
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

CLEVER: A Curated Benchmark for Formally Verified Code Generation

Anonymous Authors1

Abstract
We introduce CLEVER2, a high-quality, curated
benchmark of 161 problems for end-to-end ver-
ified code generation in Lean. Each problem
consists of (1) the task of generating a specifi-
cation that matches a held-out ground-truth spec-
ification, and (2) the task of generating a Lean
implementation that provably satisfies this spec-
ification. Unlike prior benchmarks, CLEVER
avoids test-case supervision, LLM-generated an-
notations, and specifications that leak implementa-
tion logic or allow vacuous solutions. All outputs
are verified post-hoc using Lean’s type checker
to ensure machine-checkable correctness. We use
CLEVER to evaluate several few-shot and agen-
tic approaches based on state-of-the-art language
models. These methods all struggle to achieve
full verification, establishing it as a challenging
frontier benchmark for program synthesis and for-
mal reasoning. Our benchmark can be found on
Anonymized Repository. All our evaluation code
is also available online.

1. Introduction
Interactive theorem-provers (ITPs) (Huet et al., 1997; Paul-
son, 1994; de Moura et al., 2015) are an established tech-
nology for engineering high-assurance software, leading
to success stories like the CompCert verified C compiler
(Leroy, 2009b) and the seL4 (Klein et al., 2009b) verified
microkernel. However, writing formal specifications and
correctness proofs for software systems can take tremen-
dous effort — for example, the development of seL4 was
reported to take 20+ person-years. These costs are a key
impediment to the broad deployment of ITP-based formal
verification.

Recent progress in autoformalization and neural theorem-
proving (Polu & Sutskever, 2020; Li et al., 2024) has raised
hopes of scaling up formal verification (Yang et al., 2024).
Most existing work in this area has focused on formalizing
and proving statements in pure mathematics (Zheng et al.,
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2021; Tsoukalas et al., 2024). However, the software veri-
fication setting opens up the challenge of generating code
that is formally verified by construction, a problem without
a well-studied analog in the mathematics setting.

To date, there are a handful of benchmarks (Dougherty &
Mehta, 2025; Loughridge et al., 2024; Lohn & Welleck,
2024) for formally verified code generation. However, the
formal specifications in these benchmarks tend not to cap-
ture the full (natural-language) intent behind the target pro-
gram and sometimes hint at ways to implement the program.
This ambiguity allows a code generator to “cheat” by gener-
ating trivial programs or copying code from the specification
(see Appendix A.1).

In this paper, we address this gap in the prior art with
CLEVER, a high-quality benchmark for formally verified
AI-based code generation. CLEVER includes hand-crafted
Lean specifications of 161 programming tasks from the
HUMANEVAL benchmark (Chen et al., 2021).

It evaluates models in two stages: (1) Specification certifica-
tion: Given a natural language specification, the model is
required to generate a Lean specification and prove that it is
semantically equivalent to the ground-truth specification. (2)
Implementation certification: Once the model has correctly
generated the specification, it is required to generate a Lean
implementation and prove that it satisfies the ground-truth
specification. A synthesis attempt is deemed successful
only when both the proofs generated in the two stages are
fully verified by Lean’s type checker. This rigorous pipeline
avoids the pitfalls of both automatically generated specifica-
tions and test-based supervision.

We use CLEVER to evaluate several state-of-the-art LLMs
prompted in a few-shot manner and show that they can
only solve up to 1/161 end-to-end verified code generation
problem, establishing CLEVER as a challenging frontier
benchmark for program synthesis and formal reasoning. In
summary, our contributions include:

1. We introduce CLEVER, the first curated benchmark for
evaluating the generation of specifications and formally
verified code in Lean. The benchmark comprises of 161
programming problems; it evaluates both formal speci-
fication generation and implementation synthesis from
natural language, requiring formal correctness proofs
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for both. All specifications are manually written to be
complete, implementation-agnostic, and free from ex-
ploitable artifacts, preventing models from shortcutting
the intended semantics.

2. We present an empirical evaluation of several state-of-
the-art LLMs and agentic approaches on CLEVER and
show that they all struggle at meeting the benchmark’s
goals, establishing the challenging nature of the bench-
mark.

2. The CLEVER Benchmark
CLEVER builds on HUMANEVAL (Chen et al., 2021) by
adapting 1613 of its 164 programming problems for for-
mal verification in Lean 4. Each problem includes a nat-
ural language description (ν), a human-authored formal
specification (ψ∗), a Lean function signature (πsig) for the
implementation, and Lean theorems for both specification
equivalence and implementation correctness. All formal
specifications are written as non-computable logical propo-
sitions — i.e., they use quantifiers and logical connectives
that cannot be directly evaluated — ensuring that models
cannot copy implementation logic from specification syntax.

During evaluation, a model being evaluated on the bench-
mark starts with the natural-language description ν. Given
this text, the model must generate:

(1) a formal Lean specification ψ, expressed as a predicate
(a function that returns a Lean 4 proposition i.e. Prop),

(2) a proof that ψ is semantically equivalent to a hidden
ground-truth Lean specification ψ∗,

(3) a Lean implementation4 π that matches the function
signature (πsig) and is designed to satisfy ψ∗ (and
hence ψ), and

(4) a formal proof establishing that π satisfies ψ∗.

These steps (Figure 1) form two certification goals: (1)
Specification certification: Steps 1–2 verify that the model
correctly inferred the intended behavior. (2) Implementation
certification: Steps 3–4 verify that the generated implemen-
tation satisfies the formal intent.

Our staged reasoning setup allows fine-grained diagnosis:
models may fail at generating specifications, proving equiva-
lence between the generated and ground-truth specifications,
synthesizing implementations, or proving implementation

3Not all problems could be formalized due to limitations in
Lean 4 and its supported libraries.

4Here, we use the fact that Lean is not just a language for
mathematical specifications and proofs but a full-fledged functional
programming language.

correctness. For example, note that we require the generated
implementation π to satisfy the ground-truth specification
ψ∗ instead of the model-generated specification ψ. This is
because we want the evaluation of π to be independent of
the ability of the model to generate the correct specification.
More generally, failures at the various stages of our pipeline
are independently diagnosed using Lean’s type checker.

Challenges Encountered during Formalization. A key de-
sign decision in our benchmark is the use of non-computable
specifications, which are predicates or functions in Lean that
return propositions (Prop in Lean) that cannot be evaluated
or simplified (decided by Lean) through computation alone.
These contrast with computable specifications, written as
executable functions or decidable predicates that Lean can
reduce directly. While easier to verify, computable specs
often leak the desired logic: models can copy them into
implementations and produce trivial proofs via rewriting.
Figure 2 shows the difference between a computable and a
non-computable specification.

Figure 3 demonstrates the importance of this contrast. The
left side (a–c) shows a computable spec whose logic is
mirrored exactly in the GPT-4o-generated implementation,
enabling a trivial proof. On the right (d–f), the spec is
non-computable and requires symbolic reasoning to prove
correctness. Notably, the GPT-4o-generated implementation
in (e) does not mirror the spec, and the proof fails without
further reasoning. This design ensures that models must
engage in deeper logical inference, not just syntactic pat-
tern matching. By using non-computable specs across our
benchmark, we eliminate leakage and enforce truly verified
reasoning from models.

Creating this benchmark involved substantial manual effort.
On average, writing a formal specification took annotators
25 minutes per problem on average, with an additional 15
minutes spent reviewing each other’s specifications. Some
problems involving complex non-computable specs required
over an hour. To better understand problem difficulty and
verify feasibility, we manually authored correctness proofs
for a small random sample of benchmark problems. These
ranged from 10 lines (e.g., problem_17) to 225 lines (e.g.,
problem_0), reflecting a wide span of proof complexity.

In addition to the main benchmark, we release a small hand-
curated few-shot prompt dataset comprising of 5 problems
distinct from HUMANEVAL. All of these problems include
hand-written implementations, and some of them addition-
ally include manually written equivalence and isomorphism
proofs. For example, one correctness proof spans 309 lines,
while corresponding isomorphism proofs range from 29 to
82 lines. This auxiliary dataset is intended to support prompt
tuning and evaluation in few-shot or in-context learning se-
tups.

2
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Figure 1: The two tasks of the CLEVER benchmark pipeline. Task 1 requires first generating a specification ψ from the
natural language statement ν, then proving an isomorphism between the generated specification and a human-written
specification ψ∗. Task 2 requires first generating a Lean implementation π, then proving its correctness according to the
human-written specification. Both of these tasks must be completed correctly (reaching both QED 1 and QED 2) in order
for a success to be counted.

(a)
-- computable spec
def problem_spec
-- function signature
(implementation: Nat → Nat)
-- inputs
(n: Nat) : Prop :=
-- spec
let spec (result: Nat) :=
match n with
| 0 => result = 0
| 1 => result = 1
| n' + 2 => result =
implementation n' +
implementation (n' + 1)
-- return value satisfies spec
∃ result, implementation n = result ∧ spec result

(b)
-- non-computable spec
inductive fibonacci_non_computable : N → N → Prop
| base0 : fibonacci_non_computable 0 0
| base1 : fibonacci_non_computable 1 1
| step : ∀ n f1 f2,
fibonacci_non_computable n f1 →
fibonacci_non_computable (n + 1) f2 →
fibonacci_non_computable (n + 2) (f1 + f2)

def problem_spec
-- function signature
(implementation: Nat → Nat)
-- inputs
(n: Nat) :=
-- spec
let spec (result: Nat) :=
fibonacci_non_computable n result

-- program termination
∃ result,
implementation xs = result ∧ spec result

Figure 2: Two different specs for finding the nth Fibonacci number. (a) shows a computable specification that leaks the
implementation; (b) shows a non-computable specification leading to no-leakage of the implementation and enforcing the
model to learn the deeper logical inference.
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(a)
def problem_spec
(implementation: List Int → Int → Bool)
(q: List Int) (w: Int) :=
let spec (result : Bool) :=

result ↔ (List.Palindrome q) ∧ (List.sum q ≤ w)
∃ result, implementation q w = result ∧ spec result

(b)
def implementation (q: List Int) (w: Int) : Bool :=
-- implementation generated by GPT-4o
List.Palindrome q ∧ List.sum q ≤ w

(c)
theorem correctness (q: List Int) (w: Int)
: problem_spec implementation q w := by
-- proof generated by GPT-4o
unfold problem_spec
let result := implementation q w
use result
simp [result]
simp [implementation]

(d)
def problem_spec
(implementation: List Int → Int → Bool)
(q: List Int) (w: Int) :=
let spec (result : Bool) :=
(result → (List.Palindrome q)) ∧
(result → (List.sum q ≤ w)) ∧
(¬(List.Palindrome q) → ¬ result) ∧
(¬(List.sum q ≤ w) → ¬ result)

∃ result, implementation q w = result ∧ spec result

(e)
def implementation (q: List Int) (w: Int) : Bool :=
-- implementation generated by GPT-4o
let is_palindrome := q = q.reverse
let sum_le_w := q.sum ≤ w
is_palindrome && sum_le_w

(f)
theorem correctness
(q: List Int) (w: Int)
: problem_spec implementation q w
:= by
-- proof generated by GPT-4o
unfold problem_spec
let result := implementation q w
use result
simp [result]
simp [implementation]
intro h -- <- The compilation fails here
simp [h]
exact List.eq_reverse_of_palindrome h.left
-- more proof trimmed

Figure 3: Illustration of specification leakage (left) and its mitigation (right) via non-computable specifications, using
HUMANEVAL problem 72. The task is to return true iff a list q is a palindrome and its sum is at most w. In (a–c), the
spec is computable: it encodes the desired logic in a Boolean expression, allowing the model to copy it directly in (b) and
produce a trivial proof (c) via just unfolding and simplifying basic definitions used in the theorem statement. In contrast,
(d–f) use a non-computable spec expressed in Prop with logical implications. The corresponding implementation (e),
generated by GPT-4o using few-shot prompting, reflects the semantic intent without mirroring the spec. The proof (f) fails
without additional reasoning, highlighting the challenge of proving correctness when logic cannot be mechanically unfolded.
Non-computable specs thus act as guardrails, requiring models to reason rather than copy.

Curating the benchmark also revealed deeper challenges
inherent to formal verification. For instance, in the HU-
MANEVAL problem involving root-finding for polynomi-
als (see Figure 4), proving termination is difficult due to
reliance on unbounded numerical search. Similarly, generat-
ing verified code for “finding all prime Fibonacci numbers”
encounters foundational roadblocks, as there is no known
proof that infinitely many such numbers exist—highlighting
how natural language tasks can conceal deep mathematical
issues when formalized. One potential way to deal with
these types of formulations is by adding the concept of com-
putational fuel and approximate answers (see Figure 4, and
Figure 8 in Appendix A.2). Writing non-computable speci-
fications is particularly challenging for problems that rely
on language-level features like Python’s eval, as seen in
Problem 160. Since Lean lacks direct string-based evalu-
ation, we had to reconstruct the behavior using inductive
definitions over token lists and arithmetic expressions. This
required converting a naturally computable task into a se-

mantically equivalent, non-computable formulation without
leaking implementation details. As shown in Figure 10
(in Appendix A.3), achieving this often involves layered
recursive structures and careful abstraction to ensure both
correctness and opacity.

Another instructive case is the problem of computing the
MD5 checksum (problem 162). Here, the formal specifi-
cation must, by necessity, describe the exact computation,
making it closely related to the implementation itself. Since
we could not find any popular hashing libraries in Lean,
we chose not to formalize this specific problem. However,
we prescribe the recipe for creating non-computable defini-
tions in Appendix A.3, given that we know the computable
definition.

While adapting HUMANEVAL to Lean, we encountered sev-
eral language-level limitations. Some problems relying on
dynamic typing or polymorphic return types—like Python’s
Any—could not be faithfully represented in a statically typed

4
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setting (e.g., problems 22 and 137). As a result, we were
able to formalize 161 out of the original 164 problems. In
problem 103, where the output is either a binary string or
None based on input validity, we use Option String as
the return type. In problem 129, where the function may
return either a list of words or a number, we encode this
using disjoint union type in Lean: (List String) ⊕ Nat,
allowing only one of the two values to be populated at a
time.

Prior work, such as FVAPPS (Dougherty & Mehta, 2025),
relies on automatically generated specifications that can
be incomplete or leaky, allowing trivial implementations
(e.g., always returning zero) to pass (see Figure 7 in Ap-
pendix A.1). Our human-curated specifications ensure com-
pleteness and robustness, closing such loopholes and sur-
facing the real verification complexity hidden in everyday
programming problems.

3. Evaluation
We evaluated several state-of-the-art LLMs and agentic ap-
proaches on CLEVER. Now we elaborate on the results.

Evaluation Metric. To fairly compare approaches that dif-
fer in model size, latency, and API usage, we adopt the
metric pass@k-seconds—the fraction of benchmark prob-
lems solved within a fixed time budget k. A task is marked
as solved only if both the formal specification and the imple-
mentation are generated and verified via Lean’s type checker.
As described in Figure 5, each step in the CLEVER pipeline
(spec generation, equivalence proof, implementation, and
correctness proof) is retried until a valid Lean-compilable
output is found or the time runs out.

EVALUATE(approach, timeout)
1 � Assume RETRY retries the given function
2 � until it generates compilable Lean 4 code or timeouts.
3 � RETRY returns the Lean 4 code and remaining time.
4 trem ← timeout
5 ψ, trem ← RETRY(GenerateSpec, ν, trem)
6 Peq, trem ← RETRY(ProveEquivalence, (ψ, ψ∗), trem)
7 if trem ≤ 0 return Fail
8 π, trem ← RETRY(GenerateImpl, (ν, ψ), trem)
9 Pχ, trem ← RETRY(ProveCorrectness, (π, ψ∗), trem)

10 if trem ≤ 0 return Fail
11 return Success (all Lean 4 checks passed)
Figure 5: Evaluation strategy: retry each generation step
until Lean compilation succeeds or a timeout is reached.

Evaluated Baselines. We evaluate three families of ap-
proaches for end-to-end verified code generation. The
Few-Shot Baseline uses large language models (GPT-4o,
Claude-3.7, o4-mini, and DeepSeek-R1) to generate
all components—specifications, implementations, and
proofs—via few-shot prompting with 1–2 exemplars. This
baseline assesses the raw capability of LLMs to reason for-

mally without task-specific training or tooling. The COPRA
Baseline replaces the proof generation steps (Stages 2 and
4) with COPRA (Thakur et al., 2024), a neuro-symbolic
proof search agent designed to produce Lean-compatible
proofs when provided with an off-the-shelf foundational
model and a Lean theorem statement to prove. This setup
isolates proof search difficulty from the upstream generation
task.

Results. Our primary evaluation metric focuses strictly
on semantic correctness: a task is considered successful
only if both the specification and the implementation are
formally certified via Lean proofs. This strict definition
ensures that reported scores reflect genuine end-to-end ver-
ification. However, to better diagnose failure modes, we
also report auxiliary statistics: the fraction of tasks where
generated specifications and implementations compile suc-
cessfully. These serve as proxies for the model’s fluency in
Lean and its ability to produce well-typed artifacts.

In particular, implementation compilation includes not only
type-checking against the declared function signature, but
also validation against a suite of example-based test cases
adapted from the original HUMANEVAL prompts. While
passing these tests provides some evidence of functional
correctness(Liu et al., 2023), we deliberately exclude them
from our core success metric—since test cases offer only
partial coverage and cannot guarantee semantic soundness
(see Section 2 for discussion).

As shown in Table 1, compilation rates are broadly similar
across few-shot models for both specification and implemen-
tation generation. A notable exception is the higher imple-
mentation compilation rate achieved by o4-mini, which
contrasts with its lower success in proving correctness.
More generally, even when an approach successfully certi-
fies multiple specifications or verifies correctness for mul-
tiple implementations, the overall end-to-end success rate
remains low. This is largely due to mismatch: tasks for
which specification certification is tractable are often those
where implementation correctness proofs are especially dif-
ficult, and vice versa. As a result, the joint success condition
is rarely satisfied.

Another interesting observation is that Claude-3.7, when
used along with COPRA, can certify more implementations
(14) than all other models; however, its performance on
specification certification is only comparable to other mod-
els. We believe that this might have to do with the length
of proofs needed for specification certification, and hence,
in the limited timeout it is hard to find the full proof for
specification.

Proof Difficulty and Structure. As shown in Table 2,
proofs for specification certification are consistently longer
and harder to generate than those for implementation cor-

5
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Approach Components Pass@k-sec
Spec Cert. Impl Cert. End-to-End

Model Spec Gen Equiv Proof Impl Gen Corr Proof Compiled Proved Compiled Proved

Few-Shot Baseline

GPT-4o FS FS FS FS 84.472% 0.621% 68.323% 0.621% 0%
o4-mini FS FS FS FS 82.609% 1.242% 83.230% 1.863% 0.621%
Claude-3.7 FS FS FS FS 86.957% 0.621% 65.217% 1.863% 0.621%
DeepSeek-R1 FS FS FS FS 71.42% 0.621% 60.870% 5.559% 0.621%

COPRA Baseline

GPT-4o FS COPRA FS COPRA 76.398% 1.863% 68.323% 3.727% 0.621%
Claude-3.7 FS COPRA FS COPRA 81.366% 1.242% 65.217% 8.696% 0.621%

Table 1: Evaluation of different strategies for end-to-end verified code generation. Each approach consists of five
components: Model (LLM used), Spec Gen (formal specification generation), Equiv Proof (proof of equivalence to
ground-truth spec), Impl Gen (program synthesis), and Corr Proof (proof of implementation correctness). FS indicates
few-shot prompting with 1–2 examples. Evaluation follows the pipeline in Figure 5. Pass@k-seconds with k = 600 reports
the fraction of tasks where Lean successfully compiles the outputs and accepts the associated proofs within a 600-second
time budget. The Compiled columns indicate whether the generated Lean code is syntactically valid and type-checks. The
Proved columns reflect whether the corresponding proofs were accepted by Lean’s kernel, thereby certifying semantic
correctness. The End-to-End column reports full pipeline success—i.e., both the specification and implementation must
compile and their respective proofs must be accepted. Despite strong models like GPT-4o achieving high compilation
rates, formal correctness remains challenging: no approach has yet succeeded across all stages on more than one problem
(specifically problem 53).

rectness. This is expected: proving that a generated spec
is semantically equivalent to a non-computable reference
specification requires models (or agents) to reason abstractly
about intent, without access to implementation-level cues.
In contrast, correctness proofs often benefit from direct pat-
tern matching or automation through tactics like simp.

This distinction is especially evident in the only problem
for which an end-to-end verified code generation succeeds
across multiple models: problem 53, which asks for the
sum of two integers. Despite the simplicity of the implemen-
tation, the ground-truth specification is expressed in a way
that deliberately obfuscates the target behavior. This design
makes the equivalence proof non-trivial and requires models
(or COPRA) to recover the algebraic structure underlying
addition. Even here, success is only possible because the
proofs admit aggressive automation via simp and ring. The
full problem is shown in Figure 6, which illustrates the sepa-
ration between syntactic and semantic difficulty across spec,
implementation, and proofs.

Notably, Claude-3.7 in combination with COPRA success-
fully solves every implementation certification task that any
other approach is able to solve. Figure 21 in Appendix A.5
illustrates one such case, showcasing a 35-line proof for
the Brazilian factorial task that requires symbolic reasoning
over factorial identities and recursive structure.

Unlike math-focused benchmarks such as MiniF2F (Zheng
et al., 2021), where many proofs are short, goal-directed,
and amenable to automation via tactics like linarith, ring,
or simp, the proofs in our benchmark often mirror the

control flow and branching structure of programs. As a
result, standard automation is rarely sufficient. Correct-
ness proofs frequently require reasoning case-by-case over
pattern-matched inputs, recursive call structure, or multiple
conditional branches. Even when the final goal involves
simple arithmetic, the surrounding structure demands ex-
plicit handling of recursive unrolling, constructor cases, or
fuel-based invariants. For example, proving correctness for
recursive implementations like factorial products or root-
finding procedures involves handling termination branches,
intermediate values, and variable dependencies that make
tactics like linarith or ring ineffective without signifi-
cant manual decomposition. This structurally rich proof
landscape contrasts with the often-flat logical forms seen in
MiniF2F and underscores the need for symbolic agents like
COPRA that can perform guided proof search beyond tactic
chaining.

4. Related Work
Formal Verification. Formal verification encompasses a
range of techniques aimed at mathematically proving the
correctness of software or hardware systems with respect to
a formal specification, thereby providing strong guarantees
beyond traditional testing. Dafny and Verus (Leino, 2010;
Lattuada et al., 2023) utilize SMT solvers to perform ver-
ification given proper verification conditions. Interactive
theorem provers like Lean, Isabelle, and Coq (de Moura
et al., 2015; Paulson, 1994; Huet et al., 1997) offer highly
expressive logics where users construct proofs interactively
with tactic-based automation. Notably, interactive theorem

6



330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

CLEVER: A Curated Benchmark for Formally Verified Code Generation

Model Approach Certification # Qed Avg. # Lines # Line (Min-Max) Avg. Time (s)

GPT-4o FS Spec 1 16.0 16–16 124.3
GPT-4o FS Impl 1 6.0 6–6 291.6
o4-mini FS Spec 2 29.5 26–33 87.0
o4-mini FS Impl 3 14.0 10–21 204.0
Claude-3.7 FS Spec 1 38.0 38–38 195.7
Claude-3.7 FS Impl 3 12.7 6–21 414.4
DeepSeek-R1 FS Spec 1 26.0 26–26 170.8
DeepSeek-R1 FS Impl 9 14.1 3–27 137.73

GPT-4o COPRA Spec 3 26.3 16–44 97.9
GPT-4o COPRA Impl 6 10.8 6-19 199.6
Claude-3.7 COPRA Spec 2 30.5 16-45 308.7
Claude-3.7 COPRA Impl 14 14.3 4–35 165.8

Table 2: Analysis of successfully generated proofs across different models and certification types. We report: (1) the number
of problems for which the correctness (isomorphism resp.) proofs are found by the approach in the column “# Qed” (see
Figure 1), (2) the average number of lines in the proof, (3) the range of proof lengths (min–max), and (4) the average time it
took for the approach to find a proof (given a proof was found). This analysis highlights variation in proof complexity and
model behavior across settings. Few-shot prompting typically yields shorter, more brittle proofs, while COPRA-augmented
configurations show higher robustness, with more consistent success and a broader range of proof strategies. Proof line
counts serve as a coarse indicator of reasoning complexity.

provers have been involved in the verification of C compil-
ers, microkernels, and distributed systems protocols (Leroy,
2009a; Klein et al., 2009a; Wilcox et al., 2015).

Benchmarks. Recent efforts have developed benchmarks
for formal verification with the onset of powerful neural
models. FVAPPS (Dougherty & Mehta, 2025) uses an LLM
on scraped competition problems to automatically create
formal specifications for 4715 problems, 1083 of which are
guarded with test cases. However, the formal specifications
themselves are often easily hackable (see Appendix A.1),
with verification correctness guarded by a layer of test cases.
Here, we aim to provide complete formal specifications,
which cannot be done accurately with automatic annotation.
miniCodeProps (Lohn & Welleck, 2024) contains 201 ver-
ification problems regarding data structures and induction
problems; however, they do not include specification syn-
thesis or equivalence tests. DafnyBench (Loughridge et al.,
2024) is a benchmark of 782 stand-alone Dafny programs
collected from prior benchmarks and Dafny repositories,
where the synthesis task is to generate the verification condi-
tions that allow Dafny to prove correctness. At the time, the
best model was Claude 3 Opus which solved ≈ 68 % of the
problems. Software engineering benchmarks have become
extremely popular in recent literature, including benchmark-
ing performance fixing real-world issues (Jimenez et al.,
2024) and contamination-free code generation (Jain et al.,
2024). In our work, we employ HUMANEVAL (Chen et al.,
2021) to create CLEVER, our formal verification and synthe-
sis benchmark. Formal verification is also applied in mathe-
matical domains. Mathlib (mathlib Community, 2020) and
the Archive of Formal Proofs (AFP) constitute formal math-

ematical repositories in Lean and Isabelle respectively, from
which benchmarks have been derived (Hu et al., 2025; Jiang
et al., 2021). ProofNet (Azerbayev et al., 2023) serves as
a benchmark for producing proper specifications of math-
ematical problems. PutnamBench (Tsoukalas et al., 2024)
is a formal benchmark of undergraduate-level competition
problems in Lean, Isabelle, and Coq.

Proving Methods. Recent advances in neural models and
LLMs have led to increased attention on formal verifica-
tion and theorem-proving. AlphaVerus (Aggarwal et al.,
2024) introduces a tree search and refinement algorithm
to self-improve at producing formally verified Verus code.
Similarly, SAFE (Chen et al., 2024) performs expert itera-
tion in producing high-quality specification and proofs for
generating verified Verus code. FVEL (Lin et al., 2024)
uses symbolic methods to convert C programs into Isabelle,
and then uses an LLM to generate correctness specifications
which it then tries to prove. However, the automatic na-
ture of the specification generation means correctness is not
guaranteed. For mathematical theorem-proving, approaches
involve tree search (Polu & Sutskever, 2020; Yang et al.,
2023), reinforcement learning (Lin et al., 2025; Lample
et al., 2022), LLMs (Thakur et al., 2024; Xin et al., 2024),
and data augmentation and scale (Dong & Ma, 2025; Deep-
Mind, 2024).

5. Conclusion
We introduced a new benchmark for end-to-end verified
code generation that shifts the focus from surface-level cor-
rectness to formal semantic guarantees. Unlike prior bench-
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marks that rely on test cases or computable specifications,
our tasks are grounded in non-computable, logic-based spec-
ifications that are explicitly designed to prevent implemen-
tation leakage. By enforcing a separation between specifi-
cation intent and implementation behavior, the benchmark
demands genuine reasoning rather than pattern matching or
memorization.

Our evaluation protocol is deliberately staged, decomposing
the pipeline into independently checkable phases: spec-
ification generation, isomorphism proof, implementation
synthesis, and correctness proof. This staged design en-
ables fine-grained diagnosis of where models succeed and
fail—whether in interpreting informal intent, aligning it with
formal meaning, or synthesizing verifiably correct programs.
In particular, verifying the generated specification via iso-
morphism proofs ensures semantic fidelity and introduces a
novel opportunity: verified mining of natural language and
formal specification pairs from model generations, which
could be reused for bootstrapping new training data.

Our benchmark introduces challenges beyond those in math-
ematical theorem-proving settings like miniF2F, where
proofs are often short and tactic-friendly. In contrast, our
tasks reflect the branching structure of real-world programs,
requiring symbolic reasoning over control flow, recursion,
and invariants—scenarios where automation alone breaks
down. By combining structural complexity with formal
soundness, non-leakage by design, and staged verifica-
tion, the benchmark offers a rigorous, semantics-grounded
testbed for verified code generation. It sets a new standard
for advancing neural-symbolic reasoning toward scalable,
trustworthy software verification.
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A. Appendix
A.1. FVAPPS Benchmark

The FVAPPS benchmark (Dougherty & Mehta, 2025) is
another code generation benchmark in Lean. However, un-
like CLEVER, which requires a comprehensive proof of full
program behavior, FVAPPS only requires the proof of a lim-
ited selection of properties of the program. The limitations
of this are illustrated by the FVAPPS example in Figure 7.
Here, a problem with a relatively complex natural language
description only requires verifying lower-bound and upper-
bound properties of the program implementation, as well
as a few simple base cases. As can be seen, these proper-
ties are provably satisfied by a trivial program that always
outputs 0 regardless of the input. Thus, it is clear that only
requiring the proof of a small handful of properties does
not capture the full intent of the natural language problem.
This highlights the necessity of a verified code generation
benchmark to require proofs of full program behavior, not
just program properties.

A.2. Hard to write Specifications

Figure 8 shows some problems for which the formal specifi-
cation or the implementation is hard to write.

A.3. Writing non-computable specifications

Figure 9 shows a computable vs non-computable version
of the specification for finding the nth Fibonacci number.
It can be observed that the computable version of the spec-
ification leaks the implementation in contrast to the non-
computable version. The non-computable specification uses
an inductive definition of a recursive function.

Writing non-computable specifications is a non-trivial task
that requires a deep understanding of the problem. Fig-
ure 10 (problem 160) presents another complex exam-
ple illustrating the difficulty of formulating such speci-
fications. Figure 10 shows two versions of a specifica-
tion for evaluating an expression given as a list of strings
(["2","+","3","*","4","-","5"]). Figure 10(a) evalu-
ates the expression and later checks if the output matches the
result (not specified in the figure), which is computable. Fig-
ure 10(b) shows a non-computable version of the specifica-
tion that checks if the result matches the output of evaluating
the expression without leaking the implementation. One can
notice that we need multiple inductive recursive definitions
to ensure that the specification is clean and non-computable.

A.4. Baseline Prompts

Snippets of the few-shot specification generator’s system
and example prompts are shown in ?? and ??. Snippets
of the few-shot isomorphism prover’s system and example
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prompts are shown in ?? and ??. COPRA’s system prompt,
used for both isomorphism and correctness, is nearly identi-
cal to the original one in the COPRA paper (Thakur et al.,
2024). Snippets of COPRA’s example prompt for isomor-
phism are shown in ??.

Snippets of the few-shot implementation generator’s system
and example prompts are shown in ?? and ??. Snippets
of the few-shot correctness prover’s system and example
prompts are shown in ?? and ??. Snippets of COPRA’s
example prompt for correctness are shown in ??.

A.5. Some Proof Found

Figure 21 shows an example of a proof found for implemen-
tation certification by Claude-3.7 using COPRA.

(a)
def problem_spec
-- function signature
(implementation: List Rat →

Rat)
-- inputs
(xs: List Rat) :=
-- spec
let spec (result: Rat) :=
let eps := (1: Rat) / 1000000;

xs.length ≥ 1 → xs.length %
2 = 0 →

∀ poly : Polynomial Rat,
poly.degree = some (xs.
length - 1) →

(∀ i, i ≤ xs.length - 1 →
poly.coeff i = xs.get! i)
→

|poly.eval result| ≤ eps;
-- program termination
∃ result,
implementation xs = result ∧
spec result

(b)
-- possible implementation

using Newton's method
def implementation (xs: List

Rat) : Rat :=
let rec poly (xs: List Rat) (x:

Rat) := xs.reverse.foldl
(λ acc a => acc * x + a)
0;

let rec poly' (xs: List Rat) (x:
Rat) := (xs.drop 1).

reverse.foldl (λ acc a =>
acc * x + a) 0;

let rec eps := (1: Rat) /
1000000;

let rec find_zero (xs: List Rat
) (guess: Rat) (fuel: Nat)
:=

let eval := poly xs guess;
let eval' := poly' xs guess;
if eval ≤ eps ∨ fuel = 0 then

(guess, fuel)
else
let guess' := (eval' * guess -

eval) / eval';
find_zero xs guess' (fuel - 1);
(find_zero xs 1.0 1000000).1

Figure 4: Polynomial Root-Finding. Problem 32 asks for
an approximate real root of a degree-n polynomial. The
spec enforces small residual error (< 10−6). The imple-
mentation uses Newton’s method with bounded recursion;
proving termination is non-trivial due to lack of guaranteed
derivative behavior.
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(a)
def problem_spec (impl : Int

→ Int → Int) (x y :
Int) :=

let spec (res : Int) := res -
x - y = 0

∃ result, impl x y = result
∧ spec result

(b)
def generated_spec (impl : Int

→ Int → Int) (x y :
Int) : Prop :=

impl x y = x + y

(c)
def implementation (x y : Int)

: Int := x + y

(d)
theorem correctness (x y : Int)

: problem_spec
implementation x y :=

by
unfold problem_spec
let result := implementation

x y
use result
simp [result]
simp [implementation]

(e)
theorem spec_isomorphism :
∀ impl, (∀ x y, problem_spec

impl x y) ↔
(∀ x y,

generated_spec impl x y)
:=

by
intro impl
apply Iff.intro
-- → direction
intro h_prob_spec
intro x y
have h := h_prob_spec x y
simp [generated_spec,

problem_spec] at h
rw [generated_spec]
linarith
-- ← direction
intro h_gen_spec
intro x y
unfold problem_spec
simp
have h := h_gen_spec x y
simp [generated_spec] at h
rw [h]
ring

Figure 6: End-to-end verified example: Problem 53 (Add
Two Numbers). This task requires adding two integers
x and y. Shown are all components of the certification
pipeline: (a) a non-computable ground truth spec using sub-
traction to hide the implementation, (b) the model-generated
spec, (c) the implementation x + y, (d) a short correct-
ness proof, and (e) an isomorphism proof relating the two
specs. While the implementation is simple, the spec equiv-
alence proof requires symbolic reasoning. This is the only
HumanEval-derived task with full verification across multi-
ple approaches.

/--
solve_elections:
There are n voters, and two ways to convince

each of them to vote for you. The first way
to convince the i-th voter is to pay him
pi coins. The second way is to make mi

other voters vote for you, and the i-th
voter will vote for free. Moreover, the
process of such voting takes place in
several steps. For example, if there are
five voters with m1 = 1, m2 = 2, m3 = 2,
m4 = 4, m5 = 5, then you can buy the vote
of the fifth voter, and eventually everyone
will vote for you. Set of people voting
for you will change as follows: 5 → 1, 5 →
1, 2, 3, 5 → 1, 2, 3, 4, 5. Calculate the
minimum number of coins you have to spend
so that everyone votes for you.

-/

def solve_elections (n : Nat) (voters : List (
Nat × Nat)) : Nat := 0

theorem solve_elections_nonnegative (n : Nat) (
voters : List (Nat × Nat)) :
solve_elections n voters >= 0 :=

by rfl

theorem solve_elections_upper_bound (n : Nat) (
voters : List (Nat × Nat)) :
solve_elections n voters <= List.foldl (λ
acc (pair : Nat × Nat) => acc + pair.2) 0
voters :=

Nat.zero_le _

theorem solve_elections_zero_votes (n : Nat) (
voters : List (Nat × Nat)) : (List.all
voters (fun pair => pair.1 = 0)) ->
solve_elections n voters = 0 :=

fun _ => rfl

theorem solve_elections_single_zero_vote :
solve_elections 1 [(0, 5)] = 0 :=

by rfl

Figure 7: FVAPPS sample 23 and a trivial program that
solves it, illustrating the limitations of not verifying full
program behavior.
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(a)

def problem_spec
-- function signature
(implementation: List Rat → Rat)
-- inputs
(xs: List Rat) :=
-- spec
let spec (result: Rat) :=

let eps := (1: Rat) / 1000000;
xs.length ≥ 1 → xs.length % 2 = 0 →
∀ poly : Polynomial Rat,
poly.degree = some (xs.length - 1) →
(∀ i, i ≤ xs.length - 1 → poly.coeff i = xs.
get! i) →
|poly.eval result| ≤ eps;

-- program termination
∃ result,

implementation xs = result ∧
spec result

-- possible implementation using Newton's method
def implementation (xs: List Rat) : Rat :=
let rec poly (xs: List Rat) (x: Rat) := xs.reverse.

foldl (λ acc a => acc * x + a) 0;
let rec poly' (xs: List Rat) (x: Rat) := (xs.drop 1)

.reverse.foldl (λ acc a => acc * x + a) 0;
let rec eps := (1: Rat) / 1000000;
let rec find_zero (xs: List Rat) (guess: Rat) (fuel:

Nat) :=
let eval := poly xs guess;
let eval' := poly' xs guess;
if eval ≤ eps ∨ fuel = 0 then (guess, fuel)
else
let guess' := (eval' * guess - eval) / eval';
find_zero xs guess' (fuel - 1);
(find_zero xs 1.0 1000000).1

(b)

def problem_spec
-- function signature
(implementation: Nat → Nat)
-- inputs
(n: Nat) :=
-- spec
let spec (result: Nat) :=

n > 0 →
(∃ i, Nat.fib i = result ∧ Nat.Prime result ∧

(∃! S : Finset Nat, S.card = n - 1 ∧
(∀ y ∈ S, (∃ k, y = Nat.fib k) ∧ y < result
∧ Nat.Prime y))
)

-- implementation without proof of
-- termination
def implementation (n: Nat) : Nat :=
let rec fib_prime (n: Nat) (i: Nat) : Nat :=

if Nat.Prime (Nat.fib i) then
if n = 1 ∨ n = 0
then Nat.fib i
else fib_prime (n - 1) (i + 1)

else fib_prime n (i + 1)
termination_by n
decreasing_by

-- Proof of termination is open problem
sorry
sorry

fib_prime n 0

Figure 8: Examples of benchmark challenges. (a) Polynomial root-finding: difficulties in proving termination of numerical
search; (b) Prime Fibonacci finder: problem complexity rooted in the lack of a known proof of infinitude.
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CLEVER: A Curated Benchmark for Formally Verified Code Generation

(a)

-- computable spec
def problem_spec
-- function signature
(implementation: List Nat → Nat)
-- inputs
(n: Nat) :=
-- spec
let spec (result: Nat) :=

(n = 0 → result = 0) ∨
(n = 1 → result = 1) ∨
(2 ≤ n → ∃ fib_array : List Nat,
fib_array.length = n + 1 ∧
fib_array[0]! = 0 ∧
fib_array[1]! = 1 ∧
(∀ i, 1 < i → i < n + 1 →
fib_array[i]! = fib_array[i - 1]! +
fib_array[i - 2]!) ∧
result = fib_array[n]!)

-- program termination
∃ result,

implementation xs = result ∧
spec result

(b)

-- non-computable spec
inductive fibonacci_non_computable : N → N →

Prop
| base0 : fibonacci_non_computable 0 0
| base1 : fibonacci_non_computable 1 1
| step : ∀ n f1 f2,
fibonacci_non_computable n f1 →
fibonacci_non_computable (n + 1) f2 →
fibonacci_non_computable (n + 2) (f1 + f2)

def problem_spec
-- function signature
(implementation: Nat → Nat)
-- inputs
(n: Nat) :=
-- spec
let spec (result: Nat) :=

fibonacci_non_computable n result
-- program termination
∃ result,

implementation xs = result ∧
spec result

Figure 9: Two different specs for finding the nth Fibonacci number. (a) shows a computable specification that leaks the
implementation; (b) shows a non-computable specification leading to no-leakage of the implementation and enforcing the
model to learn the deeper logical inference.
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CLEVER: A Curated Benchmark for Formally Verified Code Generation

(a)

inductive Op where
| add | sub | mul | floordiv

deriving Repr, DecidableEq

def parseOp : String → Option Op
| "+" => some .add | "-" => some .sub
| "*" => some .mul | "//" => some .floordiv
| _ => none

def precedence : Op → Nat
| .mul | .floordiv => 2
| .add | .sub => 1

def apply : Op → Int → Int → Int
| .add, a, b => a + b
| .sub, a, b => a - b
| .mul, a, b => a * b
| .floordiv, a, b => a / b

inductive Tok where
| num : Int → Tok
| op : Op → Tok

deriving Repr

def tokenize : List String → Option (List Tok)
| [] => some []
| s :: t =>

match parseOp s with
| some o => (tokenize t).map (Tok.op o :: ·)
| none => s.toInt?.bind (fun n => (tokenize t)
.map (Tok.num n :: ·))

partial def evalPass (xs : List Tok) (ops : List Op)
: List Tok :=

match xs with
| Tok.num a :: Tok.op o :: Tok.num b :: rest =>

if o ∈ ops then evalPass (Tok.num (apply o a b)
:: rest) ops

else Tok.num a :: Tok.op o :: evalPass (Tok.num
b :: rest) ops

| x :: xs => x :: evalPass xs ops
| [] => []

def evalTokens (tokens : List Tok) : Option Int :=
let result := [[.mul, .floordiv], [.add, .sub]].

foldl evalPass tokens
match result with | [Tok.num n] => some n | _ =>

none

def do_algebra (input : List String) : Option Int
:=

tokenize input >>= evalTokens

(b)

def applyOp (x y : Int) : String → Option Int
| "+" => some (x + y)
| "-" => some (x - y)
| "*" => some (x * y)
| "//" => if y == 0 then none else some (x / y)
| _ => none

inductive evalArith_pass : List String → Int →
Prop

| num {s : String} {n : Nat} (h : s.toNat! = n) :
evalArith_pass [s] (Int.ofNat n)

| binOp {ts1 ts2 : List String} {op : String} {r1
r2 r : Int}
(h1 : evalArith_pass ts1 r1)
(h2 : evalArith_pass ts2 r2)
(hop : applyOp r1 r2 op = some r) :
evalArith_pass (ts1 ++ op :: ts2) r

inductive evalArith_mul : List String → Int →
Prop

| of_pass {ts r} (h : evalArith_pass ts r) :
evalArith_mul ts r

| step {ts1 ts2 r1 r2 r} (h1 : evalArith_mul ts1 r1)
(h2 : evalArith_mul ts2 r2)

(hop : applyOp r1 r2 "*" = some r ∨ applyOp r1
r2 "//" = some r) :
evalArith_mul (ts1 ++ "*" :: ts2) r

inductive evalArith_add : List String → Int →
Prop

| of_mul {ts r} (h : evalArith_mul ts r) :
evalArith_add ts r

| step {ts1 ts2 r1 r2 r} (h1 : evalArith_add ts1 r1)
(h2 : evalArith_add ts2 r2)

(hop : applyOp r1 r2 "+" = some r ∨ applyOp r1
r2 "-" = some r) :
evalArith_add (ts1 ++ "+" :: ts2) r

-- Noncomputable spec to evaluate an expression
def do_algebra (input : List String) (result : Int)

: Prop :=
evalArith_add input result

Figure 10: Two different specs for evaluating an expression (as a list of strings): ["2","+","3","*","4","-","5"]. (a)
shows a computable specification that evaluates using do_algebra, and later checked with the result (b) shows a non-
computable specification using an inductive definition where do_algebra checks if the result matches the value of the
expression without leaks.
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CLEVER: A Curated Benchmark for Formally Verified Code Generation

(a)
def problem_spec (impl : Nat → Nat) (n : Nat) :=
let spec (result : Nat) :=
let factorial := Nat.factorial n;
(0 < n → result / factorial = impl (n - 1)) ∧
(n = 0 → result = 1);

∃ result, impl n = result ∧ spec result

(b)
def implementation (n : Nat) : Nat :=
match n with
| 0 => 1
| n+1 => Nat.factorial (n+1) * implementation n

(c)
#test implementation 4 = 288

(d)
theorem correctness (n : Nat) : problem_spec implementation n

:= by
unfold problem_spec
let result := implementation n
use result
simp [result]
apply And.intro
unfold implementation
simp [Nat.factorial_succ]
intro h_n_pos
cases n
exfalso
exact h_n_pos.false
rename_i n
simp [Nat.succ_eq_add_one, Nat.add_sub_cancel]
rw [Nat.factorial_succ]
have h_fac_pos : 0 < (n + 1) * n.factorial := by
exact Nat.mul_pos (Nat.succ_pos n) (Nat.factorial_pos n)

have h_cancel : (n + 1) * n.factorial * implementation n
/ ((n + 1) * n.factorial) = implementation n := by
rw [Nat.mul_div_cancel_left (implementation n) h_fac_pos]

simp [h_cancel]
unfold implementation
cases n
simp [Nat.factorial_zero]
rename_i n
simp [Nat.add_zero]
simp [Nat.factorial_succ]
left
rw [implementation.eq_def]
simp [Nat.mul_assoc]
cases n
simp [Nat.zero_eq]
rename_i n
simp [Nat.factorial_succ]
rw [Nat.mul_assoc]
intro h_n_eq_0
rw [h_n_eq_0, implementation]

Figure 21: Problem 139 (Brazilian Factorial): Given an
integer n, compute the product of all factorials from n!
down to 1!. Part (a) defines the ground truth specification,
which expresses recursive structure without leaking the im-
plementation. Part (b) shows the implementation using a
recursive product of factorials. Part (c) lists a test case used
for validation. Part (d) presents the full correctness proof,
showing that the implementation satisfies the spec. This
proof, generated by COPRA using Claude-3.7, spans 35
lines and involves reasoning over factorial identities, case
analysis, and symbolic manipulation.
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