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Abstract

Large language models (LLMs) excel at captur-
ing global token dependencies via self-attention
but face prohibitive compute and memory costs
on lengthy inputs. While sub-quadratic meth-
ods (e.g., linear attention) can reduce these costs,
they often degrade accuracy due to overempha-
sizing recent tokens. In this work, we first pro-
pose dual-state linear attention (DSLA), a novel
design that maintains two specialized hidden
states—one for preserving historical context and
one for tracking recency—thereby mitigating the
short-range bias typical of linear-attention archi-
tectures. To further balance efficiency and ac-
curacy under dynamic workload conditions, we
introduce DSLA-Serve, an online adaptive dis-
tillation framework that progressively replaces
Transformer layers with DSLA layers at inference
time, guided by a sensitivity-based layer order-
ing. DSLA-Serve uses a chained fine-tuning strat-
egy to ensure that each newly converted DSLA
layer remains consistent with previously replaced
layers, preserving the overall quality. Extensive
evaluations on commonsense reasoning, long-
context QA, and text summarization demonstrate
that DSLA-Serve yields 2.3× faster inference
than Llama2-7B and 3.0× faster than the hybrid
Zamba-7B, while retaining comparable perfor-
mance across downstream tasks. Our ablation
studies show that DSLA’s dual states capture both
global and local dependencies, addressing the
historical-token underrepresentation seen in prior
linear attentions. Codes are available at: https:
//github.com/utnslab/DSLA-Serve.
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1. Introduction
Large language models (LLMs) have become indispensable
for tasks such as advanced reasoning, code generation, and
multi-turn dialogue. However, long-sequence inference re-
mains a major bottleneck due to the O(T 2) complexity of
self-attention (Vaswani, 2017), which evaluates pairwise
relationships among all tokens in a sequence. Alongside
heavy compute cost, storing key-value (KV ) caches for ex-
tended contexts forces memory usage to grow linearly with
the number of tokens, significantly challenging scalability.

To reduce inference complexity, prior work explores both
system-level optimizations (e.g., cache management and
GPU kernels (Ye et al., 2025; Dao et al., 2022; Kwon et al.,
2023b)) and algorithmic approaches (Leviathan et al., 2023;
Cai et al., 2024a; Kudugunta et al., 2023; Xiao et al., 2023b;
Zhang et al., 2023). Among algorithmic solutions, linear
attention has gained traction (Peng et al., 2023; Wang et al.,
2020; Gu & Dao, 2023), maintaining a fixed-size hidden
state to update token embeddings in O(T ) time. This makes
such models appealing for large-context processing.

Despite their efficiency, purely linear attention models often
underperform on tasks requiring careful long-range interac-
tions (e.g., large-scale text retrieval) (Waleffe et al., 2024;
Gu & Dao, 2023; Lieber et al., 2024). Their fixed hidden
states impose a capacity bottleneck, especially when the
task demands rich cross-token relationships. Hybrid archi-
tectures have thus emerged, mixing a few self-attention and
linear-attention layers (Lieber et al., 2024; Ren et al., 2024;
hug). However, these hybrids typically rely on a static de-
sign, which cannot flexibly trade off compute cost versus
accuracy on the fly. Meanwhile, recent attempts to distill
transformers into linear attention (Bick et al., 2024; Zhang
et al., 2024a; Wang et al., 2024a) either incur significant ac-
curacy drops when fully replacing self-attention, or remain
constrained by bottleneck layers if only partially converted.
Consequently, current approaches do not adapt well to the
variable demands of real-world inference pipelines.

A naturally emerging, intuitively promising solution is then
to dynamically adapt architectures at inference time, convert-
ing self-attention layers into linear-attention analogs only
under memory or latency pressure. Yet achieving such “on-

1

https://github.com/utnslab/DSLA-Serve
https://github.com/utnslab/DSLA-Serve


On-the-Fly Adaptive Distillation of Transformer to Dual-State Linear Attention

the-fly” adaptive distillation is non-trivial. First, we must de-
cide how many layers can be replaced without unacceptably
harming accuracy. Second, mismatches between training
and inference architectures easily degrade performance if
not carefully addressed. Third, since linear-attention meth-
ods often exhibit a strong bias toward recent tokens (see §3),
naive distillation may fail to capture the global attention
patterns that long contexts demand.

Our Contributions. In this work, we address these chal-
lenges through:

• Dual-State Linear Attention (DSLA). We first ana-
lyze how single-state linear attention overemphasizes
recent tokens and propose a new module with two spe-
cialized states: one for preserving historical context
and the other tracking recency. Driven by a constrastive
regularization, this design alleviates the short-range
bias and better emulates full self-attention.

• Adaptive Distillation via DSLA-Serve. We then in-
troduce DSLA-Serve, a framework that adaptively con-
verts Transformer layers into DSLA at inference time,
guided by a sensitivity- based layer ordering. This “on-
the-fly” approach allows different workloads or prompt
lengths to flexibly trade off accuracy and efficiency.

• Chained Fine-Tuning for Consistency. To minimize
performance drops during layer conversion, DSLA-
Serve employs a progressive distillation procedure.
Layers are distilled in precisely the order they will be
converted at inference, ensuring each newly replaced
layer is compatible with previously converted ones.

• Extensive Evaluations. Across multiple datasets,
DSLA-Serve achieves a 2.29× and 3.0× reduction
in end-to-end latency compared to Llama2-7B and
Zamba-7B baselines, respectively, while maintaining
comparable performance on tasks spanning reasoning,
code, and long-context understanding.

2. Background
Notations. We denote matrices with bold uppercase letters
(e.g., X), vectors with bold lowercase letters (e.g., x), and
scalars with lowercase letters (e.g., x).

Linear Attention. A primary driver behind sub-quadratic
complexity is linear attention, which replaces the O(T 2) all-
pairs interactions of self-attention with recurrences or kernel-
based factorizations (Child et al., 2019; Beltagy et al., 2020;
Zaheer et al., 2020; Choromanski et al., 2020; Katharopou-
los et al., 2020). Recent approaches often adapt state-space
models (SSMs) (Gu & Dao, 2023; Dao & Gu, 2024) or RNN
gating (Peng et al., 2023) to maintain a fixed-size key-value
(KV) state that updates incrementally across tokens. While
this design yields O(T ) computation, a single recurrent

state can overemphasize the most recent context, limiting
deeper cross-token learning.

Gated Linear Attention (GLA). To mitigate underper-
formance in standard SSMs, GLA (Yang et al., 2023) intro-
duces data-dependent gating, adding a learnable forget gate
Gt ∈ Rd×d that modulates the previous hidden state St−1:

St = Gt ⊙ St−1 + k⊤
t vt,

where Gt is formed from outer products of vectors αt,βt,
and kt,vt are the key/value embeddings at time t. Although
this gating can help retain some historical information, GLA
still fundamentally relies on one hidden state, often losing
mid- or far-context representations.

Knowledge Distillation into Linear Attention. To nar-
row performance gaps between quadratic self-attention and
linear methods, some works apply distillation (Wang et al.,
2024a; Zhang et al., 2024a). However, these static conver-
sions do not address dynamic inference scenarios, where
the model must flexibly trade accuracy for reduced memory
cost under changing request loads or context lengths.

Hybrid Architectures Another approach is to mix self-
attention with linear layers at different layers or heads (Wal-
effe et al., 2024; Lieber et al., 2024; hug). While hybrid
models can mitigate the drawbacks of purely linear or purely
quadratic methods, their fixed attention layouts remain un-
suitable when inference loads fluctuate.

By contrast, our work aims to (i) improve the typical single-
state design of linear attention through a dual-state mech-
anism, thereby alleviating recency bias, and (ii) enable on-
the-fly conversion of self-attention layers so that the model
can dynamically trade off accuracy and efficiency based on
system constraints. We demonstrate how single-state de-
signs exhibit short-range bias through an attention analysis,
then show how dual-state linear attention (DSLA) success-
fully mitigates this issue. We finally (iii) incorporate an
adaptive inference framework that progressively replaces
self-attention with DSLA layers under high resource load,
ensuring scalable and efficient LLM serving without sacri-
ficing crucial long-context performance.

3. Motivational Analyses
In this section, we present two key motivating observations:

• how single-state linear attention tends to overempha-
size recent tokens at the expense of historical context;

• why LLM serving systems would desire to dynami-
cally adapt to changing resource constraints rather than
relying on static architectures.

Attention Score Recency Analysis. Gated linear attention
(GLA) (Yang et al., 2023) updates the hidden state and
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Figure 1. Attention scores for Llama2-7B (top) vs. GLA (bottom).
The latter is distilled from Llama2-7B with using 1B tokens and KL
divergence w.r.t. attention outputs. We examine several randomly
selected attention heads/layers on 16 samples from C4 (sequence
length 4096). The horizontal axis is the token index, and the
vertical axis shows the attention scores to past tokens from the
most recent query. GLA focuses heavily on near tokens, while the
Transformer maintains more balanced coverage of earlier positions.

output at time step t via:

St = Gt ⊙ St−1 + k⊤
t vt, (1)

ot = qt St, (2)

where Gt is a learnable gating term in Rd×d, and kt,vt,qt

are the key, value, and query representations. From these,
the final query qT produces

oT =

T∑
t=0

σt vt, σt = (qT ⊙ kt)
( T∏
τ=t+1

Gτ

)
, (3)

illustrating how the gating products affect attention to each
past token vt.

Figure 1 compares attention scores for qT across multiple
heads in Llama2-7B (top) vs. GLA (bottom) on sequences
of length 4096. In many Transformer heads, the attention
distribution extends across earlier tokens (including middle
or far context). By contrast, GLA consistently places dispro-
portionate weight on recent tokens. We hypothesize that this
stems from GLA’s reliance on a single compressive state St

with a fixed dimension, which must simultaneously encode
all prior context. Over long sequences, the gating Gt of-
ten pushes the model to “forget” older segments (Ben-Kish
et al., 2024; Azizi et al., 2025). In next-token prediction
settings, focusing on local tokens often suffices for short
contexts, but can be detrimental when crucial information
resides far back in the input. We notice a concurrent work
(Wang et al., 2024b) has drawn similar “recency bias” ob-
servations on state-space models via theoretical analysis.

Need for Adaptive Models. We also highlight the ne-
cessity of adaptable inference architectures through a real
serving trace (Appendix C), shown in Figure 2. The y-axis
indicates resource usage, measured over time (x-axis) across

16
 18

:20

16
 18

:30

16
 18

:40

16
 18

:50

16
 19

:00

16
 19

:10

Time

0

40

80

120

M
em

or
y 

Re
qu

ire
m

en
t [

GB
] Node 0

Node 1
Node 2
Node 3 (hotspot)

Figure 2. Illustration of resource usage spikes (memory) over time
and across nodes. Long-lived or bursty sessions can heavily strain
certain GPUs.

multiple nodes. In production-scale deployments, load fluc-
tuations arise due to:

• Temporal variability: Sporadic bursts of lengthy re-
quests or multiple concurrent sessions can dramatically
increase memory usage when each session accumulates
a large KV cache.

• Spatial imbalance: Session affinity in multi-turn chat
systems can repeatedly assign requests from the same
user to a single GPU, causing that node to saturate
while other nodes remain underutilized.

A common fallback is to over-provision GPU capacity,
which is both costly and under-utilized most of the time.
Conversely, fully replacing self-attention with linear lay-
ers reduces memory but can degrade performance on tasks
demanding nuanced cross-token relationships. Hence, a
flexible mechanism is needed to partially convert layers
on the fly, balancing efficiency and accuracy in response
to real-time resource pressure. Existing static architectures
are ill-suited for such dynamic scenarios, motivating our
framework that progressively substitutes a Transformer’s
self-attention layers with linear-attention analogs under high
load, while retaining more accurate (i.e., quadratic) layers
when resources are sufficient.

4. Methodology
Motivated by the recency bias in single-state linear attention
(§3), this section introduces our proposed Dual-State Linear
Attention (DSLA), which maintains both “history” and “re-
cent” contexts. We then describe an adaptive LLM-serving
framework, DSLA-Serve, that progressively converts self-
attention layers into DSLA layers in response to dynamic
workload demands. Figure 8 gives a high-level overview.

4.1. Dual-State Linear Attention (DSLA)

Gated Linear Attention (GLA) (Yang et al., 2023) uses
a single hidden state St updated by a forget gate, which
causes earlier tokens to be truncated over long sequences.
To mitigate this recency bias, we propose Dual-State Linear
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Attention (DSLA), where each layer maintains two states:

S1
t = G1

t⊙St−1 + k⊤
t vt, S2

t = G2
t⊙St−1 + k⊤

t vt.
(4)

Here, G1
t ,G

2
t ∈ Rd×d serve as data-driven forget mecha-

nisms; kt,vt are the key/value vectors at time t. We then
blend these two states in the output:

ot = qt

(
γ · S1

t + (1− γ)S2
t

)
, (5)

where qt is the query, and γ is a learnable coefficient that
determines the relative weight of each state. By default, we
initialize G1

t (the “history” gate) to be closer to the identity
matrix, helping preserve older context, while G2

t (the “re-
cency” gate) is randomly initialized (e.g., from N (0, σ2))
to have a broader forgetting effect. This dual-state design
offers more capacity to store mid- or far-range tokens, while
still benefiting from the linear-time update rule.

Notably, attention patterns vary significantly across layers
in a deep model (Ren et al., 2024; Waleffe et al., 2024).
Early layers often focus on local context, middle layers
tend to retrieve from mid-range segments, and later layers
aggregate more global representations. To accommodate
these differing roles, we introduce a learnable coefficient γ
per layer, which adjusts the relative emphasis on our two
states (history vs. recent). Formally, at the final token T , the
DSLA output is:

oT =

T∑
t=0

(
γ σ1

t +
(
1− γ

)
σ2

t

)
vt, (6)

where

σ1
t = (qT ⊙ kt)

(
G1

T ⊙G1
T−1 . . . ⊙ G1

t+1

)
, (7)

σ2
t = (qT ⊙ kt)

(
G2

T ⊙G2
T−1 . . . ⊙ G2

t+1

)
. (8)

By learning γ alongside the gating parameters, each layer
can balance long-range and local information differently.
We interpret ∥γ σ1

t + (1− γ)σ2
t∥2 as the attention score to

token vt for the final query qT , reflecting a superposition
of history and recency signals tailored to that layer’s role.

4.2. Specializing the Two Hidden States

While two hidden states S1
t ,S

2
t expand the capacity beyond

single-state GLA, we also seek to ensure that each state
specializes to capture different parts of the context. If S1

t

and S2
t converge to the same gating or focus on overlapping

token spans, the dual-state advantage diminishes.

Why Two States Suffice? In principle, multiple additional
states could be introduced, each with its own gating matrix.
However, in our experiments, we observe that splitting the
capacity into two distinct states already provides significant

gains: one state tends to preserve global or historical con-
text, while the other focuses on recency or local patterns
(cf. §5.5). Empirically, using more than two states showed
diminishing returns, increasing training overhead and model
complexity without sizable accuracy improvements. Once
again, the key is to properly specialize the two states.

Contrastive Regularization. To drive specialization, we
combine a distillation term with a contrastive penalty. Let
ot denote our DSLA output at position t, and o

(gt)
t be the

self-attention output from the teacher Transformer. Define:

Ldist = DKL

(
ot ∥o(gt)

t

)
, Lcont = sim

(
G1

t , G
2
t

)
,

(9)

where sim(·, ·) measures cosine similarity between the two
gating matrices G1

t ,G
2
t at time t. Minimizing Ldist aligns

DSLA’s outputs with the teacher’s, while minimizing Lcont

reduces the similarity of gating functions across the two
states, encouraging them to attend to different aspects of the
sequence. The total loss is:

L = Ldist + λLcont, (10)

with a hyperparameter λ balancing teacher alignment and
state differentiation. During training, the contrastive term
ensures that the two gates do not collapse to similar solu-
tions, while the distillation term aligns the overall DSLA
output with the teacher’s self-attention. In practice, we ob-
serve that DSLA converges in roughly the same number of
steps as single-state GLA, indicating minimal overhead.

Interpretation. Qualitative attention-score analyses (Fig-
ure 5) show that the two gates yield distinct patterns: S1

t

retains capacity for earlier tokens, whereas S2
t adaptively

highlights recent context. Together, they more closely repli-
cate full Transformer attention while retaining the linear-
time update rule. We next explain how we use DSLA at
inference time in a partial or fully converted manner (§4.3),
enabling efficient serving across diverse workloads.

4.3. Adaptive Layer-wise Conversion with DSLA-Serve

While converting all self-attention layers to DSLA maxi-
mizes speedups and memory savings, it also carries higher
risk of accuracy degradation. In practice, the optimal trade-
off between efficiency and accuracy can vary with both
workload and application constraints. To handle this in fine
granularity, we propose an automatic conversion framework,
DSLA-Serve, that progressively replaces Transformer layers
with DSLA at inference time (Figure 8).

Layer Ranking via Sensitivity. Before deployment, we
distill each layer from the teacher model (e.g., a Trans-
former) into a DSLA counterpart, then measure how much
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replacing that layer alone impacts validation accuracy (or
perplexity). For a more fine-grained indicator, we compute
attention entropy:

Entropy(A) =

T∑
i=0

AT,i log AT,i, (11)

where AT,i is the attention score matrix for the final query
qT . Lower entropy often indicates a layer focusing on fewer
tokens, making it “less sensitive” to linearization. We sort
layers in ascending order of sensitivity.

Adaptive Conversion Logic. During runtime, DSLA-
Serve monitors memory load and query lengths. When
the system detects high GPU pressure, it begins converting
layers from the least sensitive end of the queue to DSLA
form, thereby reducing memory usage by removing the
large key-value (KV ) cache footprint of those layers. This
process continues until either:

1. Memory Relief Achieved: Enough layers are con-
verted that GPU usage falls below a threshold; or

2. Accuracy at Risk: A certain service-level objective
(SLO) on quality (e.g., perplexity or BLEU score) is at
risk, so DSLA-Serve halts further conversion.

Prioritizing Long Contexts. Many real-world requests
are short and do not stress memory resources. By contrast,
large prompts and multi-turn sessions can rapidly inflate the
KV cache. Thus, DSLA-Serve focuses first on converting
layers for those long queries, yielding outsized gains in
memory and speed. Our experiments (Tables 1-2) show that
partial DSLA substitution for long prompts retains strong
performance while substantially reducing latency.

Connection to Real-World Load. As discussed in §3,
production workloads exhibit both temporal and spatial load
imbalances. By flexibly converting a growing fraction of
layers to DSLA, DSLA-Serve can quickly address transient
spikes in GPU usage, then stop once the system stabilizes.
This “pay as you go” strategy avoids static overprovisioning
or fully switching to linear layers (which may excessively
degrade accuracy). We next describe how DSLA-Serve en-
sures consistency across partial and fully converted configu-
rations (§4.4), followed by batching considerations (§4.5).

4.4. Chained Fine-Tuning for Seamless Conversion

Although adaptively converting layers during inference of-
fers a flexible memory–accuracy trade-off, naively training
DSLA replacements for each layer in isolation can lead to
inconsistent behavior when multiple layers are simultane-
ously converted. In other words, replacing layer i while
assuming all other layers are Transformers at training time
will not match actual scenarios where one or more other
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Figure 3. Chained Fine-Tuning. We replace layers in ascending
sensitivity order, freezing all other layers. Upon completion of
each stage, we commit the newly trained DSLA layer so that
subsequent stages see the updated architecture.

layers have already been converted. To address this, we
adopt a chained fine-tuning approach that ensures consis-
tency between training and deployment architectures. As
illustrated in Figure 3, we process with the following recipe:

1. Layer Ranking. Identify and order the layers by their
sensitivity (cf. §4.3).

2. Replace and Finetune. Convert the first (lowest-
sensitivity) layer to DSLA, freeze all other layers, and
fine-tune until convergence.

3. Update Baseline. Permanently replace that layer with
its DSLA counterpart, so subsequent layers see the
updated partial-linear architecture.

4. Iterate. Move to the next layer in the queue, repeating
the same procedure.

By the time we finish training the most sensitive layer, the
model can handle any partial combination of DSLA and
Transformer layers without unexpected degradations. This
yields a family of progressively converted models whose
partial configurations are consistent at test time.

This approach prevents train–test mismatch that would oth-
erwise arise if multiple DSLA layers are used in deployment
but were never jointly seen during training. Empirically, our
experiments confirm that chained fine-tuning mitigates accu-
racy drops and ensures a smooth trade-off between memory
usage and performance.

4.5. Batched Inference Considerations

Batch decoding (Yu et al., 2022; Kwon et al., 2023a) is a
common practice for high-throughput LLM services, where
multiple generation requests (each corresponding to a dif-
ferent user prompt) are processed in parallel. However,
partial layer conversion can create branching paths—some
requests may need a DSLA layer while others still rely on
self-attention if they have not (or do not) trigger conversion.
These requests cannot be fused into a single GEMM pass be-
cause DSLA parameters differ from those of self-attention.

Re-Batching Overhead. When the model encounters a
layer where some requests use DSLA while others still use
self-attention, DSLA-Serve separates them into two sub-
batches. After that layer, the sub-batches may be merged
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again for subsequent shared layers or re-split depending on
conversion status. In principle, this re-batching can add
scheduling overhead. However, we find that:

• KV Cache Savings Dominate. Converting even a frac-
tion of layers significantly reduces the cumulative KV
cache, lowering overall memory pressure and boosting
throughput in the rest of the pipeline.

• Empirical Minimal Impact. Our experiments (§5.4)
show that the time spent splitting and merging batches
is relatively small compared to the overall inference
cost, especially for large prompt lengths.

Thus, although batched requests may follow diverging paths,
the net system throughput remains high. Combined with our
chained fine-tuning strategy, DSLA-Serve enables a flexible
and efficient inference pipeline that handles heterogeneous
requests while maintaining strong accuracy.

5. Experiments
Experimental Setup. In this section, we present the experi-
mental analysis of the proposed method. We used 1.6 billion
tokens sampled from the SlimPajama dataset (Shen et al.,
2024) to fine-tune the model. We distilled our model from
Llama2-7B (Touvron et al., 2023). For additional setup,
please see Appendix B.

Baselines. We compare the adaptive distilled models gen-
erated via DSLA with representatives state-of-the-art from
linear-complexity models (RetNet-6.7B (Sun et al., 2023b),
GLA-7B-20B (Yang et al., 2023), Mamba-7B (Gu & Dao,
2023)), hybrid model (Zamba-7B (Glorioso et al., 2024)),
and quadratic model (Llama2-7B (Touvron et al., 2023)),
respectively. We report the performance of DSLA versions
with 25%, and 50% layers converted to linear attention al-
ternatives.

5.1. Long-Context Understanding

Setup. We evaluate our DSLA model on tasks requiring
careful long-range interactions (Bai et al., 2024), includ-
ing: (i) Multi-Document QA, where the model must answer
questions using information spread across at least two doc-
uments; (ii) Code Understanding, which require reasoning
across multiple code files to answer complex questions; (iii)
Few-shot learning requires the model to comprehend a lim-
ited number of examples and effectively perform various
tasks, including classification, summarization, and reading
comprehension. Additionally, we report the perplexity on
WikiText-2 and Lambada and compare the DSLA model,
with 25% and 50% converted layers, against other models at
7B-scale. Training cost is reported in terms of the number
of tokens processed.

Results. As shown in Table 1, our DSLA significantly
outperforms other linear-cost models (GLA-7B, Mamba-7B)

and the hybrid model (Zamba-7B), achieving up to a 72.23%
performance improvement (e.g., compared to Mamba-7B
on TriviaQA). This substantial gain is likely attributed to the
distillation process, which effectively transfers knowledge
from the Llama-2-7B teacher model to the converted model.
Notably, in multi-document QA tasks, our converted models
even surpass pure self-attention models, achieving accuracy
gains of 3.96 to 5.44 for the 25% converted model. Such
conversion also offers practical benefits, reducing memory
consumption by 1GB for a 4K context and 2GB for an 8K
context per request.

Furthermore, we evaluate our DSLA on general language
modeling tasks, reporting perplexity in Table 1, as well as
on summarization tasks in Table 2. For summarization, we
utilize the widely used CNN/DailyMail dataset (Hermann
et al., 2015; See et al., 2017) and the XSum dataset (Narayan
et al., 2018), reporting performance using ROUGE met-
rics (Lin, 2004). Our results indicate that DSLA effectively
retains performance comparable to Llama2-7B and Zamba-
7B while outperforming GLA-7B and Mamba-7B. This sug-
gests that the DSLA retains the flexibility and adaptability
needed for long-context understanding, all while providing
substantial memory and computation savings.

5.2. Short-Context Benchmarks

Although the primary goal of DSLA is to enhance long-
context understanding in efficient models, we also ensure
that it maintains strong short-context performance with-
out any degradation. Table 3 presents the performance of
DSLA on seven common-sense reasoning tasks (lm eval),
where it demonstrates competitive performance against
other baseline models, including pure self-attention models,
hybrid and linear-complexity models. Additional results
compared with an alternative linearization method (Zhang
et al., 2024a) are provided in Table 7 in Section 5.5.

5.3. Inference Efficiency

In this section, we evaluate the inference latency and per-
request memory usage during the prefill and decoding stages.
Figure 4 shows the prefill latency and decoding latency
normalized by generated length.

In the prefill stage, the full transformer shows lower latency
for prompts under 2K tokens, while the converted model
excels for prompts over 2K tokens. This improvement is
attributed to the DSLA layer’s design, which utilizes single
linear layers for gating to minimize latency overhead while
retaining the gating mechanism’s benefits. Performance
gains are particularly notable for context lengths up to 8K
tokens.

During decoding, transformer latency increases with the
length of generated tokens due to the self-attention mecha-
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Table 1. Results of long context understanding. We report 25%, 50% converted layers of DSLA. DSLA is distilled from Llama2-7B.

Methods Cost WikiText-2 ↓ Lambada ↓ Multi-doc QA Code Understanding Few-shot Learning
HotpotQA ↑ 2WikiMQA ↑ LCC ↑ Repobench ↑ TREC ↑ Samsum ↑ TriviaQA ↑

Llama2-7B 2T 8.79 4.13 5.63 10.24 69.83 56.88 59.00 39.1 86.19

GLA-7B 20B NaN 4.98 3.61 6.89 41.26 44.24 28.50 16.94 57.68
Mamba-7B N/A 10.55 4.05 1.23 0.80 17.56 10.54 11.0 4.55 15.23

Zamba-7B 1T 10.25 3.74 7.90 7.97 40.70 43.20 64.0 37.74 82.19
DSLA [25%] 1.6B 9.26 4.14 11.07 14.20 66.91 51.53 55.0 38.66 87.46
DSLA [50%] 1.6B 9.89 6.19 10.61 13.64 61.68 49.84 46.0 37.28 81.99

Table 2. Comparison results on text summarization tasks.
CNN/DailyMail XSUM Avg.Rouge-1 ↑ Rouge-L ↑ Rouge-1 ↑ Rouge-L ↑

Llama2-7B 30.13% 27.63% 30.07% 24.51% 28.09%

GLA-7B 18.55% 17.62% 24.65% 20.92% 20.44%
Mamba-7B 22.13% 21.04% 27.92% 23.49% 23.65%

Zamba-7B 31.34% 28.67% 28.41% 23.09% 27.88%
DSLA [25%] 30.01% 27.10% 30.10% 24.70% 27.98%
DSLA [50%] 29.29% 26.42% 29.88% 23.73% 27.33%

Table 3. Comparison results on lm eval tasks.
WG ↑ HS ↑ PIQA ↑ ARC-E ↑ ARC-C ↑ MMLU ↑ LogiQA ↑ Avg.↑

Llama2-7B 69.3% 57.1% 79.6% 76.4% 43.3% 45.3% 30.6% 57.2%

RetNet-6.7B 66.1% - 77.8% 73.3% 39.9% 26.1% - -
GLA-7B 69.5% 57.0% 79.2% 74.6% 44.0% 28.4% 28.8% 54.5%

Mamba-7B 71.9% 58.6% 79.9% 77.7% 42.8% 33.9% 23.7% 55.5%

Zamba-7B 69.9% 57.0% 78.8% 74.2% 42.2% 48.9 % 27.0 % 56.9%
DSLA [25%] 69.9% 56.5% 78.7% 74.9% 43.2% 46.2 % 24.9% 56.3%
DSLA [50%] 68.1% 55.4% 75.0% 71.6% 40.4% 43.2 % 25.4% 54.2%
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Figure 4. Prefill (left) and per-token decoding (right) latency.

nism’s reliance on past token interactions, resulting in linear
cost growth. Conversely, the converted model maintains a
constant latency increase by updating only two states for his-
torical and recent information, significantly reducing overall
latency.

During decoding, we observed an interesting phenomenon:
the latency fluctuation is significantly higher for the trans-
former model and decreased as we converted more layers
into DSLA layers. Notably, the latency spikes consistently
occurred at the same position (Appendix. E). Through pro-
filing, we observed that memory allocation (cudaMalloc)
occasionally took 300–1000 ms, while a single inference
typically takes only 30–60 ms. Since this issue is related to
memory allocation, the fluctuations reduce as we convert
more self-attention layers to DSLA layers. This is because
DSLA reduces memory usage by eliminating the necessity
for a key-value (KV) cache.

DSLA avoids maintaining a KV cache, whose size grows
linearly with the context length s and the number of layers

n. The KV cache size per layer is given by:

KVCache[B] = 2× n× b× s× h× dh ×Bbyte

Here, n is the number of layers, b is the batch size, s is the
context length, h is the number of heads, dh is the dimension
per head, and Bbyte is for the data type size (e.g., 2 for BF16,
8 for FP64). Thus reducing the number of transformer layers
significantly reduces memory usage.

5.4. End-to-end System Performance

In this section, we evaluate the end-to-end system per-
formance by simulating a real-world workload using aug-
mented Azure inference traces (Appendix. C). To simulate
this workload, we replayed user requests from these traces
on DSLA-Serve and measured the normalized end-to-end
latency of the requests.

By detecting the load, based on the prompt lengths of re-
quests seen, the DSLA-Serve automatically adjusts the con-
version rate and progressively converts self-attention layers
to DSLA layers, ranging from 25% to 50%. Table 4 presents
the prompt length distribution from the trace and the corre-
sponding conversion rates we applied.

The result shows a significant improvement in the system’s
efficiency. The average end-to-end latency, normalized by
token length, improved by 2.29×, demonstrating the effec-
tiveness of DSLA-Serve in adapting to dynamic system load
while maintaining performance.

Table 4. Prompt length distribution and maximum conversion rate
set during the experiment. DSLA-Serve improves end-to-end
per-token generation latency by 2.29×.

Prompt Length Distribution Max Conv. Rate

seq len<2k 64.68% 12.5%
2k≤seq len<4k 16.16% 25%
4k≤seq len<8k 16.03% 37.5%

8k≤seq len 3.1% 50%

Latency (before) 93.64ms
Latency (after) 40.83ms
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5.5. Further Investigation and Ablation Studies

Importance of specialized hidden states. As discussed
in §3, the primary limitation of linear attention lies in its
tendency to focus on the most recent tokens while neglecting
earlier ones. In Figure 5, we compare the attention patterns
of standard self-attention (left) and DSLA (right). Unlike
the single-state GLA (Fig.1), the recency state and history
state in DSLA are specialized to attend to different regions
of the input. This specialization enables the history state to
effectively capture information from earlier tokens.
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Figure 5. Attention score analysis.

History vs recency per layer. We visualize the γ value used
as a weighting factor that determines how the two hidden
states contribute to the output (ot = qt(γ ·S1

t +(1−γ)·S2
t ))

in Figure 6.
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Figure 6. Hidden states weighting factor visualization.

In the figure, the state with the higher value dominates each
layer. Specifically, the recency state is predominant in the
initial layers (0–3) and the final layers (30–31), whereas the
history state takes precedence in the middle layers (4–29).

This observation aligns with previous research emphasizing
the distinct roles played by different layers in a model (Jawa-
har et al., 2019; Liu et al., 2024a). Fine-grained control
across layers can significantly enhance language model-
ing performance. By learning the parameter γ on a layer-
by-layer basis, the model dynamically adjusts the relative
importance of the two hidden states at each layer. This
adaptability enables the model to focus on specific attention
patterns or temporal dependencies as required by each layer,
ultimately improving overall performance.

Is dual-state enough? We conduct an ablation study
to assess the impact of the number of hidden states in
GLA. These experiments are performed using Llama-3.2-
1B-Instruct on the CoLA task (Wang, 2018). Specifically,
we first perform supervised fine-tuning on CoLA, then re-
place the self-attention layers with GLA layers while vary-

ing the number of hidden states. The resulting models are
re-trained on the CoLA task to recover performance. For
configurations with more than two states, we compute the
Lcont between consecutive states and average the values.

Table 5. Ablation study of the number of hidden states. Results are
reported in accuracy on the validation set.

# States 1 2 4 8 Baseline

Llama-3.2-1B-Instruct 78.97 81.19 81.44 80.96 82.83

The results, presented in Table 5, show that our DSLA sig-
nificantly improves the ability to replicate the original self-
attention mechanism, achieving a 2.22 accuracy increase
over the single-state GLA. Moreover, increasing the number
of hidden states beyond two yields diminishing returns, as
the dual-state setup is sufficient to effectively capture both
historical and recent information.

Comparison with hybrid architecture. We measured the
latency of Zamba-7B to compare its efficiency. For a fair
evaluation, we used the author-provided checkpoint and
code, adhering to the instructions for environment setup.
On average, Zamba-7B is 1.8× slower in prefill across all
tested context lengths, 3.0× slower in end-to-end (including
generation) latency than the transformer-based architecture
Llama2-7B on an A100 machine. This performance gap
is primarily attributed to Zamba-7B’s extensive number
of activated parameters and self-attention layers. Specif-
ically, Zamba-7B employs 13 shared self-attention layers
that are repeatedly loaded and utilized, exacerbating the
memory bottleneck unless executed on state-of-the-art hard-
ware such as the H100 (used in the original paper (Glorioso
et al., 2024)), which offers 1.5× higher memory bandwidth
compared to A100 that we used (H100; A100).

Effectiveness of sensitivity metric. Here, we discuss the
effectiveness of attention entropy (§4.3) as a sensitivity met-
ric. For the ablation study on other potential metrics (outlier
percentage, and downstream task accuracy), please refer
to Appendix F. Figure 7 visualizes the correlation between
the metric and its performance impact, where the X-axis
represents the layer index at which a self-attention layer is
replaced with a DSLA layer, and the primary Y-axis shows
the resulting performance impact, measured as perplexity
on the WikiText-2 dataset. The metric is plotted on the
secondary Y-axis. A strong correlation between a metric
and performance impact suggests its usefulness in guiding
model modifications.

Comparison with a different linearization method In Ta-
ble 7, we compare our method with LoLCATs (Zhang et al.,
2024a) on lm eval tasks. For a fair comparison, we ap-
plied our approach to the same teacher model (Llama3-8B)
used by LoLCATs. While LoLCATs leverages low-rank
adaptation to recover performance lost during linearization,

8
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Table 6. Results of long context understanding. We report 25%, 50% converted layers of DSLA. DSLA is distilled from Llama2-7B-chat,
an instruction tuned model.

Methods Cost Multi-doc QA Code Understanding Few-shot Learning
HotpotQA ↑ 2WikiMQA ↑ LCC ↑ Repobench ↑ TREC ↑ Samsum ↑ TriviaQA ↑

Llama2-7B-chat 2T 29.79 27.15 59.71 48.96 58.33 39.03 86.11

GLA-7B 20B 3.61 6.89 41.26 44.24 28.50 16.94 57.68
Mamba-7B N/A 1.23 0.80 17.56 10.54 11.0 4.55 15.23

Zamba-7B-Instruct 1T 24.15 29.96 47.06 48.96 70 40.35 88.89
DSLA [25%] 800M 35.37 32.33 58.11 45.17 55.0 40.07 85.56
DSLA [50%] 800M 33.28 30.71 53.55 41.75 44.0 37.64 73.04
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Figure 7. Attention entropy as a sensitivity metric.

DSLA employs a dual-state mechanism to separately re-
tain historical and recent information. Additionally, DSLA-
Serve enables dynamic adaptation to accuracy-latency trade-
offs. On average, DSLA achieves superior performance.
We report the standard deviation of our measurements for
reference.

Table 7. Comparison of different linearization methods. DSLA is
distilled from Llama-3 8B.

WG ↑ HS ↑ PIQA ↑ ARC-E ↑ ARC-C ↑ MMLU ↑ Avg.↑
Llama3-8B 74.1% 79.7% 79.9% 80.1% 53.3% 66.6% 72.2%
LoLCATs 80.9% 79.7% 80.9% 81.7% 54.9% 52.8% 70.7%

DSLA 73.2%±1.3 77.5%±0.5 79.8%±1.0 80.7%±0.8 55.9%±1.5 68.9%±3.2 72.7%

Application to different models We evaluated the pro-
posed method on a smaller-scale model (1.5B) to demon-
strate its scalability. Specifically, we distilled the Microsoft
Phi-1.5 (Li et al., 2023) model and compared it with the
baseline Transformer architecture, the 1.5B SSM model
Phi-Mamba (Bick et al., 2024), and our hybrid model. Con-
sistent with the results on larger models (Table 1–Table 3),
our hybrid model outperforms all baselines. These results
confirm that our method generalizes well across different
model scales.

Table 8. Comparison of 1.5B-scale models on lm eval tasks.
DSLA is distilled from Phi-1.5.

Architecture Cost WG↑ ARC-E↑ ARC-C↑ PIQA↑ HS↑
Phi-1.5 Transformer 150B 73.4 75.0 48.0 76.6 62.6

Phi-Mamba SSM 3.0B 71.7 74.0 44.1 75.5 60.2
DSLA DSLA 800M 72.9 74.5 44.5 75.9 60.5

We provide additional results in Table 6 to demonstrate the
generalizability of our method across different architectures.

Specifically, Table 6 reports results using the Llama-2-7B-
chat model. The main observations discussed in §5.1 remain
consistent, confirming that our method performs robustly
across varying backbone models.

Limitations To enable fast inference without adding model
loading latency to the critical path, DSLA-Serve loads both
architectures (i.e., Transformer layers and DSLA layers) into
memory. This approach may require additional memory to
store the model weights. To mitigate this, we can consider
offloading layers and prefetching layers, as the layer replace-
ment order is known in advance. Offloading and prefetching
of weights at inference time have been explored in prior
work (Aminabadi et al., 2022; Cai et al., 2024a; Eliseev &
Mazur, 2023), and are regarded as effective techniques for
reducing memory usage—especially if the server overlap
prefetching with computation or communication, thereby
hiding loading latency.

In terms of accuracy, we empirically observed that perfor-
mance begins to degrade when more than 75% of the model
is converted, consistent with observations from (Wang et al.,
2024a). However, DSLA-Serve dynamically adjusts the
conversion rate to meet the service level agreement (SLA).
In general, the performance of a distilled model can be
improved by employing a stronger teacher model, as demon-
strated in Table 6 and Table 7.

6. Conclusion
In this work, we proposed DSLA-Serve, an adaptive infer-
ence system that distills quadratic complexity self-attention
layers to linear-cost DSLAlayers to reduce inference cost
on the fly. For the linear-cost model, we use DSLA a dual-
state linear attention highlighting two hidden states that
separately hold history and recent context. With the spe-
cialized states, DSLA overcomes the limitations of previous
linear attention models, which primarily focus on localized
context. With DSLA-Serve we achieve 2.3× end-to-end
improvement over the transformer model and 3.0× reduc-
tion over the hybrid model while maintaining competitive
performance on downstream tasks.
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Figure 8. Overview of DSLA-Serve.

We provide a visual overview of DSLA-Serve in Figure 8.

We first perform a layer-wise fine-tuning (distillation) offline (Top), generating DSLA substitutes for each Transformer layer
and ranking layers by their sensitivity to conversion.

During inference (Bottom), DSLA-Serve automatically replaces layers in ascending order of sensitivity as resource pressure
increases, allowing the system to adaptively reduce memory and compute overhead with minimal accuracy loss.

B. Detailed Experimental Setup
In this appendix, we provide additional details on the fine-tuning process of the DSLA model. We initialize the query, key,
value, and output projection layers by reusing their pre-trained parameters. The history gating layer is initialized to be close
to the identity matrix, while the recency gate is randomly initialized using N (0, σ2). The biases of the gating layers are set
to zero.

For fine-tuning, we use the Slimpajama dataset (Shen et al., 2024), which comprises Arxiv (Clement et al., 2019), Books (Gao
et al., 2020), Common Crawl, C4 (Raffel et al., 2019), Github, Wikipedia (Foundation), and StackExchange (Excahnge,
2024). We randomly sample from the first chunk of the training dataset, truncating inputs to a maximum of 4K tokens.
Tokenization is performed using LLaMA 2-7B’s tokenizer (Touvron et al., 2023).

Fine-tuning is conducted using the AdamW optimizer (Loshchilov, 2017), with a weight decay of 0.01. The learning rate
is linearly warmed up to 1e-4 over the first 5% of training steps, followed by a cosine decay schedule down to 5e-5. We
leverage an open-source Triton kernel for fine-tuning (Yang et al., 2023).

For fine-tuning the 7B model and measuring latency (Fig.4), we use A100 GPUs with 80GB of memory. End-to-end
performance evaluation (Table4), downstream task evaluations (Table 1-3), and ablation studies (Table 5) are conducted on
A6000 GPUs with 49GB of memory.

In terms of fine-tuning cost, fine-tuning a single layer of a 7B model on 1B tokens takes approximately 5 hours on 4×A100
GPUs (80GB). Compared to full pretraining (858 days (Touvron et al., 2023)), our fine-tuning costs just 0.07%—a one-time
expense.

C. Serving Trace Information
To replay real-world serving scenarios, we augmented Azure LLM inference trace 2023 (Patel et al., 2024). The original
trace contains a timestamp, the number of context tokens (prompt tokens), and the number of generated tokens. Since the
original dataset does not have a text prompt and session, we generated a text prompt and added a session ID to enhance the
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original dataset and use it to replay the real-world chat serving scenario. Figure 9 shows the distribution of chats by number
of turns per session and the number of requests per second.
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Figure 9. (a) Number of turns per session follows Poisson distribution (λ = 3). (b) Varying load defined as the number of user requests
in real world serving scenario. Across time, the load to the server fluctuates, indicating the need to adaptive de-stressing solution for a
server.

When we are replaying the conversation, we concatenate history of the session to simulate the multi-turn chat. By doing this,
resulting trace’s prompt length shows following distribution.
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Figure 10. Prompt length distribution

D. Serving of Mixed Batch
Assume there are four requests waiting in the queue from R1 to R4 (Figure 11). These are from different users. Due to
differences in prompt length or other factors, the model used at the previous generation step for each request may differ. For
instance, R2 with a short prompt used a transformer, while R4 with a very long prompt used a 3-layer-converted model.

If we now want to batch two generation requests, R1 and R2, together for the next token generation, a path divergence could
occur at Layer 2. R1 needs Dual-state GLA (Layer 2-1), and R2 needs Self Attention (Layer 2-2). The diverged path from
different needs resembles a mixture-of-experts architecture. As explained in the main manuscript, this can cause a delay
because it cannot be batched for the operations in Layer 2. However, requests R1 and R2 can still be batched together at
Layer 1, Layer 3, and Layer 4, thereby maximizing throughput. Additionally, the memory savings achieved at Layer2-1 by
conversion are substantial enough to compensate for the delay.

User request used in the Figure 11 is from Chatbot Arena Dataset (Zheng et al., 2023).

E. Latency Fluctuation
To analyze the fluctuation in decoding latency, we ran 2048 token generation tasks multiple times with the same prompt.
Interestingly, we observed that the latency fluctuation occurs in the same location across multiple runs. With profiling with
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Figure 12. Latency fluctuation

pytorch profiler, we observed that this is due to the cudaMalloc operation, which takes 300ms-1000ms intermittently.
This unexpected delay can be mitigated by converting more transformer layers into linear layers, which reduces the memory
usage by removing the KV cache.

For this experiment, we used an A6000 GPU and a llama2-7b model, so the order of latency could differ from the numbers
reported in the main manuscript.

F. Further Discussion on Sensitivity Metric: An Ablation Study
In this section, we compare three sensitivity metrics (§4.3): (a) attention entropy, (b) outlier percentage, and (c) downstream
task accuracy. The goal is to determine whether these metrics correlate with performance impact, making them effective
sensitivity measures.

For the interpretation of figures, each sensitivity metric is plotted on the secondary Y-axis. A strong correlation between a
metric and performance impact suggests its usefulness in guiding model modifications.

Other than attention entropy that we used, downstream task accuracy in Figure 13(c) worth further discussion. While the
downstream task accuracy provides a more direct measure of sensitivity, it can be only known after the distillation is done so
it could be less practical.

Additionally, its utility varies across tasks, making it less generalizable when a model is used for multiple applications.
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Figure 13. Different possible sensitivity metrics: (a) attention entropy, (b) outlier percentage, and (c) downstream task accuracy. We also
observed that attention entropy tends to perform reasonably well across a variety of downstream tasks.

Figure 13(c) illustrates this limitation: the bar plot represents Wikitext perplexity, while the line plot shows downstream task
performance (Rouge-1 score for summarization). These metrics do not always align, suggesting that task-specific accuracy
is not always a suitable proxy for sensitivity. However, if a model is fine-tuned for a single task, using task accuracy as a
sensitivity metric can be advantageous and improve performance (Ro et al., 2024).

G. Additional Related Work
G.1. Efficient Inference Techniques

Large language models (LLMs) are known for their high deployment costs, primarily due to the substantial parameter
counts and the increasing overhead of the KV cache during generative decoding. To mitigate the parameter-related overhead,
numerous studies have been conducted. Broadly, some research has focused on developing smaller models with carefully
optimized training recipes (Liu et al., 2024b), while others have addressed parameter reduction through sparsity (Frantar &
Alistarh, 2023; Ma et al., 2023; Sun et al., 2023a) and quantization (Frantar et al., 2022; Xiao et al., 2023a; Lin et al., 2024).
To reduce the KV cache cost, which is often memory-bound during the iterative generation process, a series of works have
focused on KV cache compression techniques (Zhang et al., 2023; Li et al., 2024; Tang et al., 2024) to alleviate memory I/O
limitations. Additionally, other research has explored optimizing the decoding process itself, such as speculative decoding
(Sun et al., 2024) and multi-head decoding (Cai et al., 2024b). In contrast to these efforts, this work investigates elastic
inference through layer-wise conversion of sub-quadratic attention to support long-context processing.

G.2. Knowledge Distillation

Knowledge distillation (Hinton, 2015) is an effective technique for transferring knowledge from large models to smaller
ones, improving inference efficiency. To address the quadratic complexity of transformers, several initial efforts have
focused on distilling transformers into linear attention models (Mercat et al., 2024; Kasai et al., 2021). Recently, (Bick
et al., 2024) proposed a stage-wise distillation pipeline that effectively distills transformer-based Phi-3 models into a
hybrid of transformer and Mamba models, with only a slight performance degradation. In addition, (Wang et al., 2024a)
further improved efficiency by integrating speculative decoding. (Zhang et al., 2024b) explored the expressiveness of linear
attention and introduced a simple polynomial approximations to enhance its capabilities. Previous approaches typically
used knowledge distillation as a plug-and-play technique, successfully distilling quadratic transformers into sub-quadratic
linear attention models. However, in this work, we systematically analyze the layer-wise and head-wise properties of the
misalignments in attention patterns between self-attention and linear attention. And then we propose a simple and effective
scaling strategy to mitigate the suboptimal distillation process caused by these misalignments.
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