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Abstract

Temporal Logic (TL) can be used to rigorously001
specify complex high-level specification for002
systems in many engineering applications. The003
translation between natural language (NL) and004
TL has been under-explored due to the lack005
of dataset and generalizable model across dif-006
ferent application domains. In this paper, we007
propose an accurate and generalizable trans-008
formation framework of English instructions009
from NL to TL, exploring the use of Large Lan-010
guage Models (LLMs) at multiple stages. Our011
contributions are twofold. First, we develop a012
framework to create a dataset of NL-TL pairs013
combining LLMs and human annotation. We014
publish a dataset with 23K NL-TL pairs. Then,015
we finetune T5 models on the lifted versions016
(i.e., the specific Atomic Propositions (AP) are017
hidden) of the NL and TL. The enhanced gen-018
eralizability originates from two aspects: 1) Us-019
age of lifted NL-TL characterizes common log-020
ical structures, without constraints of specific021
domains. 2) Application of LLMs in dataset022
creation largely enhances corpus richness. We023
test the generalization of trained models on five024
varied domains. To achieve full NL-TL trans-025
formation, we either combine the lifted model026
with AP recognition task or do the further fine-027
tuning on each specific domain. During the028
further finetuning, our model achieves higher029
accuracy (> 95%) using only <10% training030
data, compared with the baseline sequence to031
sequence (Seq2Seq) model.1032

1 Introduction033

Temporal Logic (TL) has been widely used as034

a mathematically precise language to specify re-035

quirements in many engineering domains such as036

robotics (Tellex et al., 2020), electronics design037

(Browne et al., 1986), autonomous driving (Maier-038

hofer et al., 2020). TL can capture the complex039

spatial, temporal, and logical requirements in both040

human languages and environmental constraints,041

1Datasets and Codes are available

and can be transformed into executable actions or 042

control inputs for robots (Gundana and Kress-Gazit, 043

2022; Raman et al., 2013; Boteanu et al., 2016; Pa- 044

tel et al., 2020; Gopalan et al., 2018). 045

Unlike many robotics works that try to use end- 046

to-end black-box models to infer robotic behaviors 047

directly from natural language (NL) (Ahn et al., 048

2022), using structured TL as the intermediate has 049

a twofold benefit – the TL can be used for direct 050

planning, and the TL representation can be used 051

to identify specific sources of failure and provide 052

automatic feedback to a non-expert user (Raman 053

et al., 2013). However, TL has a steep learning 054

curve. Communicating one’s goals and constraints 055

through NL is much more intuitive to a non-expert. 056

Therefore, a model able to transform NL instruc- 057

tions into TL is a missing but crucial component 058

for interactive robots and engineering designs. 059

Currently, there is no general tool to perform au- 060

tomated translations between TL and NL that takes 061

the following requirements into consideration: 062

• Cross-domain generalization. Although TL 063

is used in many engineering domains, cur- 064

rent NL-to-TL approaches largely constrain 065

their training data to a single domain. These 066

datasets mostly lack plentiful corpus richness 067

of NL-TL and have their own specified for- 068

mats of Atomic Propositions (AP). Then the 069

models fail to generalize to other domains 070

(Gopalan et al., 2018), even though the struc- 071

ture of TL itself is not dependent on the do- 072

main and should be generic. 073

• Variability of NL instructions. Past work 074

often constructs synthetic data algorithmically, 075

causing limited forms of the NL input. Real- 076

world NL utterances cannot be encoded into 077

a small set of rules. Models trained on such 078

homogeneous data fail to generalize to new 079

sentence structures (Brunello et al., 2019). 080
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One big bottleneck in the NL-to-TL problem is081

the lack of data. Although modern statistical meth-082

ods can outperform rule-based methods (Buzhin-083

sky, 2019), they typically require a huge dataset.084

This data is expensive and difficult to collect since085

strong expertise of annotators is needed (Brunello086

et al., 2019). As outlined above, constraining the087

domain or form of the NL instructions relieves the088

pressure of dataset, but also unavoidably under-089

mines the generalizability (Brunello et al., 2019;090

Patel et al., 2019).091

To supplement the data creation process and si-092

multaneously overcome the need for a huge dataset,093

we propose to use pre-trained LLMs. We utilize094

GPT-3 (Brown et al., 2020) to assist dataset cre-095

ation and finetune T5 models (Raffel et al., 2020)096

to be specialized in NL-to-TL transformation.097

Another aspect of our approach is to use ‘lifted’098

versions of NL and TL for finetuning our model,099

which greatly enhances generalizability. In previ-100

ous work, models trained on full NL-to-TL transfor-101

mation often include converting specific individual102

actions into APs. For example, the AP "a response103

is created in Slack" might be formalized as "cre-104

ate_Slack". As a result, each work has to regularize105

its own content and style of APs, affecting gener-106

alization. Instead of taking this approach, we hide107

all the APs in our data during finetuning, acquiring108

a lifted model on lifted NL-to-TL transformation.109

For the final ground application from full NL into110

full TL, two methods are proposed, either by com-111

bining the lifted model with AP recognition or fur-112

ther transfer learning in one specific domain. For113

further transfer learning into specific domains, we114

compare the models with/without pre-training on115

lifted NL-TL and show its significance.116

In this paper, we present two key contributions:117

• Constructing a cross-domian NL-TL118

dataset. We generate a dataset of 10K lifted119

NL-TL pairs using a novel GPT-3-assisted120

framework. Ablation studies are conducted121

to show the significance of each part of122

the framework for dataset construction. In123

addition, we collect and clean previous124

datasets (13K) from two varied domains,125

adapting original full NL-TL pairs into126

lifted versions. In this way, we publish a127

dataset of 23K lifted NL-TL pairs. Ablation128

studies show that the newly created data are129

indispensable since purely training on the130

collected data fails to work across domains.131

• Finetuning an lifted NL-to-TL model on 132

T5 using our data, and demonstrating the im- 133

provement in performance compared to for- 134

mer state-of-the-art methods. For application 135

in full NL-to-STL transformation, two meth- 136

ods are proposed. We compare our model to 137

Seq2Seq models and direct few-shot learning 138

by GPT-3, across five domains. The experi- 139

mental results show that our methods achieve 140

better accuracy (>95% across all domains) and 141

are more data-efficient (<10% domain specific 142

data). We also do the ablation study by train- 143

ing a Seq2Seq model with lifted NL-to-TL 144

dataset, revealing that T5’s superior model 145

capacity is essential. 146

2 Temporal Logic Specifications 147

2.1 STL Syntax 148

There are many different versions of TL (Emer- 149

son, 1990; Maler and Nickovic, 2004; Koymans, 150

1990). They are more or less similar in terms of 151

syntax. We will use Signal Temporal Logic (STL) 152

as a representative formal language that supports 153

constraints over the continuous real-time, which is 154

more suitable to capture time-critical missions. In 155

some previous work, Linear Temporal Logic (LTL) 156

is also widely used, which is contained by STL 157

when the time is discrete. We will construct our 158

framework based on STL and show that the trained 159

model also performs well on datasets and tasks us- 160

ing LTL. An STL formula is defined recursively 161

according to the following syntax: 162

163

ϕ ::= πµ | ¬ϕ | ϕ∧φ | ϕ∨φ | F[a,b]ϕ | G[a,b]ϕ 164

| ϕU[a,b]φ (1) 165

where ϕ and φ are STL formulas, and πµ is an 166

atomic predicate. ¬ (negation), ∧ (and), ∨ (or), 167

⇒ (imply), and⇔ (equal)) are logical operators. 168

F[a,b] (eventually/finally), G[a,b] (always/globally), 169

and U[a,b] (until) are temporal operators with real- 170

time constraints t ∈ [a, b]. Temporal operators 171

with time constraints are illustrated by Table 4, and 172

other operators can be presented using the basic 173

syntax. 174

2.2 Lifted STL and Lifted NL 175

We represent our data as ’lifted’ NL and STL, in 176

which the specific APs corresponding to individual 177

actions are hidden (following nomenclature from 178

Hsiung et al. (2021)). In our lifted NL and STL, 179
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Figure 1: Illustration of lifted NL and lifted STL.

each AP is replaced with a placeholder prop_i. In180

this way, we train our model on the general con-181

text of the instruction regardless of the specific182

APs. The correspondences between full and lifted183

NL/STL are shown in Figure 1.184

2.3 STL Expression Formats185

Consider an STL expression as a binary tree, as186

in Figure 2. When finetuning a text-to-text model,187

there are different ways of representing the target188

STL in the form of linear text. Specifically, the tar-189

geted tokens can be linearized in an in-order (left190

subtree, root, right subtree) or pre-order (root, left191

subtree, right subtree) manner. Meanwhile, the op-192

erators can also be represented as the words with193

their corresponding meanings (rather than as sym-194

bols). The training results show that the in-order195

expression with all the operators replaced by words196

achieves much better accuracy than other three197

forms (will discuss in the following Section 4.2).198

3 Related Work199

Over decades, researchers have methods to trans-200

late English sentences into various TL formulae201

(Brunello et al., 2019; Finucane et al., 2010; Tellex202

et al., 2020; Raman et al., 2013). However, to sim-203

plify the tasks, some previous work typically make204

strong assumptions to restrict the input text or the205

output formula, thus limiting the flexibility and206

generalizability.207

The first representative attempt is by Finucane208

et al. (2010); Tellex et al. (2011); Howard et al.209

(2014), where the traditional methods typically fol-210

low three steps: 1) pre-process given English input211

by extracting syntactical information, 2) identify212

patterns or rules for TL through classification, and213

3) run an attribute grammar-based parser to derive214

a target logical format. These methods only work 215

for restricted input NL (Tellex et al., 2020). 216

Another category of approaches are learning- 217

based. Representative state-of-the-art works are 218

Gopalan et al. (2018); Wang et al. (2021); He 219

et al. (2022). In Gopalan et al. (2018) the au- 220

thors gather a dataset focusing on Geometric LTL 221

(GLTL), in which the NL and GLTL examples are 222

all for the navigation of a car in the room. Then 223

Seq2Seq models with attention mechanism are 224

trained. Though the accuracy (93.45%) is satis- 225

fying, the used GLTLs are relatively simple with 226

each GLTL normally including one to three APs 227

and the dataset also focuses on one confined task. 228

In He et al. (2022) the authors choose to first trans- 229

late a manually generated set of STL formulae into 230

English sentences and train a semantic parser on 231

the synthetic data. Such synthetic data cannot rep- 232

resent general NL and therefore the trained parser 233

only works well on the original STL formulae. 234

In Wang et al. (2021) a semantic parser is built 235

to learn the latent structure of NL commands for 236

ground robots. The parser will provide (potentially 237

incorrect) intermediate LTL representations to a 238

motion planner, and the planner will give an exe- 239

cuted trajectory as the feedback to see whether the 240

robot’s execution satisfies the English input. Such 241

approach has no guarantee on the correctness of the 242

translated TL. In recent months, the work by Fug- 243

gitti and Chakraborti (2023) directly applies LLMs 244

like GPT-3 to convert NL to LTL via few-shot learn- 245

ing. The prompts should be well designed and the 246

model will fail once the NL and LTL structures are 247

too complex (we will discuss it in Section 5.1). 248

These years, starting from the attention mech- 249

anism (Vaswani et al., 2017), the rapid progres- 250

sion of pre-trained LLMs in NLP tends to unify 251

many previous seemingly independent tasks into 252

one large pre-trained model, especially the GPT 253

series from OpenAI (Brown et al., 2020), and 254

T5 (Raffel et al., 2020) and PaLM (Chowdhery 255

et al., 2022) from Google. These models are pre- 256

trained with large amounts of natural sentences and 257

codes, intrinsically encoding much logical knowl- 258

edge (Creswell et al., 2022). This inspires us the 259

new opportunity in NL-to-TL task. 260

4 Approach 261

There are 3 steps in our approach. First, generating 262

lifted NL-STL dataset with LLMs. Second, finetun- 263

ing LLMs to get high accuracy on lifted NL-STL 264
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Figure 2: Illustration of different formats of STL expressions. (a) Different expression formats of the
same STL. (b) The binary tree representation of STL.

transformation. Third, lifting the data and applying265

the lifted model. Finally, we also consider the case266

where lifting is not possible and we must translate267

end to end by further finetuning the model.268

4.1 Data Generation269

Algorithm 1 Algorithm for STL synthesis

Input:
Maximum number of APs N

Output:
Synthesized pre-order STL

two_subtree = [∧, ∨,⇒,⇔, U, U[a,b]]
one_subtree = [¬, F, G, F[a,b], G[a,b]]
sub_lists← Random prop_list with total length
[1, N ] ▷ [prop_3, prop_1], [prop_2]
Each sub_list ← insert operators in
one_subtree + two_subtree ▷ [⇔, ¬, prop_3,
prop_1], [G, prop_2]
Assembling sub_lists into pre-order STL by ap-
pending random two_subtree operators ▷
[U[10,30],⇔, ¬, prop_3, prop_1, G, prop_2]

We apply the LLM GPT-3 (Davinci-003) to help270

generate multiple lifted NL and STL pairs. The first271

intuitive method is to use various NL-STL pairs as272

prompts and ask GPT-3 to automatically generate273

more NL-STL pairs. However, it turns out that the274

model always generates STL and NL with similar275

syntactic structures as the given prompts, thus lim-276

iting the sentence richness. To stimulate GPT-3 to277

generate sentences with more variations, we ask it278

to generate corresponding NLs from different STLs.279

The whole framework (referred as Framework1) is280

shown in Figure 3. Various pre-order STLs are281

randomly synthesized by binary tree generation al-282

Figure 3: Framework1 to generate NL-STL pairs.

Figure 4: Framework2 to generate NL-STL pairs.
One extra loop between NL and STL is added.

gorithm (See Algorithm 1 and specific discussion 283

in Appendix B). The pre-order STLs are then trans- 284

formed into in-order expressions via rules. To make 285

the input STL more understandable to GPT-3, the 286

operators are represented with the words of their 287

meanings (⇒ (imply),⇔ (equal),∨(or), etc). 288

Then the GPT-3 will try to generate the raw NL 289

whose semantic meaning is close to the STL. Hu- 290

man annotators then modify the raw NL to make 291

its meaning consistent with the STL. During this 292

process, the NL-STL pairs in prompts will be ran- 293

domly chosen to make the vocabulary and sen- 294
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tence structure more diversified. We gather 200295

NL instructions from 10 volunteers who are famil-296

iar with robot tasks and randomly choose 100 NL297

to serve as the prompt pool, while the other 100 NL298

serve as the extra testing data. In each iteration of299

Framework1, 20 pairs are randomly chosen from300

the prompt pool to form the prompt of GPT-3 (a301

prompt example is shown in Appendix C.1 and the302

discussion on how many examples should be in-303

cluded in GPT-3 prompt is shown in Appendix D).304

While Framework1 enhances the sentence rich-305

ness, one issue is that the pure rule-based synthesis306

of STL sometimes generates unreasonable seman-307

tic meanings, or that the STL is too complex to308

describe it with NL. To solve this problem, an op-309

timized framework (referred as Framework2) is310

shown in Figure 4. Compared to Framework1, an311

extra loop between STL and NL is added using312

GPT-3. In this way, the initial rule-based STL with313

unreasonable or complex meanings will be auto-314

matically filtered by GPT-3 itself. In other words,315

during the mapping from STL-1 to NL-1, GPT-3316

more or less modifies the meanings of the STLs that317

it cannot fully translate. Then the translated NL-1,318

though not fully consistent with STL-1, is more319

reasonable in the view of humans. It turns out that320

the semantic meanings synthesized by Framework2321

are closer to the common human languages, and322

NL-STL pairs own much less errors to annotate.323

The average number of annotated pairs is about 80324

per person per hour with Framework1, and about325

120 per person per hour with Framework2.326

We in total create 9867 lifted NL-STL pairs com-327

bining both Framework1 and Framework2, with328

the whole cost of around 100 person-hours. Ap-329

pendix C.2 shows a prompt example to transform330

from NL-1 back into STL-2 via GPT-3, and Ap-331

pendix E shows some example annotations of lifted332

NL-STL pairs.333

Apart from synthesizing and annotating lifted334

NL-STL pairs with GPT-3, we also collect and an-335

notate the data gathered from Wang et al. (2021)336

and He et al. (2022). Wang et al. (2021) focuses on337

robot navigation task with LTL, and He et al. (2022)338

focuses on circuit controlling with STL. To clean339

and process the data into lifted NL-STL pairs, the340

APs in both two datasets are detected and hidden341

by combining hard-coded algorithms with entity342

recognition package SpaCy (Honnibal and Mon-343

tani, 2017). We gather 5K lifted NL-STL pairs344

from Navigation dataset (Wang et al., 2021) and345

Figure 5: Testing accuracy VS. Number of created
NL-STL pairs. The data collected from Navigation
and Circuit work are all used during training. The
inner data refers to the data generated with the help
of GPT-3, and the extra data refers to the instruc-
tions collected from volunteers. The figure shows
the necessity of the created data.

8K lifted NL-STL pairs from the Circuit dataset 346

(He et al., 2022). Note that the original Navigation 347

dataset uses LTL, while we correct some expres- 348

sion formats to form into STL. The original Circuit 349

dataset contains 120K NL-STL pairs, while we find 350

including 8K examples into our dataset is informa- 351

tive enough to cover the whole corpus richness of 352

Circuit dataset. 353

Hence, in this work a dataset with in total about 354

23K lifted NL-STL pairs are created. Appendix I.1 355

shows the statistics of this lifted NL-STL dataset. 356

4.2 Model Finetuning 357

We mainly apply the T5 model (Raffel et al., 2020) 358

to serve as the base LLM for finetuning. To study 359

whether model sizes will influence the performance, 360

T5-base (220M) and T5-large (770M) are both fine- 361

tuned on the same data. The setting is illustrated in 362

Appendix K. 363

Though the corrected data from Navigation and 364

Circuit studies already provide multiple examples, 365

these datasets only cover limited conditions and 366

lack generalization. To show the necessity of the 367

newly created data, the T5 models are finetuned 368

with varied number of created NL-STL pairs, as 369

shown in Figure 5. During training, all the data 370

collected from Navigation and Circuit studies are 371

used and the number of created data are varied 372

among different models. The trained models are 373

then tested with either the created data (referred 374

as inner data test) or the NL instructions collected 375

from volunteers (referred as extra data test). Since 376
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T5-base T5-large

P.O./word 70.00± 1.42% 73.10± 1.05%
I.O./word 96.43± 0.72% 97.52± 0.65%

P.O./opera. 72.35± 1.54% 71.95± 1.23%
I.O./opera. 89.94± 0.89% 88.17± 1.02%

Table 1: Accuracy of inner data testing for training
data with different expression formats. P.O. and
I.O. represent Pre-order and In-order, respectively.

minor difference in STLs can cause severe differ-377

ence in the real meanings, we apply the binary378

accuracy as the metric, i.e., 100% right or not. We379

find that the Top-1 testing accuracy will increase380

greatly with increasing created pairs, with the high-381

est accuracy 97.52% and 90.12% of inner and extra382

testing, respectively.383

Table 1 presents the experimental results with the384

targeted STL of different formats as discussed in385

Section 2.3. We find that using the in-order format386

plus replacing operators with words will largely387

improve the performance. In-order format is more388

consistent with natural sentence expressions and389

lowers the difficulty for finetuning an LLM. This390

result is different from former conclusions when391

training Seq2Seq model for NL to STL/LTL tasks,392

where the pre-order format is better because it nat-393

urally avoids the issue of parentheses matching394

(Wang et al., 2021).395

4.3 Ablation Studies396

Human Annotation To reveal the significance397

of human annotation, we train the model with the398

same amount of raw pairs created by GPT-3 and399

test them on corrected data. The results are shown400

in Appendix G.1. We find that annotated dataset401

can improve the testing accuracy by around 10%.402

403

Framework2 To reveal the significance of404

the data generated by Framework2, we train the405

model with either the same amount of data from406

pure Framework1 or the data combining two407

frameworks. Utilizing both frameworks improves408

the accuracy by around 2% (Appendix G.2).409

410

Model Capacity of T5 To reveal the sig-411

nificance of T5’s superior model capacity, we412

train a Seq2Seq model on the same lifted NL-STL413

dataset for comparison, as shown in Appendix H.414

5 Application 415

Right now we have finetuned T5 model to convert 416

lifted NL into lifted STL. For the real applications, 417

we need one model to convert from full NL to full 418

STL, in which the format of APs should be regular- 419

ized. To reach this destination, we will display two 420

methods in the following discussion, and compare 421

them with other state-of-the-art models. We test 422

on five datasets across domains Circuit (He et al., 423

2022), Navigation (Wang et al., 2021), Office email 424

(Fuggitti and Chakraborti, 2023), GLTL (Gopalan 425

et al., 2018; Tellex et al., 2020), and CW (Squire 426

et al., 2015). The examples of full NL-STL pairs 427

in each domain are shown in Appendix F, and the 428

statistics of each dataset are shown in Appendix I.2. 429

Note that some lifted NL-STL pairs in Circuit and 430

Navigation datasets have been used during training 431

the lifted model, while all the full NL-STL pairs 432

have not been seen. All the data in other three do- 433

mains are independent of the finetuning in lifted 434

models. Our model achieves higher accuracy on 435

full NL-STL transformation with much less train- 436

ing data across all these domains. 437

5.1 Lifted Model + GPT-3 AP Recognition 438

In the real applications, we have to formulate how 439

the APs are presented in STL (like ’verb_noun’) 440

so that the specified APs can directly connect with 441

controllers. As shown in Appendix L, we directly 442

utilize GPT-3 to recognize APs in the sentence and 443

hide them as "prop_i". Then the lifted model will 444

predict the targeted lifted STL and the hidden APs 445

will be swapped into formatted form to generate 446

the full STL. 447

Table 2 displays the performance accuracy of 448

this method. We test on three distinct domains and 449

compare with the GPT-3 end-to-end method, i.e., 450

using GPT-3 to directly transform NL into STL. 451

The GPT-3 end-to-end method is proposed by Fug- 452

gitti and Chakraborti (2023) recently, aiming to 453

generalize into all various domains. However, in 454

the NL to STL/LTL task, finetuning on a much 455

smaller LLM like T5 is still greatly better than 456

direct few-shot learning on state-of-the-art LLM 457

like GPT-3. The experimental results show that 458

combining finetuned lifted model with AP recog- 459

nition using GPT-3 can lead to a full task accuracy 460

over 95% across all three tested domains. Table 3 461

displays the performance of detecting APs with 462

GPT-3. Compared to the direct NL to STL task, 463

AP detection task is much easier to GPT-3. Hence, 464
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Circuit Navigation Office email

GPT-3 end-to-end 38.25± 6.51% 50.51± 5.08% 58.73± 4.86%
T5-large + GPT-3 AP detect 95.13± 1.42% 95.03± 1.20% 96.73± 1.03%
T5-base + GPT-3 AP detect 94.61± 0.74% 94.73± 1.02% 96.08± 0.97%

Table 2: Testing accuracy of full NL-to-STL task for each grounding model. The testing domains are:
Circuit (He et al., 2022), Navigation (Wang et al., 2021), Office email (Fuggitti and Chakraborti, 2023).

Circuit Navigation Office email

GPT-3 AP detect accuracy 98.84± 0.41% 99.03± 0.53% 100.00± 0.00%

Table 3: Testing accuracy of recognizing APs with GPT-3 for each domain.

dividing the whole task into AP recognition and se-465

mantic parsing are more data-efficient and flexible466

than pure end-to-end method.467

To further test model performance under varied468

sentence complexity, we plot the testing accuracy469

VS. the number of APs in Appendix J. As the num-470

ber of APs in each lifted STL increases, the accu-471

racy of GPT-3 few-shot learning decreases, while472

the finetuned T5-large model still performs well.473

5.2 Transfer Learning474

On the condition that we know how the users de-475

fine the representation of APs, the aforementioned476

method is suitable to predict the full STL. On the477

other hand, there are also the condition that we478

cannot acquire the specific hard-coded rules to for-479

mulate AP representation, but only full NL-STL480

pairs. In these cases, the direct further finetuning481

may help. In other words, the lifted model has482

learnt to parse the semantic logical relations, and483

the further transfer learning is to learn how the APs484

are regulated in this specific dataset. This direct485

end-to-end transfer learning serves as the second486

way for ground applications.487

To show that our method is generalizable and488

data-efficient, we compare our methods to the orig-489

inal Seq2Seq methods implemented in each dataset.490

Specifically, in the Circuit dataset the authors train491

the model from the ground using Transformer ar-492

chitecture (Vaswani et al., 2017), and in GLTL and493

CW datasets the authors implement recurrent neu-494

ral network (RNN) encoder-decoder framework495

with Gated Recurrent Unit (GRU) as the core RNN496

cell. As the work on Navigation dataset uses the497

final task completion rate as the criterion not the498

direct LTL accuracy, the LTL prediction accuracy499

is inherently low. For a fair comparison in Navi-500

gation dataset, we implements the same Seq2Seq 501

framework as that in GLTL and CW datasets. 502

The experimental results are shown in Figure 6. 503

Here the training data number means how many 504

full NL-STL pairs are used during transfer learning 505

or Seq2Seq training. The blue curve represents the 506

accuracy where T5 model first pre-trained on 23K 507

lifted NL-STL pairs, and then finetuned on full NL- 508

STL examples in that domain. The orange curve 509

represents the condtion when T5 model is not pre- 510

trained by lifted NL-STL pairs, but directly fine- 511

tuned based on initial released weights. Compared 512

to the original Seq2Seq model proposed in each 513

dataset, transfer learning with LLM is much more 514

efficient, and the pre-training on lifted NL-STL 515

pairs also displays a great saving on training data 516

requirements. We also find that T5-large model 517

performs better than T5-base model. In all the 518

three domains, the T5-large model with lifted NL- 519

STL pre-training can achieve an accuracy near 95% 520

with only 200 to 500 full NL-STL examples. This 521

amount of example requirement is one magnitude 522

less than the Seq2Seq baselines. 523

The CW dataset is somewhat unique since it 524

only has 36 different LTLs, meaning there are on 525

average 50 different NLs corresponding to the same 526

LTL. The study in Gopalan et al. (2018) applies 527

this dataset to test the generalizability of the models 528

within the domain. They use some types of LTLs 529

as the training examples for transfer learning, and 530

the left types of LTLs as the testing set. This is to 531

test whether the model can predict the LTLs that 532

it has not seen during the training. We also carry 533

out this experiment and compare with the method 534

in the original paper. As shown in Figure 7, the 535

LLM with finetuning is apparently better than the 536

original baseline. 537
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Figure 6: Experimental results for end-to-end transfer learning on Circuit, Navigation, and GLTL datasets.

Figure 7: Experimental results for end-to-end transfer learning on CW datasets. This experiment is to
compare generalizability of our method with the original state-of-the-art Seq2Seq method.

6 Limitation538

In spoken language, coreference is quite common,539

such as "pick up the apple and then bring it to540

me". Here "apple" and "it" refer to the same object.541

In the five datasets we collected and tested, the542

coreference problem is not severe since most NL543

do not have pronouns. For further work, the NER544

models specialized in dissolving coreferences and545

converting them into normal APs are needed for546

more unbounded input sentences.547

The evaluation metric here is pure binary ac-548

curacy (fully correct or not). Actually, it is quite549

difficult to judge the similarity or distance of two550

TLs. Simply calculating token matching or com-551

puting truth values both own drawbacks. A more552

effective metric is needed.553

The output of LLMs may sometimes generate554

incorrect TLs. We build up rule-based methods555

to check syntactic correctness and correct errors556

like parentheses matching. Further work can be557

added to improve output correctness by modifying558

training procedures and loss functions. 559

7 Conclusion 560

We propose a framework to achieve NL-to-TL 561

transformation with the assistance of LLM, from 562

aspects of both data generation and model train- 563

ing. One dataset with about 23K lifted NL-TL 564

pairs is then constructed by which the T5 model 565

is finetuned. Two approaches are implemented to 566

utilize the trained model into full NL-to-TL trans- 567

lation. Experimental results on five varied domains 568

display much better accuracy and generalizablity 569

compared to original methods. The created dataset 570

can be used to train future NL-to-TL models and 571

serve as the benchmark. The proposed framework 572

to finetune LLMs with lifted NL-TL pairs makes 573

it possible for generalizable NL-to-TL translation 574

without the constraints of domains and input in- 575

struction structures. As future work, we believe the 576

model can be improved with larger dataset contain- 577

ing more diversified corpus. 578
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A STL illustration 725

F[a,b]ϕ True at time t if there exists a time in the interval [t+ a, t+ b] where ϕ is true.
ϕU[a,b]φ True at time t if φ is true for some time t

′
in the interval [t+ a, t+ b], and for

all times between t and t
′
, the formula ϕ holds.

G[a,b]ϕ True at time t if for all times in the interval [t+ a, t+ b], the formula ϕ holds.

Table 4: STL illustration

11



B Full algorithm to synthesize multiple STLs726

This is the full algorithm to synthesize multiple varied STLs. The blue-colored words are the example727

output in each step. All the operators are classified into the operator with only one subtree, or the operator728

with two subtrees. A random ordered prop list is generated with the length less than the upper limit. Then729

this full list is split into some sub_lists. For each sub_list, operators are randomly appended in the left730

side until each prop occupy one position in the binary tree. Then these modified sub_lists are assembled731

back into the full STL by appending operators with two subtrees. The STL generated in this way are732

syntactically correct, but may own some flaws in semantic meanings. Some rules can be pre-set to avoid733

the unreasonable conditions, e.g., two negation operation should not appear continually.734

Algorithm 2 Full algorithm for STL synthesis

Input:
1: Maximum number of APs N

Output:
2: Synthesized pre-order STL
3:

4: two_subtree = [∧, ∨,⇒,⇔, U, U[a,b]],
5: one_subtree = [¬, F, G, F[a,b], G[a,b]]
6: AP_num = random.randint(1, N ) ▷ e.g., 3
7: prop_list← Random_ordered Prop list with length AP_num
8: sub_lists← randomly divide prop_list ▷ e.g., [prop_3, prop_1], [prop_2]
9:

10: Creating sub-STLs :
11: for each sub_list do
12: num_open_subtree = len(sub_list)
13: while num_open_subtree > 1 do
14: operation← randomly choose item in two_subtree+ one_subtree
15: if operation in two_subtree then
16: num_open_subtree -= 1
17: end if
18: if operation in [U[a,b], F[a,b], G[a,b]] then
19: a, b← sampling random integers or denoting as infinity
20: end if
21: sub_list.insert(0, operation)
22: end while
23: save sub_list as sub_STL ▷ e.g., [⇔, ¬, prop_3, prop_1], [G, prop_2]
24: end for
25:

26: Assembling sub-STLs :
27: Assembling sub_STLs into pre-order STL by appending random two_subtree operations ▷ e.g.,

[U[10,30],⇔, ¬, prop_3, prop_1, G, prop_2]

C Examples of prompt input to GPT-3735

These are the example prompts for GPT-3 to convert between NL and STL, or detect the spans of Atomic736

Proportions.737
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Figure 8: Prompts for converting from synthesized STL to NL via GPT-3.

C.1 Prompt example from in-order STL to NL via GPT-3 738

Figure 8 is a prompt example for GPT-3 to convert from STL to its corresponding NL. The input STL 739

follows in-order expression with all the operators replaced by words with the same meanings. The prompt 740

contains 20 NL-STL pairs, which are randomly picked up from 100 examples and are changed constantly 741

during data creation. 742
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Figure 9: Prompts for converting from NL to pre-order STL via GPT-3.

C.2 Prompt example from NL to pre-order STL via GPT-3743

Figure 9 is a prompt example for GPT-3 to convert from NL to its corresponding STL. The output STL744

follows pre-order expression. We have tested that GPT-3 acts with close performance when STL follows745

either pre-order or in-order formats.746
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Figure 10: Prompts for AP recognition via GPT-3.

C.3 Prompt example for AP recognition via GPT-3 747

Figure 10 is a prompt example for applying GPT-3 to detect APs in natural sentences. In this example, the 748

specific domain is Navigation. 749
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Figure 11: Number of prompt pairs VS. GPT-3 performance.

D Number of NL-STL pairs in GPT-3 prompts750

As shown in Figure 11, here we ask GPT-3 to transform from NL to STL and tune the number of NL-STL751

pairs in the prompt to detect the accuracy evolution. We test on the NL whose targeted STL have the752

number of APs to be two or three. We find that the prediction accuracy given by GPT-3 will arise with the753

number of example pairs and turn into a plateau when the number of example pairs increases to larger754

than 20. Here we choose the number of pairs to be 20 in the prompt.755
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STL (pre-order+operator) [’<->’, ’->’, ’prop_2’, ’prop_3’, ’F[55,273]’, ’prop_1’]
STL (in-order+word) ((prop_2 imply prop_3) equal finally[55,273] prop_1)
Raw natural sentence If (prop_2) implies (prop_3), then (prop_1) will happen at some point

during the next 55 to 273 time units .
Annotated natural sentence If (prop_2) implies (prop_3), then (prop_1) will happen at some point

during the next 55 to 273 time units, and vice versa .

STL (pre-order+operator) [’U[400,infinite]’, ’->’, ’prop_3’, ’prop_1’, ’negation’, ’prop_2’]
STL (in-order+word) ((prop_3 imply prop_1) until[400,infinite] negation prop_2)
Raw natural sentence If (prop_3), then do (prop_1) and keep doing it until (prop_2) hap-

pens, but this should never happen .
Annotated natural sentence If (prop_3), then do (prop_1) and keep confirming to the above state

until (prop_2) does not happens at some point after the 400 time units
from now .

STL (pre-order+operator) [’<->’, ’negation’, ’prop_1’, ’U[279,438]’, ’prop_3’, ’prop_2’]
STL (in-order+word) (negation prop_1 equal (prop_3 until[279,438] prop_2))
Raw natural sentence The scenario in which ( prop_1 ) happens is the same as the scenario

in which ( prop_3 ) happens and continues until at a certain time
point during the 279 to 438 time units ( prop_2 ) happens .

Annotated natural sentence The scenario in which ( prop_1 ) does not happen is the same as the
scenario in which ( prop_3 ) happens and continues until at a certain
time point during the 279 to 438 time units ( prop_2 ) happens .

Table 5: Example annotations from synthesized STLs to raw natural sentences, and further to annotated
natural sentences.

E Example annotations of lifted NL-STL pairs 756

As shown in Table 5. 757

758

F Example full NL-STL pairs of each specialized dataset 759

As shown in Table 6. 760
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Navigation STL finally ( acquire_v pear_n ) and globally ( finally ( go_to_v waste_basket_n ) )
NL when possible acquire pear and repeatedly go to waste basket .

Navigation STL finally ( got_to_v house_n ) and finally ( go_near_v house_n )
NL at any time got to house and when possible go near house .

Navigation STL advance_to_v tree_n imply finally ( get_to_v flag_n )
NL advance to tree means that when possible get to flag .

Circuit STL globally ( signal_1_n math equal 89.3 or ( signal_2_n more 42.4 and signal_2_n
less 91.5 ) imply globally [0,34] ( finally [0,98] ( signal_3_n more equal 11.5 and
signal_3_n less equal 23.4 ) ) )

NL In the case the signal_1_n signal is 89.3 , or the signal_2_n signal is greater than
42.4 and below 91.5 , then for every time instant during the coming 34 time units ,
there needs to exist a certain time instant during the next 98 time units , at which the
value of signal signal_3_n should be no less than 11.5 and less than or equal to 23.4
eventually .

Circuit STL finally ( signal_1_n less 92.6 and signal_2_n more equal 57.3 )
NL At a certain time instant in the future before the end of the simulation signal_1_n is

ultimately below 92.6 and signal_2_n will be ultimately at least 57.3 .
Circuit STL finally ( ( signal_1_n more equal 4.1 and signal_1_n less equal 59.0 ) or signal_2_n

math equal 41.1 )
NL There has to be a certain time instant in the future before the end of the simulation

, at which the value of signal_1_n needs to be greater than or equal to 4.1 and less
than or equal to 59.0 eventually , or signal_2_n finally keeps equal to 41.1 .

GLTL STL finally ( ( red_room or blue_room ) and finally green_room )
NL enter the blue or orange room and proceed until the green room .

GLTL STL ( finally ( blue_room ) and globally ( negation green_room ) )
NL move to the blue room without entering a lime room .

GLTL STL ( finally ( yellow_room ) and globally ( negation blue_room ) )
NL only go through rooms that are not purple to get to the yellow room .

CW STL finally ( blue_room and finally green_room )
NL please go to the green room through the blue room .

CW STL finally red_room
NL i want you to go into the red room .

CW STL finally ( ( red_room or yellow_room ) and finally green_room )
NL go thru the yellow or red box to get to the green box .

Office email STL globally ( ( ( a new incident is created in Eventribe ) and ( a response is created in
Trello ) ) imply ( creating an object in Gmail ) )

NL When the transition action that a new incident is created in Eventribe does not get
observed , and a response is created in Trello , then the following condition is true :
promptly creating an object in Gmail .

Office email STL ( ( sync Microsoft Teams data ) until finally ( sending me an SAP and Salesforce ) )
NL sync Microsoft Teams data until when possible sending me an SAP and Salesforce .

Office email STL globally ( ( ( a new lead is added in Marketo ) and ( creating a new Marketo card ) )
imply ( a new lead is added in Microsoft Teams ) )

NL On condition that a new lead is added in Marketo and creating a new Marketo card
, then the event that a new lead is added in Microsoft Teams needs to occur at the
same time instant .

Table 6: Examples of full NL-STL pairs in each specialized domain.

18



Figure 12: Testing accuracy VS. Number of raw NL-STL pairs. The data collected and re-annotated from
Navigation and Circuit work are all used during training. The inner data refers to the data generated with
the help of GPT-3, and the extra data refers to the instructions collected from volunteers.

G Ablation Studies 761

G.1 Significance of Human Annotation 762

This part is to demonstrate the significance of human annotation for the GPT-3 synthesized data. Figure 12 763

shows the model accuracy under varied number of training raw pairs. The great thing is that the T5-large 764

model can still achieve a highest testing accuracy of 87.3% and 79.4% on the inner and extra data test, 765

even only using the raw data synthesized from GPT-3. However, compared to the results in Figure 5, 766

models trained on annotated data achieves accuracy about 10% higher than models trained on raw data. 767

768

G.2 Significance of Framework2 769

3K dataset 4.5K dataset

Domain 1.5K F1 + 1.5K F2 3K F1 3K F1 + 1.5K F2 4.5K F1

Raw data 78.85± 1.04% 75.79± 0.98% 80.48± 0.71% 79.04± 0.64%
Annotated data 80.57± 0.86% 79.76± 0.88% 88.32± 0.84% 86.51± 0.77%

Table 7: Testing accuracy of the models with different training datasets. The training data are either
raw or annotated, pure from Framework1 (F1) or combining with Framework2 (F2). The experimental
results show that the annotated dataset can apparently improve the performance of the model, and models
combining the data generated by F1 and F2 outperform the models trained with the same amount of pure
F1 data.
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Figure 13: Testing accuracy VS. Number of training lifted NL-STL pairs. Here we use T5-large and
Seq2Seq models to train on the lifted data. We detect that the Seq2Seq model reaches a highest accuracy
at 83%, while T5-large model reaches a highest accuracy at 97.5%.

H Model Capacity770

As shown in Figure 13, T5-large performs much better than Seq2Seq model when training on the same771

lifted dataset. This reveals the significance to use LLM in this NL-to-TL task.772
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I Datasets statistics 773

I.1 Statistics of lifted NL-STL dataset 774

# APs per STL # Operators per STL

avg. median max avg. median max

2.648 3 5 3.078 3 7

Table 8: Lifted STL formula statistics: # APs for each formula, # STL operators for each formula.

# Words per Sent.

# Sent. # Vocab avg. median max min

21867 1288 17.512 16 72 3

Table 9: Lifted sentence statistics: # unique sentences, # unique words (vocab), # words per sentence.

I.2 Statistics of full NL-STL datasets across five domains 775

# APs per STL # Operators per STL

Domain avg. median max avg. median max

Circuit (He et al., 2022) 2.303 2 6 6.898 7 21
Navigation (Wang et al., 2021) 2.003 2 3 2.624 3 5
GLTL (Gopalan et al., 2018) 2.153 2 3 3.486 4 4

CW (Squire et al., 2015) 2.906 2 6 4.778 5 7
Office email (Fuggitti and Chakraborti, 2023) 2 2 2 2.582 3 4

Table 10: Full STL formula statistics in each domain: # APs for each formula, # STL operators for each
formula.
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# Words per Sent.

Domain # Sent. # Vocab avg. median max min

Circuit (He et al., 2022) 120000 265 38.495 37 97 1
Navigation (Wang et al., 2021) 5000 131 9.697 10 16 4
GLTL (Gopalan et al., 2018) 11153 193 11.324 11 27 4

CW (Squire et al., 2015) 3382 188 9.645 10 27 4
Office email (Fuggitti and Chakraborti, 2023) 150 143 13.407 13 25 9

Table 11: Full sentence statistics in each domain: # unique sentences, # unique words (vocab), # words
per sentence.

Figure 14: Accuracy VS. number of APs in each lifted STL. We carry out the test with both finetuned
lifted T5-model and GPT-3 end-to-end method.

J Accuracy evolution with AP number776

This section is to illustrate that directly applying GPT-3 to predict STL from NL via few-shot learning777

largely decreases the accuracy when the sentence structure is complex. Here we hypothesize that sentence778

complexity is positively related to the number of APs. As shown in Figure 14, the prediction accuracy779

decreases rapidly with increasing AP number using GPT-3 end-to-end method. On the other hand, the780

method to finetune the T5-large using synthesized NL-STL pairs remains high accuracy across different781

AP numbers.782

783

K Details of implementation784

For all the finetuning experiments on both T5-base and T5-large models, we choose the learning rate as785

2e-5, a batch size of 16, a weight decaying ratio as 0.01, and run 20 epochs for each setting. Experiments786

on average finish in 3 hours for T5-base, and 10 hours for T5-large, on a single Nvidia RTX 8000 GPU.787

Average results and standard deviations are typically acquired from 3 runs with seeds [1203, 309, 316],788

apart from the transfer learning in CW dataset where 10 runs are carried with seeds [1203, 309, 316, 34,789

64, 128, 256, 512, 1234, 234]. For the finetuning on lifted models, the input dataset is split into training790

set (0.9) and testing set (0.1).791
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Figure 15: Illustration of full STL conversion by combing with AP recognition task using GPT-3.

L Full STL conversion by combining lifted model with AP recognition 792

Illustrated in Figure 15 793
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