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ABSTRACT

Designing expressive Graph neural networks (GNNs) is an important topic in
graph machine learning fields. Traditionally, the Weisfeiler-Lehman (WL) test
has been the primary measure for evaluating GNN expressiveness. However, high-
order WL tests can be obscure, making it challenging to discern the specific graph
patterns captured by them. Given the connection between WL tests and first-order
logic, some have explored the logical expressiveness of Message Passing Neural
Networks. This paper aims to establish a comprehensive and systematic rela-
tionship between GNNs and logic. We propose a framework for identifying the
equivalent logical formulas for arbitrary GNN architectures, which not only ex-
plains existing models, but also provides inspiration for future research. As case
studies, we analyze multiple classes of prominent GNNs within this framework,
unifying different subareas of the field. Additionally, we conduct a detailed ex-
amination of homomorphism expressivity from a logical perspective and present a
general method for determining the homomorphism expressivity of arbitrary GNN
models, as well as addressing several open problems.

1 INTRODUCTION

Graph Neural Networks (GNNs) are the dominant approaches for learning graph-structured data and
have achieved remarkable success over the past few years. Among them, Message Passing Neural
Networks (MPNNs) (Kipf & Welling, 2016b) are prominent GNN models that learn node and graph
representations by aggregating information from neighbors. However, a noticeable drawback of
GNNs lies in their limited expressive power. Xu et al. (2018); Morris et al. (2019) discovered that
the separation power of MPNNs is inherently restricted by 1-dimensional Weisfeiler-Lehman (1-
WL) test. Subsequently, many studies have focused on enhancing expressiveness and designing
more powerful GNN models using the k-WL framework as a metric.

While the k-WL hierarchy offers a systematic measure of GNN expressiveness that increases with
k, it remains somewhat limited. First, it lacks interpretability. Despite 1-WL being a relatively
straightforward procedure which aggregates neighborhood information, it is hard to understand what
k-WL actually learns and how it surpasses (k − 1)-WL. Second, WL tests are arguably too coarse
to evaluate the expressive power of GNN models (Zhang et al., 2024; Morris et al., 2022; Puny
et al., 2023): many works (Qian et al., 2022; Frasca et al., 2022) only provide loose upper bounds
of expressiveness of their proposed models in terms of k-WL and most efficient GNNs are only
proved to be more expressive than 1-WL by constructing specific example graphs (Zhang & Li,
2021; Bevilacqua et al., 2021; Zhang et al., 2023).

Apart from the WL hierarchy, some works systematically study GNN expressivity from various per-
spectives. For instance, Zhang et al. (2024) identified all substructures captured by several popular
GNN models. Xu & Zou (2024) examined the approximate inference capabilities of popular GNN
models. These works, although provide novel insights about GNN expressivity, still lack extend-
ability: they do not provide a general method for analyzing the expressiveness of arbitrary GNN
models using their theoretical framework. Thus, considerable effort is required when considering
novel GNN variants.

To address these limitations, this paper studies GNN expressivity from a logical perspective. Previ-
ous research, such as Barceló et al. (2020), investigated the logical expressivity of MPNNs, while
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Huang et al. (2024) explored the logical expressivity of a specific class of GNN models for link
prediction in knowledge graphs. However, these works study MPNNs and other GNN variants sepa-
rately, leaving many popular models unexamined. Additionally, there still lacks a unified framework
for assessing the logical expressivity of general GNN models.

Contributions. This paper presents a novel framework for assessing the logical expressivity of
arbitrary GNN models, provided they can be represented through a series of combination and ag-
gregation operations. We present a method for constructing the set of logical formulas captured by
these GNN models. Using this framework, we describe the logical expressivity of popular GNN
models in terms of graph-level, node-level, and link-level predictions. Furthermore, we demonstrate
how several key topics in GNN expressivity, such as homomorphism expressivity, expressivity com-
parisons, and estimating WL upper bounds, can be effectively addressed by leveraging the logical
expressivity results present in this study.

2 BACKGROUND

Notations and definitions. We use {} to denote sets and use {{}} to denote multisets. The index
set is denoted as [n] = {1, ..., n}. In this paper we consider finite, directed graphs with node and
edge labels. Let G = (VG, EG) be a graph where VG denotes the set of nodes in G and EG the
set of edges. ℓ denotes the label function that maps nodes and edges to labels: ℓ(u) is the label
of node u and ℓ(u, v) the label of (u, v) provided that edge (u, v) exists. N (u) denotes the set of
generalized neighbors of node u: certain GNNs might generalize the concept of neighbor in graphs
in different manners. For example, in MPNNs the neighbors of a node x is conventionally defined
as NMPNN(x) := {y | E(x, y) ∈ E} where E is the set of edges; 2-FGNNs define the neighbor of a
node pair (x, y) to be N2-FGNN(x, y) = {((x, z), (z, y)) | z ∈ V} where V is the set of nodes. We
use symbols φ,ψ, ϕ, ... to refer to logic formulas.

In this paper we focus on logic formulas and GNN models that operate on nodes and more generally
node tuples. For instance, logic formulasψ(x1, x2, x3) and GNNs that learn representations for node
pairs. We define the order of logic formulas and GNNs to be the size of node tuples considered,
e.g. the order of ψ is 3 and the order of GNNs that compute representations for node pairs is 2. For
notation brevity we use u,v,x, ... ∈ Vk to refer to node tuples where k ∈ {0, 1, ...} is the order
of them, e.g. ψ(x1, x2, x3) is represented by ψ(x) where x is a 3-order tuple x = (x1, x2, x3).
Specially, if k = 1, then u ∈ V1 represents nodes in graphs; if k = 0, then u ∈ V0 simple
represents none.

Graph isomorphism. Two graphs G = (VG, EG) and H = (VH , EH) are isomorphic, denoted
as G ≃ H , if |VG| = |VH | and there exists a bijective permutation π : VG → VH satisfying: (1)
(u, v) ∈ EG ⇐⇒ (π(u), π(v)) ∈ EH for u, v ∈ VG, (2) ℓ(u) = ℓ(π(v)) for u ∈ VG and (3)
ℓ(u, v) = ℓ(π(u), π(v)) for (u, v) ∈ EG. Such π is an isomorphism from G to H . Our work is
also closely related to a family of necessary tests for graph isomorphism namely Weisfeiler-Lehman
(WL) tests introduced in Appendix B.

First-order Logic. We briefly introduce first-order logic and its relation with graphs. Consider
the following formula

φ(x) := Red(x) ∧ ∃y (E(x, y) ∧ Blue(y)) .

There are two variables var(φ) = {x, y} in the formulation of φ, and φ has exactly one free variable
free(φ) = {x} which is not bounded by any quantifiers ∃,∀. φ(x) is true iff x is Red and exists
a Blue y such that E(x, y) holds. It is straightforward to relate this formula with graphs: variables
x, y are corresponded nodes in graphs and the predicates Blue,Red are corresponded to node labels
while E is corresponded to edges. Therefore, φ(x) determines whether a node x is Red and has a
Blue neighbor.

In this paper we focus on a fragment of the first-order logic which allows the utilization of counting
quantifiers ∃≥N . The semantic of the quantifier ∃≥N where N ∈ {1, 2, ...} is to describe “there
exists no less than N variables such that“. For example, consider

ψ(x) := ∃≥2y (E(x, y) ∧ Blue(y)) .
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ψ(x) is true iff x has 2 or more Blue neighbors. Such a family of logic formulas is called First-order
Logic with Counting quantifiers (FOC) and possesses following property.

Proposition 1. (Cai et al., 1992) For any graphs G,H , k-WL assigns the same color to G and H
iff all FOC formulas with no more than k variables classifies G and H the same.

Graph neural networks. GNNs can be generally described as graph functions that are invariant
under isomorphism. Most popular GNNs follow a color refinement paradigm Zhang et al. (2024) to
achieve such invariance: they maintain a representation for each node (or more generally, node tuple)
and iteratively updates these representations via combination and aggregation functions. Consider,
for example, message passing neural networks (MPNNs) Morris et al. (2019), which maintains a
representation χ(l)(x) for node x at layer l. The representations are updated using the following
formula:

χ(l+1)(x) = COM(l)
(
χ(l)(x),AGG(l)

({{
χ(l)(y) | y ∈ N (x)

}}))
,

where COM(l)(·, ·) represents an arbitrary function combining two representations and
AGG(l)({{·}}) represents an arbitrary permutation-invariant function that aggregates a multi-set of
representations.

There are also many other popular GNNs, which are listed in Appendix C. Generally, these models
maintain a representation χ(l)(u) for node tuple u at layer l. Let L be the total number of layers of
a GNN model. Then the representation χ(L)(u) for node tuple u at layer L serves as the output of
the GNN. Since this paper studies the relationship between GNNs and logic formulas, we focus on
GNNs with binary outputs (i.e., true and false).

3 LOGICAL EXPRESSIVITY OF GRAPH NEURAL NETWORKS

3.1 EQUIVALENT LOGIC SETS

Given a GNN model M and a logic formula φ, let χ(u) be the output of M for node tuples u ∈ Vk.
We say M captures φ if the results of φ are reproduced by M , Concretely, M captures φ if the
orders of M and φ are equal, and φ(u) = χ(u) holds for arbitrary graph G and u ∈ Vk. In this
paper, we attempt to answer the question: what logic formulas can GNN models capture? This leads
to the following definition of logical expressivity.

Definition 2. Given a family of functions X (e.g. a class of GNNs) where each function χ ∈ X
maps k-order node tuples to {true, false}, the equivalent logic set of X is a subset Φ of first order
logic formulas satisfying:

• The order of each φ ∈ Φ is k;

• For all φ ∈ Φ, there exists χ ∈ X such that for arbitrary graphs G and u ∈ Vk
G, φ(u) =

true iff χ(u) = true, and we say χ captures φ.

• A FOC formula is captured by X iff it is in Φ.

• Given arbitrary positive integerN and χ ∈ X , there exists φ ∈ Φ satisfying: for any graphs
G with no more than N nodes and u ∈ Vk

G, φ(u) = true iff χ(u) = true.

• Given any graphs G,H and u ∈ Vk
G,v ∈ Vk

H , all χ ∈ X cannot distinguish u,v iff all
logic formulas φ ∈ Φ classify u,v the same.

In our definition, we emphasize the equivalence between logic formulas and GNNs by stating that
the discriminating power of all φ ∈ Φ and all χ ∈ X are equivalent, which follows the setting
in Cai et al. (1989). Also, we attempt to study the one-to-one correspondence between each GNN
model χ ∈ X and each φ ∈ Φ. The ideal statement would be: given arbitrary χ ∈ X , there exists
φ ∈ Φ such that φ(u) = χ(u) for all possible u. However, there does exist GNN models which
is not captured by any logic formulas, and thus we relax the statement to be the forth statement in
Definition 2.
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The equivalent logic sets therefore sufficiently describe the logical expressiveness of GNN models.
Moreover, similar to the homomorphism expressivity (Zhang et al., 2024), the metric of equivalent
logic sets is also quantitative, as we can identify distinct logic sets for different GNN models that
precisely describe their expressiveness , making it finer than metrics based on graph isomorphism
tests which only provide qualitative results. Moreover, the equivalent logic sets can also be used to
compare the expressivity of different GNNs: a class of GNN modelsM1 is more expressive thanM2

iff Φ2 ⊂ Φ1 where Φ1,Φ2 are the equivalent logic set of M1 and M2 respectively. Above all, the
significance of logical expressivity lies in its interpretability: we can not only describe what patterns
GNN models can capture, but also understand the expressivity gap of different models by studying
the difference of the corresponding equivalent logic sets.

3.2 DESCRIBING LOGICAL EXPRESSIVITY FOR GNNS

It is evident that the equivalent logic set of GNNs can be infinite. We utilize a recursive construction
procedure to describe such sets, similar to previous works. Consider the set of graded model logic Φ
(de Rijke, 1996). Φ is defined by specifying how its elements are recursively constructed: to begin
with, let Col(x) ∈ Φ where Col represents node colors. Each element of Φ is either Col, or one of
the following:

¬φ(x), φ(x) ∧ φ′(x), ∃≥N (E(x, y) ∧ φ(y)) ,
where φ,φ′ ∈ Φ and N is a positive integer. Therefore, we define Φ by specifying how its elements
are constructed, starting from the input node colors Col. For notation brevity we can abbreviate the
definition into one line:

φ(x) := ∃≥N (φ′(x) ∧ E(x, y)) | ¬φ′(x) | φ′(x) ∧ φ′′(x) | Col(x), (1)

with the convention that logic formulas φ together with its superscript variants φ′, φ′′ belong to the
same logic set Φ. In Section 6.1 we discovered that Eq. 1 describes the equivalent logic set of
MPNNs with undirected, homogeneous input graphs.

4 GENERAL AGGREGATE-COMBINE NETWORKS

To formally discuss the logical expressivity of arbitrary GNN models, we first summarize GNN
models including Message Passing Neural Networks (Xu et al., 2018), Higher-order GNNs (Mor-
ris et al., 2018), Subgraph GNNs (Bevilacqua et al., 2021), via a unified design paradigm namely
General Aggregate-Combine Neural Networks (GACNNs). The basic idea is straightforward: we
decompose the structure of different GNN layers into the same, principled aggregation and com-
bination function series, which further enable us to study the expressive power of different GNN
models via a unified framework.

Formally, let χ(l)(u) be the representation of a k-order node tuple u ∈ Vk computed by the l-
th GACNN layer. The (l + 1)-th GACNN layer takes χ(l)(u) as input and evaluates χ(l+1)(u)
for u ∈ Vk. χ(l+1)(u) is computed by χ(l)(u) via a sequence of two operations: combination
(denoted by COM) and aggregation (denoted by AGG) . COM(·, ·) represents an arbitrary function
combining two representations, and AGG({{·}}) represents a permutation-invariant function that
aggregates a multi-set of representations. The evaluation of a GACNN layer is decomposed into
a series of intermediate variables {χ(l)

1 , ..., χ
(l)
K }. Denoting χ(l)

0 := χ(l) and χ(l)
K+1 = χ(l+1), we

define either

χ
(l)
i (u) = COM

(l)
i

(
χ
(l)
j (u), χ

(l)
k (u)

)
, or χ

(l)
i (u) = AGG

(l)
i

({{
χ
(l)
j (v) | v ∈ N (u)

}})
,

(2)
where 1 ≤ j, k < i ≤ K + 1, COM

(l)
i is a combination function, AGG

(l)
i is an aggregation

function and N (u) is the generalized neighbor of u defined by the GNN model. Specially, we
denote by χ(0) = INIT(u) the initial representation of u. The above definition generally expresses
the aggregation and combination steps of GNN layers.

Example. To better introduce the idea of GACNNs we illustrate how MPNNs are described by the
above GACNNs construction steps. Consider MPNNs Xu et al. (2018) whose layers are defined by

χ(l+1)(x) = COM(l)
(
χ(l)(x),AGG(l)

({{
χ(l)(y) | y ∈ N(x)

}}))
,
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Figure 1: Left: the structure of the example GACNN. Middle: the structure of the equivalent logic
sets, each corresponding to one of the nodes in the left GACNN. Right: the structure of the equivalent
logic sets of the left GACNN, regardless of the number of layers l.

where x, y denotes nodes in graphs. We can simply decompose one layer of MPNN into

χ(l+1)(x) = COM(l)
(
χ(l)(x), χ

(l)
1 (x)

)
,

χ
(l)
1 (x) = AGG(l)

({{
χ(l)(y) | v ∈ N(x)

}})
.

In this manner we describe the MPNN layers using the principled GACNN framework. For more ex-
amples, appendix G.6 illustrates how we build popular GNN variants using the GACNN framework.

Structure of GACNNs. The advantage of decomposing GNN layers into a series of the principled
aggregation and combination procedures is that we can unify the study of complicated GNN models
into the study of AGG and COM modules. Consider, for example, the Local 2-GNN model. The
evaluation of this model can be illustrated as Figure 1 (a), where the node χ(l+1) represents represen-
tations of all nodes at layer l+1 and is evaluated directly by χ(l)

1 and χ(l)
2 , which are again evaluated

by their children along the hierarchy until χ(l). It is evident that by explicitly expanding the evalu-
ation procedure of χ(l+1), the whole and complicated GNN computation structure is broken down
into small and simple pieces containing only two types of computation: let χp be a (parent) node,
then if χp only has one child χl, χp is evaluated in the form of χp = AGGp ({{χl}}); otherwise χp

has two children χl, χr and is evaluated by χp = COMp (χl, χr). In this manner we break down
the computation procedure of GNNs into principled aggregation and combination procedure, each
corresponding to a parent-children pair in the computation graph. We next investigate the logical
expressivity of GACNNs by studying the local property of such parent-children pairs.

5 ON THE EQUIVALENT LOGIC FRAGMENT OF GRAPH NEURAL NETWORKS

In this section we discuss the separation power and function approximation property of general
graph neural networks by providing the equivalent logic set of arbitrary GACNNs.

5.1 EQUIVALENT LOGIC SETS FOR GENERAL COMPUTATION PROCEDURE

For now let us relax the utilization of GACNN models and focus purely on the two types of compu-
tation units AGG and COM proposed in Section 4. Concretely, suppose a set {χ1, χ2, ..., χK}
each χi for i ∈ [K] is defined by either χi(u) = AGGi ({{χj(v) | v ∈ Ni(u)}}), χi(u) =
COMi (χj(u), χk(u)), or χi(u) = INITi (u) where i > j, k. Moreover, χK maps a node tu-
ple to binary outputs {true, false}. We next show that it is possible to find the equivalent logic sets
of χK .

Theorem 3. LetXi be the set of all possible χi defined above for i ∈ [K]. There exists {Φ1, ...,ΦK}
defined below, such that ΦK is the equivalent logic set of χK .

• χi(u) = AGGi ({{χj(v) | v ∈ Ni(u)}})
⇐⇒ φi(u) := ∃≥Nv

(
φj(v) ∧ 1v∈Ni(u)

)
| ¬φ′

i(u) | φ′
i(u) ∧ φ′′

i (u),
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Figure 2: (a) - (d): An illustration of logic formulas and GNN behaviours. (e) - (f): An illustration of
the subgraph used for construct the homogeneous expressivity, (e) corresponds to the construction
of φ := ∃xyzwu ((E(x, y) ∧ E(y, z) ∧ E(y, w) ∧ E(w, u)). (f) corresponds to 2-FGNNs.

• χi(u) = COMi (χj(u), χk(u))

⇐⇒ φi(u) := φj(u) | φk(u) | ¬φ′
i(u) | φ′

i(u) ∧ φ′′
i (u),

• χi(u) = INITi (u) ⇐⇒ φi(u) := atp(u) | ¬φ′
i(u) | φ′

i(u) ∧ φ′′
i (u),

where φ′
i, φ

′′
i ∈ Φi, φj ∈ Φj , φk ∈ Φk for i, j, k ∈ [K].

Note that by denoting φi(u) := atp(u), we mean that φi ∈ Φi is capable of capturing all structures
of the subgraph induced by u. Concretely, for each possible color Col of atp, there exists a φCol(u)
that is true if and only the color of u assigned by atp is Col. 1 is the indicator: 1condition is true iff
the condition is satisfied.

The results in Theorem 3 specifies the construction of equivalent logic sets for arbitrary computation
procedure built upon aggregation and combination functions, which is not only confined to graphs
and GACNN models. As the central finding of this paper, it enables the study of complicated models
built upon multiple heterogeneous layers and graphs containing node and edge labels. Consider
Figure 1 (b) for example: the equivalent logic set of each node in the computation graph in Figure 1
(a) only depends on its local neighbors. If the equivalent logic set Φ(l) of χ(l) is known, all logic sets
in Figure 1 (b) are specified by Theorem 3. This indicates that once the input representations can be
described by logic formulas, we are able to determine the logical expressivity of arbitrary functions
over the input representations built upon aggregation and combination functions.

Remark. The logic formulas in Theorem 3 are described using operators ∃≥N ,¬ and ∧, which
follows the settings in previous works (Barceló et al., 2020). Each operator is corresponded to a
specific property of GNNs. First, the major characteristic of GNNs as neural networks is that GNNs
make predictions based on not only the current instance (e.g. a node), but also its relation with
others (which is expressed by edges in graphs). This is realized via the aggregation of information
among nodes. The logic operation ∃≥N , which expresses “exists at least N”, exactly corresponds
to this property: consider Figure 2 (a) for example. Suppose we want to color a node as blue
if it has two red neighbors. GNNs achieve the target by directly explores the neighbors of the
current node x and decides whether it is Blue by aggregating the colors of its neighbors. Once a
GNN found that there are 2 red nodes in its neighborhood, it decides the current node should be
colored blue. Logic formulas achieve the same target by noticing that for a node x, if we can find
two nodes y that satisfies Red(y) ∧ E(x, y), the color of x should be blue. This process can be
expressed by Blue(x) := ∃≥2y(Red(y) ∧ E(x, y)). Therefore, we can understand the aggregation
procedures in GNNs via the logical operation ∃≥N . More generally, consider Figure 2 (b), and
suppose we want to decide two nodes (x, y) are linked if they are connected via a red node. This
can also be done by aggregating the neighbors of x and y: once there is a common neighbor of
x and y which is colored red, x and y are linked. This can be expressed by the logic formula
Link(x, y) := ∃z(E(x, z) ∧ Red(z) ∧ E(z, y)). In real world, this is useful for link prediction
tasks: for example predicting whether a person x is another person’s y grandparent in a kinship
graph, which is realized by checking whether there exists z who is x’s child and y’s parent. The
procedure can be similarly expressed by Grandparent(x, y) := ∃z(Parent(x, z) ∧ Parent(z, y)).
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Second, the operators ¬ and ∧ are used to recombine existing logic formulas to obtain more com-
plex ones. This implies the ability of GNNs to recombine existing information and make complex
predictions. This ability is crucial for practical tasks: for example in molecule classification tasks it
is necessary to recombine the raw input features of each node to predict molecular properties. Con-
sider Figure 2 (c), and suppose we want to color a node blue if it is neither red or gray. Obviously this
can be done by a GNN layer without aggregating the neighborhood information. A logic formula
Blue(x) := ¬Red(x)∧¬Gray(x) exactly expresses this. Consider a more complex example Figure
2 (d), and suppose we want to color a node gray if it has a red neighbor and a blue neighbor. This can
be realized by Gray(x) := φ1(x)∧φ2(x)) where φ1(x) := ∃y(Blue(y)), φ2(x) := ∃z(Red(z). In
this manner, we recombine the information φ1, φ2 obtained by aggregating the neighbors of x.

5.2 EQUIVALENT LOGIC SETS FOR GACNNS

In this section we formally describe our results for GACNNs. We assume a L-layer GACNN layers
defined in the form of Eq. 2. For layer l ∈ [L], let χ(l) be the output representation at layer l
and let

{
χ
(l)
1 , ..., χ

(l)
K

}
be the set of intermediate representations when computing χ(l+1) from χ(l).

Similarly, we denote Φ(l) to be the equivalent logic set of χ(l) and Φ
(l)
i the equivalent logic set of

χ
(l)
i for i ∈ [K]. Obviously Φ(l) and Φ

(l)
i for i ∈ [K] and l ∈ [L] are directly defined by Theorem

3, which directly leads to the following result:

Corollary 4. The equivalent logic set of L-layer GACNNs defined above is given by Φ(L).

Corollary 4 requires to specify the number of GACNN layers L. To derive a general result for all
GACNNs regardless of the number of layers, we propose the following proposition.

Proposition 5. Denote χ(l)
0 = χ(l), χ

(l)
K+1 = χ(l+1) and ΦK+1 = Φ0 = Φ, Let Φ(l), {Φ(L)

i }i∈[K]

be the equivalent logic sets defined above. Then, Φ =
⋃∞

L=0 Φ
(L) and Φi =

⋃∞
L=0 Φ

(L)
i for i ∈ [K]

are defined by

• χ
(l)
i (u) = AGG

(l)
i

({{
χ
(l)
j (x) | v ∈ Ni(u)

}})
for l ∈ [0,∞)

⇐⇒ φi(u) := ∃≥Nv
(
φj(v) ∧ 1v∈Ni(u)

)
| ¬φ′

i(u) | φ′
i(u) ∧ φ′′

i (u) | atp(u),

• χ
(l)
i (u) = COM

(l)
i

(
χ
(l)
j (u), χ

(l)
k (u)

)
for l ∈ [0,∞)

⇐⇒ φi(u) := φj(u) | φk(u) | ¬φ′
i(u) | φ′

i(u) ∧ φ′′
i (u) | atp(u),

where φi, φ
′
i, φ

′′
i ∈ Φi, φj ∈ Φj , φk ∈ Φk for i ∈ {0} ∪ [K + 1].

The difference between Proposition 5 and Theorem 3 is that we now allow the construction of
arbitrary number of GACNN layers. As long as GACNN layers share identical structure (which
holds for most GNN models), we can fully describe their logical expressivity by Φ regardless of the
number of layers. The structure of logic sets in Proposition 5 is illustrated in Figure 1 (c), where
each set is irrelevant to the number of layers l and is constructed recursively. Given any class of
GNN models, so long as we can break down a layer into a series of aggregation and combination
operations, we can formally define its logical expressivity using Proposition 5.

About graph-level readout. Generally, GNNs compute graph representations by aggregating
node tuple representations, i.e. χG = AGG

({{
χ(L)(u) | u ∈ Vk

}})
where L is the output layer.

We determine the equivalent logic set of χG below.
Proposition 6. The equivalent logic set ΦG of the graph representation χG defined above is given
by

φG := ∃≥N (φ(u)) | ¬ω′
G | ω′

G ∧ ω′′
G,

where φG, φ
′
G, φ

′′
G ∈ ΦG, and φ ∈ Φ is the equivalent logic set of χ(L).

The results in this section provide a general method for determining the equivalent logic set of arbi-
trary GACNNs. In the remaining of this paper, we utilize these results to discuss several important
topics implied by the logical expressiveness of GNNs.
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6 IMPLICATIONS

With the complete description of logical expressivity for general GNN models in previous section,
we now discuss how these results provide novel insights into understanding modern GNN frame-
works. In this section, we highlight the significance of our theory by introducing important results
induced by our theory.

6.1 REGARDING EXISTING GNN MODELS

First of all, we apply our results to formally describe the logical expressivity of popular GNNs
including models for graph-level or node-level prediction MPNNs (Xu et al., 2018), Subgraph GNNs
(Bevilacqua et al., 2021; Qian et al., 2022), Local GNNs (Zhang et al., 2024), Folklore-type GNNs
(Zhang et al., 2024) and models for link prediction NBFNet (Zhu et al., 2021), SEAL (Zhang et al.,
2020), etc. The details of these models are in Appendix C. For brevity we make the convention
that the equivalent logic set of each class of GNNs is represented by Φ and denote by φ,φ′, ... ∈ Φ
the elements of Φ. To properly express Φ it is sometimes convenient to also define an auxiliary
logic set which helps with the explanation of Φ. We denote ψ,ψ′, ... ∈ Ψ as such auxiliary logic
sets. The result is summarized in Proposition 7. For notation brevity, since the terms in the form
of φ := ¬φ′ | φ′ ∧ φ′′ | atp emerges in the definition of all logic formulas, they are omitted in the
following description.

Proposition 7. The equivalent logic sets of GNN models can be separately defined as:

• MPNN: φ(x) := ∃≥Ny (φ′(y) ∧ E(y, x)), where E is the edge predicate.

• Subgraph GNN (weak):
φ(x) := ∃≥Ny (ψ(x, y)) , ψ(x, y) := ∃≥Nz (ψ′(x, z) ∧ E(z, y)).

• Subgraph GNN (strong):
φ(x) := ∃≥Ny (φ′(y) ∧ ψ(y, x)) , ψ(x, y) := ∃≥Nz (ψ(x, z) ∧ E(z, y)) | φ(y).

• NBFNet: φ(x, y) := ∃≥Nz (φ′(x, z) ∧ E(z, y)).

• Local 2-GNN: φ(x, y) := ∃≥Nz (φ′(x, z) ∧ E(z, y))) | ∃≥Nz (E(x, z) ∧ φ′(z, y)))

• 2-FGNN: φ(x, y) := ∃≥Nz (φ′(x, z) ∧ φ′′(z, y)).

• SEAL (MPNN):
φ(x, y) := ∃≥Nz (ψ(x, z, y)) , ψ(x, z, y) := ∃≥Nw (ψ(x,w, y) ∧ E(w, z))).

• 2-GNN: φ(x, y) := ∃≥Nz (φ′(x, z)) | ∃≥Nz (φ′(z, y)).

Proposition 7 gives a unified description of the logical expressivity of popular GNN models. The
result of MPNNs follows Barceló et al. (2020). Following up, it is obvious that Subgraph GNNs
(weak) surpasses MPNN by modeling more complex relations between nodes: rather than simply
the edges E, they deploy the more general logic formulas ψ for modeling relations between nodes,
which is obviously more powerful. Continuing, Subgraph GNN (strong) further strengthen ψ by not
only allowing the single-source update pattern ψ(x, y) := ∃≥Nz (ψ′(x, z) ∧ E(z, y)), but also ag-
gregating information across different sources ψ(x, y) := φ(y) (since φ(y) aggregates ψ(z, y) with
different sources z). The rest of GNNs compute node-pair representations. Starting from NBFNet,
it models the relation between two nodes φ(x, y) by checking intermediate nodes z and its relation
w.r.t. the two end nodes φ′(x, z), E(z, y). This is useful for link prediction tasks, e.g. to pre-
dict whether two nodes are connected Connect(x, y) := ∃z (Connect(x, y) ∧ E(y, z)) | E(x, y),
which predicts the unknown Connect relation by utilizing the known edges E. This pattern is sim-
ilar with the Bellman-Ford algorithm Baras & Theodorakopoulos (2022), which is a single-source
shortest path algorithm. The logic formulas φ(x, y) corresponding to NBFNet are also constructed
with the single source node x. Local 2-GNN extends NBFNet by considering two sources x, y sepa-
rately, which allows the construction of more complex logic formulas. 2-FGNNs further generalize
by defining φ(x, y) in a multi-source manner, analogous to Floyd shortest path algorithm. SEAL
also defines φ(x, y) in a multi-source manner, but it instead constructs ψ(x, z, y) and uses the inter-
mediate nodes z to perceive the relation between x, y simultaneously. 2-GNNs, although compute
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node-pair representations, are not suitable for link prediction since it fails to even express the simple
logic rule GrandParent(x, y) := ∃z (Parent(x, z) ∧ Parent(z, y)).

6.2 STRUCTURAL AWARENESS OF GNNS

There has been several works that study what graph structures different GNNs are aware of, such as
cycles, cliques, etc. These concepts can be unified with logic formulas. For example, determining
whether a node is in a 3-clique can be written as

φ3-clique(x) := ∃y, z (E(x, y) ∧ E(y, z) ∧ E(z, x)) .

Therefore, whether GNN models can capture 3-clique patterns depends on whether it captures
φ3-clique. However, determining 3-clique is a trivial task, and in practice it is often necessary to
study whether GNNs can capture more complex structural patterns. We consider the concept of
homogeneous expressivity proposed by Dell et al. (2018); Zhang et al. (2024).

Homomorphism expressivity. Homomorphism expressivity is a theory developed to precisely
describe the structures of graphs being captured by GNNs. Concretely, let G = (VG, EG), H =
(VH , EH) be two graphs. A homomorphism from F to G is a mapping π : VG → VF that preserves
labels (if any) and edges, i.e. (π(u), π(v)) ∈ EH for all (u, v) ∈ EG and ℓ(u) = ℓ(π(u)) for all nodes
u, ℓ(u, v) = ℓ(π(u), π(v)) if there are node labels or edge labels respectively. Hom(F,G) is defined
to be the number of homomorphisms from F to G. The crux is, to find all subgraphs F for GNNs
such that, for all pairs of graphs G,H , GNNs distinguish G,H ⇐⇒ Hom(F,G) ̸= Hom(F,H).
Such a set of subgraphs is referred as the homomorphism expressivity of GNNs. Dell et al. (2018)
gives the homomorphism expressivity for 1-WL (MPNNs), while Zhang et al. (2024) extends the
results to several popular GNN models.

Similar as previous discussions, in this section we aim at providing a general method to determine
the homomorphism expressivity of GACNNs, based on our findings about equivalent logic sets.
Suppose we are given a class of GACNNs whose equivalent logic set is Φ. To simplify the discus-
sion, we first assume no node / edge labels. We assume that the concept of neighbors in GACNNs is
described by composition of edges: for example in MPNNs the neighbors of a node x is defined by
1y∈N (x) := E(x, y) where E is the edge predicate; similarly in NBFNet 1(x,z)∈N1(x,y) := E(y, z).
The homomorphism expressivity F can be constructed from the logic formulas in Φ via the follow-
ing procedure.

1. Remove all formulas in Φ that contains negation ¬ or ∃≥n where n ≥ 2;
2. For each formula φ ∈ Φ, add a graph F into F which is defined below:

(a) There exists a bijective mapping τ from var(φ) to VF , i.e. from the variables in φ
(we avoid the reuse of variables)1 to the nodes in F .

(b) For any variables x, y ∈ var(φ), E(x, y) is a term in φ iff E(τ(x), τ(y)) is an edge
of F .

A discussion about the reuse of variables and why we avoid this technique is in Appendix E. We
now explain the procedure. Consider for example constructing a subgraph F for the logic formula
φ := ∃xyzwu ((E(x, y) ∧ E(y, z) ∧ E(y, w) ∧ E(w, u)). The construction of F is illustrated in
Figure 2 (e), where F possesses a node corresponding to each variable x, y, z, w, u in φ and contains
edges E(x, y), E(y, z), E(y, w) and E(w, u). We have the following result:
Theorem 8. Given a class of GACNN models and suppose Φ be the equivalent logic set. Let F be
the homomorphism expressivity constructed by Φ as discussed above. For all pairs of graphs G,H .
the following statements are equivalent:

1. Hom(F,G) = Hom(F,H) for all F ∈ F .

2. All GACNNs do not distinguish G and H .
1E.g. φ(x) := ∃y(E(x, y) ∧ ∃x(E(x, y))). The variable x is reused. This is a technique often used in the

context of logic to reduce the number of used symbols. In the construction of homogeneous expressivity we
avoid this technique and write φ(x) as φ(x) := ∃y(E(x, y) ∧ ∃z(E(z, y))) so that all variables are explicitly
expressed. As a result, there are 3 variables x, y, z in total.
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Theorem 8 validates the effectiveness of our construction procedure. Together, we provide a gen-
eral method to identify the homomorphism expressivity for arbitrary GACNNs, which extends the
known results in previous works (Dell et al., 2018; Zhang et al., 2024). Meanwhile, we have solved
a conjecture in Zhang et al. (2024), i.e. when a GNN can be described by a GACNN, its homomor-
phism expressivity exists and is given by Theorem 8.

Example. We illustrate the strategy of recursively constructing homogeneous expressivity F by
investigating 2-FGNNs, whose equivalent logic set Φ (removed negation and ∃≥N for N ≥ 2) is
given by φ(x, y) := ∃z (φ′(x, z) ∧ φ′′(z, y)) | φ′(x, y) ∧ φ′′(x, y) | atp(x, y). Let Φ(l) be the
equivalent logic set of l-layer 2-FGNNs. Let F (l) be the homogeneous expressivity constructed at
iteration l. For F (0) at beginning, there are only two graphs in F (0) corresponding to φ(0) ∈ Φ(0)

where φ(0)(x, y) := atp(x, y), as illustrated in top of Figure 2 (f). At the next iteration, we consider
the more complex Φ(1), which is given by

φ(1)(x, y) := ∃z
(
φ
(0)
1 (x, z) ∧ φ(0)

2 (z, y)
)
| φ(0)

1 (x, y) ∧ φ(0)
2 (x, y) | atp(x, y).

We can simply construct F (1) by reusing the known results about F (0). Specially, to construct
φ(1)(x, y) := ∃z

(
φ
(0)
1 (x, z) ∧ φ(0)

2 (z, y)
)

, we start from an empty graph F and add three nodes

vx, vy, vz corresponding to variables x, y, z in φ(1). Then, we replace (vx, vz) and (vz, vy) with the
known subgraphs in F (0), as illustrated in middle of Figure 2 (f). By continuing this procedure, the
homomorphism expressivity F is constructed, as illustrated in bottom of Figure 2 (f).

6.3 EXPRESSIVITY COMPARISON

It is also convenient to obtain the upper bounds with regard to WL tests thanks to the relation of
logic and WL studied in Cai et al. (1992), as well as comparing the expressive power of different
GNN models:
Proposition 9. Suppose the equivalent logic set of a class of GNN models is Φ. Then, the expressive
power of the GNN models is bounded by k-WL, iff all logic formulas in Φ can be expressed with at
most k variables.

Note that it is trival to check the number of variables in our setting: recall that in Propo-
sition 5 the equivalent logic sets are defined by specifying the grammar of logic formulas.
This implies that we can simply check the number of variables emerged in the grammar. For
example, consider Subgraph GNN (weak). There are 2 free variables {x, y} in φ(x) :=
∃≥Ny (φ′(y) ∧ ψ(x, y)) | ¬φ′(x) | φ′(x) ∧ φ′′(x) | atp(x) and 3 variables {x, y, z} in ψ(x, y) :=
∃≥Nz (ψ′(x, z) ∧ E(z, y)) | ¬ψ′(x) | ψ′(x) ∧ ψ′′(x) | E(x, y). Therefore, the expressive power of
Subgraph GNN (weak) is bounded by 3-WL. We summarize the section by introducing following
results for popular GNN models.
Corollary 10. The expressivity of GNN models satisfies: MPNNs = 1-WL< Subgraph GNNs (weak)
= NBFNet < Subgraph GNNs (strong) < Local 2-FGNN < 2-FGNN = 3-WL, 1-WL < SEAL < 4-
WL.

7 LIMITATION AND CONCLUSION

Limitation. The results of this paper are applicable to GNNs that can be expressed by GACNNs.
Our framework is not applicable for GNNs which do not consist sole of aggregation and combination
operations. For example, Graphormer-GD (Zhang et al., 2023) which injects distance information
into node pairs and cannot be described by aggregation or combination layers.

Conclusion. In this paper we present a novel framework for systematically describe the logical
expressivity of GNN models built upon combination and aggregation operations. We analyze the
logical expressivity of popular GNN models and provide insight about many important topics in
graph representation learning including expressivity comparison, structural awareness of GNNs,
estimating WL expressivity, etc. Our framework serves as a toolbox to understand both existed
and new GNN architectures: with new GNNs being designed, one can easily obtain the logical
expressivity, study the substructures captured by them and bound these models with WL tests.
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A RELATED WORKS

In this section we discuss related works that studies the expressive power of GNNs and several GNN
models investigated in this paper.

Expressivity of GNNs. Studying the expressive power of GNNs has been a hot topic in graph
machine learning community. Xu et al. (2018) investigate the expressive power of GNNs by relating
MPNNs with 1-WL tests, making it possible to utilize many know results about WL tests for the
analysis of GNNs. Barceló et al. (2020) study the logical expressiveness of MPNNs which is close
to our work. Compared with them, we successfully design a method to describe the logical expres-
sivity for arbitrary aggregation-combination networks and analyzed several important implications
brought by our work, including homomorphism expressivity, comparison of expressive power, etc.
Zhang et al. (2024) investigate several popular GNN models and study their expressive power in the
perspective of homomorphisms. Compared with their work, we propose a general method to deter-
mine the homomorphism expressivity for arbitrary aggregation-combination networks while solving
a conjecture in Zhang et al. (2024) in the meantime.

To summarize, the major advantages of our works are:

(1) Our study establishes a deeper connection between GNNs and logic. Briefly speaking, previous
works (Barceló et al., 2020) only study a set Φ of logic formulas for MPNNs such that:

• All logic formulas φ ∈ Φ can be captured by MPNNs.
• A logic formula can be captured by a MPNN iff it is in Φ.

It is worth noting that the above statements only guarantees that the logic formulas can be captured
by MPNNs. Intuitively, this does not establish an equivalence between logic and GNNs. Instead, in
our work, we study a set Φ of logic formulas for GNNs such that:

• All logic formulas φ ∈ Φ can be captured by GNNs.
• The GNNs are equivalently expressive with Φ in distinguishing non-isomorphic graphs.

Therefore, our theory reveals deeper connection between GNNs and logic (i.e. the equivalence
between GNNs and logic.)t

(2) Our study specifies the logical expressiveness of arbitrary GNNs, provided that their layers are
built using aggregation and combination functions.

(3) In this paper, we establish a connection between logic and the homomorphism expressivity of
GNNs.

Higher order GNNs. Since the works of Xu et al. (2018); Morris et al. (2018) that relate GNNs
with the 1-WL tests, it is straightforward to extend GNNs by imitating higher-order WL tests. Pre-
cisely, k-order WL tests assign colors for k-tuples of nodes and perform color aggregation between
different tuples. Similarly, instead of learning representations for nodes, many works choose to
apply the message passing paradigm in higher-order WL tests to GNNs and directly learn represen-
tations for node tuples (Morris et al., 2018; Maron et al., 2019a; 2018; 2019b; Keriven & Peyré,
2019; Azizian & Lelarge, 2020; Geerts & Reutter, 2022).

Subgraph GNNs. Since the higher order GNNs are often too expensive for larger graphs, many
works try to find cheaper ways to design more expressive GNNs. A variety of works feed subgraphs
to MPNNs. At each layer, a set of subgraphs is generated according to some predefined permutation-
invariant policies, including node deletion (Cotta et al., 2021), edge deletion Bevilacqua et al. (2021),
node marking (Papp & Wattenhofer, 2022), ego-networks (Zhao et al., 2021; Zhang & Li, 2021; You
et al., 2021). We will focus on the unified ESAN framework proposed by Bevilacqua et al. (2021).
Qian et al. (2022); Frasca et al. (2022) studied the expressive power of different branches of subgraph
GNNs.

Substructure counting GNNs. There is another way to design GNNs that surpass 1-WL by con-
structing structural features for GNNs. Chen et al. (2020) showed that regular MPNNs cannot cap-
ture simple patterns such as cycles, cliques and paths. Bouritsas et al. (2020); Barcel’o et al. (2021)
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proposed to apply substructure counting as pre-processing, and add substructure information into
node features. Bodnar et al. (2021b;a); Thiede et al. (2021); Horn et al. (2021) further designed
novel WL variants and proposed fully-neural approaches that captures complex substructures.

GNNs for link prediction. Standard GNNs learn representations for each node. Early methods
such as GAE Kipf & Welling (2016a) use GNN as an encoder and decode link representations as
a function over node representation pairs. These methods are problematic in capturing complex
graph structures, and might lead to poor performance. Later on, labeling trick was introduced by
SEAL Zhang & Chen (2018) and adopted by GraIL Teru et al. (2019), IGMC Zhang & Chen (2020),
INDIGO Liu et al. (2021), etc. These methods encode source and target nodes to mark them differ-
ently from the rest of the graph, and are proved to be more powerful than GAE. ID-GNN You et al.
(2021) and NBFNet Zhu et al. (2021) both augments GNNs with the identity of the source nodes.
Besides, All-path Toutanova et al. (2016) encodes relations as linear projections and proposes to ef-
ficiently aggregate all paths with dynamic programming. However, All-Path is restricted to bilinear
models, has limited link prediction capability and is also not inductive. EdgeTransformer Bergen
et al. (2021a) utilizes attention mechanism to learn representations for nodes and links. While it also
follows the 2-FWL message passing procedure, it operates directly on fully-connected graphs and
have no proposals for simplifications as we do, thus it is not scalable to larger graphs. ELPH and
BUDDY (Chamberlain et al., 2023) incorporate neighbor counting into node features to enhance the
link prediction performance of MPNNs.

B WEISFEILER-LEHMAN TESTS

In this section we introduce the Weisfeiler-Lehman (WL) tests and their variants. Weisfeiler-Lehman
(WL) tests are a family of necessary tests for graph isomorphism. Apart from some corner cases
(Cai et al., 1992), they are effective and computationally efficient tests for graph isomorphism. Its
1-dimensional variant iteratively aggregates the colors of nodes and their neighbors and then injec-
tively hashes them into new colors. The algorithms decides two graphs non-isomorphic if the colors
of two graphs are different.

Extending from classic WL tests, k-dimensional WL test (k-WL) refines colors for node tuples. At
beginning, the color of a node tuple u is set to be injective w.r.t. the structure of u, denoted as
atp(u). That is, for arbitrary two tuples u = (u1, ..., uk) and v = (v1, ..., vk), atp(u) = atp(v)
iff there exists an isomorphism π for the subgraphs induced by nodes in u,v and π(ui) = vi for
i = 1, ..., k. k-WL then recursively refines these colors until convergence.

B.1 1-WL (COLOR REFINEMENT)

The classic 1-WL test (Weisfeiler & Leman, 1968) maintains a color for each node which is refined
by aggregating the colors of their neighbors. It can be easily applied on node-featured graphs (Xu
et al., 2018) as in Algorithm 1.

Algorithm 1: The 1-WL test (color refinement)
Input : G = (A,X)

1 l← 0;
2 c0v ← hash(xv) for all v ∈ VG;
3 while not converge do
4 cl+1

v ← hash(clv,
{{
clu | u ∈ N (v)

}}
);

5 l← l + 1;
6 end
7 return

{{
clv | v ∈ VG

}}
;

The iteration converges when the partitions of nodes no longer changes. The 1-WL test decides
two graphs are non-isomorphic if the multisets of colors of the two graphs are different. The WL
algorithm successfully distinguishes most pairs of graphs, apart from some special examples such
as regular graphs. Similarly, given a subset of nodes C, 1-WL define its color as

{{
clv | v ∈ C

}}
,

and 1-WL distinguishes two set of nodes if the colors of them are differernt.
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B.2 k-WL

The k-WL tests extend 1-WL to coloring k-tuples of nodes as in Algorithm 2, where we use v to
denote a tuple of nodes, G[v] for ordered subgraphs. The neighbors N k(v) are defined as follows:
assume v = (v1, ..., vk), then N k(v) = (N k

1 (v),N k
1 (v), ...,N k

k (v)), where

N k
i (v) = {{(v1, ..., vi−1, u, vi+1, ..., vk) | u ∈ V}} .

Algorithm 2: The k-WL tests
Input : G = (A,X)

1 l← 0;
2 c0v ← hash(G[v]) for all v ∈ Vk

G;
3 while not converge do
4 cl+1

v ← hash(clv,
{{
clu | u ∈ N k(v)

}}
);

5 l← l + 1;
6 end
7 return

{{
clv | v ∈ VG for all v ∈ v

}}
;

B.3 k-FWL

The k-FWL (Cai et al., 1989) test is equally expressive with the (k+1)-WL test. It has the same ini-
tialization with (k+1)-WL. The neighborsN k(v) are defined as follows: assume v = (v1, ..., vk),
then N k(v) =

{{
N k

u (v) | u ∈ V
}}

, where

N k
u (v) = ((u, v2, ..., vk), (v1, u, ..., vk), ..., (v1, ..., u, vk)).

Algorithm 3: The k-FWL tests
Input : G = (A,X)

1 l← 0;
2 c0v ← hash(G[v]) for all v ∈ Vk

G;
3 while not converge do
4 cl+1

v ← hash(clv,
{{
clu | u ∈ N k(v)

}}
);

5 l← l + 1;
6 end
7 return

{{
clv | v ∈ VG for all v ∈ v

}}
;

B.4 COLORS OF k-WL / k-FWL

From the previous discussions k-WL and k-FWL both assign colors for k-tuples of nodes. The color
of the graph G is defined by

cG = Hash(
{{
cv | v ∈ Vk

}}
).

Similarly, given any subset of nodes S ⊆ V , we also define its color as

cS = Hash(
{{
cv | v ∈ Sk

}}
).

C ABOUT GNN MODELS

In this section we decompose several popular GNN models using the GACNN framework. First,
MPNNs Xu et al. (2018) whose layers are defined by

χ(l+1)(x) = COM(l)
(
χ(l)(x),AGG(l)

({{
χ(l)(y) | y ∈ N(x)

}}))
,
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where x, y denotes nodes in graphs, can be simply decomposed into

χ(l+1)(x) = COM(l)
(
χ(l)(x), χ

(l)
1 (x)

)
,

χ
(l)
1 (x) = AGG(l)

({{
χ(l)(y) | v ∈ N(x)

}})
.

In this manner we describe the MPNN layers using the principled GACNN framework. To better
explain our framework, consider Local 2-GNN Zhang et al. (2024) whose layers are defined by

χ(l+1)(x, y) = COM(l)
(
χ(l)(x, y), AGG

(l)
1

({{
χ(l)(z, y) | z ∈ N (x)

}})
,

AGG
(l)
2

({{
χ(l)(x, z) | z ∈ N (y)

}}))
.

(3)

Similarly, we can decompose one layer of Local 2-GNN into

χ(l+1)(x, y) = COM
(l)
1

(
χ(l)(x, y), χ

(l)
1 (x, y)

)
, χ

(l)
1 (x, y) = COM

(l)
2

(
χ
(l)
2 (x, y), χ

(l)
3 (x, y)

)
,

χ
(l)
2 (x, y) = AGG

(l)
1

({{
χ(l)(z, y) | z ∈ N (x)

}})
, χ

(l)
3 (x, y) = AGG

(l)
2

({{
χ(l)(x, z) | z ∈ N (y)

}})
,

(4)
where COM

(l)
1 ,COM

(l)
2 are combination functions satisfying COM

(l)
1

(
χ,COM

(l)
2 (χ′, χ′′)

)
=

COM(l)(χ, χ′, χ′′) for arbitrary representations χ, χ′, χ′′.

MPNN.
χ(l+1)(x) = COM

(
χ(l)(x),AGG

({{
χ(l)(y) | y ∈ N (x)

}}))
.

Subgraph GNN (weak).

χ(l+1)(x) = AGG
({{

χ(l+1)(x, y) | y ∈ V
}})

,

χ(l+1)(x, y) = COM
(
χ(l)(x, y),AGG

(
χ(l)(x, z) | z ∈ N (y)

))
.

Subgraph GNN (strong).

χ(l+1)(x, y) = COM
(
χ(l)(x, y),AGG

({{
χ(l)(x, z) | z ∈ N (y)

}})
, χ(l)(y),AGG

({{
χ(l)(z) | z ∈ N (y)

}}))
,

χ(l+1)(x) = AGG
(
χ(l+1)(y, x) | y ∈ V

)
.

NBFNet.

χ(l+1)(x, y) = COM
(
χ(l)(x, y),AGG

({{
χ(l)(x, z) | z ∈ N (y)

}}))
.

Local 2-GNN.

χ(l+1)(x, y) = COM
(
χ(l)(x, y),AGG

({{
χ(l)(z, y) | z ∈ N (x)

}})
,AGG

({{
χ(l)(x, z) | z ∈ N (y)

}}))
.

2-FGNN.

χ(l+1)(x, y) = COM
(
χ(l)(x, y),AGG

({{
COM

(
χ(l)(x, z), χ(l)(z, y)

)
| z ∈ V

}}))
.

SEAL (MPNN).

χ(l+1)(x, z, y) = COM
(
χ(l)(x, z, y),AGG

({{
χ(l)(x,w, y) | w ∈ N (z)

}}))
,

χ(l+1)(x, y) = AGG
({{

χ(l+1)(x, z, y) | z ∈ N
}})

.
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2-GNN
χ(l+1)(x, y) = COM

(
χ(l)(x, y),AGG

({{
χ(l)(z, y) | z ∈ V

}})
,AGG

({{
χ(l)(x, z) | z ∈ V

}}))
.

D NUMERICAL EXPERIMENTS

In this section we perform numerical experiments to empirically validate our theoretical results.
The motivation of this section is to test the logical expressivity of several GNN models by checking
whether they are able to express specific logic formulas on synthetic data. Generally, the experiments
are divided into two parts: one to test the node classification capacities of GNNs and the other to
test the link prediction capacities of GNNs.

The experiments are designed as below. We conduct two types of tasks. First, we would like to test
the GNNs’ ability to learn logic formulas. In this part, we specify the target logic formula φwe want
to learn. Then, we randomly generate graphs with initial node colors encoded by zero-one vectors.
After that, we apply φ on the generated graphs and label each node x (or node pair (x, y)) where
φ(x) (or φ(x, y)) is true with target label 1. We then train each GNN model on the graphs and
observe the results. For each task the GNNs are divided into two classes: one for node classification
and the other for link prediction. Second, we would like to test the GNNs’ ability to distinguish
non-isomorphic graphs. In this part, we manually construct several pairs of graphs and show that
they can be distinguished by different logic formulas. Then, we test whether GNNs can separate the
graphs. The detail of each experiment is presented below.

Experiment setting. For all GNNs we choose the aggregation AGG to be sum, and the combina-
tion function COM to be

COM(x,y) = W [xT ,yT ]T ,

where W is a parameter matrix. We refer to GNN-k as the GNN model with k layers, i.e. MPNN-1
refers to a MPNN which has one aggregation-combination layer. For the last layer, the sigmoid
function is selected as the activation function. For the rest of the layers, the ReLU function is
selected as the activation function.

We randomly generate graphs as follows. We consider Erdös-Renyi graphs, which are random
graphs by specifying N the number of nodes and p the possibility for each edge to exist. We then
randomly color each node with a specified probability. After that, we apply the logic formulas on the
generated graphs and obtain the prediction targets for the GNNs. Each train and test graph contains
500 nodes. Each test-larger graph contains 1000 nodes.

D.1 LEARNING LOGICAL FORMULAS

D.1.1 NODE CLASSIFICATION

Target logic formulas. For node classification we consider three target logic formulas with in-
creasing complexity:

φ1(x) := Red(x) ∧ ∃y(E(y, x) ∧ ∃z(E(z, y) ∧ Blue(z))),

φ2(x) := ∃y∃z(E(x, y) ∧ E(x, z) ∧ E(y, z)),

φ3(x) := ∃y(E(y, x) ∧ φ2(y)).

We pick GNN models by analyzing the above formulas. φ1 is expressed by MPNNs. φ2 is expressed
by Subgraph GNNs (weak) but not MPNNs. φ3 is expressed by 2-FGNNs but not Subgraph GNNs
(weak). Hence, we choose MPNNs, Subgraph GNNs (weak) and 2-FGNNs. For Subgraph GNNs,
we follow the node marking policy (Bevilacqua et al., 2021) and set the initial color of (x, x) to be
the color of x. For 2-FGNNs, the node representation of node x is obtained by the representation of
(x, x). The results are shown in Table 1. We can see that the results meet our expectation.

Results about φ1. φ1 decides whether a node is red and is connected to a blue node via 2 edges. It
can be decomposed by φ1(x) := Red(x)∧∃y(E(y, x)∧ψ(y)) and ψ(y) := Red(y)∧∃z(E(z, y)∧
Blue(z)), thus it is simple and can be expressed by MPNNs. Also, according to the decomposition
two MPNN layers are required to express φ1. Similarly, two Subgraph GNN layers are required to
express φ1. The results in Table 1 satisfy this.
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Table 1: Results on node classification.

Algorithm φ1 φ2 φ3

Train Test Test-larger Train Test Test-larger Train Test Test-larger

MPNN-1 0.907 0.903 0.909 0.867 0.865 0.666 0.866 0.865 0.527
MPNN-2 1.000 1.000 1.000 0.863 0.863 0.556 0.868 0.878 0.657
MPNN-3 1.000 1.000 1.000 0.855 0.864 0.601 0.877 0.877 0.477

Subgraph-1 0.905 0.903 0.899 0.867 0.872 0.668 0.882 0.859 0.524
Subgraph-2 1.000 1.000 1.000 1.000 1.000 1.000 0.914 0.906 0.682
Subgraph-3 1.000 1.000 1.000 1.000 1.000 1.000 0.901 0.905 0.582

2-FGNN-1 1.000 1.000 1.000 0.865 0.862 0.666 0.857 0.847 0.531
2-FGNN-2 1.000 1.000 1.000 1.000 1.000 1.000 0.891 0.896 0.639
2-FGNN-3 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Results about φ2. φ2 decides whether the node is in a 3-clique and requires at least three variables
, y, z and thus cannot be expressed by MPNNs. However, it can be expressed by Subgraph GNNs:
we can decompose φ2 into φ2(x) := ∃y(ψ1(x, y)), ψ1(x, y) := E(x, y)∧∃z(ψ2(x, z)∧ (E(y, z)),
ψ2(x, z) := E(x, z), which directly corresponds to the equivalent logic set of Subgraph GNNs.
Also, it can be seen from the decomposition that two Subgraph GNN layers are required to express
φ2, since there are two nested formulas ψ1, ψ2. For 2-FGNNs, two layers are required: we have
φ2(x) := ψ(x, x) and ψ(x, x) := ∃y(ψ1(x, y), E(y, x)), ψ1(x, y) := ∃z(E(x, z) ∧ E(z, y)). The
results in Table 1 meet the expectation.

Results about φ3. φ3 decides whether the node is adjacent to a 3-clique, which cannot
be expressed by Subgraph GNNs. For 2-FGNNs, we can decompose φ3 into φ3(x) :=
ψ(x, x), ψ(x, x) := ∃y(ψ1(x, y) ∧ E(y, x)), ψ1(x, y) := ∃z(ψ2(y, z)), ψ2(y, z) := E(y, z) ∧
∃w(E(y, w) ∧ E(w, z)), thus it can be expressed by 2-FGNNs with 3 layers. The results in Ta-
ble 1 meet the expectation.

D.1.2 LINK PREDICTION

Target logic formulas. For link prediction we consider two target logic formulas with increasing
complexity:

φ1(x, y) := Red(x) ∧ Blue(y),

φ2(x, y) := ∃z(Blue(z) ∧ E(x, z) ∧ E(z, y)).

We pick MPNNs and NBFNet. For MPNNs, the representation of a node pair (x, y) is obtained by
combining the representation of node x and node y. The results are presented in Table 2.

About φ1. φ1 is extremely simple: it decides two nodes are connected if one of them is red and
the other is blue. This logic formula does not consider the relation between the two nodes, and can
be expressed by MPNNs. The results in Table 2 meet the expectation.

About φ2. Compared with φ1, φ2 is more complex and decides two nodes are connected if they
are connected via a blue node. Such form of φ2 is more practical and considers the relation between
the two node: for example, deciding whether one person is another one’s grandparent in a kinship
graph can be done by checking whether they are connected via another person with the predicate
“parent”. However, MPNNs fail to express φ2. NBFNet is sufficient for expressing φ2, as we can
decompose it into φ2(x, y) := ∃z(ψ(x, z)∧E(z, y)) and ψ(x, z) := E(x, z)∧Blue(z). The results
in Table 2 meet the expectation, where we can see that there exists a large margin between MPNNs
and NBFNet for learning φ2.
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Table 2: Results on link prediction.

Algorithm φ1 φ2

Train Test Test-larger Train Test Test-larger

MPNN-1 1.000 1.000 1.000 0.818 0.819 0.586
MPNN-2 1.000 1.000 1.000 0.817 0.817 0.328

NBFNet-1 1.000 1.000 1.000 1.000 1.000 1.000
NBFNet-2 1.000 1.000 1.000 1.000 1.000 1.000

2-FGNN-1 1.000 1.000 1.000 1.000 1.000 1.000
2-FGNN-2 1.000 1.000 1.000 1.000 1.000 1.000

Figure 3: An illustration of several graph pairs.

D.2 SEPARATION POWER

We design several non-isomorphic graph pairs and test whether GNNs can distinguish the nodes /
node tuples in them. This includes:

• A cycle with 3 nodes and a cycle with 4 nodes, as illustrated in Figure 3 left. They
are 2-regular graphs. The task is to separate the nodes. The nodes can be separated by
φ(x) := ∃y(ψ(x, y)), ψ(x, y) := ∃z(E(x, z)∧E(z, y)∧E(z, y)). It cannot be expressed
by MPNNs, but can be expressed by Subgraph GNNs (weak) and more powerful models.

• Shrikhande Graph and Rook’s 4x4 graph as illustrated in Figure 3 right. The task is to
separate the graph. They are strongly regular graphs which cannot be separated by 2-FWL,
and thus 2-FGNNs.

The results are presented in Table 3.

E ABOUT VARIABLES IN LOGIC FORMULAS

Consider the formula

φ(x) := Red(x) ∧ ∃y(E(y, x) ∧ ∃z(E(z, y))).

The formula has a free variable x which is not bounded by the quantifier ∃ and two quantified
variables y, z which are bounded by ∃. Therefore, the formula has 3 variables in total. Given a
graph G, a grounding of φ(x) in G is a mapping η from the variables in φ(x) to the nodes in G.
For example consider the graph in Figure 4. There are two groundings η1, η2 from φ(x) to it, with
η1(x) = v1, η1(y) = v2, η1(z) = v3 and η2(x) = v1, η2(y) = v2, η2(z) = v5.

To reduce the number of symbols used in logic formula, there is a trick which is to reuse the variable
x and replace every occurrence of z in φ with x, leading to:

φ′(x) := Red(x) ∧ ∃y(E(y, x) ∧ ∃x(E(x, y))).

To ground φ′(x) on G, one still needs to substitute the variables in φ′(x) with the nodes in G. This
indicates that in Figure 4, we need to substitute the outer variable x in Red(x) with v1 and the inner
variable x in ∃x(E(x, y)) with v3 or v5. Therefore, when the variables are reused, the grounding
is no longer a well-defined mapping from variables to nodes, and the essentially different variables
x, z in φ(x) are expressed by the same symbol x in φ′(x). To avoid such clunky situations, we avoid
the reuse of variables.
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Table 3: Results on separation power.

Graph MPNN Subgraph 2-FGNN SEAL

2-regular × ✓ ✓ ✓
Shrikhande & Rook’s 4x4 × × × ✓

Figure 4: An example graph which has two groundings for φ(x) := Red(x) ∧ ∃y(E(y, x) ∧
∃z(E(z, y))).

The properties of F constructed by φ. Recall that to construct the homomorphism expressivity,
we construct a graph F for φ which is defined below:

1. There exists a bijective mapping τ from the variables in φ to the nodes in F .

2. For any variables x, y in φ, E(x, y) is a term in φ iff E(τ(x), τ(y)) is an edge of F .

We define the concept of injective grounding:

Definition 11. An injective grounding from a logic formula φ to a graph G is a grounding from φ
to G that maps different variables in φ to different nodes in G (without the reuse of variables).

It is now obvious that F is the minimum graph that contains an injective grounding from φ.

F LINK PREDICTION AND LOGIC

In this section we briefly discuss how the logical expressivity of GNNs affects their link prediction
capabilities. We also attempt to explain, why compared to node classification or graph classification
tasks, there often exists a larger margin between MPNNs and other advanced GNN variants (see,
e.g. Zhu et al. (2021)).

Beginning with MPNNs. The logic formulas expressed by MPNNs are of the form

φ(x) := ∃≥Ny (φ′(y) ∧ E(y, x)) | ¬φ′ | φ′ ∧ φ′′.

For MPNNs, to predict whether a pair of nodes (x, y) are linked, it is common to combine the
representation of x and y, e.g.

pred(x, y) = MLP(hx,hy),

where hx,hy are the representations of x and y respectively. Using Theorem 3, it is evident that
pred is expressed by

ψ(x, y) := φ(x) | φ(y) | ¬ψ′ | ψ′ ∧ ψ′′. (5)

Intuitively, this can be understood as gathering the information of x and y respectively, which does
not consider the correlation between x and y existed in the structure of the graph. To explain this
more concisely, consider Figure 5 (a). For arbitrary φ defined above, φ(v1) = φ(v2) = φ(v3) since
the nodes v1, v2, v3 are isomorphic. This implies that for arbitrary ψ defined above, ψ(v1, v2) =
ψ(v1, v3), and thus ψ fail to separate (v1, v2) between (v1, v3). However, it is obvious that the
structure between (v1, v2) and (v1, v3) are different: v1 and v2 are connected via a node while v1
and v3 are not connected. This illustrates that for the link prediction of (x, y), MPNNs can only
check each node x, y separately, and fails to consider the correlation between them. This is also
reflected in the definition of ψ in Eq. 5: ψ(x, y) is constructed by φ(x) and φ(y) separately, and
there does not exist logic formulas besides ψ that jointly consider x and y.
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Figure 5: An example graph for link prediction tasks.

More powerful variants. To explain what is crucial for link prediction, consider the simple task:
given a graph of family kinship, the target is to predict whether one person x is another person y’s
grandparent. In Figure 5 (b) where each node represents a person and the directed edges represent
the relation “parent”. This is a typical link prediction task, which cannot be done by MPNNs: as
discussed above, MPNNs are confused by (g1, c1) and (g2, c1) and thus can mistakenly considers
g2 as the grandparent of c1, also they are not relatives. The correct logic formula for this task can be
written as

Grandparent(x, y) := ∃z(Parent(x, z) ∧ Parent(z, y)). (6)

We believe this simple formula reflects the key logical patterns that should be considered in link
prediction tasks, which can be written in the form of

φ(x, y) := ∃≥Nz(φ′(x, z) ∧ φ′′(z, y)) | ¬φ′ | φ′ ∧ φ′′, (7)

which is used by 2-FGNNs. Compared with MPNNs, this logic formula directly models the correla-
tion between x, y with φ(x, y). Moreover, the structures between x and y is perceived by checking
the relation between each node z and (x, y) via ∃≥Nz(φ′(x, z) ∧ φ′′(z, y)). For example, Figure
5 (b), the relation between g1, c1 is judged by checking whether there is an intermediate node p1
connected to both of them via ∃≥Np1(Parent(g1, p1) ∧ Parent(p1, c1)). We also note that there is
a variant weaker than Eq. 7 but also empirically performs well for link prediction:

φ(x, y) := ∃≥Nz(φ′(x, z) ∧ E(z, y)) | ¬φ′ | φ′ ∧ φ′′, (8)

which is used by NBFNet. This variant also expresses the Grandparent predicate.

To summarize, we believe the reason that MPNNs are relatively weak for link prediction tasks
is that they cannot express the relation between arbitrary pair of nodes as Eq. 7 and Eq. 8 do.
Intuitively, MPNNs can only express concepts like “x is a grandparent, y is a grandchild, then x is the
grandparent of y”, which can be described by the following logic formula within the expressiveness
of MPNNs:

Grandparent(x, y) := IsGrandparent(x) ∧ IsChild(y),

IsGrandparent(x) := ∃y(Parent(x, y) ∧ ∃z(Parent(y, z))),
IsGrandchild(x) := ∃y(Parent(y, x) ∧ ∃z(Parent(z, y))).

Therefore, the ability of expressing Eq. 7 or Eq. 8 is required for describing the Grandparent
predicate. In reality, we notice that many advanced GNN models designed for link prediction (Zhu
et al., 2021; Liu et al., 2021; Zhang & Chen, 2018; Teru et al., 2019; You et al., 2021; Bergen et al.,
2021b) follows this intuition.

G PROOF

G.1 PROOF OF THEOREM 3

Theorem 3. LetXi be the set of all possible χi defined above for i ∈ [K]. There exists {Φ1, ...,ΦK}
defined below, such that ΦK is the equivalent logic set of χK .

• χi(u) = AGGi ({{χj(v) | v ∈ Ni(u)}})
⇐⇒ φi(u) := ∃≥Nv

(
φj(v) ∧ 1v∈Ni(u)

)
| ¬φ′

i(u) | φ′
i(u) ∧ φ′′

i (u),
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• χi(u) = COMi (χj(u), χk(u))

⇐⇒ φi(u) := φj(u) | φk(u) | ¬φ′
i(u) | φ′

i(u) ∧ φ′′
i (u),

• χi(u) = INITi (u) ⇐⇒ φi(u) := atp(u) | ¬φ′
i(u) | φ′

i(u) ∧ φ′′
i (u),

where φ′
i, φ

′′
i ∈ Φi, φj ∈ Φj , φk ∈ Φk for i, j, k ∈ [K].

Proof sketch. The theorem represents a major technical contribution, so we present a proof sketch
below. Our proof is divided into two parts, presented in Appendix G.1. First, we show that each
logic formula φi ∈ Φ1 can be captured by χi. Obviously, for i = 1, we only have φ1(u) :=
atp(u) | ¬φ′

1(u) | φ′
1(u) ∧ φ′′

1(u), which can be directly described by χ1(u) = INIT1(u). By
induction on i, we suppose all φj ∈ Φj for j < i can be captured by χj . Then, given arbitrary
φi, we provide a method to explicitly construct the corresponding {COMj}j∈[i], {AGGj}j∈[i] and
{INITj}j∈[i] functions so that φi is captured by χi.

In the next step, we prove that for any graphs G,H and u ∈ Vk
G,v ∈ Vk

H , χi cannot distinguish
u,v iff all φi ∈ Φi classify u,v the same. By utilizing the fact that each φi ∈ Φi is captured by χi,
the first direction is proved. It is therefore only necessary to show χi(u) ̸= χi(v) ⇒ there exists
φi ∈ Φi satisfying φi(u) ̸= φi(v). Again, we prove by induction on i. Suppose for all j < i
the statement holds. We then enumerate all possible cases where χi(u) ̸= χi(v): for example if
χi(u) = COMi (χj(u), χk(u)), then there are three cases: (1) χj(u) ̸= χj(v), χk(u) = χk(v);
(2) χj(u) = χj(v), χk(u) ̸= χk(v), and (3) χj(u) ̸= χj(v), χk(u) ̸= χk(v). For each case, we
provide a method to construct φi ∈ Φi satisfying φi(u) ̸= φi(v), thus concluding the proof.

Proof. Recall that the definition of equivalent logic set ΦK of a family of graph functions XK is
defined as:

1. The order of each φK ∈ ΦK matches that of χK ∈ XK ;

2. For all φK ∈ ΦK , there exists χK ∈ XK such that for arbitrary graphs G and u ∈ Vk
G,

φK(u) = true iff χK(u) = true;

3. A logic formula is captured by X iff it is in Φ;

4. Given arbitrary positive integer N and χK ∈ XK , there exists φK ∈ ΦK satisfying: for
any graphs G with no more than N nodes and u ∈ Vk

G, φK(u) = true iff χK(u) = true.

5. Given any graphs G,H and u ∈ Vk
G,v ∈ Vk

H , all χK ∈ XK cannot distinguish u,v iff all
logic formulas φK ∈ ΦK classify u,v the same.

The proof is divided into four parts, each corresponding to one of the statement.

Statement 1. The order of each φK ∈ ΦK matches that of χK ∈ XK . The statement naturally
holds.

Statement 2. For all φK ∈ ΦK , there exists χK ∈ XK such that for arbitrary graphs G
and u ∈ Vk

G, φK(u) = true iff χK(u) = true. We prove this by manually constructing the
aggregation and combination functions such that φK is captured by χK . To do this, we first preset
the following definition.

Definition 12. Given a finite set of logic formulas Φ, we define a graph function χ to fully expresses
Φ, if the output of χ is a vector of binary values whose dimension is |Φ|. Moreover, for each φ ∈ Φ,
there exists a dimension d of the output of χ such that for arbitrary graph G and node tuple u,
χ(u)[d] = φ(u).

Using the definition above, we have the following lemmas.

Lemma 13. Let Φ1 be a set of logic formulas which is fully expressed by χ1. Let Φ be defined by

φ(u) := ∃≥nv
(
φ1(v) ∧ 1v∈N (u)

)
| ¬φ′(u) | φ′(u) ∧ φ′′(u),
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where φ,φ′, φ′′ ∈ Φ, and we restrict n < N where N is an arbitrary positive integer. Then,
there exists an aggregation function AGG such that χ(u) = AGG({{χ1(v) | v ∈ N (u)}}) fully
expresses Φ.

Lemma 14. Let Φ1,Φ2 be a set of logic formulas which is fully expressed by χ1, χ2. Let Φ be
defined by

φ(u) := φ1(u) | φ2(u) | ¬φ′
2(u) | φ′

2(u) ∧ φ′′
2(u),

where φ,φ′, φ′′ ∈ Φ. Then, there exists a combination function COM such that χ(u) =
COM(χ1(u), χ2(u)) fully expresses Φ.

With Lemma 13, 14, we are now ready to show that for any φK ∈ ΦK , there is a χK ∈ XK such
that φK(u) = χK(u) holds for arbitrary u. We prove this by induction.

Let {Φ1, ...,ΦK} be sets of logic formulas defined in Theorem 3. For i ∈ [K], we denote ΦN
i to be

the fragment of Φi where the superscripts n of quantifiers ∃≥n are less thanN . Moreover, we define
N to be the maximum superscript of the quantifiers in φK . Then, at beginning for Φ1, we only have

φ1(u) := atp(u) | ¬φ′
1(u) | φ′

1(u) ∧ φ′′
1(u),

where φ1, φ
′
1, φ

′′
1 ∈ Φ1. Obviously, Φ1 is finite, and there exists a init function INIT1 such that

χ1(u) = INIT1(u) fully expresses Φ1. Next, suppose at some iteration i, there exists a function
χi that fully expresses ΦN

i . Then for ΦN
i+1, by directly utilizing the results in Lemma 13, 14, it

is obvious that there still exists χi+1 that fully expresses ΦN
i+1. Finally, at iteration K, let χ′

K be
the function that fully expresses ΦN

K . From Definition 12 it is evident that the output of χ′
K has a

dimension for each formula in ΦN
K . By only preserving the dimension corresponding to φK (denoted

as dimension d), there exists χK(u) = χ′
K(u)[d] that satisfies: for arbitrary graphs G and u ∈ Vk

G,
φK(u) = true iff χK(u) = true.

Statement 3. A logic formula is captured by X iff it is in Φ. To prove the statement, we need to
show that

Lemma 15. Given arbitrary X , let Φ be constructed as in Theorem 3. Then, all logic formulas
captured by a χ ∈ X is in Φ.

The lemma is proved via a reduction from GACNNs to MPNNs in Appendix G.14.

Statement 4. Given arbitrary positive integer N and χK ∈ XK , there exists φK ∈ ΦK

satisfying: for any graphs G with no more than N nodes and u ∈ Vk
G, φK(u) = true iff

χK(u) = true. We first introduce the following lemma.

Lemma 16. Given a series of functions {χ1, ..., χK} where each function χi maps a node tuple
to a discrete color and is defined by either χi(u) = AGGi ({{χj(v) | v ∈ Ni(u)}}) , χi(u) =
COMi (χj(u), χk(u)) or χi(u) = INITi (u). Let Xi be the set of all possible χi defined in the
above manner for i ∈ [K]. Let Φi be the set specified by Theorem 3 of Xi. Then, for arbitrary
i ∈ [K] and each possible color col of χi, there exists a logic formula φcol

i ∈ Φi satisfying:

φcol
i (u) = true ⇐⇒ χi(u) = col

for arbitrary graph G with no more than N nodes and u ∈ Vk
G.

Therefore, given {χ1, ..., χK} and {Φ1, ...,ΦK} the sets of logic formulas defined in Theorem 3,
Lemma 16 indicates that for arbitrary N , there exists a logic formula φcol

i ∈ Φi for each χi and col
a possible color of χi such that φcol

i (u) = true ⇐⇒ χi(u) = col. It is evident that for χK , the
statement: φK(u) = true iff χK(u) = true is just a special case where χK only has binary colors.
Therefore, the proof completes.

Statement 5. Given any graphs G,H and u ∈ Vk
G,v ∈ Vk

H , all χK ∈ XK cannot distinguish
u,v iff all logic formulas φK ∈ ΦK classify u,v the same. This result is a direct corollary
of the statements 2, 3. Let N = max(|VG|, |VH |). It is obvious that if there is a χK ∈ XK that
χK(u) ̸= χK(v), there also exists a φK ∈ Φk where φK is specified in statement 3 that satisfies
φK(u) ̸= φK(v), and vice versa.
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G.2 PROOF OF THEOREM 8

Theorem 8. Given a class of GACNN models and suppose Φ be the equivalent logic set. Let F be
the homomorphism expressivity constructed by Φ as discussed above. For all pairs of graphs G,H .
the following statements are equivalent:

1. Hom(F,G) = Hom(F,H) for all F ∈ F .

2. All GACNNs do not distinguish G and H .

Proof sketch. Theorem 8 represents another major technical contribution of the paper, so we present
a proof sketch below. Given the homomorphism expressivity F and for any graph G, the intuition
is that we can use logic formulas to count the number of homomorphisms from each F ∈ F to
G. Consider the graph in Figure 2 (a) for example: the number of homomorphisms from it to
G is N iff φ := ∃=Nv(E(vx, vy) ∧ E(vy, vw) ∧ E(vy, vz) ∧ E(vw, vu)) evaluates true in G,
where v = (vx, vy, vz, vw, vu). The next step of our proof is involved and shows that such φ can
be expressed by logic formulas in the equivalent logic set and vice versa, which is presented in
Appendix G.2, thus concluding the proof.

Proof. From Proposition 5 it is evident that statement 2 is equivalent to: All φ ∈ Φ do not distin-
guish G and H . We therefore instead prove:

All φ ∈ Φ do not distinguish G and H ⇐⇒ Hom(F,G) = Hom(F,H) for all F ∈ F .

We first prove the direction left to right. Given each φ ∈ Φ that does not contain negation ¬ or ∃≥N

where N ≥ 2, recall that the corresponding F is constructed by:

1. Start from an empty graph F ;

2. Construct the nodes of F : Add a node vx for each variable x emerged in φ (we avoid the
reuse of variables);

3. Construct the structure of F : Add an edge (vx, vy) for each edge term E(x, y) in φ. Add
F to F .

Before we start, we first introduce some useful quantifiers ∃=N ,∃≤N which express “there exists
exactly N” and “there exists no more than N” respectively. Note that the two quantifiers can be
directly deduced by ∃≥N : ∃≤N := ¬∃≥N+1 and ∃=N := ∃≥N ∧ ∃≤N .

Note that all φ satisfying the constraint (i.e. without negation or ∃≥N for N > 1) can be flattened
into the form of:

φ := ∃x1∃x2...∃xKE(xi1 , xj1) ∧ ... ∧ E(xiM , xjM ), (9)

where ip, jp ∈ [K] for all p ∈ [M ]. We now prove that there is a logic formula ψ ∈ Φ that captures
Hom(F,G) = 1, i.e. given arbitrary graph G, ψ is true iff Hom(F,G) = 1. Suppose F is
constructed by φ as:

φ := ∃x1∃x2...∃xKE(xi1 , xj1) ∧ ... ∧ E(xiM , xjM ).

Then by letting

ψ := ∃=1x1∃=1x2...∃=1xKE(xi1 , xj1) ∧ ... ∧ E(xiM , xjM ).

We now show that for arbitrary graph G, ψ is true iff Hom(F,G) = 1. By the construc-
tion of F each variable x1, ...,xK is corresponded to a distinct node tuple in F and each term
E(xi1 , xj1), ..., E(xim , xjm) is corresponded to an distinct edge in F . If ψ is true on G, then there
exists a grounding x1 → u1, ...,xK → uK such that all E(xi1 , xj1), ..., E(xim , xjm) are true.
Then the mapping π : F → G that π(vxl

) = ul for l ∈ [K] where vxl
is the node in F correspond-

ing to the variable xl in ψ. obviously π is a homomorphism from F toG, therefore Hom(F,G) ≥ 1.
Further more, suppose Hom(F,G) > 1, then there exists another π′ ̸= π that is also a homomor-
phism from F to G, which indicates that the grounding for E(xi1 , xj1), ..., E(xiM , xjM ) to be true
is not unique. In this case, ψ is not true because there exists not only one x1, ...,xK such that
E(xi1 , xj1), ..., E(xiM , xjM ) is true, violating the quantifiers ∃=1 in ψ.
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We next prove that there is also a logic formula ψ ∈ Φ that captures Hom(F, ·) = N for arbitraryN :
that is, for any graphs G,H , Hom(F,G) ̸= Hom(F,H)⇒ there exists ψ such that ψ evaluates to
different values onG andH . We prove by contradiction and assume all ψ ∈ Φ evaluates to the same
value on G and H . We denote ψn1n2...nK

:= ∃=n1x1∃=n2x2...∃=nKxK

(∧
m∈[M ]E(xim , xjm)

)
.

By assumption ψn1n2...nK
evaluates to the same value on G,H for any n1, n2, ..., nK . We now

construct a ψ such that ψ evaluates to true on G.

Let F be constructed by varphi := ∃x1∃x2...∃xKE(xi1 , xj1) ∧ ... ∧ E(xiM , xjM ) such that
Hom(F,G) = N ̸= Hom(F,H). Let X be the tuple of all variables in φ: X = (x1,x2, ...,xk).
For all homomorphisms from F to G, let V be the set of images of X from F to G. We first pick all
ψn1n2...nK

that evaluates to true on G. First, we have the following result:

Lemma 17. If nk > N for some k ∈ [K], then ψn1n2...nK
= false on G.

Therefore, there are only finite ψn1n2...nK
that evaluates to true on G, and nk ≤ N for all k ∈ [K].

For some ψn1n2...nK
= true on G, we refer to its grounding as a mapping from the variables X

in ψ to the corresponding tuple of nodes V in G, and V is the grounding result. We then have the
following result:

Lemma 18. For ψn1n2...nK
and ψm1m2...mK

, if nk ̸= mk for some k ∈ [K], then then grounding
results of ψn1n2...nK

and ψm1m2...mK
are different, i.e. there exists no V that is both a grounding

result of ψn1n2...nK
and ψm1m2...mK

.

Let S = {ψn1n2...nK
| nk ≤ N for k ∈ [K], ψn1n2...nK

= true on G} = {ψnl
1n

l
2...n

l
K
| l ∈ [L]}

where L = |S|. Then we have the following result:

ϕ :=
∧
l∈[L]

ψnl
1n

l
2...n

l
K
∈ Φ evaluates true on G.

Moreover, according to Lemma 18 it is evident that the total number of different grounding results
can be evaluated as ∑

l∈[L]

Number of grounding results of ψnl
1n

l
2...n

l
K

=
∑
l∈[L]

∏
k∈[K]

nlk

Since a grounding is also exactly a homomorphism from F to G, we have∑
l∈[L]

Number of grounding results of ψnl
1n

l
2...n

l
K

=Hom(F,G) = N.

By assumption, ϕ also evaluates to true on H , which indicates that ψnl
1n

l
2...n

l
K

evaluates to true for
l ∈ [L] on H . As a result,

Hom(F,H)

≥
∑
l∈[L]

Number of grounding results of ψnl
1n

l
2...n

l
K

=N.

This yields a contradiction where we assume Hom(F,H) < Hom(F.G) = N . Thus the proof
completes.

We next prove the other direction, i.e. for any graphs G,H , there exists ψ such that ψ evaluates to
different values on G and H ⇒ Hom(F,G) ̸= Hom(F,H). Without loss of generality we assume
ψ evaluates to true on G and false on H . We first introduce the following lemma:

Lemma 19. If there is ψ ∈ Φ such that ψ evaluates to different val-
ues on G and H , then there exists ψ ∈ Φ in the form of ψn1n2...nK

:=

∃=n1x1∃=n2x2...∃=nKxK

(∧
p∈[P ]E(xip , xjp)

∧
q∈[Q] ¬E(xiq , xjq )

)
that also evaluates to

different values on G and H .
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Without loss of generality, we may now assume that there exists ψ in the form described by Lemma
19 that evaluates to true on G and false on H . We now prove that there must exists a F ∈ F such
that Hom(F,G) ̸= Hom(F,H).

Given

ϕ := ∃x1∃x2...∃xK

 ∧
p∈[P ]

E(xip , xjp)
∧

q∈[Q]

¬E(xiq , xjq )

 ,

let grd(ϕ,G) be the number of groundings from the variables in ϕ to G. Obviously grd is a exten-
sion to hom which allows negative edges ¬E(xiq , xjq for q ∈ [Q]. We have the following result:

Lemma 20. If Hom(F,G) = Hom(F,H) for all F ∈ F , then every ϕ ∈ Φ of the above form
satisfies:

grd(ϕ,G) = grd(ϕ,H).

We define

ϕn1n2...nK
:= ∃x1

1∃x2
1...∃xx

n1
1 ∃x11

2 x12
2 ...∃x

1n2
2 ∃x21

2 ∃x22
2 ...∃x

n1n2
2 ...∃x11...1

K ...∃xn1n2...nK

K ∧
p∈[P ],

E(x
l1l2...lip
ip

, x
l1l2...ljp
jp

)
∧

q∈[Q]

¬E(x
l1l2...liq
iq

, x
l1l2...ljq
jq

)

 .

Note that ϕn1n2...nK
∈ Φ for arbitrary n1, n2, ..., nK . We now prove by contradiction. As-

sume Hom(F,G) = Hom(F,H) for arbitrary F ∈ F . By Lemma 20 it is obvious that
grd(ϕn1n2...nK

, G) = grd(ϕn1n2...nK
, H) for all n1, n2, ..., nK . First consider the case where

ψ11...1 = true on G. Obviously we have grd(ϕ11...1, G) = 1 = grd(ϕ11...1, H), which in-
dicates that there exists exactly one grounding from ϕ11...1 to H and thus ψ11...1 = true on
H , which yields a contradiction. We now assume ψN1N2...NK

evaluates to true on G. We
prove that the evaluation of ψN1N2...NK

can be determined by the number of groundings from
{ϕn1n2...nK

| nk ∈ [Nk] for k ∈ [K]} to G, i.e.

(grd(ϕn1n2...nK
, G))nk∈[Nk] for k∈[K] .

By proof by induction, we already know that ψ11...1 evaluates to true on G exactly when
grd(ϕ11...1, G) = 1 and thus ψ11...1 is captured by (grd(ϕ11...1, G)). Now consider we are to prove
ψN1N2...NK

is captured by (grd(ϕn1n2...nK
, G))nk∈[Nk] for k∈[K]. Let us consider the groundings

from ϕN1N2...NK
to G. Obviously we can divide the groundings into two parts:

1. The non-injective groundings, i.e. groundings that maps different variables in ϕN1N2...NK

to the same node in G.

2. The injective groundings, i,e, groundings that maps different variables in ϕN1N2...NK
to

different nodes in G.

Obviously the number of non-injective groundings can be computed by grd(ϕn1n2...nK
, G) where

for all k ∈ [K] nk ≤ Nk, k ∈ [K] and there exists k ∈ [K] nk < Nk. Thus, the number of injective
homomorphisms can be evaluated. If the following constraints hold:

• The number of injective groundings from ϕn1n2...nK
to G is larger than 0,

• The numbers of injective groundings from ϕn1+1n2...nK
, ϕn1n2+1...nK

...ϕn1n2...nK+1 toG
are 0,

then obviously ψn1...nK
evaluates to true. Therefore this yields a contradiction and the proof com-

pletes.
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G.3 PROOF OF COROLLARY 4

Corollary 4. The equivalent logic set of l-layer GACNNs defined above is given by Φ(l).

Proof. This is a direct result derived from Theorem 3 when we explicitly write down the computa-
tion procedure of a l-layer GACNNs.

G.4 PROOF OF PROPOSITION 5

Proposition 5. The equivalent logic set of all GACNNs defined above is given by Φ =
⋃∞

l=0 Φ
(l).

Moreover, let Φi =
⋃∞

l=0 Φ
(l)
i for i ∈ [K], then Φ and {Φi}i∈[K] exist and is defined by a similar

procedure as Theorem 3. For the brevity of notation we denote χ(l) as χ(l)
K+1, χ(l+1) as χ(l)

0 and Φ
as Φ0 in the following description.

• χ
(l)
i (u) = AGG

({{
χ
(l)
j (x) | v ∈ Ni(u)

}})
⇐⇒ φi(u) := ∃≥Nv

(
φj(v) ∧ 1v∈Ni(u)

)
| ¬φ′

i(u) | φ′
i(u) ∧ φ′′

i (u) | atp(u),

• χ
(l)
i (u) = COM

(
χ
(l)
j (u), χ

(l)
k (u)

)
⇐⇒ φi(u) := φj(u) | φk(u) | ¬φ′

i(u) | φ′
i(u) ∧ φ′′

i (u) | atp(u),

where φi, φ
′
i, φ

′′
i ∈ Φi, φj ∈ Φj , φk ∈ Φk for i ∈ {0} ∪ [K].

Proof. Obviously, to consider all numbers of layers l simultaneously, the equivalent logic set is
given by Φ =

⋃∞
l=0 Φ

(l). Since for layer l the corresponding equivalent logic set Φl is given by

• χ
(l)
i (u) = AGG

({{
χ
(l)
j (x) | v ∈ Ni(u)

}})
⇐⇒ φ

(l)
i (u) := ∃≥Nv

(
φ
(l)
j (v) ∧ 1v∈Ni(u)

)
| ¬φ(l)′

i(u) | φ(l)′
i(u) ∧ φ(l)′′

i (u),

• χ
(l)
i (u) = COM

(
χ
(l)
j (u), χ

(l)
k (u)

)
⇐⇒ φ

(l)
i (u) := φ

(l)
j (u) | φ(l)

k (u) | ¬φ(l)′
i(u) | φ(l)′

i(u) ∧ φ(l)′′
i (u),

where φ(l)
i , φ

(l)
i

′, φ
(l)
i

′′ ∈ Φ
(l)
i , φ

(l)
j ∈ Φ

(l)
j , φ

(l)
k ∈ Φ

(l)
k for i ∈ ∪[K], and

φ0(u) := atp(u).

It is obvious that the construction of Φi in Proposition 5 is a union of all Φ(l)
i for l ∈ [0,∞): at

beginning φi := atp(u) thus at this moment Φi = Φ
(0)
i . Suppose at some iteration Φi = Φ

(l)
i . Then

in next iteration we add

φi(u) := ∃≥Nv
(
φj(v) ∧ 1v∈Ni(u)

)
| φj(u) | φk(u) | ¬φ′

i(u) | φ′
i(u) ∧ φ′′

i (u) | atp(u)

to Φi, and we still have Φi = Φ
(l+1)
i . Therefore Φ =

⋃∞
l=0 Φ

(l) is given by Proposition 5.

G.5 PROOF OF PROPOSITION 6

Proposition 6. The equivalent logic set Ψ of the graph representation χG defined above is given by

ψ := ∃≥N (φ(u)) | ¬ψ′ | ψ′ ∧ ψ′′,

where ψ,ψ′, ψ′′ ∈ Ψ, φ ∈ Φ.

Proof. This is a direct result derived from Theorem 3. Since

χG = AGG
({{

χ(u) | u ∈ Vk
}})

where V is the set of nodes in G and k is the order of u, Ψ is specified by Theorem 3 as above.
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G.6 PROOF OF PROPOSITION 7

Proposition 7. The equivalent logic sets of GNN models can be separately defined as:

• MPNN: φ(x) := ∃≥Nx (φ′(y) ∧ E(x, y)), where E is the edge predicate.
• Subgraph GNN (weak): φ(x) := ∃≥Ny (ψ(x, y)), and ψ(x, y) :=
∃≥Nz (ψ′(x, z) ∧ E(z, y)).

• Subgraph GNN (strong): φ(x) := ∃≥Ny (φ′(y) ∧ ψ(y, x)) , ψ(x, y) :=
∃≥Nz (ψ(x, z) ∧ E(z, y)) | φ(y).

• NBFNet: φ(x, y) := ∃≥Nz (φ′(x, z) ∧ E(z, y)).
• Local 2-GNN: φ(x, y) := ∃≥Nz (φ′(x, z) ∧ E(z, y))) | ∃≥Nz (E′(x, z) ∧ φ′(z, y)))

• 2-FGNN: φ(x, y) := ∃≥Nz (φ′(x, z) ∧ φ′′(z, y)).
• SEAL (MPNN): φ(x, y) := ∃≥Nz (ψ(x, z, y)) , ψ(x, z, y) :=
∃≥Nw (ψ(x,w, y) ∧ E(w, z))).

• 2-GNN: φ(x, y) := ∃≥Nz (φ′(x, z)) | ∃≥Nz (φ′(z, y)).

Proof sketch. The proposition directly utilize the results in Proposition 5 to derive the equivalent
logic sets of popular GNNs. We present a proof sketch for Local 2-GNNs and illustrate the pipeline
for determining the expressivity of certain GNN models. First, we explicitly write down the GNN
layers as Eq. 3. Then, we transform the GNN layers into GACNN layers by decomposing each
layer into a sequence of AGG and COM functions, as in Eq. 3. By utilizing Proposition 5, we can
directly obtain the equivalent logic set of Local 2-GNNs as below. (Again, we omit the terms in the
form of φ := ¬φ′ | φ′ ∧ φ′′ | atp for notation brevity.)

φ(x, y) := φ′(x, y) | φ1(x, y), φ1(x, y) := φ2(x, y) | φ3(x, y),

φ2(x, y) := ∃≥Nz(φ(z, y) ∧ E(x, z)), φ3(x, y) := ∃≥Nz(φ(x, z) ∧ E(z, y)),

where φ,φ′ ∈ Φ is the equivalent logic set of Local 2-GNNs, and φ1 ∈ Φ1, φ2 ∈ Φ2, φ3 ∈ Φ3 are
auxiliary logic sets. It is therefore only one step before the result in Proposition 7: by substituting
the definition of φ2, φ3 into φ1 and further substituting the definition of φ1 into φ, we can write
down the definition of φ into one line:

φ(x, y) := φ′(x, y) | ∃≥Nz (φ′(x, z) ∧ E(z, y))) | ∃≥Nz (E(x, z) ∧ φ′(z, y))) .

Removing the redundant term φ(x, y) := φ′(x, y) directly yields the result in Proposition 7.

Proof. By utilizing the results from Proposition 5 and further simplify the resulted equivalent logic
sets, we can easily obtain these results. Note that for brevity we omit the terms φ := ¬φ′ | φ′ ∧ φ′′.

MPNN.
χ(l+1)(x) = COM

(
χ(l)(x),AGG

({{
χ(l)(y) | y ∈ N (x)

}}))
⇒φ(x) := φ′(x) | ∃≥Nx (φ′(y) ∧ E(x, y))

⇒φ(x) := ∃≥Nx (φ′(y) ∧ E(x, y)) .

Subgraph GNN (weak). The layers are given by

χ(l+1)(x) = AGG
({{

χ(l+1)(x, y) | y ∈ V
}})

,

χ(l+1)(x, y) = COM
(
χ(l)(x, y),AGG

(
χ(l)(x, z) | z ∈ N (y)

))
.

Therefore the equivalent logic sets are given by

φ(x) := ∃≥Ny (ψ(x, y)) ,

ψ(x, y) := ψ′(x, y) | ∃≥Nz (ψ′(x, z) ∧ E(z, y)) ,

which can be directly simplified as

φ(x) := ∃≥Ny (ψ(x, y)) ,

ψ(x, y) := ∃≥Nz (ψ′(x, z) ∧ E(z, y)) ,
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Subgraph GNN (strong). The layers are given by

χ(l+1)(x, y) = COM
(
χ(l)(x, y),AGG

({{
χ(l)(x, z) | z ∈ N (y)

}})
, χ(l)(y),AGG

({{
χ(l)(z) | z ∈ N (y)

}}))
,

χ(l+1)(x) = AGG
(
χ(l+1)(y, x) | y ∈ V

)
.

Therefore the equivalent logic sets are given by

ψ(x, y) := ψ′(x, y) | ∃≥Nz (ψ(x, z) ∧ E(z, y)) | φ(y) | ∃≥Nz (φ(z) ∧ E(z, y)) ,

φ(x) := ∃≥Ny (ψ(y, x)) .

Substituting ψ(x, y) := (φ(z) ∧ E(z, y)) to the second line leads to

φ(x) := ∃≥Nz (φ′(z) ∧ E(z, x)) .

Therefore, the above Φ can also be described by

φ(x) := ∃≥Ny (φ′(y) ∧ ψ(y, x)) ,
ψ(x, y) := ∃≥Nz (ψ(x, z) ∧ E(z, y)) | φ(y).

NBFNet.

χ(l+1)(x, y) = COM
(
χ(l)(x, y),AGG

({{
χ(l)(x, z) | z ∈ N (y)

}}))
⇒φ(x, y) := φ′(x, y) | ∃≥Nz (φ′(x, z) ∧ E(z, y))

⇒φ(x, y) := ∃≥Nz (φ′(x, z) ∧ E(z, y)) .

Local 2-GNN.

χ(l+1)(x, y) = COM
(
χ(l)(x, y),AGG

({{
χ(l)(z, y) | z ∈ N (x)

}})
,AGG

({{
χ(l)(x, z) | z ∈ N (y)

}}))
⇒φ(x, y) := φ′(x, y) | ∃≥Nz (φ′(x, z) ∧ E(z, y))) | ∃≥Nz (E′(x, z) ∧ φ′(z, y)))

⇒φ(x, y) := ∃≥Nz (φ′(x, z) ∧ E(z, y))) | ∃≥Nz (E′(x, z) ∧ φ′(z, y))) .

2-FGNN.

χ(l+1)(x, y) = COM
(
χ(l)(x, y),AGG

({{
COM

(
χ(l)(x, z), χ(l)(z, y)

)
| z ∈ V

}}))
⇒φ(x, y) := φ′(x, y) | ∃≥Nz (ψ(x, y, z)) , ψ(x, y, z) := φ(x, y) | φ(y, z)
⇒φ(x, y) := ∃≥Nz (φ′(x, z) ∧ φ′′(z, y)) .

The last line holds because 1(x, y) ∈ Φ where 1(x, y) ≡ true for all (x, y).

SEAL (MPNN). The layers are given by

χ(l+1)(x, z, y) = COM
(
χ(l)(x, z, y),AGG

({{
χ(l)(x,w, y) | w ∈ N (z)

}}))
,

χ(l+1)(x, y) = AGG
({{

χ(l+1)(x, z, y) | z ∈ N
}})

.

Therefore the equivalent logic sets are given by

φ(x, y) := ∃≥Nz (ψ(x, z, y)) ,

ψ(x, z, y) := ∃≥Nw (ψ(x,w, y) ∧ E(w, z))) .

2-GNN

χ(l+1)(x, y) = COM
(
χ(l)(x, y),AGG

({{
χ(l)(z, y) | z ∈ V

}})
,AGG

({{
χ(l)(x, z) | z ∈ V

}}))
⇒φ(x, y) := φ′(x, y) | ∃≥Nz (φ′(x, z))) | ∃≥Nz (φ′(z, y)))

⇒φ(x, y) := ∃≥Nz (φ′(x, z))) | ∃≥Nz (φ′(z, y))) .
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G.7 PROOF OF PROPOSITION 9

Proposition 9. Suppose the equivalent logic set of a class of GNN models is Φ. Then, the expressive
power of the GNN models is bounded by k-WL, iff the number of variables of the logic formulas in
Φ is at most k.

Proof. Given any graphs G,H , Cai et al. (1992) states that the following statements are equivalent:

• k-WL distinguishes G,H;

• There is a FOCk formula that distinguishes G,H .

Recall that FOCk is a subset of first-order formula that allows quantifiers ∃≥N but restricts the
formulas to only possess k. Obviously, Φ in Proposition 9 is a subset of FOCk, thus the expressive
power of GNNs is bounded by k-WL.

G.8 PROOF OF COROLLARY 10

Corollary 10. The expressivity of GNN models satisfies: MPNNs = 1-WL < Subgraph GNNs
(weak) = NBFNet < Subgraph GNNs (strong) < Local 2-FGNN < 2-FGNN = 3-WL, 1-WL <
SEAL < 4-WL.

Proof. By utilizing Proposition 5, Proposition 6, Proposition 9 and the known results (Xu et al.,
2018; Qian et al., 2022; Huang et al., 2024; Cai et al., 1992), obviously Corollary 10 holds.

G.9 PROOF OF LEMMA 13

Lemma 13. Let Φ1 be a set of logic formulas which is fully expressed by χ1. Let Φ be defined by

φ(u) := ∃≥nv
(
φ1(v) ∧ 1v∈N (u)

)
| ¬φ′(u) | φ′(u) ∧ φ′′(u),

where φ,φ′, φ′′ ∈ Φ, and we restrict n < N where N is an arbitrary positive integer. Then,
there exists an aggregation function AGG such that χ(u) = AGG({{χ1(v) | v ∈ N (u)}}) fully
expresses Φ.

Proof. We prove by manually constructing the AGG function. For each φ ∈ Φ, let {φ1, ..., φL}
where φl ∈ Φ for l ∈ [L] be the series of sub-formulas of φ such that if φp is a sub-formula of φq

then p < q. Also, we denote χ[φ] to be the dimension of χ that corresponds to the formula φ ∈ Φ.
We prove by induction on the sub-formula series of φ.
1) At beginning for φ1 we only have φ1(u) := ∃≥Nv

(
φ1(v) ∧ 1v∈N (u)

)
. In this case we let

χ(u)[φ1] = AGG1 ({{χ1(v) | v ∈ N (u)}}) = 1 {There are no less than N v ∈ N (u) such that χ1(v)[φ1] = true} .

2) Suppose at iteration l, all φp(u) for p < l can be captured by some χ(u) =
AGGp ({{χ1(v) | v ∈ N (u)}}). We now need to show that φl can also be captured by χ. We show
this by designing specific AGGl function there is also χl(u)[φl] = AGGl ({{χ1(v) | v ∈ N (u)}})
that captures φl(u). It is also straightforward to prove: If φl(u) := ¬φq(u) for some q ∈ [l − 1],
then

AGGl ({{χ1(v) | v ∈ N (u)}}) = 1{AGGq ({{χ1(v) | v ∈ N (u)}}) = false}.

If φl(u) := φp(u) ∧ φq(u) then

AGGl ({{χ1(v) | v ∈ N (u)}}) = 1{AGGp ({{χ1(v) | v ∈ N (u)}}) = AGGq ({{χ1(v) | v ∈ N (u)}}) = true}.

Otherwise φl(u) := ∃≥Nv (φq(v) | v ∈ N (u)) which is already proved in 1).
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G.10 PROOF OF LEMMA 14

Lemma 14. Let Φ1,Φ2 be a set of logic formulas which is fully expressed by χ1, χ2. Let Φ be
defined by

φ(u) := φ1(u) | φ2(u) | ¬φ′
2(u) | φ′

2(u) ∧ φ′′
2(u),

where φ,φ′, φ′′ ∈ Φ. Then, there exists a combination function COM such that χ(u) =
COM(χ1(u), χ2(u)) fully expresses Φ.

Proof. Let {φ1, ..., φL} be the series of sub-formulas of φ such that if φp is a sub-formula of φq

then p < q. We prove by induction on the sub-formula series of Φ.
1) At beginning for φ1 we only have φ1(u) := φ1(u) or φ(u) := φ2(u). In this case we let
χ(u) := χ1(u) or χ(u) := χ2(u). Since Φ1,Φ2 are the equivalent sets of χ1, χ2 respectively, φ1 is
captured by χ.
2) Suppose at iteration l, all φp(u) for p < l can be captured by some χp(u) =

COMp(χ1(u), χ2(u)). We show that by designing specific COMl function there is also χl(u) =

COMl(χ1(u), χ2(u)) that captures φl(u). It is straightforward to prove: If φl(u) = ¬φq(u), then

COMl (χ1(u), χ2(u)) = 1{COMp (χ1(u), χ2(u)) = false}.
If φl(u) = φp(u) ∧ φq(u) then

COMl (χ1(u), χ2(u)) = 1{COMp (χ1(u), χ2(u)) = COMq (χ1(u), χ2(u)) = true}.
Otherwise we have φl(u) = φ1(u) or φl(u) = φ2(u). In this case φl can also be captured by χ as
proven in 1).

G.11 PROOF OF LEMMA 16

Lemma 16. Given a series of functions {χ1, ..., χK} where each function χi maps a node tuple
to a discrete color and is defined by either χi(u) = AGGi ({{χj(v) | v ∈ Ni(u)}}) , χi(u) =
COMi (χj(u), χk(u)) or χi(u) = INITi (u). Let Xi be the set of all possible χi defined in the
above manner for i ∈ [K]. Let Φi be the set specified by Theorem 3 of Xi. Then, for arbitrary
i ∈ [K] and each possible color col of χi, there exists a logic formula φcol

i ∈ Φi satisfying:

φcol
i (u) = true ⇐⇒ χi(u) = col

for arbitrary graph G with no more than N nodes and u ∈ Vk
G.

Proof. For arbitrary χi and Φi, if the statement in Lemma 16 holds, i.e. for each possible color col
of χi, there exists a logic formula φcol

i ∈ Φi satisfying:

φcol
i (u) = true ⇐⇒ χi(u) = col

for arbitrary graph G with no more than N nodes and u ∈ Vk
G, we say Φi N -captures χi, and χi is

N -captured by Φi. We present the following lemmas.

Lemma 21. Let χ1 be a function that maps a node tuple to a discrete color, which is N -captured by
Φ1. Let χ(u) = AGG({{χ1(v) | v ∈ N (u)}}) where AGG is some aggregation function. Then by
defining Φ as below:

φ(u) := ∃≥nv
(
φ1(v) ∧ 1v∈N (u)

)
| ¬φ′(u) | φ′(u) ∧ φ′′(u),

where φ,φ′, φ′′ ∈ Φ. Φ N -captures χ.

Lemma 22. Let χ1, χ2 be functions that map a node tuple to a discrete color, which areN -captured
by Φ1,Φ2 respectively. Let χ(u) = COM({{χ1(u), χ2(u)}}) where COM is some combination
function. Then by defining Φ as below:

φ(u) := φ1(u) | φ2(u) | ¬φ′
2(u) | φ′

2(u) ∧ φ′′
2(u),

where φ,φ′, φ′′ ∈ Φ. Φ N -captures χ.

We are now ready to prove Lemma 16. At beginning for χ1(u) = INIT(u), we only have
φ1(u) := atp(u) | ¬φ′

1(u) | φ′
1(u) ∧ φ′′

1(u),

where φ1, φ
′
1, φ

′′
1 ∈ Φ1. It is evident that χ1 is N -captured by Φ1 and Φ1 is finite. Suppose at

iteration l, χp is N -captured by Φp for all p < l. By directly utilizing Lemma 21, 21, it is obvious
that Φl N -captures φl. Therefore the proof completes.
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G.12 PROOF OF LEMMA 21

Lemma 21. Let χ1 be a function that maps a node tuple to a discrete color, which is N -captured
by Φ1. Let χ(u) = AGG({{χ1(v) | v ∈ N (u)}}) where AGG is some aggregation function. Then
by defining Φ as below:

φ(u) := ∃≥nv
(
φ1(v) ∧ 1v∈N (u)

)
| ¬φ′(u) | φ′(u) ∧ φ′′(u),

where φ,φ′, φ′′ ∈ Φ. Φ N -captures χ.

Proof. For each possible color col of χ, below we construct a logic formula φcol satisfying
φcol(u) = true ⇐⇒ χ(u) = col for all graph G with no more than N nodes and u ∈ Vk

G

and show that φcol is in Φ.

For notation brevity we use col1 to refer to colors of χ1 and col to refer to colors of χ. We first
create an intermediate function χ′ which is defined by

χ′(u) = hash({{χ1(v) | v ∈ N (u)}}), (10)

where hash is an injective hashing function that maps different inputs to different colors. Therefore,
χ can be written in the form of: χ(u) = f(χ′(u)) with some function f . We first show that χ′ is N -
captured by Φ by constructing a φcol′ for each color col′ of χ′, then show that χ is also N -captured
by Φ.

First, recall that two multisets are different {{χ1(w) | w ∈ N (u)}} ≠ {{χ1(w) | w ∈ N (v)}} if
there exists a color col1 of χ1 such that

|{w | w ∈ N (u), χ1(w) = col1}| ≠ |{w | w ∈ N (v), χ1(w) = col1}| .
Therefore, χ′ maps two tuples u,v to different colors if there exists a color col1 of χ1 that the above
equation holds. Note that since we only consider graphs with no more than N nodes, χ1 has finite
colors. It is evident that we can rewrite Eq. 11 into:

χ′(u) = hash′(
∣∣{v | v ∈ N (u), χ1(v) = col11

}∣∣ ,∣∣{v | v ∈ N (u), χ1(v) = col21
}∣∣ ,

...∣∣{v | v ∈ N (u), χ1(v) = colc1
}∣∣),

where col11, ...,colc1 enumerates through all colors of χ1, and hash′ is a perfect hashing function.
We now show that the above definition of χ′ can be fully reproduced using logic formulas.

Denote by k the order of χ1. If we only consider graphs with no more than N nodes, then it is
obvious that hash′ is a function with domain [Nk]× [Nk]× ...× [Nk] (repeated for c times), which
is finite. For each color col′ of χ′, we now construct the logic formula φcol′ . Suppose the color col′
is corresponded to the case below:∣∣{v | v ∈ N (u), χ1(v) = col11

}∣∣ = n1,∣∣{v | v ∈ N (u), χ1(v) = col21
}∣∣ = n2,

...∣∣{v | v ∈ N (u), χ1(v) = colc1
}∣∣ = nc.

Then we define
φcol′(u) :=

(
∃=n1v

(
φ

col11
1 (v) ∧ 1v∈N (u)

))
∧
(
∃=n2v

(
φ

col21
1 (v) ∧ 1v∈N (u)

))
∧...

∧
(
∃=ncv

(
φ

colc1
1 (v) ∧ 1v∈N (u)

))
.

Therefore, φcol′(u) = true iff χ′(u) = col′. Also, φcol′(u) ∈ Φ. Next, we prove that for each
color col of χ(u) = f(χ′(u)), there also exists φcol that φcol(u) = true iff χ(u) = col. From the
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above discussion, f is a function that maps the colors col′ of χ′ (which is finite if we only consider
graphs with no more than N nodes) to the colors col of χ (which is again finite). Obviously, each
color col is corresponded to a subset C of the colors of χ′ where χ(u) = col iff χ′(u) ∈ C. We
define

φcol(u) :=
∨

col′∈C

φcol′(u).

It is now evident that for all graphs with no more thanN nodes, φcol(u) = true ⇐⇒ χ(u) = col.
Also φcol(u) is in Φ. Thus the proof completes.

G.13 PROOF OF LEMMA 22

Lemma 22. Let χ1, χ2 be functions that map a node tuple to a discrete color, which areN -captured
by Φ1,Φ2 respectively. Let χ(u) = COM({{χ1(u), χ2(u)}}) where COM is some combination
function. Then by defining Φ as below:

φ(u) := φ1(u) | φ2(u) | ¬φ′
2(u) | φ′

2(u) ∧ φ′′
2(u),

where φ,φ′, φ′′ ∈ Φ. Φ N -captures χ.

Proof. The proof is similar to the proof of Lemma 21. For each possible color col of χ, below we
construct a logic formula φcol satisfying φcol(u) = true ⇐⇒ χ(u) = col for all graph G with
no more than N nodes and u ∈ Vk

G and show that φcol is in Φ.

For notation brevity we use col1,col2 to refer to colors of χ1, χ2 respectively and use col to refer
to colors of χ. We first create an intermediate function χ′ which is defined by

χ′(u) = hash(χ1(u), χ2(u)), (11)
where hash is a perfect hashing function. Since we only consider graphs with no more thanN nodes,
the colors of χ1 and χ2 are finite. We denote by C1, C2 the set of colors of χ1, χ2 respectively. The
domain of hash is thus C1 × C2. Suppose a color col′ of χ′ is defined by col′ = hash(col1,col2)
where χ1, χ2 are some colors of χ1, χ2 respectively. Then, by letting

φcol′(u) := φcol1
1 (u) ∧ φcol2

2 (u),

we have φcol′(u) = true ⇐⇒ χ′(u) = col′ for graphs with no more than N nodes. Also,
obviously φcol′(u) is in Φ. We next show that for χ which can be expressed by χ(u) = f(χ′(u))
for some f , there still exists φcol for each color col of χ such that χ(u) = col ⇐⇒ φcol(u). This
proof is exactly the same as in the proof of Lemma 21. Therefore, the proof completes.

G.14 PROOF OF LEMMA 15

Lemma 15. Given arbitrary X , let Φ be constructed as in Theorem 3. Then, all logic formulas
captured by a χ ∈ X is in Φ.

Proof. We first define the concept of finite aggregation functions.

Definition 23. Recall that an aggregation function is a mapping from a multiset of colors to a color:
AGG({{χ(u) | u ∈ N (v)}}) = col,

where col stands for the output color. From Appendix G.12 it is obvious that if the number of colors
of χ is finite, we can write AGG equivalently in the form of

AGG({{χ(u) | u ∈ N (v)}}) = f(
∣∣{v | v ∈ N (u), χ(v) = col1

}∣∣ ,∣∣{v | v ∈ N (u), χ(v) = col2
}∣∣ ,

...

|{v | v ∈ N (u), χ(v) = colc}|),
where col1, ...colc enumerate through all possible colors of χ. It is obvious that f : N×N×...×N→
C where C denotes the set of output colors. We say such an aggregation function AGG is finite, if
the number of possible colors of χ is finite, and there exists a positive integer N such that for all
l ∈ [c],

f(n1, ..., nl, ..., nc) = f(n1, ..., nl + 1, ..., nc) if nl > N.
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In this case we say the aggregation function is bounded by N .The above definition implies:

• If the input colors of AGG are finite, then the output colors are also finite;

• f(N1, ..., Nc) is constant for sufficiently large N1, ..., Nc.

Intuitively, finite aggregation functions does not distinguish the situations where there are more than
N items of each color. Extending from the definition of finite aggregation functions, we define the
concept of finite χ ∈ X .

Definition 24. Given arbitrary X as defined in Theorem 3. We say a χ ∈ X is finite, if all aggrega-
tion functions used for constructing χ are finite.

Note that, if χ is finite, the possible colors of χ are also finite (which is shown in Appendix G.12).
We are now ready to prove the lemma.

We prove Lemma 15 by noticing the following fact.

Lemma 25. If a FOC formula ψ is expressed by some χ ∈ X , it is expressed by a finite χ ∈ X .

Lemma 25 is intuitive, as given a specific formula ψ, the maximum counting number N of the
quantifiers ∃N is determined, and thus for each term in the form of ∃≥Nv(ψ′(v)), ψ also does not
distinguish the situations where there are more than Nv that satisfies ψ′(v). Note that in Appendix
G.12 we have provided a method for constructing a logic formula φ ∈ Φ that expresses such finite
χ ∈ X . Hence, if a first-order logic formula ψ is expressed by some χ ∈ X , it is expressed by a
finite χ ∈ X , which is further expressed by a logic formula φ ∈ Φ. This implies that ψ ∈ Φ, thus
concluding the proof.

G.15 PROOF OF LEMMA 25

Lemma 25. If a FOC formula ψ is expressed by some χ ∈ X , it is expressed by a finite χ ∈ X .

Proof. The proof is a direct generalization of Otto (2019) as follows.

Lemma 26. (Lemma 2.5 in Otto (2019)). For φ in first-order logic that is invariant under ∼# over
the class of all (or just all finite) pointed Kripke structures, there are c, l ∈ N s.t. φ(x) is invariant
under ∼c,l

# over the class of all (or just all finite) pointed Kripke structures.

In the above lemma, for two nodes x, y in graphs, x ∼# y indicates that two nodes x, y are not
distinguished by MPNNs (1-WL). x ∼c,l

# y indicates that two nodes x, y are not distinguished by
MPNNs (1-WL) with l layers and aggregation functions bounded by c. We generalize the above
lemma to our setting as follows.

Suppose a logic formula ψ is captured by some χ ∈ X , as stated in Lemma 25. As con-
vention, suppose χ is defined by a series of functions {χ1, ..., χK} where we denote χK = χ
and each function χi maps a node tuple to a discrete color and is defined by either χi(u) =
AGGi ({{χj(v) | v ∈ Ni(u)}}) , χi(u) = COMi (χj(u), χk(u)) or χi(u) = INITi (u). We de-
note X1, ...,XK to be the set of all χ1, ..., χK . For each generalized neighbor Ni, we denote its
corresponding predicate 1v∈Ni(u) as ENi where ENi(v,u) is true iff v ∈ Ni(u). Given a graph
G, we define the unrolling of G by X at u, denoted as F = UnrX (G,u), to be a structure for
first-order logic described as follows.

• Denote order(Xi) to be the order of χi ∈ Xi. F has a tuple of nodes u for u.

• Repeat for K times:

– For each node tuple u existed in F and each generalized neighbor Ni in F , suppose
v ∈ Ni(u) in the original graph, then add a tuple of nodes u in F and letENi(v,u) =
true if u does not exists in F .
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The above procedure generalize the rooted unfolding tree T of graphs G at x in that:

• In the rooted unfolding tree T two nodes are connected by edges E if the corresponding
nodes in G are neighborhood. T is a tree with root x.

• In the unrolling F two node tuples are connected by generalized edges ENi if the corre-
sponding node tuples inG are generalized neighborhoodNi. F is a tree if we only consider
the generalized edges ENi

and consider each node tuple as a ensemble, with root u.

Next, our proof step is similar to Otto (2019). For two node tuples u,v, we denote u ∼X v if u
and v are not separated by any χ ∈ X . First, we would like to mention that for any graphs G,H
and u ∈ Vk

G,v ∈ Vk
H , u ∼X v ⇐⇒ u ∼X v where u,v are tuples in UnrX (G,u), UnrX (G,v)

corresponding to u,v respectively. It is straightforward: since the evaluation steps of any χ ∈ X on
u ∈ Vk

G are exactly the same as χ applied on u in UnrX (G,u).

Next, we show that any first-order logic formula ψ with quantifier rank q that is invariant under ∼X ,
is generalized l-local for some l = f(q) in restriction to all unrolling of graphs that are generalized
tree (as mentioned above) to depth l, where we define a function is generalized l-local if it only
considers node tuples up to distance l by generalized edges. This corresponds to Lemma 2.3 in Otto
(2019). The prove is straightforward: since χ ∈ X itself is l-local, ψ must also be l-local. Also,
each unrolling is naturally K-local, since it is a tree with depth K.

Next, we need the following fact that for any q ∈ N, there is a c ∈ N such that for any unrolling of
graphs F1 = UnrX (G,u), F2 = UnrX (H,v):

u ∼c
X v ⇒ ϕ(u) = ϕ(v) for all first-order logic formula ϕ with variables no more than q.

The above fact is a direct generalization of Lemma 2.4 in Otto (2019). Since ϕ consists of no more
than q variables, it can only at most consider q distinct nodes and thus c = q is enough for X to
capture them. Given ψ captured by χ ∈ X , we now show that ψ is captured by a finite χ ∈ X
bounded by some N . This is equivalent to showing that, for any graphs G,H and u ∈ Vk

G,v ∈ Vk
H

that are not separated by any finite χ ∈ X bounded by N , ψ(u) = ψ(v). Without loss of generality
we assume ψ(u) = true. Let u,v be the tuples in UnrX (G,u), UnrX (H,v) corresponding to u,v
respectively. Then we have:

ψ(u) = true ⇐⇒ ψ(u) = true (by u ∼X v ⇐⇒ u ∼X v)
⇐⇒ ψ(v) = true (by l-locality implied in UnrX (G,u) and UnrX (H,v))
⇐⇒ ψ(v) = true (by u ∼X v ⇐⇒ u ∼X v).

G.16 PROOF OF LEMMA 17

Lemma 17. If nk > N for some k ∈ [K], then ψn1n2...nK
= false on G.

Proof. Obviously if nk > N for some k ∈ [K], we have

Hom(F,G)

≥
∏

k∈[K]

nk

>N,

which contradicts with the fact that Hom(F,G) = N .

G.17 PROOF OF LEMMA 18

Lemma 18. For ψn1n2...nK
and ψm1m2...mK

, if nk ̸= mk for some k ∈ [K], then then grounding
results of ψn1n2...nK

and ψm1m2...mK
are different, i.e. there exists no V that is both a grounding

result of ψn1n2...nK
and ψm1m2...mK

.
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Proof. Since nk ̸= mk for some k ∈ [K], we assume that nl ̸= ml while nk = mk for k ∈
[l + 1,K]. We prove by contradiction. Suppose V = (v1, ...,vK) is both a grounding result of
ψn1n2...nK

and ψm1m2...mK
. This indicates that for ψn1n2...nK

, by fixing its variables to x1 :=
v1,x2 := v2, ...,xl−1 := vl−1, there exists exactly nl different groundings of xl satisfying

∃=nl+1xl+1∃=nl+2xl+2...∃=nKxK

 ∧
m∈[M ]

E(xim , xjm)


in G. However, for ψm1m2...mK

by fixing its variables to x1 := v1,x2 := v2, ...,xl−1 := vl−1,
there exists exactly ml different groundings of xl satisfying

∃=ml+1xl+1∃=ml+2xl+2...∃=mKxK

 ∧
m∈[M ]

E(xim , xjm)


in G. Since mk = nk for k ∈ [l + 1,K] and ml ̸= nl, this yields a contradiction.

G.18 PROOF OF LEMMA 19

Lemma 19. If there is ψ ∈ Φ such that ψ evaluates to different values on G and H , then there
exists φ in the form of φ := ∃=n1x1∃=n2x2...∃=nKxK

(∧
p∈[P ]E(xip , xjp)

∧
q∈[Q] ¬E(xiq , xjq )

)
that also evaluates to different values on G and H .

Proof. We prove this by constructing φ of the form

φ := ∃=n1x1...

 ∧
m∈[M ]

E(xim , xjm)


that explicitly captures the colors of χ. Concretely, similar as Theorem 3, suppose a series of func-
tions {χ1, ..., χL} where χl is defined by

χl(x) = hash (χp(x), χq(x)) ,

χl(x) = hash ({{χp(y) | y ∈ N (x)}}) ,
or

χl(x) = atp(x).

The difference between Theorem 3 and here is that we replace AGG and COM functions with
injective hash function. Obviously the separation power of (χl)l∈[L] here is no less than that in
Theorem 3. The above procedure can be regarded as a general color refinement algorithm where the
value of χl(x) is called the color of x computed by χl. We define the signature logic set Ψl of chil
to be the set that satisfiesfor each color C, there exists ψC ∈ Φl such that

ψC(x) = true ⇐⇒ χ(x) = C.

We now provide a method to construct the signature logic set Ψl. We define:

1.
χl(x) = hash (χp(x), χq(x))

⇒ψl(x) := ψp(x) ∧ ψq(x)

2.
χl(x) = hash ({{χp(y) | y ∈ N (x)}})

⇒ψl(x) := ∃=Ny
(
1y∈N (x)

)
∧ ∃=N1y1

(
ψp(y) ∧ 1y1∈N (x)

)
∧ ∃=N2y2

(
ψp(y) ∧ 1y2∈N (x)

)
∧ ... | ∃=0y1y∈N (x),

where N2 ≥ N1 ≥ 1.
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3.
χl(x) = atp(x)

⇒ψl(x) := 1atp(x)=C

where for each possible structure of a k-node graph (k is the order of x; we consider node
orders thus there are 2k structures in total; suppose the nodes of the k-node graph are
v1, ..., vk), there is a corresponding ψl that evaluates to true iff there is an isomorphism
from the subgraph induced by x to the structure of the corresponding k-node graph that
maps vi to xi for i ∈ [k] where x = (x1, ..., xk).

We next prove that the above Ψl indeed is the signature logic set of χl. We denote ψC
l (x) as the

logic formula that evaluates to true iff χl(x) = C where C is the color of x evaluated by χl. For
situation 3 the statement obviously holds. For situation 1, suppose Ψp,Ψq are the signature logic
sets of χp, χq respectively. For each color Cl of χl where Cl = hash(Cp, Cq), we have

ψCl

l (x) := ψCp
p (x) ∧ ψCq

q (x)

which is true iff χl(x) = Cl. Thus the statement still holds.

For situation 2, suppose Ψp is the signature logic set of χp. Each color Cl of χl is defined by

Cl = hash
({{

C1
p , C

2
p , ...

}})
= hash

({
(C1

p , N1), (C
2
p , N2), ...

})
where C1

p , C
2
p , ... are colors produced by χp, and N1, N2, ... ≥ 1 are the numbers of the colors

C1
p , C

2
p , ... emerged in the multiset, We then have

ψCl

l (x) := ∃=Ny1y∈N (x)∃=N1y1

(
ψ
C1

p
p (y1) ∧ 1y1∈N (x)

)
∧∃=N2y2

(
ψ
C2

p
p (y2) ∧ 1y2∈N (x)

)
∧....

Specially, if the multiset is empty, we have

ψCl

l := ∃=0y1y∈N (x).

Then, ψCl

l (x) is true iff χl(x) = Cl. ψCl

l is also in Ψl. Therefore, we have constructed the
signature logic set of χl. Obviously, all ψl ∈ Ψl can be written in the form of

ψl(x) := ∃=N1x1...∃=NKxK

 ∧
p∈[P ]

E(xip , xjp)
∧

q∈[Q]

(¬E(xsq , xtq ))

 .

For two graphs G,H , if there exists ψ that distinguishes them, then obviously the corresponding χ
also distinguishes them. Without loss of generality, suppose the color of χ applied on G is C. Let
ψC be the logic formula that evaluates true iff χ = C. Then, we have

ψC evaluates to true on G and false on H.

Recall that since ψC can be written in the form of

ψC(x) := ∃=N1x1...∃=NKxK

 ∧
p∈[P ]

E(xip , xjp)
∧

q∈[Q]

(¬E(xsq , xtq ))

 ,

the proof completes.

G.19 PROOF OF LEMMA 20

Lemma 20. If Hom(F,G) = Hom(F,H) for all F ∈ F , then every ϕ ∈ Φ of the above form
satisfies:

grd(ϕ,G) = grd(ϕ,H).
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Proof. We prove by contradiction and assume Hom(F,G) = Hom(F,H) for all F ∈ F but there
exists ϕ ∈ Φ given by

ϕ := ∃x1∃x2...∃xK

 ∧
p∈[P ]

E(xip , xjp)
∧

q∈[Q]

¬E(xiq , xjq )


that classifies G and H differently. Without loss of generality we assume ϕ evaluates to true in
G. By the definition of grd, obviously if Hom(F,G) = Hom(F,H) for all F ∈ F , we have
grd(ψ,G) = grd(ψ,H) for all ψ ∈ Ψ ⊆ Φ where ψ ∈ Ψ is of the form

ψ := ∃x1∃x2...∃xK

 ∧
p∈[P ]

E(xip , xjp)

 ,

i.e. ψ contains no negative edges ¬E. We next show that we can use grd(ψ, ·) for ψ ∈ Ψ to infer
grd(ϕ, ·). We denote

ϕq := ∃x1...∃xK

 ∧
p∈[P ]

E(xip , xjp)
∧
r∈[q]

(¬E(xsr , xtr ))


We now show that we can use the results grd(ψ, ·) for ψ ∈ Ψ to infer grd(ϕq, ·) for q = 0, 1, ..., Q.
We denote X = (x1, ...,xK). For q = 0, obviously ϕ0 ∈ Ψ thus the statement naturally holds.
Since the groundings of ϕ0 consist of two parts:

• X that satisfy
∧

p∈[P ]E(xip , xjp) ∧ E(xs1 , xt1);

• X that satisfy
∧

p∈[P ]E(xip , xjp) ∧ ¬E(xs1 , xt1), corresponding to ϕ1.

Obviously the two part do not intersect. Therefore, grd(ϕ1, ·) = grd(ϕ0, ·)− grd(φ(1), ·) where

φ(1) := ∃x1...∃xK

 ∧
p∈[P ]

E(xip , xjp) ∧ E(xs1 , xt1)

 .

Similarly, to infer grd(ϕ2, ·), the set of X that satisfy
(∧

p∈[P ]E(xip , xjp)
)

consists of four non-
intersect parts:

•
∧

p∈[P ]E(xip , xjp) ∧ E(xs1 , xt1) ∧ E(xs2 , xt2),

•
∧

p∈[P ]E(xip , xjp) ∧ E(xs1 , xt1) ∧ ¬E(xs2 , xt2),

•
∧

p∈[P ]E(xip , xjp) ∧ ¬E(xs1 , xt1) ∧ E(xs2 , xt2),

•
∧

p∈[P ]E(xip , xjp) ∧ ¬E(xs1 , xt1) ∧ ¬E(xs2 , xt2),

According to our assumption the first part is known. For the second part, since(∧
p∈[P ]E(xip , xjp) ∧ E(xs1 , xt1)

)
consists of two non-intersect parts:

•
∧

p∈[P ]E(xip , xjp) ∧ E(xs1 , xt1) ∧ E(xs2 , xt2),

•
∧

p∈[P ]E(xip , xjp) ∧ E(xs1 , xt1) ∧ ¬E(xs2 , xt2).

Thus the second part can also be inferred, and so does the third part. Therefore, the set of nodes that
satisfy

(∧
p∈[P ]E(xip , xjp)

)
can be inferred, and thus also grd(ϕ2, G) = grd(ϕ2, H) Using the

same strategy one can show that

grd(ϕq, G) = grd(ϕq, H)
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for any q. Therefore, this yields the contradiction.
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