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Abstract

Temporal Logic (TL) can be used to rigorously
specify complex high-level specification for
systems in many engineering applications. The
translation between natural language (NL) and
TL has been under-explored due to the lack
of dataset and generalizable model across dif-
ferent application domains. In this paper, we
propose an accurate and generalizable trans-
formation framework of English instructions
from NL to TL, exploring the use of Large Lan-
guage Models (LLMs) at multiple stages. Our
contributions are twofold. First, we develop a
framework to create a dataset of NL-TL pairs
combining LLMs and human annotation. We
publish a dataset with 23K NL-TL pairs. Then,
we finetune T5 models on the lifted versions
(i.e., the specific Atomic Propositions (AP) are
hidden) of the NL and TL. The enhanced gen-
eralizability originates from two aspects: 1) Us-
age of lifted NL-TL characterizes common log-
ical structures, without constraints of specific
domains. 2) Application of LLMs in dataset
creation largely enhances corpus richness. We
test the generalization of trained models on five
varied domains. To achieve full NL-TL trans-
formation, we either combine the lifted model
with AP recognition task or do the further fine-
tuning on each specific domain. During the
further finetuning, our model achieves higher
accuracy (> 95%) using only <10% training
data, compared with the baseline sequence to
sequence (Seq2Seq) model.!

1 Introduction

Temporal Logic (TL) has been widely used as
a mathematically precise language to specify re-
quirements in many engineering domains such as
robotics (Tellex et al., 2020), electronics design
(Browne et al., 1986), autonomous driving (Maier-
hofer et al., 2020). TL can capture the complex
spatial, temporal, and logical requirements in both
human languages and environmental constraints,

"Datasets and Codes are available

and can be transformed into executable actions or
control inputs for robots (Gundana and Kress-Gazit,
2022; Raman et al., 2013; Boteanu et al., 2016; Pa-
tel et al., 2020; Gopalan et al., 2018).

Unlike many robotics works that try to use end-
to-end black-box models to infer robotic behaviors
directly from natural language (NL) (Ahn et al.,
2022), using structured TL as the intermediate has
a twofold benefit — the TL can be used for direct
planning, and the TL representation can be used
to identify specific sources of failure and provide
automatic feedback to a non-expert user (Raman
et al., 2013). However, TL has a steep learning
curve. Communicating one’s goals and constraints
through NL is much more intuitive to a non-expert.
Therefore, a model able to transform NL instruc-
tions into TL is a missing but crucial component
for interactive robots and engineering designs.

Currently, there is no general tool to perform au-
tomated translations between TL and NL that takes
the following requirements into consideration:

* Cross-domain generalization. Although TL
is used in many engineering domains, cur-
rent NL-to-TL approaches largely constrain
their training data to a single domain. These
datasets mostly lack plentiful corpus richness
of NL-TL and have their own specified for-
mats of Atomic Propositions (AP). Then the
models fail to generalize to other domains
(Gopalan et al., 2018), even though the struc-
ture of TL itself is not dependent on the do-
main and should be generic.

 Variability of NL instructions. Past work
often constructs synthetic data algorithmically,
causing limited forms of the NL input. Real-
world NL utterances cannot be encoded into
a small set of rules. Models trained on such
homogeneous data fail to generalize to new
sentence structures (Brunello et al., 2019).



One big bottleneck in the NL-to-TL problem is
the lack of data. Although modern statistical meth-
ods can outperform rule-based methods (Buzhin-
sky, 2019), they typically require a huge dataset.
This data is expensive and difficult to collect since
strong expertise of annotators is needed (Brunello
et al., 2019). As outlined above, constraining the
domain or form of the NL instructions relieves the
pressure of dataset, but also unavoidably under-
mines the generalizability (Brunello et al., 2019;
Patel et al., 2019).

To supplement the data creation process and si-
multaneously overcome the need for a huge dataset,
we propose to use pre-trained LLMs. We utilize
GPT-3 (Brown et al., 2020) to assist dataset cre-
ation and finetune T5 models (Raffel et al., 2020)
to be specialized in NL-to-TL transformation.

Another aspect of our approach is to use ‘lifted’
versions of NL and TL for finetuning our model,
which greatly enhances generalizability. In previ-
ous work, models trained on full NL-to-TL transfor-
mation often include converting specific individual
actions into APs. For example, the AP "a response
is created in Slack” might be formalized as "cre-
ate_Slack". As aresult, each work has to regularize
its own content and style of APs, affecting gener-
alization. Instead of taking this approach, we hide
all the APs in our data during finetuning, acquiring
a lifted model on lifted NL-to-TL transformation.
For the final ground application from full NL into
full TL, two methods are proposed, either by com-
bining the lifted model with AP recognition or fur-
ther transfer learning in one specific domain. For
further transfer learning into specific domains, we
compare the models with/without pre-training on
lifted NL-TL and show its significance.

In this paper, we present two key contributions:

* Constructing a cross-domian NL-TL
dataset. We generate a dataset of 10K lifted
NL-TL pairs using a novel GPT-3-assisted
framework. Ablation studies are conducted
to show the significance of each part of
the framework for dataset construction. In
addition, we collect and clean previous
datasets (13K) from two varied domains,
adapting original full NL-TL pairs into
lifted versions. In this way, we publish a
dataset of 23K lifted NL-TL pairs. Ablation
studies show that the newly created data are
indispensable since purely training on the
collected data fails to work across domains.

* Finetuning an lifted NL-to-TL model on
T5 using our data, and demonstrating the im-
provement in performance compared to for-
mer state-of-the-art methods. For application
in full NL-to-STL transformation, two meth-
ods are proposed. We compare our model to
Seq2Seq models and direct few-shot learning
by GPT-3, across five domains. The experi-
mental results show that our methods achieve
better accuracy (>95% across all domains) and
are more data-efficient (<10% domain specific
data). We also do the ablation study by train-
ing a Seq2Seq model with lifted NL-to-TL
dataset, revealing that T5’s superior model
capacity is essential.

2 Temporal Logic Specifications

2.1 STL Syntax

There are many different versions of TL (Emer-
son, 1990; Maler and Nickovic, 2004; Koymans,
1990). They are more or less similar in terms of
syntax. We will use Signal Temporal Logic (STL)
as a representative formal language that supports
constraints over the continuous real-time, which is
more suitable to capture time-critical missions. In
some previous work, Linear Temporal Logic (LTL)
is also widely used, which is contained by STL
when the time is discrete. We will construct our
framework based on STL and show that the trained
model also performs well on datasets and tasks us-
ing LTL. An STL formula is defined recursively
according to the following syntax:

pu=at] =9 | oA | OV | Flapy¢ | Gapd
| @Uapp (1)

where ¢ and ¢ are STL formulas, and 7# is an
atomic predicate. — (negation), A (and), V (or),
= (imply), and < (equal)) are logical operators.
F|, ) (eventually/finally), G|, 3 (always/globally),
and Uy, 3) (until) are temporal operators with real-
time constraints ¢ € [a,b]. Temporal operators
with time constraints are illustrated by Table 4, and
other operators can be presented using the basic
syntax.

2.2 Lifted STL and Lifted NL

We represent our data as ’lifted” NL and STL, in
which the specific APs corresponding to individual
actions are hidden (following nomenclature from
Hsiung et al. (2021)). In our lifted NL and STL,



Full NL:

If a response is created in Slack , or the Acoustic Campaign
contact is being updated then in response the scenario that a
response is created in Asana shall be instantly observed .

Lifted NL:
If (prop_1), or (prop_2) then in response the scenario that
(prop_3) shall be instantly observed .

Full STL:
globally ( ( ( create_Slack ) or ( update_Acoustic Campaign ) )
imply ( create_Asana) )

Lifted STL:
globally ( ( (prop_1) or (prop_2) ) imply (prop_3))

Figure 1: Illustration of lifted NL and lifted STL.

each AP is replaced with a placeholder prop_i. In
this way, we train our model on the general con-
text of the instruction regardless of the specific
APs. The correspondences between full and lifted
NL/STL are shown in Figure 1.

2.3 STL Expression Formats

Consider an STL expression as a binary tree, as
in Figure 2. When finetuning a text-to-text model,
there are different ways of representing the target
STL in the form of linear text. Specifically, the tar-
geted tokens can be linearized in an in-order (left
subtree, root, right subtree) or pre-order (root, left
subtree, right subtree) manner. Meanwhile, the op-
erators can also be represented as the words with
their corresponding meanings (rather than as sym-
bols). The training results show that the in-order
expression with all the operators replaced by words
achieves much better accuracy than other three
forms (will discuss in the following Section 4.2).

3 Related Work

Over decades, researchers have methods to trans-
late English sentences into various TL formulae
(Brunello et al., 2019; Finucane et al., 2010; Tellex
et al., 2020; Raman et al., 2013). However, to sim-
plify the tasks, some previous work typically make
strong assumptions to restrict the input text or the
output formula, thus limiting the flexibility and
generalizability.

The first representative attempt is by Finucane
et al. (2010); Tellex et al. (2011); Howard et al.
(2014), where the traditional methods typically fol-
low three steps: 1) pre-process given English input
by extracting syntactical information, 2) identify
patterns or rules for TL through classification, and
3) run an attribute grammar-based parser to derive

a target logical format. These methods only work
for restricted input NL (Tellex et al., 2020).

Another category of approaches are learning-
based. Representative state-of-the-art works are
Gopalan et al. (2018); Wang et al. (2021); He
et al. (2022). In Gopalan et al. (2018) the au-
thors gather a dataset focusing on Geometric LTL
(GLTL), in which the NL and GLTL examples are
all for the navigation of a car in the room. Then
Seq2Seq models with attention mechanism are
trained. Though the accuracy (93.45%) is satis-
fying, the used GLTLs are relatively simple with
each GLTL normally including one to three APs
and the dataset also focuses on one confined task.
In He et al. (2022) the authors choose to first trans-
late a manually generated set of STL formulae into
English sentences and train a semantic parser on
the synthetic data. Such synthetic data cannot rep-
resent general NL and therefore the trained parser
only works well on the original STL formulae.

In Wang et al. (2021) a semantic parser is built
to learn the latent structure of NL commands for
ground robots. The parser will provide (potentially
incorrect) intermediate LTL representations to a
motion planner, and the planner will give an exe-
cuted trajectory as the feedback to see whether the
robot’s execution satisfies the English input. Such
approach has no guarantee on the correctness of the
translated TL. In recent months, the work by Fug-
gitti and Chakraborti (2023) directly applies LLMs
like GPT-3 to convert NL to LTL via few-shot learn-
ing. The prompts should be well designed and the
model will fail once the NL and LTL structures are
too complex (we will discuss it in Section 5.1).

These years, starting from the attention mech-
anism (Vaswani et al., 2017), the rapid progres-
sion of pre-trained LLMs in NLP tends to unify
many previous seemingly independent tasks into
one large pre-trained model, especially the GPT
series from OpenAl (Brown et al., 2020), and
TS5 (Raffel et al., 2020) and PaLM (Chowdhery
et al., 2022) from Google. These models are pre-
trained with large amounts of natural sentences and
codes, intrinsically encoding much logical knowl-
edge (Creswell et al., 2022). This inspires us the
new opportunity in NL-to-TL task.

4 Approach

There are 3 steps in our approach. First, generating
lifted NL-STL dataset with LLMs. Second, finetun-
ing LLMs to get high accuracy on lifted NL-STL



(a) In-order+operator:

(G((prop_4) & (prop_1) -> ((prop_2) U[0,2] (prop_3))))

Pre-order+operator:
[G, ->, &, prop_4, prop_1, U[0,2], prop_2, prop_3]

In-order+word:

(globally((prop_4) and (prop_1) imply ((prop_2) until[0,2] (prop_3))))

Pre-order+word:

[globally, imply, and, prop_4, prop_1, until[0,2], prop_2, prop_3]

(b)

R ONOR D,

Figure 2: Illustration of different formats of STL expressions. (a) Different expression formats of the

same STL. (b) The binary tree representation of STL.

transformation. Third, lifting the data and applying
the lifted model. Finally, we also consider the case
where lifting is not possible and we must translate
end to end by further finetuning the model.

4.1 Data Generation

Algorithm 1 Algorithm for STL synthesis

Input:

Maximum number of APs N
Output:

Synthesized pre-order STL

two_subtree = [N, V, =, <, U, U[a,b}]
one_subtree = [, F, G, F[a,b}’ G[a,b]]

sub_lists «— Random prop_list with total length
[1, N] > [prop_3, prop_1], [prop_2]
Each sub_list < insert operators in
one_subtree + two_subtree > [<, -, prop_3,
prop_1], [G, prop_2]

Assembling sub_lists into pre-order STL by ap-
pending random two_subtree operators >
[Ut10,30)> < = prop_3, prop_1, G, prop_2]

We apply the LLM GPT-3 (Davinci-003) to help
generate multiple lifted NL and STL pairs. The first
intuitive method is to use various NL-STL pairs as
prompts and ask GPT-3 to automatically generate
more NL-STL pairs. However, it turns out that the
model always generates STL and NL with similar
syntactic structures as the given prompts, thus lim-
iting the sentence richness. To stimulate GPT-3 to
generate sentences with more variations, we ask it
to generate corresponding NLs from different STLs.
The whole framework (referred as Framework1) is
shown in Figure 3. Various pre-order STLs are
randomly synthesized by binary tree generation al-

Algorithm to randomly generate various STL.
((prop_2 imply prop_3) until[122,infinite] (prop_4 imply prop_1))

GPT-3 to transform the STL into raw NL.
Prompts should be adjusted from time to time.
If (prop_2) leads to (prop_3), then keep this relationship true until
(prop_4) leads to (prop_1).

Manually annotate raw NL into refined NL.
If (prop_2) leads to (prop_3), then keep this relationship true until
(prop_4) leads to (prop_1) at some timestep later than 122
timesteps from now.

Figure 3: Framework1 to generate NL-STL pairs.

Algorithm to randomly generate various STL-1
GPT-3 to transform STL-1 into raw NL-1
Put raw NL-1 back into GPT-3 to acquire STL-2
Algorithm to check syntactic correctness of STL-2
GPT-3 to transform the STL-2 into the raw NL-2

Manually annotate raw NL-2 into refined NL

Figure 4: Framework? to generate NL-STL pairs.
One extra loop between NL and STL is added.

gorithm (See Algorithm 1 and specific discussion
in Appendix B). The pre-order STLs are then trans-
formed into in-order expressions via rules. To make
the input STL more understandable to GPT-3, the
operators are represented with the words of their
meanings (= (imply),< (equal),V(or), etc).
Then the GPT-3 will try to generate the raw NL
whose semantic meaning is close to the STL. Hu-
man annotators then modify the raw NL to make
its meaning consistent with the STL. During this
process, the NL-STL pairs in prompts will be ran-
domly chosen to make the vocabulary and sen-



tence structure more diversified. We gather 200
NL instructions from 10 volunteers who are famil-
iar with robot tasks and randomly choose 100 NL
to serve as the prompt pool, while the other 100 NL
serve as the extra testing data. In each iteration of
Framework1, 20 pairs are randomly chosen from
the prompt pool to form the prompt of GPT-3 (a
prompt example is shown in Appendix C.1 and the
discussion on how many examples should be in-
cluded in GPT-3 prompt is shown in Appendix D).

While Framework1 enhances the sentence rich-
ness, one issue is that the pure rule-based synthesis
of STL sometimes generates unreasonable seman-
tic meanings, or that the STL is too complex to
describe it with NL. To solve this problem, an op-
timized framework (referred as Framework?) is
shown in Figure 4. Compared to Framework1, an
extra loop between STL and NL is added using
GPT-3. In this way, the initial rule-based STL with
unreasonable or complex meanings will be auto-
matically filtered by GPT-3 itself. In other words,
during the mapping from STL-1 to NL-1, GPT-3
more or less modifies the meanings of the STLs that
it cannot fully translate. Then the translated NL-1,
though not fully consistent with STL-1, is more
reasonable in the view of humans. It turns out that
the semantic meanings synthesized by Framework2
are closer to the common human languages, and
NL-STL pairs own much less errors to annotate.
The average number of annotated pairs is about 80
per person per hour with Framework1, and about
120 per person per hour with Framework?2.

We in total create 9867 lifted NL-STL pairs com-
bining both Frameworkl and Framework2, with
the whole cost of around 100 person-hours. Ap-
pendix C.2 shows a prompt example to transform
from NL-1 back into STL-2 via GPT-3, and Ap-
pendix E shows some example annotations of lifted
NL-STL pairs.

Apart from synthesizing and annotating lifted
NL-STL pairs with GPT-3, we also collect and an-
notate the data gathered from Wang et al. (2021)
and He et al. (2022). Wang et al. (2021) focuses on
robot navigation task with LTL, and He et al. (2022)
focuses on circuit controlling with STL. To clean
and process the data into lifted NL-STL pairs, the
APs in both two datasets are detected and hidden
by combining hard-coded algorithms with entity
recognition package SpaCy (Honnibal and Mon-
tani, 2017). We gather 5K lifted NL-STL pairs
from Navigation dataset (Wang et al., 2021) and

Lifted NL-STL

100F
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a Inner data test, T5-large
2 20t —— Extra data test, T5-base
—— Extra data test, T5-large

0 1000 2000 3000 4000 5000 6000 7000
Number of created pairs

Figure 5: Testing accuracy VS. Number of created
NL-STL pairs. The data collected from Navigation
and Circuit work are all used during training. The
inner data refers to the data generated with the help
of GPT-3, and the extra data refers to the instruc-
tions collected from volunteers. The figure shows
the necessity of the created data.

8K lifted NL-STL pairs from the Circuit dataset
(He et al., 2022). Note that the original Navigation
dataset uses LTL, while we correct some expres-
sion formats to form into STL. The original Circuit
dataset contains 120K NL-STL pairs, while we find
including 8K examples into our dataset is informa-
tive enough to cover the whole corpus richness of
Circuit dataset.

Hence, in this work a dataset with in total about
23K lifted NL-STL pairs are created. Appendix I.1
shows the statistics of this lifted NL-STL dataset.

4.2 Model Finetuning

We mainly apply the T5 model (Raffel et al., 2020)
to serve as the base LLM for finetuning. To study
whether model sizes will influence the performance,
T5-base (220M) and T5-large (770M) are both fine-
tuned on the same data. The setting is illustrated in
Appendix K.

Though the corrected data from Navigation and
Circuit studies already provide multiple examples,
these datasets only cover limited conditions and
lack generalization. To show the necessity of the
newly created data, the TS5 models are finetuned
with varied number of created NL-STL pairs, as
shown in Figure 5. During training, all the data
collected from Navigation and Circuit studies are
used and the number of created data are varied
among different models. The trained models are
then tested with either the created data (referred
as inner data test) or the NL instructions collected
from volunteers (referred as extra data test). Since



TS-base TS-large
PO./word 70.00 £1.42% 73.10 &= 1.05%
1.O./word 96.43 +0.72% 97.52 + 0.65%
P.O.Jopera. 72.35+1.54% 71.95+1.23%
1.O./opera. 89.94 4 0.89% 88.17 £ 1.02%

Table 1: Accuracy of inner data testing for training
data with different expression formats. P.O. and
I.O. represent Pre-order and In-order, respectively.

minor difference in STLs can cause severe differ-
ence in the real meanings, we apply the binary
accuracy as the metric, i.e., 100% right or not. We
find that the Top-1 testing accuracy will increase
greatly with increasing created pairs, with the high-
est accuracy 97.52% and 90.12% of inner and extra
testing, respectively.

Table 1 presents the experimental results with the
targeted STL of different formats as discussed in
Section 2.3. We find that using the in-order format
plus replacing operators with words will largely
improve the performance. In-order format is more
consistent with natural sentence expressions and
lowers the difficulty for finetuning an LLM. This
result is different from former conclusions when
training Seq2Seq model for NL to STL/LTL tasks,
where the pre-order format is better because it nat-
urally avoids the issue of parentheses matching
(Wang et al., 2021).

4.3 Ablation Studies

Human Annotation To reveal the significance
of human annotation, we train the model with the
same amount of raw pairs created by GPT-3 and
test them on corrected data. The results are shown
in Appendix G.1. We find that annotated dataset
can improve the testing accuracy by around 10%.

Framework2 To reveal the significance of
the data generated by Framework2, we train the
model with either the same amount of data from
pure Frameworkl or the data combining two
frameworks. Utilizing both frameworks improves
the accuracy by around 2% (Appendix G.2).

Model Capacity of TS To reveal the sig-
nificance of T5’s superior model capacity, we
train a Seq2Seq model on the same lifted NL-STL
dataset for comparison, as shown in Appendix H.

S Application

Right now we have finetuned TS model to convert
lifted NL into lifted STL. For the real applications,
we need one model to convert from full NL to full
STL, in which the format of APs should be regular-
ized. To reach this destination, we will display two
methods in the following discussion, and compare
them with other state-of-the-art models. We test
on five datasets across domains Circuit (He et al.,
2022), Navigation (Wang et al., 2021), Office email
(Fuggitti and Chakraborti, 2023), GLTL (Gopalan
et al., 2018; Tellex et al., 2020), and CW (Squire
et al., 2015). The examples of full NL-STL pairs
in each domain are shown in Appendix F, and the
statistics of each dataset are shown in Appendix 1.2.
Note that some lifted NL-STL pairs in Circuit and
Navigation datasets have been used during training
the lifted model, while all the full NL-STL pairs
have not been seen. All the data in other three do-
mains are independent of the finetuning in lifted
models. Our model achieves higher accuracy on
full NL-STL transformation with much less train-
ing data across all these domains.

5.1 Lifted Model + GPT-3 AP Recognition

In the real applications, we have to formulate how
the APs are presented in STL (like "verb_noun’)
so that the specified APs can directly connect with
controllers. As shown in Appendix L, we directly
utilize GPT-3 to recognize APs in the sentence and
hide them as "prop_i". Then the lifted model will
predict the targeted lifted STL and the hidden APs
will be swapped into formatted form to generate
the full STL.

Table 2 displays the performance accuracy of
this method. We test on three distinct domains and
compare with the GPT-3 end-to-end method, i.e.,
using GPT-3 to directly transform NL into STL.
The GPT-3 end-to-end method is proposed by Fug-
gitti and Chakraborti (2023) recently, aiming to
generalize into all various domains. However, in
the NL to STL/LTL task, finetuning on a much
smaller LLM like T5 is still greatly better than
direct few-shot learning on state-of-the-art LLM
like GPT-3. The experimental results show that
combining finetuned lifted model with AP recog-
nition using GPT-3 can lead to a full task accuracy
over 95% across all three tested domains. Table 3
displays the performance of detecting APs with
GPT-3. Compared to the direct NL to STL task,
AP detection task is much easier to GPT-3. Hence,



Circuit Navigation Office email
GPT-3 end-to-end 38.25 +£6.51% 50.51 £5.08% 58.73 + 4.86%
T5-large + GPT-3 AP detect  95.13 + 1.42% 95.03 + 1.20% 96.73 + 1.03%

T5-base + GPT-3 AP detect

94.61 £ 0.74%

94.73 £1.02% 96.08 £ 0.97%

Table 2: Testing accuracy of full NL-to-STL task for each grounding model. The testing domains are:
Circuit (He et al., 2022), Navigation (Wang et al., 2021), Office email (Fuggitti and Chakraborti, 2023).

Circuit

Navigation Office email

GPT-3 AP detect accuracy  98.84 + 0.41%

99.03 £ 0.53% 100.00 £ 0.00%

Table 3: Testing accuracy of recognizing APs with GPT-3 for each domain.

dividing the whole task into AP recognition and se-
mantic parsing are more data-efficient and flexible
than pure end-to-end method.

To further test model performance under varied
sentence complexity, we plot the testing accuracy
VS. the number of APs in Appendix J. As the num-
ber of APs in each lifted STL increases, the accu-
racy of GPT-3 few-shot learning decreases, while
the finetuned T5-large model still performs well.

5.2 Transfer Learning

On the condition that we know how the users de-
fine the representation of APs, the aforementioned
method is suitable to predict the full STL. On the
other hand, there are also the condition that we
cannot acquire the specific hard-coded rules to for-
mulate AP representation, but only full NL-STL
pairs. In these cases, the direct further finetuning
may help. In other words, the lifted model has
learnt to parse the semantic logical relations, and
the further transfer learning is to learn how the APs
are regulated in this specific dataset. This direct
end-to-end transfer learning serves as the second
way for ground applications.

To show that our method is generalizable and
data-efficient, we compare our methods to the orig-
inal Seq2Seq methods implemented in each dataset.
Specifically, in the Circuit dataset the authors train
the model from the ground using Transformer ar-
chitecture (Vaswani et al., 2017), and in GLTL and
CW datasets the authors implement recurrent neu-
ral network (RNN) encoder-decoder framework
with Gated Recurrent Unit (GRU) as the core RNN
cell. As the work on Navigation dataset uses the
final task completion rate as the criterion not the
direct LTL accuracy, the LTL prediction accuracy
is inherently low. For a fair comparison in Navi-

gation dataset, we implements the same Seq2Seq
framework as that in GLTL and CW datasets.

The experimental results are shown in Figure 6.
Here the training data number means how many
full NL-STL pairs are used during transfer learning
or Seq2Seq training. The blue curve represents the
accuracy where TS5 model first pre-trained on 23K
lifted NL-STL pairs, and then finetuned on full NL-
STL examples in that domain. The orange curve
represents the condtion when T5 model is not pre-
trained by lifted NL-STL pairs, but directly fine-
tuned based on initial released weights. Compared
to the original Seq2Seq model proposed in each
dataset, transfer learning with LLM is much more
efficient, and the pre-training on lifted NL-STL
pairs also displays a great saving on training data
requirements. We also find that T5-large model
performs better than T5-base model. In all the
three domains, the T5-large model with lifted NL-
STL pre-training can achieve an accuracy near 95%
with only 200 to 500 full NL-STL examples. This
amount of example requirement is one magnitude
less than the Seq2Seq baselines.

The CW dataset is somewhat unique since it
only has 36 different LTLs, meaning there are on
average 50 different NLs corresponding to the same
LTL. The study in Gopalan et al. (2018) applies
this dataset to test the generalizability of the models
within the domain. They use some types of LTLs
as the training examples for transfer learning, and
the left types of LTLs as the testing set. This is to
test whether the model can predict the LTLs that
it has not seen during the training. We also carry
out this experiment and compare with the method
in the original paper. As shown in Figure 7, the
LLM with finetuning is apparently better than the
original baseline.
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Figure 6: Experimental results for end-to-end transfer learning on Circuit, Navigation, and GLTL datasets.
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Figure 7: Experimental results for end-to-end transfer learning on CW datasets. This experiment is to
compare generalizability of our method with the original state-of-the-art Seq2Seq method.

6 Limitation

In spoken language, coreference is quite common,
such as "pick up the apple and then bring it to
me". Here "apple” and "it" refer to the same object.
In the five datasets we collected and tested, the
coreference problem is not severe since most NL
do not have pronouns. For further work, the NER
models specialized in dissolving coreferences and
converting them into normal APs are needed for
more unbounded input sentences.

The evaluation metric here is pure binary ac-
curacy (fully correct or not). Actually, it is quite
difficult to judge the similarity or distance of two
TLs. Simply calculating token matching or com-
puting truth values both own drawbacks. A more
effective metric is needed.

The output of LLMs may sometimes generate
incorrect TLs. We build up rule-based methods
to check syntactic correctness and correct errors
like parentheses matching. Further work can be
added to improve output correctness by modifying

training procedures and loss functions.

7 Conclusion

We propose a framework to achieve NL-to-TL
transformation with the assistance of LLM, from
aspects of both data generation and model train-
ing. One dataset with about 23K lifted NL-TL
pairs is then constructed by which the T5 model
is finetuned. Two approaches are implemented to
utilize the trained model into full NL-to-TL trans-
lation. Experimental results on five varied domains
display much better accuracy and generalizablity
compared to original methods. The created dataset
can be used to train future NL-to-TL models and
serve as the benchmark. The proposed framework
to finetune LLMs with lifted NL-TL pairs makes
it possible for generalizable NL-to-TL translation
without the constraints of domains and input in-
struction structures. As future work, we believe the
model can be improved with larger dataset contain-
ing more diversified corpus.
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A STL illustration

Flo ¢ True at time ¢ if there exists a time in the interval [t 4 a,t + b] where ¢ is true.

AU b True at time ¢ if ¢ is true for some time ¢ in the interval [t + a,t+ b], and for
all times between ¢ and ¢, the formula ¢ holds.

Giap® True at time ¢ if for all times in the interval [t + a, t + b], the formula ¢ holds.

Table 4: STL illustration

11



B Full algorithm to synthesize multiple STLs

This is the full algorithm to synthesize multiple varied STLs. The blue-colored words are the example
output in each step. All the operators are classified into the operator with only one subtree, or the operator
with two subtrees. A random ordered prop list is generated with the length less than the upper limit. Then
this full list is split into some sub_lists. For each sub_list, operators are randomly appended in the left
side until each prop occupy one position in the binary tree. Then these modified sub_lists are assembled
back into the full STL by appending operators with two subtrees. The STL generated in this way are
syntactically correct, but may own some flaws in semantic meanings. Some rules can be pre-set to avoid
the unreasonable conditions, e.g., two negation operation should not appear continually.

Algorithm 2 Full algorithm for STL synthesis

Input:

1: Maximum number of APs N
Output:
: Synthesized pre-order STL

two_subtree = [N\, V, =, <, U, U[a,b}],

one_subtree = [, F, G, F[%b}, G[a,b]]

AP_num = random.randint(1, V) >e.g.,3
prop_list <— Random_ordered Prop list with length AP_num

sub_lists < randomly divide prop_list >e.g., [prop_3, prop_1], [prop_2]

R A A

10: Creating sub-STLs :

11: for each sub_list do

12: num_open_subtree = len(sub_list)

13: while num_open_subtree > 1 do

14: operation <— randomly choose item in two_subtree + one_subtree
15: if operation in two_subtree then

16: num_open_subtree -= 1

17: end if

18: if operation in [Uj, 4}, Flq 4. G[a] then

19: a, b < sampling random integers or denoting as in finity

20: end if

21: sub_list.insert(0, operation)

22: end while

23: save sub_list as sub_STL >e.g., [, 7, prop_3, prop_1], [G, prop_2]
24: end for

25:

26: Assembling sub-STLs :

[\
~

: Assembling sub_STLs into pre-order STL by appending random two_subtree operations > e.g.,
[Uf10,30)» < — prop_3, prop_1, G, prop_2]

C Examples of prompt input to GPT-3

These are the example prompts for GPT-3 to convert between NL and STL, or detect the spans of Atomic
Proportions.
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Try to transform the signal temporal logic into natural languages, the operators in the signal
temporal logic are: negation, imply, and, equal, until, globally, finally, or .
The examples are as following:

STL: (finally [317,767] (prop_3 equal prop_2) imply prop_1)

natural language: It is required that at a certain point within the next 317 to 767 time units the
scenario in which ( prop_3 ) is equivalent to the scenario in which ( prop_2 ) happens , and only
then (prop_1).

STL: (((prop_2 until [417,741] prop_3) imply prop_1) or prop_4)
natural language: ( prop_2 ) should happen and hold until at a certain time point during the 417
to 741 time units the scenario that ( prop_3 ) should happen then ( prop_1), or else ( prop_4).

STL: (prop_1 imply finally [300, infinite] prop_2)
natural language: If (prop_1) happens, then some time after the next 300 time steps (prop_2)
should happen.

STL: (prop_1 imply (negation prop_2 and (prop_3 until prop_4)))
natural language: If (prop_1), don't (prop_2), instead keep (prop_3) until (prop_4).

STL: (globally [0, 354] prop_1 and (prop_2 imply (globally [0, 521] (prop_3) and finally [521,
996] prop_4)))

natural language: Stay (prop_1) for 354 timesteps, and if (prop_2) happens, then first keep
(prop_3) and then let (prop_4) happen at some point during 521 to 996 time steps.

STL: ((prop_1 until prop_3) and (prop_4 imply prop_2))
natural language: Do (prop_1) until (prop_3), but once (prop_4) occurs then immediately
(prop_2) .

STL:

Figure 8: Prompts for converting from synthesized STL to NL via GPT-3.

C.1 Prompt example from in-order STL to NL via GPT-3

Figure 8 is a prompt example for GPT-3 to convert from STL to its corresponding NL. The input STL
follows in-order expression with all the operators replaced by words with the same meanings. The prompt
contains 20 NL-STL pairs, which are randomly picked up from 100 examples and are changed constantly
during data creation.
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Try to transform the following natural languages into signal temporal logics, the operators in
the signal temporal logic are: negation, imply, and, equal, until, globally, finally, or .
The signal temporal logics are pre-order expressions. The examples are as following:

natural language: It is required that for every moment during the interval 489 to 663 either the
event that ( prop_1) is detected and in response ( prop_3 ) should happen, or ( prop_2 ) should
be true .

STL: ['or', 'globally [489,663]", 'imply', 'prop_1', 'prop_3', 'prop_2']

natural language: ( prop_1) or ( prop_2 ) happens and continues until at some point during the
142 to 365 time units ( prop_4 ) happens and ( prop_3 ) happens at the same time .
STL: ['until [142,365]', 'or', 'prop_1', '‘prop_2', 'and’, 'prop_4', 'prop_3']

natural language: ( prop_1 ) should not happen and ( prop_2 ) should happen at the same time,
and the above scenario is equivalent to the case that at some point during the 230 to 280 time
units ( prop_3 ) happens.

STL: ['equal’, 'and’, 'negation’, 'prop_1', 'prop_2', 'finally [230,280]', 'prop_3']

natural language: In the next 0 to 5 time units , do the ( prop_1), but in the next 3 to 4 time
units, ( prop_2 ) should not happen .
STL: ['and’, 'globally [0,5]', 'prop_1', 'globally [3,4]', 'negation’, 'prop_2']

natural language: While (prop_1), do (prop_2), and when (prop_3), stop (prop_2) .
STL: ['and’, 'imply’', 'prop_1', 'prop_2', 'imply’, 'prop_3', 'negation’, 'prop_2']

natural language: If (prop_1) happens, then some time after the next 300 time steps (prop_2)
should happen.
STL: ['imply', 'prop_1', 'finally [300, infinite]', 'prop_2’]

STL:

Figure 9: Prompts for converting from NL to pre-order STL via GPT-3.

C.2 Prompt example from NL to pre-order STL via GPT-3

Figure 9 is a prompt example for GPT-3 to convert from NL to its corresponding STL. The output STL
follows pre-order expression. We have tested that GPT-3 acts with close performance when STL follows

either pre-order or in-order formats.
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Detect the actions or tasks in the sentence. The examples are as follows:
sentence: walk until whenever travel to flag
actions: walk, travel to flag

sentence: forever touch flag and drop orange
actions: touch flag, drop orange

sentence: drop by or whenever go to flag
actions: drop by, go to flag

sentence: at some time procure pear or stop by flag
actions: procure pear, stop by flag

sentence: never drop pear means that at any time go to flag
actions: drop pear, go to flag

sentence: never drop apple or secure apple
actions: drop apple, secure apple

sentence: do not let go pear or whenever start going to house
actions: let go pear, start going to house

sentence:

Figure 10: Prompts for AP recognition via GPT-3.

C.3 Prompt example for AP recognition via GPT-3

Figure 10 is a prompt example for applying GPT-3 to detect APs in natural sentences. In this example, the
specific domain is Navigation.
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Lifted NL-STL
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AP num = 3
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Num of NL-STL pairs in prompt

Figure 11: Number of prompt pairs VS. GPT-3 performance.

D Number of NL-STL pairs in GPT-3 prompts

As shown in Figure 11, here we ask GPT-3 to transform from NL to STL and tune the number of NL-STL
pairs in the prompt to detect the accuracy evolution. We test on the NL whose targeted STL have the
number of APs to be two or three. We find that the prediction accuracy given by GPT-3 will arise with the
number of example pairs and turn into a plateau when the number of example pairs increases to larger
than 20. Here we choose the number of pairs to be 20 in the prompt.
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STL (pre-order+operator)

[<->’,’->’, "prop_2’°, 'prop_3’, "F[55,273]’, "prop_1’]

STL (in-order+word)

((prop_2 imply prop_3) equal finally[55,273] prop_1)

Raw natural sentence

If (prop_2) implies (prop_3), then (prop_1) will happen at some point
during the next 55 to 273 time units .

Annotated natural sentence

If (prop_2) implies (prop_3), then (prop_1) will happen at some point
during the next 55 to 273 time units, and vice versa .

STL (pre-order+operator)

['U[400,infinite]’, ’->’, "prop_3’, 'prop_1’, 'negation’, prop_2’]

STL (in-order+word)

((prop_3 imply prop_1) until[400,infinite] negation prop_2)

Raw natural sentence

If (prop_3), then do (prop_1) and keep doing it until (prop_2) hap-
pens, but this should never happen .

Annotated natural sentence

If (prop_3), then do (prop_1) and keep confirming to the above state
until (prop_2) does not happens at some point after the 400 time units
from now .

STL (pre-order+operator)

['<->’, 'negation’, "prop_1°, *U[279,438]’, "prop_3’, 'prop_2’]

STL (in-order+word)

(negation prop_1 equal (prop_3 until[279,438] prop_2))

Raw natural sentence

The scenario in which ( prop_1 ) happens is the same as the scenario
in which ( prop_3 ) happens and continues until at a certain time
point during the 279 to 438 time units ( prop_2 ) happens .

Annotated natural sentence

The scenario in which ( prop_1 ) does not happen is the same as the
scenario in which ( prop_3 ) happens and continues until at a certain
time point during the 279 to 438 time units ( prop_2 ) happens .

Table 5: Example annotations from synthesized STLs to raw natural sentences, and further to annotated

natural sentences.

E Example annotations of lifted NL-STL pairs

As shown in Table 5.

F Example full NL-STL pairs of each specialized dataset

As shown in Table 6.
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Navigation STL | finally ( acquire_v pear_n ) and globally ( finally ( go_to_v waste_basket_n ) )
NL when possible acquire pear and repeatedly go to waste basket .
Navigation STL | finally ( got_to_v house_n ) and finally ( go_near_v house_n )
NL at any time got to house and when possible go near house .
Navigation STL | advance_to_v tree_n imply finally ( get_to_v flag_n )
NL advance to tree means that when possible get to flag .
Circuit STL | globally ( signal_1_n math equal 89.3 or ( signal_2_n more 42.4 and signal_2_n
less 91.5 ) imply globally [0,34] ( finally [0,98] ( signal_3_n more equal 11.5 and
signal_3_nless equal 23.4)))
NL In the case the signal_1_n signal is 89.3 , or the signal_2_n signal is greater than
42.4 and below 91.5 , then for every time instant during the coming 34 time units ,
there needs to exist a certain time instant during the next 98 time units , at which the
value of signal signal_3_n should be no less than 11.5 and less than or equal to 23.4
eventually .
Circuit STL | finally ( signal_1_n less 92.6 and signal_2_n more equal 57.3)
NL At a certain time instant in the future before the end of the simulation signal_1_n is
ultimately below 92.6 and signal_2_n will be ultimately at least 57.3 .
Circuit STL | finally ( ( signal_1_n more equal 4.1 and signal_1_n less equal 59.0 ) or signal_2_n
math equal 41.1)
NL There has to be a certain time instant in the future before the end of the simulation
, at which the value of signal_1_n needs to be greater than or equal to 4.1 and less
than or equal to 59.0 eventually , or signal_2_n finally keeps equal to 41.1 .
GLTL STL | finally ( ( red_room or blue_room ) and finally green_room )
NL enter the blue or orange room and proceed until the green room .
GLTL STL | (finally ( blue_room ) and globally ( negation green_room ) )
NL | move to the blue room without entering a lime room .
GLTL STL | (finally ( yellow_room ) and globally ( negation blue_room ) )
NL only go through rooms that are not purple to get to the yellow room .
CW STL | finally ( blue_room and finally green_room )
NL please go to the green room through the blue room .
CwW STL | finally red_room
NL i want you to go into the red room .
Cw STL | finally ( ( red_room or yellow_room ) and finally green_room )
NL go thru the yellow or red box to get to the green box .
Office email STL | globally ( ( ( a new incident is created in Eventribe ) and ( a response is created in
Trello ) ) imply ( creating an object in Gmail ) )
NL | When the transition action that a new incident is created in Eventribe does not get
observed , and a response is created in Trello , then the following condition is true :
promptly creating an object in Gmail .
Office email STL | ( ( sync Microsoft Teams data ) until finally ( sending me an SAP and Salesforce ) )
NL sync Microsoft Teams data until when possible sending me an SAP and Salesforce .
Office email STL | globally ( ( ( a new lead is added in Marketo ) and ( creating a new Marketo card ) )
imply ( a new lead is added in Microsoft Teams ) )
NL On condition that a new lead is added in Marketo and creating a new Marketo card
, then the event that a new lead is added in Microsoft Teams needs to occur at the
same time instant .

Table 6: Examples of full NL-STL pairs in each specialized domain.
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Unannotated lifted NL-STL
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Figure 12: Testing accuracy VS. Number of raw NL-STL pairs. The data collected and re-annotated from
Navigation and Circuit work are all used during training. The inner data refers to the data generated with
the help of GPT-3, and the extra data refers to the instructions collected from volunteers.

G Ablation Studies

G.1 Significance of Human Annotation

This part is to demonstrate the significance of human annotation for the GPT-3 synthesized data. Figure 12
shows the model accuracy under varied number of training raw pairs. The great thing is that the T5-large
model can still achieve a highest testing accuracy of 87.3% and 79.4% on the inner and extra data test,
even only using the raw data synthesized from GPT-3. However, compared to the results in Figure 5,
models trained on annotated data achieves accuracy about 10% higher than models trained on raw data.

G.2 Significance of Framework2

3K dataset 4.5K dataset
Domain 1.5KF1 + 1.5K F2 3K F1 3K F1 +1.5KF2 4.5K F1
Raw data 78.85 + 1.04% 75.79 +£0.98%  80.48 £0.71%  79.04 £+ 0.64%

Annotated data 80.57 + 0.86% 79.76 £0.88%  88.32+0.84%  86.51 +0.77%

Table 7: Testing accuracy of the models with different training datasets. The training data are either
raw or annotated, pure from Framework]1 (F1) or combining with Framework?2 (F2). The experimental
results show that the annotated dataset can apparently improve the performance of the model, and models
combining the data generated by F1 and F2 outperform the models trained with the same amount of pure
F1 data.
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Comparison of model capacity
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Figure 13: Testing accuracy VS. Number of training lifted NL-STL pairs. Here we use T5-large and
Seq2Seq models to train on the lifted data. We detect that the Seq2Seq model reaches a highest accuracy
at 83%, while T5-large model reaches a highest accuracy at 97.5%.

H Model Capacity

As shown in Figure 13, T5-large performs much better than Seq2Seq model when training on the same
lifted dataset. This reveals the significance to use LLM in this NL-to-TL task.
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I Datasets statistics

I.1 Statistics of lifted NL-STL dataset

# APs per STL # Operators per STL

avg. median max avg. median max

2.648 3 5 3.078 3 7

Table 8: Lifted STL formula statistics: # APs for each formula, # STL operators for each formula.

# Words per Sent.

#Sent. # Vocab avg. median max min

21867 1288 17.512 16 72 3

Table 9: Lifted sentence statistics: # unique sentences, # unique words (vocab), # words per sentence.

1.2 Statistics of full NL-STL datasets across five domains

# APs per STL # Operators per STL

Domain avg. median max avg. median max
Circuit (He et al., 2022) 2.303 2 6  6.898 7 21
Navigation (Wang et al., 2021) 2.003 2 3 2624 3 5
GLTL (Gopalan et al., 2018) 2.153 2 3 3486 4 4
CW (Squire et al., 2015) 2.906 2 6 4778 5 7
Office email (Fuggitti and Chakraborti, 2023) 2 2 2 2582 3 4

Table 10: Full STL formula statistics in each domain: # APs for each formula, # STL operators for each
formula.
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# Words per Sent.

Domain #Sent. #Vocab avg. median max min
Circuit (He et al., 2022) 120000 265 38.495 37 97 1
Navigation (Wang et al., 2021) 5000 131 9.697 10 16 4
GLTL (Gopalan et al., 2018) 11153 193 11.324 11 27 4
CW (Squire et al., 2015) 3382 188 9.645 10 27 4
Office email (Fuggitti and Chakraborti, 2023) 150 143 13.407 13 25 9

Table 11: Full sentence statistics in each domain: # unique sentences, # unique words (vocab), # words
per sentence.
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Figure 14: Accuracy VS. number of APs in each lifted STL. We carry out the test with both finetuned
lifted T5-model and GPT-3 end-to-end method.

J Accuracy evolution with AP number

This section is to illustrate that directly applying GPT-3 to predict STL from NL via few-shot learning
largely decreases the accuracy when the sentence structure is complex. Here we hypothesize that sentence
complexity is positively related to the number of APs. As shown in Figure 14, the prediction accuracy
decreases rapidly with increasing AP number using GPT-3 end-to-end method. On the other hand, the
method to finetune the T5-large using synthesized NL-STL pairs remains high accuracy across different
AP numbers.

K Details of implementation

For all the finetuning experiments on both T5-base and T5-large models, we choose the learning rate as
2e-5, a batch size of 16, a weight decaying ratio as 0.01, and run 20 epochs for each setting. Experiments
on average finish in 3 hours for T5-base, and 10 hours for T5-large, on a single Nvidia RTX 8000 GPU.
Average results and standard deviations are typically acquired from 3 runs with seeds [1203, 309, 316],
apart from the transfer learning in CW dataset where 10 runs are carried with seeds [1203, 309, 316, 34,
64, 128, 256, 512, 1234, 234]. For the finetuning on lifted models, the input dataset is split into training
set (0.9) and testing set (0.1).
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Atomic proposition recognition:

If a response is created in Slack , or the Acoustic
Campaign contact is being updated then in response the
scenario that a response is created in Asana shall be
instantly observed . ‘

Lifted natural sentence:
If (prop_1), or (prop_2) then in response the scenario that

(prop_3) shall be instantly observed .

Lifted STL prediction:
globally ( ( (prop_1) or (prop_2) ) imply (prop_3) )

Full STL prediction: ‘
globally ( ( ( create_Slack ) or ( update_Acoustic Campaign
) ) imply ( created_Asana ) )

Figure 15: Illustration of full STL conversion by combing with AP recognition task using GPT-3.

L. Full STL conversion by combining lifted model with AP recognition

Illustrated in Figure 15
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