe that line search can increase the performance of the DF significantly. However,
this effectiveness for SDF is a little. We now measure the effectiveness of line search for other attacks.
As observed from Table 10, line search effectiveness for DDN and ALMA is small.
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D Comparison on CIFAR10 with the AT PRN-18

In this section, we compare SDF with other minimum-norm attacks against an adversarially trained
network [43]. In Table 11, SDF achieves smaller perturbation compared to other attacks, whereas it
costs only half as much as other attacks.

Table 11: Comparison of SDF with other state-of-the-art attacks for median ℓ2 on CIFAR-10 dataset
for adversarially trained network (PRN-18 [43]).

ATTACK FR MEDIAN-ℓ2 GRADS

ALMA 100 0.68 100
DDN 100 0.73 100
FAB 100 0.77 210
FMN 99.7 0.81 100
SDF 100 0.65 46

E Performance comparison of adversarially trained models versus
Auto-Attack (AA)

Evaluating the adversarially trained models with attacks used in the training process is not a standard
evaluation in the robustness literature. For this reason, we evaluate robust models with AA. We
perform this experiment with two modes; first, we measure the robustness of models with ℓ∞ norm,
and in a second mode, we evaluate them in terms of ℓ2 norm. Tables 12 and 13 show that adversarial
training with SDF samples is more robust against reliable AA than the model trained on DDN
samples [48].

Table 12: Robustness results of adversarially trained models on CIFAR-10 with ℓ∞-AA. We perform
this experiment on 1000 samples for each ε.

MODEL NATURAL ε = 6
255

8
255

10
255

DDN 89.1 45 29.6 17.6
SDF (OURS) 90.8 47.5 38.1 25.4

Table 13: Robustness results of adversarially trained models on CIFAR-10 with ℓ2-AA. We perform
this experiment on 1000 samples for each ε.

MODEL NATURAL ε = 0.3 0.4 0.5 0.6

DDN 89.1 78.1 73 67.5 61.7
SDF (OURS) 90.8 83.1 79.7 68.1 63.9

F Another variants of AA++

As we mentioned, in an alternative scenario, we added the SDF to the beginning of the AA set,
resulting in a version that is up to two times faster than the original AA. In this scenario, we do not
exchange the SDF with APGD. We add SDF to the AA configuration. So in this configuration, AA
has five attacks (SDF, APGD, APGD⊤, FAB, Square). By this design, we guarantee the performance
of AA. An interesting phenomenon observed from these tables is that when the budget increases, the
speed of the AA++ increases. We should note that we restrict the number of iterations for SDF to 10.

F.1 Why do we replace SDF with APGD⊤?

It is well established that AutoAttack (AA) is a robust method for evaluating model robustness,
unaffected by gradient obfuscation [2]. The primary limitation of AA, however, is its computational
intensity. To thoroughly evaluate a model, it must be subjected to four distinct attacks sequentially.
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(a) R1 (b) S
Figure 6: In this figure, we show the time ratio of AA to AA++. For regularly trained model (WRN-
28-10) and adversarially trained model [43] (R1). We perform this experiment on 1000 samples from
CIFAR10 data.

Our empirical analysis identified the APGD⊤ attack as the main computational bottleneck in AA.
For example, when attacking a standard WRN-28-10 model trained on CIFAR-10, APGD⊤ requires
approximately 4310 backward passes to achieve a 100% fooling rate. Similarly, for an adversarially
trained WRN-28-10 [8] model on CIFAR-10, APGD⊤ necessitates around 5660 backward passes
to attain a 100% fooling rate. To address this issue, rather than simply replacing SDF with another
minimum-norm attack such as FAB in AA, we mitigate the bottleneck by employing a faster minimum-
norm attack like SDF.

G Why do we need stronger minimum-norm attacks?

Bounded-norm attacks like FGSM [23], PGD [33], and momentum variants of PGD [56], by opti-
mizing the difference between the logits of the true class and the best non-true class, try to find an
adversarial region with maximum confidence within a given, fixed perturbation size. Bounded-norm
attacks only evaluate the robustness of deep neural networks; this means that they report a single
scalar value as robust accuracy for a fixed budget. The superiority of minimum-norm attacks is to
report a distribution of perturbation norms, and they do not report a percentage of fooling rates (robust
accuracy) by a single scalar value. This critical property of minimum-norm attacks helps to accelerate
to take an in-depth intuition about the geometrical behavior of deep neural networks.

We aim to address a phenomenon we observe by using the superiority of minimum-norm attacks. We
observed that a minor change within the design of deep neural networks affects the performance of
adversarial attacks. To show the superiority of minimum-norm attacks, we show how minimum-norm
attacks verify these minor changes rather than bounded-norm attacks.

Modeling with max-pooling was a fundamental aspect of convolutional neural networks when they
were first introduced as the best image classifiers. Some state-of-the-art classifiers such as [26, 30, 52]
use this layer in network configuration. We use the pooling layers to show that using the max-pooling
and Lp-pooling layer in the network design leads to finding perturbation with a bigger ℓ2-norm.

Assume that we have a classifier f . We train f in two modes until the training loss converges. In the
first mode, f is trained in the presence of the pooling layer in its configuration, and in the second
mode, f does not have a pooling layer. When we measure the robustness of these two networks
with regular budgets used in bounded-norms attacks like PGD (ε = 8/255), we observe that the
robust accuracy is equal to 0%. This is precisely where bounded-norm attacks such as PGD mislead
robustness literature in its assumptions regarding deep neural network properties. However, a solution
to solve the problem of bounded-norm attack scan be proposed: " Analyzing the quantity of changes
in robust accuracy across different epsilons reveal these minor changes." Is this case, the solution is
costly. This is precisely where the distributive view of perturbations from worst-case to best-case of
minimum-norm attacks detects this minor change.

To show these changes, we trained ResNet-18 and Mobile-Net [28] in two settings. In the first setting,
we trained them in the presence of a pooling layer until the training loss converged, and in the second
setting, we trained them in the absence of a pooling layer until the training loss converged. We
should note that we remove all pooling-layers in these two settings. For a fair comparison, we train
models until they achieve zero training loss using a multi-step learning rate. We use max-pooling and
Lp-pooling, for p = 2, for this minor changes.
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Table 14: This table shows the ℓ2-median for the minimum-norm attacks. For all networks, we set
learning rate = 0.01 and weight decay = 0.01. For training with Lp-pooling, we set p = 2 for all
settings.

ATTACK
RN18 MOBILENET

NO POOL MAX-POOL LP-POOL NO POOL MAX-POOL LP-POOL

DF 0.40 0.90 0.91 0.51 0.95 0.93
DDN 0.16 0.25 0.26 0.22 0.27 0.26
FMN 0.18 0.27 0.30 0.24 0.30 0.29
C&W 0.18 0.25 0.27 0.22 0.26 0.24

ALMA 0.19 0.23 0.23 0.20 0.25 0.22
SDF 0.16 0.21 0.22 0.20 0.23 0.21

Table 15: This table shows the robust accuracy for all networks against to the AA and PGD. For
training with Lp-pooling, we set p = 2 for all settings.

ATTACK
RN18 MOBILENET

NO POOL MAX-POOL LP-POOL NO POOL MAX-POOL LP-POOL

AA 1.1% 17.2% 16.3% 8.7% 21.3% 20.2%
PGD 9.3% 28% 26.2% 16.8% 31.4% 28.7%

Table 14 shows that using a pooling layer in network configuration can increase robustness. DF has
an entirely different behavior according to the presence or absence of the pooling layer; max-pooling
affects up to 50% of DF performance. This effect is up to 9% for DDN and FMN. ALMA and SDF
show a 4% impact in their performance, which shows their consistency compared to other attacks.

As shown in Table 15, we observe that models with pooling-layers have more robust accuracy when
facing adversarial attacks such as AA and PGD. It should be noted that using regular epsilon for AA
and PGD will not demonstrate these modifications. For this reason, we choose an epsilon for AA and
PGD lower (ε = 2/255) than the regular format (ε = 8/255).

Table 14 and 15 demonstrate that pooling-layers can affect adversarial robustness of deep networks.
Powerful attacks such as SDF and ALMA show high consistency in these setups, highlighting the
need for powerful attacks.

G.1 Max-pooling’s effect on the decision boundary’s curvature

Here, we take a step further and investigate why max-pooling impacts the robustness of models. In
order to perform this analysis, we analyze gradient norms, Hessian norms, and the model’s curvature.
The curvature of a point is a mathematical quantity that indicates the degree of non-linearity. It
has been observed that robust models are characterized by their small curvature [37], implying
smaller Hessian norms. In order to investigate robustness independent of non-linearity, [53] propose
normalized curvature, which normalizes the Hessian norm at a given input x by its corresponding
gradient norm. They defined normalized curvature for a neural network classifier f as Cf (x) =
∥∇2f(x)∥2/(∥∇f(x)∥2 + ε). Where ∥∇f(x)∥2 and ∥∇2f(x)∥2 are the ℓ2-norm of the gradient
and the spectral norm of the Hessian, respectively, where ∇f(x) ∈ Rd,∇2f(x) ∈ Rd×d, and ε > 0
is a small constant to ensure the proper behavior of the measure. In Table 16, we measure these
quantities for two trained models, one with max-pooling and one without. It clearly shows that
the model incorporating max-pooling exhibits a smaller curvature. This finding corroborates the
observation that models with greater robustness tend to have a smaller curvature value.

Table 16: Model geometry of different ResNet-18 models. W (with pooling) and W/O (without
pooling).

MODEL Ex∥∇f(x)∥2 Ex∥∇2f(x)∥2 ExCf (x)

W 4.75 ± 1.54 120.70 ± 48.74 14.94 ± 0.52

W/O 7.04 ± 2.44 269.74 ± 10.23 22.81 ± 2.58
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Table 17: Model geometry for regular and adversarially trained models.
MODEL Ex∥∇f(x)∥2 Ex∥∇2f(x)∥2 ExCf (x)

STANDARD 9.54 ± 1.02 600.06 ± 29.76 73.99 ± 6.62

DDN AT 0.91 ± 0.34 2.86 ± 1.22 4.32 ± 2.91

SDF AT 0.38 ± 0.60 0.73 ± 0.08 1.66 ± 0.86

H Model geometry for AT models

In this section we provide curvature analysis of our adversarially trained networks, SDF AT, and
DDN AT model. Table 17 shows that our AT model decreases the curvature of network more than
DDN AT model.

I CNN architecture used in Table 1
Layer Type CIFAR-10

Convolution + ReLU 3× 3× 64
Convolution + ReLU 3× 3× 64
max-pooling 2× 2
Convolution + ReLU 3× 3× 128
Convolution + ReLU 3× 3× 128
max-pooling 2× 2
Fully Connected + ReLU 256
Fully Connected + ReLU 256
Fully Connected + Softmax 10

The architecture used to compare SDF variants and DF (Table 1) is summarized in above Table.
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J ViT-B-16 for CIFAR-10

Given our available computational resources, we conduct experiments on a ViT-B-16 [17] trained on
CIFAR-10, achieving 98.55% accuracy. The results are summarized in the following table:

Attack FR (%) Median-ℓ2 Grads
DF 98.2 0.29 19

ALMA 100 0.12 100
DDN 100 0.14 100
FAB 100 0.14 100
FMN 99.1 0.15 100
C&W 100 0.15 91,208
SDF 100 0.10 32

As seen, this transformer model does not exhibit significantly greater robustness compared to CNNs,
with only a negligible difference of 0.01 compared to a WRN-28-10 trained on CIFAR-10. These
results support the notion that there might not be a substantial disparity between the adversarial
robustness of ViTs and CNNs. This aligns with the findings of [4]. They argue that earlier claims of
transformers being more robust than CNNs stems from an unfair comparison and evaluation methods.
We believe that thorough evaluations using minimum norm attacks could be helpful in resolving this
debate.

K Natural (Regular) Trained MNIST Model

In Table 18 we show the results of evaluating adversarial attacks on naturally trained SmallCNN
on MNIST dataset. Our algorithm demonstrates a higher rate of convergence compared to other
algorithms, as the perturbations for all algorithms are generally similar.

Table 18: We compare the performance of all algorithms on the natural SmallCNN model that was
trained on the MNIST dataset.

Attacks FR Median-ℓ2 Grads

ALMA 100 1.34 1000
DDN 100 1.36 1000
FAB 100 1.36 10000
FMN 97.10 1.37 1000
C&W 99.80 1.35 90000
SDF 100 1.34 67

L Runtime Comparison

We report the number of gradient computations as a main proxy for computional cost comparison. In
Table 19, we have compared the runtime of different attacks for a fixed hardware. SDF is significantly
faster.
Table 19: Runtime comparison for adversarial attacks on WRN-28-10 architecture trained on CI-
FAR10, for both naturally trained model and adversarially trained models.

Natural R1 [45]

Attacks Time (S) Median-ℓ2 Time (S) Median-ℓ2
ALMA 1.71 0.10 13.10 1.22
DDN 1.54 0.13 12.44 1.53
FAB 2.33 0.11 16.21 1.66
FMN 1.42 0.11 10.25 1.83
C&W 734.8 0.12 5402.1 1.68
SDF 0.48 0.09 2.93 1.19
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M Query-Distortion Curves
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Figure 7: As demonstrated in [40], query-distortion curves are utilised as a metric for evaluating
computational complexity of white-box attacks. In this particular context, the term “query” refers to
the quantity of forward passes available to find adversarial perturbations.

Unlike FMN and ALMA, SDF (and DF) does not allow control over the number of forward and back-
ward computations. They typically stop once a successful adversarial example is found. Terminating
the process prematurely could prevent them from finding an adversarial example. Hence, we instead
opted to plot the median norm of achievable perturbations for a given maximum number of queries
(Figure 7) Although this is not directly comparable to the query-distortion curves in [40], it provides
a more comprehensive view of the query distribution than the median alone.

N Limitations

In this section, we discuss some limitations and potential extensions of SDF.

Extension to other ℓp-norms and targeted attacks. The proposed attack is primarily designed for
ℓ2-norm adversarial perturbations. Moreover, our method, similar to DeepFool (DF), is non-targeted.
Though there are potential approaches for adapting SDF to targeted and ℓp attacks, these aspects
remain largely unexplored in our work.

Nevertheless, we here demonstrate how one could possibly extend SDF to other p-norms. A simple
way is to replace the ℓ2 projection (Line 5 of Algorithm 2) with a projection operator minimizing ℓp
norm similar to the derivations used in [36]. In particular, for p =∞, the following projection would
replace the line 5 of Algorithm 2:

x← x0 +
(x̃− x0)

⊤w

||w||1
sign(w) (16)

In Table 20, we compare the performance of this modified version of SDF, named SDFℓ∞ with FMN,
FAB, and DF, on two pretrained networks M1 [33] and M2 [48] on CIFAR-10 dataset. Our findings
indicate that SDFℓ∞ also exhibits superior performance compared to other algorithms in discovering
smaller perturbations.

Table 20: Performance of SDFℓ∞ on two robust networks trained on CIFAR-10 dataset.

ATTACKS
M1 M2

MEDIAN ℓ∞ FR GRADS MEDIAN ℓ∞ FR GRADS

DF 0.031 96.7 24 0.043 97.4 31
FAB 0.025 99.1 100 0.038 99.6 100
FMN 0.024 100 100 0.035 100 100
SDFℓ∞ 0.019 100 33 0.027 100 46
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Table 21: Performance of targeted SDF on a standard trained WRN-28-10 on CIFAR-10, measured
using 1000 random samples.

ATTACKS
TARGETED UNTARGETED

FR MEAN ℓ2 MEDIAN ℓ2 GRADS FR MEAN ℓ2 MEDIAN ℓ2 GRADS

DDN 100 0.24 0.25 100 100 0.13 0.14 100
FMN 96.2 0.22 0.24 100 97.3 0.11 0.13 100
SDF (TARGETED) 98.2 0.21 0.22 25 100 0.10 0.11 34

Furthermore, we can convert SDF to a targeted attack by replacing the line 3 of Algorithm 2 with the
targeted version of DeepFool, and the line 4 with the following:

w ← ∇ft(x̃)−∇fk̂(x0)
(x̃), (17)

where t is the target label. We followed the procedure outlined in [6] to measure the performance
in the targeted setting. The result is summarized in Table 21. While SDF is effective in quickly
finding smaller perturbations, it does not achieve a 100% fooling rate. Further analysis is required to
understand the factors preventing SDF from converging in certain cases. This aspect remains an area
for future work.

Convergence guarantees. A common challenge for all gradient-based optimization methods
applied to non-convex problems is the lack of a guarantee in finding globally optimal perturbations for
SotA neural networks. Obtaining even local guarantees is not trivial. Nevertheless, in Propositions 1
and 2 we worked towards this goal. We have established local guarantees showing the convergence of
each individual operation, namely the DeepFool step and projection step. However, further analysis
is needed to establish local guarantees for the overall algorithm.

Adaptive attacks. It is known that gradient-based attacks, ours included, are prone to gradient
obfuscation/masking [7]. To counter this challenge, adaptation, as outlined in [55], is needed. It is
also important to recognize that adapting geometric attacks such as SDF, does not follow a one-size-
fits-all approach, as opposed to loss-based ones such as PGD. While this might be perceived as a
weakness, it actually underscores a broader trend in the community. The predominant focus has been
on loss-based attacks. This emphasis has inadvertently led to less exploration and development in the
realm of geometric attacks.

O Vanila Adversarial Training

Vanila Adversarial Training without Additional Regularization. Our primary objective was to
evaluate which adversarial attacks technique most effectively enhances robustness among PGD [33],
DDN [48], and SDF. This focus differs from comparing various adversarial training strategies such
as TRADES [59], TRADES-AWP [57], HAT [43], and UIAT [16]. These strategies often include
additional regularization techniques to enhance Madry’s method using PGD adversarial examples.
Therefore, our assertion is not aimed at developing a state-of-the-art robust model. Instead, we
aim to demonstrate that vanilla AT, when combined with minimum-norm attacks like SDF, can
potentially outperform PGD-based models. Accordingly, we selected vanilla adversarial training
with SDF-generated samples for our study and compared its effectiveness against a network trained
with DDN samples. While TRADES or similar AT strategies could also integrate SDF, exploring this
combination will be addressed in future research endeavors.

Why ℓp norm is Critical? The existing literature has explored a variety of approaches to under-
standing adversarial examples. For example, training on ℓp-norm adversarial examples has been
identified as a form of spectral regularization [50], and adversarial perturbations, seen as counter-
factual explanations, have been connected to saliency maps in image classifiers [20]. The rapid and
accurate generation of these perturbations is critical for the empirical investigation of such phenomena.
Moreover, minimal ℓp adversarial perturbations are often considered "first order approximations of the
decision boundary," illuminating the local geometric characteristics of models near data samples. This
insight underscores the need for quick and precise methods for such explorations. Additionally, these
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minimal perturbations provide a data-dependent, worst-case analysis of certain test-time corruptions,
facilitating worst-case evaluations not only in the input space but also in the transformation space [29].
Within the context of Large Language Models (LLMs), these perturbations could potentially act as
probing tools within their embedding space to examine their geometric properties. However, it is
important to note that our interest in these topics was driven more by academic curiosity than by their
practical applications in this specific study.

P Multi-class algorithms for SDF (1,3) and SDF (1,1)

Algorithm (3,4) summarizes pseudo-codes for the multi-class versions of SDF(1, 1) and SDF(1, 3).

Algorithm 3: SDF (1,1)
Input: image x, classifier f .
Output: perturbation r

1 Initialize: x0 ← x, i← 0

2 while k̂(xi) = k̂(x0) do
3 for k ̸= k̂(x0) do
4 w′

k ← ∇fk(xi)−∇fk̂(x0)
(xi)

f ′
k ← fk(xi)− fk̂(x0)

(xi)

5 end

6 l̂← argmink ̸=k̂(x0)

|f ′
k|

∥w′
k∥2

r̃ ← |f ′
l̂ |

∥w′
l̂
∥2
2
w′

l̂
x̃i = xi + r̃

wi ← ∇fk(x̃i)(x̃i)−∇fk(x0)(x̃i)

x← x0 +
(x̃i−x0)

⊤wi

∥wi∥2 wi

i← i+ 1
7 end
8 return r = xi − x0

Algorithm 4: SDF (1,3)
Input: image x, classifier f .
Output: perturbation r

1 Initialize: x0 ← x, i← 0

2 while k̂(xi) = k̂(x0) do
3 for k ̸= k̂(x0) do
4 w′

k ← ∇fk(xi)−∇fk̂(x0)
(xi)

f ′
k ← fk(xi)− fk̂(x0)

(xi)

5 end

6 l̂← argmink ̸=k̂(x0)

|f ′
k|

∥w′
k∥2

r̃ ← |f ′
l̂ |

∥w′
l̂
∥2
2
w′

l̂
x̃i = xi + r̃

7 for 3 steps do
8 wi ←

∇fk(x̃i)(x̃i)−∇fk(x0)(x̃i)

xi ← x0 +
(x̃i−x0)

⊤wi

∥wi∥2 wi

9 end
10 i← i+ 1
11 end
12 return r = xi − x0
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1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Guidelines: The code to reproduce our experiments can be found at https://github.
com/alirezaabdollahpour/SuperDeepFool

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
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Justification: Our paper deals with fundamental questions regarding our understanding of
deep networks. In this sense, it is subject to the same ethical concerns as the machine
learning field as a whole, which makes it hard to identify potential direct risks or benefits
associated to our empirical findings.

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer:[NA]
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