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Abstract

Spatial-temporal forecasting (STF) plays a pivotal
role in urban planning and computing. Spatial-
Temporal Graph Neural Networks (STGNNs) ex-
cel in modeling spatial-temporal dynamics, thus
being robust against noise perturbation. How-
ever, they often suffer from relatively poor com-
putational efficiency. Simplifying the architec-
tures can speed up these methods but it also
weakens the robustness w.r.t. noise interfer-
ence. In this study, we aim to investigate the
problem – can simple neural networks such as
Multi-Layer Perceptrons (MLPs) achieve robust
spatial-temporal forecasting yet still be efficient?
To this end, we first disclose the dual noise ef-
fect behind the spatial-temporal data noise, and
propose theoretically-grounded principle termed
Robust Spatial-Temporal Information Bottleneck
(RSTIB), which preserves wide potentials for en-
hancing the robustness of different types of mod-
els. We then meticulously design an implemen-
tation, termed RSTIB-MLP, along with a new
training regime incorporating a knowledge dis-
tillation module, to enhance the robustness of
MLPs for STF while maintaining its efficiency.
Comprehensive experimental results show that
an excellent trade-off between the robustness
and the efficiency can be achieved by RSTIB-
MLP compared to state-of-the-art STGNNs and
MLP models. Our code is publicly available at
https://github.com/mchen644/RSTIB.

1. Introduction
Spatial-temporal forecasting (STF) holds great significance
in modeling complex dynamic systems (Bai et al., 2020;
Guo et al., 2021a; Deng et al., 2021). Previous works in
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Figure 1. (a) Two time series are distinguishable at both historical
input (P area) and forecasting target (F area), but (b) they become
indistinguishable in both cases in the presence of noise.

spatial-temporal forecasting have effectively adopted convo-
lutional neural networks (CNNs) (Lai et al., 2018), recurrent
neural networks (RNNs) (Meng et al., 2020), temporal con-
volution networks (TCNs) (Wu et al., 2019) to model spatial-
temporal relations. Lately, there has been a growing interest
in spatial-temporal graph neural networks (STGNNs) (Shao
et al., 2022b;c; Wu et al., 2019) due to their strong capacity.
Though achieving exceptional performance, STGNN-based
methods suffer from slow computational efficiency.

To alleviate this, a few recent works (Shao et al., 2022a;
Qin et al., 2023; Wang et al., 2023b; Yi et al., 2024) adopt
Multi-Layer Perceptrons (MLPs) due to its advantageous ef-
ficiency. However, these simple yet efficient baselines lack
effective architectures to combat against spatial-temporal
noise perturbation, which is common in the real world (Jiang
et al., 2023b; Tang et al., 2023; Fang et al., 2021; Liu et al.,
2024c; Zhang et al., 2023). Noise perturbation would result
in sample- and feature-level harmful impacts, leading to is-
sues like sample indistinguishability (Shao et al., 2022a) and
feature collapse respectively. As shown in Fig. 1, two time
series may become indistinguishable in both the historical
input end and the forecasting target end due to the presence
of noise perturbation; besides, one can also observe severe
feature collapse reflected by much lower feature variance,
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which is used for quantitative analysis of the diversity among
the learned features (Papyan et al., 2020; Zhu et al., 2023a;
Bardes et al., 2021) (see Section 3). Naturally, one may
come across with the problem – can simple neural networks
such as MLPs achieve robust STF yet still be efficient?

To investigate this problem, our focus lies on how one could
effectively make MLPs robust, yet not suffer much effi-
ciency loss. Methods based on adversarial training (Jiang
et al., 2023b), graph information bottleneck (GIB) (Tang
et al., 2023), mathematical tools (Choi et al., 2022), fre-
quency domain MLPs (Yi et al., 2024), Biased TCN (Chen
et al., 2024), Spatial-temporal Curriculum Dropout (Wang
et al., 2023a) have been proposed to combat the noise for
robust representation learning. However, they often rely
on models/modules that can impair much on the efficiency,
lacking a guiding principle targeting on spatial-temporal
forecasting and theoretically grounded implementations on
MLPs. To tackle this issue, we first reveal that spatial-
temporal data often undergoes preprocessing through a slid-
ing window mechanism, where a sequence can serve as
either the input or the target when residing in different win-
dows, leading to a problem termed as “dual noise effect”, i.e.,
noise potentially harms both ends. While Robust Graph In-
formation Bottleneck (RGIB) (Zhou et al., 2023) effectively
combats bilateral edge noise for link prediction, we reveal
that generalizing RGIB directly to MLPs for STF is difficult:
the GNN model architecture and graph data assumption it
relies upon are very different from the spatial-temporal data
that is continuous multivariate time series.

The main contributions of this paper are as follows. (i) We
introduce a new theoretically sound principle, named Robust
Spatial-Temporal Information Bottleneck (RSTIB), general-
izing the RGIB principle to mitigate the dual noise effect
in spatial-temporal data. Particularly, it lifts the Markov as-
sumption typically assumed in IB while not impairing the IB
nature. In doing so, the derived additional noisy information
and the original redundant information are explicitly refor-
mulated and minimized. This is a general theoretical frame-
work that has wide potentials for different types of models.
(ii) We further instantiate RSTIB on simple networks MLP,
namely RSTIB-MLP, for robust spatial-temporal modeling
while maintaining its efficiency. Subsequently, combined
with the instantiation, we propose a training regime to han-
dle the dynamic relations between different time series via
an innovative knowledge distillation module. The key idea
is to balance the informative terms within the objective by
accounting for the quantified noise impact, thereby being
better balanced and less impacted by noisy information. We
quantify the noise impact to each time series by defining a
new noise impact indicator (Definition 4.9) and incorporate
this knowledge for each time series. (iii) Comprehensive
experiments on STF benchmark datasets from various do-
mains under both noisy and clean evaluations demonstrate

that 1) RSTIB-MLP achieves better, or comparably good, ro-
bustness, compared with state-of-the-art (SOTA) STGNNs,
while being substantially more computationally efficient,
and 2) RSTIB-MLP is much more robust than SOTA MLP-
based models while being comparably efficient.

2. Related Work
Spatial-Temporal Forecasting (STF). Efforts in STF have
led to the development of sophisticated models such as
AGCRN (Bai et al., 2020), GraphWaveNet (Wu et al.,
2019), and STExplainer (Tang et al., 2023), which lever-
age STGNN-based methodologies to model series-wise de-
pendencies over time. Recent explorations have integrated
Neural-ODE-based (Jin et al., 2022) and self-supervised
learning paradigms (Li et al., 2022) to enhance spatial-
temporal modeling. Despite their predictive capabilities,
these methods often suffer from computational efficiency
issues when compared with MLP-based approaches.

MLP-based Approaches for STF. In response to the effi-
ciency challenge, MLP-based approaches have gained at-
tention. Notable works include STID (Shao et al., 2022a),
which incorporates spatial-temporal identity information
to achieve superior performance over STGNN-based meth-
ods, and STHMLP (Qin et al., 2023), which employs a
hierarchical MLP structure to capture various aspects of
spatial-temporal data. FreTS (Yi et al., 2024) applies MLPs
in the frequency domain. Specifically, its advantage of the
energy compaction can help MLPs to preserve clearer pat-
terns while filtering out influence of noises. However, these
methods have not yet explored the dual noise effect in the
face of comprehensive noise perturbations.

Robust Representation Learning with Information Bot-
tleneck Principle. The Information Bottleneck (IB) prin-
ciple has emerged as a guiding framework for robust rep-
resentation learning. Initially applied in Deep Variational
Information Bottleneck (DVIB) (Alemi et al., 2017), IB has
since found applications in diverse domains (Peng et al.,
2018; Higgins et al., 2016). Notably, GIB (Wu et al., 2020)
extends IB to graph-structured data for supervised learn-
ing. Subsequent advancements, such as STExplainer (Tang
et al., 2023), build upon the GIB principle for explainable
representations. While these methods can enhance robust-
ness to some extent, they overlook the presence of noise
in the forecasting target. RGIB (Zhou et al., 2023) takes a
step forward by decoupling mutual information to enhance
such robustness, but generalizing it to MLP networks for
spatial-temporal forecasting remains unexplored.

3. Notations and Preliminaries
Spatial-temporal Forecasting (STF). STF aims at predict-
ing the future target spatial-temporal data Y ∈ RF×N×C
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Table 1. Feature Variance of Single-End and Dual Noise Effect
Under Different Noise Ratios

Noise Ratio 10% 30% 50% 70% 90%
Feature Variance (Single End) 1.9462 1.0325 0.8529 0.6323 0.6042

Feature Variance (Dual Noise Effect) 1.6900 0.6582 0.4859 0.4350 0.4332

with N time series of C features in each time series within
F nearest future time slots, based on historical input data
Xh ∈ RP×N×C from the past P time slots. Additionally,
we denote the sample from time series i at time step t as
Xh

t,i ∈ RC and Yt,i ∈ RC for the historical and future data
respectively.

Feature Variance. Drawing inspiration from prior stud-
ies (Bardes et al., 2021; Zhu et al., 2023a), we aim for
the learned representations in spatial-temporal forecasting
to display significant diversity, capturing complex spatial-
temporal patterns effectively. We quantify feature variance
as follows:

Consider a set of latent spatial-temporal representations
(z1, z2, . . . , zN ), where each zi ∈ Rd for i = 1, . . . , N .
The feature variance is defined as:

Var(z1, z2, . . . , zN ) =
1

d

d∑
i=1

(√
Covii

)
, (1)

where Covii denotes the variance of the i-th feature across
the set of representations, defined as the diagonal elements
of the covariance matrix Cov. Cov is computed as Cov =

1
N−1

∑N
i=1(zi − z̄)(zi − z̄)T , with z̄ = 1

N

∑N
i=1 zi repre-

senting the mean vector of the representations (see (Bardes
et al., 2021; Zhu et al., 2023a) for detailed derivation and
theoretical grounding). In Appendix I.3, we link the feature
variance with the spatial-temporal heterogeneity discussed
in (Chen & Liang, 2025).

Noise Perturbation vs. Feature Variance. We conduct an
empirical study to assess the impact of noise perturbation on
feature variance, where the STID model (Shao et al., 2022a)
is used. During training, we inject random noise into the
signals from the single input end and both ends, with a 50%
probability across varying noise ratios – 10%, 30%, 50%,
70%, and 90%. The evaluation focuses on the diversity of
extracted features by measuring the variance under these
conditions. As shown in Table 1, a significant degradation
in feature variance is observed with increasing noise pertur-
bation. Besides, a faster degradation can be observed when
injecting to both ends, highlighting the detrimental effects
of the noise and the dual noise effect on the effectiveness of
capturing spatial-temporal patterns.

4. Methodology
In this section, we introduce the Robust Spatial-Temporal
Information Bottleneck (RSTIB) principle, a theoretical

framework designed to be more general for enhancing ro-
bust spatial-temporal modeling. Following this, we detail
a novel instantiation termed RSTIB-MLP, which leverages
data reparameterization techniques for continuous multivari-
ate time series. We also design a training regime, incorporat-
ing a knowledge distillation module, to further enhance the
performance of spatial-temporal forecasting. This approach
capitalizes on the dynamic spatial-temporal relationships in-
herent in the data, resulting in a better balance of informative
terms within the objective.

4.1. Deriving the RSTIB Principle

Figure 2. Comparison of IB(a) and DVIB with lifted Markov as-
sumption Z −X − Y (b). (a) (1) H(X|Y ) information Z covers,
i.e., I(X;Z|Y ), (2) the minimum sufficient information preserved
by the expected optimal representation Z, i.e., I(X;Y ) (b) By
lifting Z −X − Y , I(Z;Y |X) exists as (3), i.e., H(Y |X) infor-
mation Z covers.

Let X represents the input to the IB model and its variants,
obtained from Xh and the attachment of spatial-temporal
information from a specially designed module. Formally,
given the input X , target Y , and encoding Z from X , the
learning objective of the standard IB principle can be for-
mulated as follows:

minLIB = −I(Z, Y ) + β × I(X,Z), (2)

where I(·, ·) denotes mutual information (MI), and β ≥ 0
is a Lagrange multiplier for controlling the trade-off be-
tween the compression of X and the preservation of Y . The
Markov chain Z −X − Y is assumed in IB (Alemi et al.,
2017). We can use the information diagram (Fig.2) to de-
pict the IB, where we represent information of X and Y as
circles. Then IB encourages to cover as much of I(X;Y )
and as little of H(X|Y ) as possible.

However, the vanilla IB is sub-optimal in our scenario. By
drawing inspirations from (Jiang et al., 2023b; Choi et al.,
2022; Tang et al., 2024; Yuan et al., 2024; Liu et al., 2024b),
we firstly have the following assumptions about spatial-
temporal data:

Assumption 4.1. Noisy Nature of spatial-temporal Data.
We focus on spatial-temporal data that inherently exhibits
noisy characteristics. Under the sliding window mecha-
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nism, a sequence can serve different purposes when re-
siding in different windows, either as the input or the tar-
get. Consequently, the noise elements can potentially re-
side in the input and target areas. For simplicity, we pre-
sume the noise type in our analysis to adhere to Additive
White Gaussian Noise (AWGN), a prevalent and empiri-
cally approximated noise model in practical applications
(Lim & Puthusserypady, 2007).

Assumption 4.2. Invariant and Variant spatial-temporal
Patterns. A dynamic spatial-temporal graph exhibits a dual
nature, wherein each node, representing a time series, em-
bodies both spatial-temporal invariant patterns conducive to
generalized predictions across all time windows and spatial-
temporal variant patterns reflecting underlying time-varying
and node-specific dynamics.

Regarding Assumption 4.1, the sliding window mechanism
is a technique for processing spatial-temporal data, extract-
ing fixed-length subsequences from raw data by progres-
sively sliding a window over temporal or spatial-temporal
dimensions. A critical feature is that the same data win-
dow can flexibly serve as either input or target, creating a
dual noise effect—when a noisy sequence serves as both
the input (X) in one window and the target (Y ) in another,
noise propagates bidirectionally. If (Z − X − Y ) holds,
then I(Z;Y | X) = 0: the noisy information behind
I(Z;Y | X) is directly ignored. Ignoring noise in Y is
therefore problematic. The dual noise effect allows noise
influences both input and target across overlapping windows.
Regarding Assumption 4.2, spatial-temporal graphs exhibit
invariant patterns (generalizable across time) and variant
patterns (node-specific, time-varying dynamics). Invariant
patterns might represent structural dependencies (e.g., road
connectivity in traffic prediction), whereas variant patterns
could reflect transient events (e.g., traffic congestion due
to accidents). Data dynamics thus also depend on the cur-
rent window’s characteristics, meaning the prediction for
Y is not entirely determined by X , but also by Y ’s unique
dynamics.

Following these assumptions, it is naive to assume the
Markov assumption Z −X − Y , which results in I(Z;Y |
X) = 0. This implies that we directly overlook the noisy
information behind H(Y |X) (i.e., the noisy information
conveyed by the target data). Fortunately, (Wieczorek &
Roth, 2020) demonstrate that a lower bound of I(Z;Y )
can be derived without relying on the Z −X − Y assump-
tion, thus lifting the Z −X − Y Markov restriction. It is
achieved in the DVIB model, which assumes X − Z − Y
assumption by its construction. We apply it to our spe-
cific scenario by assuming only the Markov chain condition
X−Z−Y (see Proposition 4.8). The introduced additional
term, I(Z;Y | X), as represented in Fig.2, must be mini-
mized as well, along with the original irrelevant information,
i.e., I(X;Z|Y ). Accordingly, we introduce the following

reformulations:

Proposition 4.3. Reformulate I(Z;Y | X) and I(X;Z |
Y ). The sum of I(Z;Y | X) and I(X;Z|Y ) can be refor-
mulated as: I(Z;Y | X) + I(X;Z | Y ) = I(Z;X,Y )−
I(X;Y ;Z). Proof. See Appendix F.1.

Leveraging this reformulation, we aim to minimize the in-
fluence of noisy information Z captures, encapsulated by
H(X|Y ) and H(Y |X).

Definition 4.4. Robust Spatial-Temporal Information
Bottleneck Principle. Under the Markov chain condition
X − Z − Y , the learning objective is encapsulated by the
following optimization:

minLRSTIB = −I(Z, Y )+β1×I(Z;X,Y )−β2×I(X;Y ;Z).
(3)

where β1, β2 ≥ 0 is the respective Lagrange multipliers to
control the balance within this objective.

4.2. Instantiating RSTIB

Here, we introduce the instantiation, termed RSTIB-MLP,
in the order of I(X;Y ;Z), I(Z;X,Y ) and I(Z, Y ).

Instantiating I(X;Y ;Z). Per definition (Definition B.11),
the expression I(X;Y ;Z) = I(X;Y ) − I(X;Y | Z) in-
dicates that maximizing I(X;Y ;Z) is equivalent to min-
imizing I(X;Y | Z), given I(X;Y ) remains constant.
It is important to note that the Markov chain condition
X − Z − Y is only approximated by reaching the opti-
mal joint distribution of X,Y, Z. Therefore, by explicitly
minimizing I(X;Y | Z), we aim to learn a sufficient Z
while reaching our objective simultaneously. To this end,
Z is initially encoded from X. Then, we aim to reduce the
relative knowledge between X and Y by observing Z. To
achieve this objective, we employ data reparameterization to
obtain the reparameterized X̃ and Ỹ while assuming inde-
pendent and identically distributed (i.i.d) prior distributions
of them, thereby reducing the overlapped information con-
ditioned on X , Z, and Y . We effectuate the instantiation by
directly imposing input regularization I(X̃;X) and target
regularization I(Ỹ ;Y ). While mutual information terms
are typically intractable, we introduce upper bounds for
I(X̃;X) and I(Ỹ ;Y ), as elucidated in Proposition 4.5.

Proposition 4.5. The Upper Bounds of I(X̃;X) and
I(Ỹ ;Y ). Assuming the prior distribution of X̃ and Ỹ ,
denoted as Q(X̃) and Q(Ỹ ), to be i.i.d unit Gaussian
N (0, 1). The upper bounds for I(X̃;X) and I(Ỹ ;Y ) are

given by I(X̃;X) ≤ E
[
KL

(
Pϕx(X̃|X)||Q(X̃)

)]
and

I(Ỹ ;Y ) ≤ E
[
KL

(
Pϕy (Ỹ |Y )||Q(Ỹ )

)]
, where KL de-

notes the Kullback–Leibler divergence, Pϕx
and Pϕy

denote
the parameterized distributions. Proof. See Appendix F.2.

According to Proposition 4.5, we first utilize simple MLP
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layers to parameterize the posterior distribution Pϕz
(Z|X).

This parameterization yields the posterior Gaussian distribu-
tion of Z, represented as Pϕz ∼ N (µz, σ

2
z). Subsequently,

we employ two additional Fully-Connected(FC) layers, one
for X and the other for Y , to facilitate dimension transfor-
mation for aligning the dimensions of X and Y respectively.
This process parameterizes two distributions, denoted as
Pϕ̂x
∼ N (µ̂x, σ̂x

2) and Pϕ̂y
∼ N (µ̂y, σ̂y

2). According to
this, we establish Pϕx

∼ N (µx, σ
2
x) and Pϕy

∼ N (µy, σ
2
y),

where µx = x+ µ̂x, µy = y+ µ̂y , σ2
x = σ̂x

2 and σ2
y = σ̂y

2

respectively. Then, we adopt data reparameterization to
obtain x̃ = µx + σxϵ and ỹ = µy + σyϵ, where x̃ and ỹ

represent the reparameterized signals, with each x̃ ∈ X̃ and
ỹ ∈ Ỹ respectively, and ϵ ∼ N (0, 1).

Proposition 4.6. Analytical Solution for the Upper Bounds
of the Input and Target Regularization. The Kullback-
Leibler (KL) divergence between two Gaussian distri-
butions, given their means and variances, can be an-
alytically determined. Specifically, in our context, the
KL divergence is computed for the input and target
respectively, as Lx = KL

(
N (µx, σ

2
x) || N (0, 1)

)
=

1
2

(
− log σ2

x + µ2
x + σ2

x − 1
)
, Ly = KL

(
N (µy, σ

2
y) ||

N (0, 1)
)

= 1
2

(
− log σ2

y + µ2
y + σ2

y − 1
)
, where Lx de-

notes the upper bound of the input regularization, and Ly

denotes the upper bound of the target regularization. Proof.
See Appendix F.3.

Instantiating I(Z;X,Y ). According to the mutual infor-
mation w.r.t three random variables (Definition B.8), we
can express I(Z;X,Y ) = H(Z) − H(Z | X,Y ). Thus,
our objective is to minimize the overlap of the entropy of
Z with respect to X and Y . Given the condition of the
Markov chain X − Z − Y , this can be implemented by
reducing the entropy overlap between Z and X through the
use of data reparameterization. Specifically, reparameter-
ized data X̃ serves as the input to the MLP encoders. The
encoders maintain the same network structure and param-
eters as used in the instantiation of I(X;Y ;Z). Then, the
posterior distribution Pϕz

(Z|X̃) is parameterized through
the encoding process, as denoted Pϕz

∼ N (µz, σ
2
z). The

encoding z = µz + σzϵ is obtained through reparameteriza-
tion, where z ∈ Z. Besides, we impose the representation
regularization I(X̃;Z), and by assuming the prior distribu-
tion of Z to be similar i.i.d unit Gaussian N (0, 1), out goal
can be reached. The analytical solution for the upper bound
of I(X̃;Z) is also given in Proposition 4.7.

Proposition 4.7. The Upper Bound of the Representation
Regularization and Its Analytical Solution. The Upper
bound of the representation regularization can be similarly
given by I(X̃;Z) ≤ E

[
KL

(
Pϕz

(Z|X̃)||Q(Z)
)]

, with

Q(Z) being an i.i.d unit GaussianN (0, 1). Specifically, we
have the analytical solution for this upper bound: Lz =

KL
(
N (µz, σ

2
z) || N (0, 1)

)
= 1

2

(
− log σ2

z + µ2
z + σ2

z −

1
)

, where Lz denotes the upper bound of representation
regularization. Proof. See Appendix F.4.

Instantiating I(Z;Y ). Given the explicit reparameteriza-
tion of Y to obtain Ỹ , we aim to optimize I(Z; Ỹ ) instead
of I(Z;Y ). However, directly computing I(Z; Ỹ ) is also
intractable. Therefore, we introduce Proposition 4.8 below
to provide an approximated lower bound.

Proposition 4.8. The Lower Bound of I(Z; Ỹ ). The varia-
tional lower bound of I(Z; Ỹ ) can be derived and approxi-
mated by minimizing the typical regression loss while with-
out being restricted to the Markov assumption Z −X − Y ,
as follows:

I(Z; Ỹ ) ≥ EP (X)EP (Z|X)P (Ỹ |X) logQ(Ỹ |Z)

≈ −Lreg(Y
S , Ỹ ),

(4)

where Lreg represents the regression loss and Y S signifies
the prediction. Proof. See Appendix F.5.

Specifically, predictions are made through a regression layer
to obtain Y S based on Z. We employ a standard regression
loss, such as Mean Absolute Error (MAE), to maximize the
variational lower bound.

Furthermore, findings from (Burgess et al., 2018) under-
score the significance of the training regime concerning the
β hyperparameter value for robust representation learning
rather than adhering to a fixed β-weighted term. In light of
Assumption 4.2, it is evident that conventional IB methods
designed for static relations are not directly applicable to the
domain of spatial-temporal forecasting, which inherently
relies on dynamic relationships. Consequently, we adopt a
novel approach by designing a training regime tailored for
dynamic relations.

Training Regime. In our training regime, we adapt the regu-
larization strategy (i.e., the balance of the informative terms
within the objective) to accommodate the noise impact on
different time series quantified in each time window. When
noise impact is low, we relax the regularization. When there
is a significant noise impact, we intensify the regularization.
To quantify it, we leverage a trained model with no assump-
tion on the model type and treat it as the teacher. Then, the
noise impact indicators, defined in Definition 4.9, are com-
puted based on the teacher model’s predictive performance.
By leveraging this knowledge, we dynamically balance the
RSTIB-MLP’s robust representation learning in different
time series within different time windows. The noise impact
indicator is formally defined as follows:

Definition 4.9. Noise Impact Indicator. Given the his-
torical data Xh ∈ RT×N×C and a teacher model fT with
trained and fixed parameters, we define the noise impact

5



Information Bottleneck-guided MLPs for Robust Spatial-temporal Forecasting

indicator to quantify the noise impact on each time series.
It is calculated as follows:

α̂i =
exp

(
D
(
Y T
i , Yi

))∑N
j=1 exp

(
D
(
Y T
j , Yj

))
=

exp
(
D
(
fT (A,Xh)i, Yi

))∑N
j=1 exp (D (fT (A,Xh)j , Yj))

,∀i ∈ {1, . . . , N},

(5)
where A ∈ RN×N represents the adjacency matrix, uti-
lized optionally depending on the modeling approach of the
teacher. D(·, ·) denotes the distance function, such as mean
squared error (MSE) or mean absolute error (MAE), to indi-
cate the predictive performance. The computed α̂i for each
time series reflects the relative impact of noise within the
current time window, with higher values indicating greater
susceptibility to noise.

Learning Framework. The final objective for the robust
representation learning in RSTIB-MLP is formalized as
follows:

LRSTIB−MLP =

N∑
i=1

[
−Lreg(Y

S
i , Ỹi)

]
+

N∑
i=1

(1 + α̂i)(λxLx,i + λyLy,i + λzLz,i)

(6)
The balance among all terms is controlled by the noise
impact indicator α̂i and the Lagrange multipliers λx, λy,
and λz for input, target, and representation regularization,
respectively. This learning objective highlights the relation-
ship between RSTIB-MLP and the proposed training regime.
The control over the balance of the informative terms is
achieved not only by setting the hyperparameters, namely
the Lagrange multipliers, but also by leveraging knowledge
from noise impact indicators computed for different time
series.

5. Experiments
Datasets. For demonstrating universality, we consider
six datasets from different domains, including PEMS04,
PEMS07, PEMS08 (Fang et al., 2021; Guo et al., 2019;
Song et al., 2020; Yu et al., 2018), LargeST(SD) (Liu
et al., 2024a), Weather2K-R (Zhu et al., 2023b), Elec-
tricity (Deng et al., 2021). The diverse sample rates ensure
the exploration of short-term, mid-term and long-term fore-
casting evaluations. Detailed statistics and public accesses
are provided in Appendix.E. For PEMS and LargeST(SD)
benchmark datasets, we choose the traffic flow (vehicles
per hour) as the metric. For Weather2K-R dataset, We
select vertical visibility from 20 meteorological factors as
the experimental variable. For Electricity dataset, we select
the average electricity consumption (Deng et al., 2021).

Besides, For Electricity dataset, we adopt the same training,
validation, and testing split ratio as in (Deng et al., 2021),
and for other datasets, we adopt 6:2:2 for all datasets to
ensure consistency.

Robust Baselines for Clean and Noisy Spatial-temporal
Forecasting. (1) MLP-based Baseline: STID (Shao
et al., 2022a); (2) STGNN-based Methods: GWN (Wu
et al., 2019) (3) IB-based Method: STGKD (Tang et al.,
2024) (4) GIB-based Baselines: STExplainer (Tang et al.,
2023) and STExplainer-CGIB (STExplainer with Conven-
tional GIB); (5) Adversarial Training-based Method:
TrendGCN (Jiang et al., 2023b) (6) Mathematical Tools-
based Method: STG-NCDE (Choi et al., 2022). (7) Energy
Compaction Enhanced Method : FreTS (Yi et al., 2024)
(8) Biased TCN-based Method: BiTGraph (Chen et al.,
2024). (9) Spatial-temporal Curriculum Learning-based
Method: STC-Dropout (Wang et al., 2023a).

Extra Baselines Designed for Clean Spatial-temporal
Traffic Forecasting. We also dedicate to utilize PEMS
datasets to compare RSTIB-MLP with three types of base-
lines proposed for clean spatial-temporal traffic forecast-
ing: (1) Attention-based Method: DSTAGNN (Lan et al.,
2022); (2) MLP-based method: STHMLP (Qin et al.,
2023); (3) STGNN-based Methods: STGCN (Yu et al.,
2018), AGCRN (Bai et al., 2020), GMSDR (Liu et al.,
2022), FOGS (Rao et al., 2022), and TrendGCN (Jiang
et al., 2023b);

Implementation Details. For the basic settings, we employ
a hidden dimension d = 64 and utilize an MLP architecture
with L=3 layers. For PEMS and LargeTS(SD) benchmark
datasets, we use historical traffic flow data with window
length P = 12 to forecast future traffic flow data with win-
dow length F = 12, while for the Electricity dataset, we
follow the default settings in (Deng et al., 2021), i.e., we
set P=16 and F=3, and calculate the average predictive ac-
curacy by averaging over 1, 2, 3 hours. Since there is no
pre-defined graph structure in the Electricity dataset, some
results are denoted as “-” , meaning Not Available. The
model performance is evaluated using three metrics: MAE,
RMSE, and MAPE. The learning rate is initialized as η =
0.002 with a decay factor r = 0.5. Baselines with recom-
mended hyperparameter settings are used (See Appendix.D).
Our method is teacher model agnostic (Appendix.K.10),
where we set the default teacher model to STGCN. Spatial-
temporal prompts (Tang et al., 2024) are utilized to attach
the spatial-temporal information.

5.1. Main Results

Robustness Study. We evaluate the robustness of RSTIB-
MLP by injecting noise into both the input and the target
area, similar to the empirical study we conduct for evaluat-
ing the harmful aspect of dual noise effect. As presented
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Table 2. Predictive Accuracy Comparison Under Various Noise Ratios in Different Datasets
Noise Ratio 0%(clean) 10% 30% 50%
Metrics MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE
Dataset PEMS04
STID 18.79 30.37 12.51% 27.83 41.34 17.31% 36.53 52.74 21.11% 36.22 52.15 21.45%
GWN 19.22 30.74 12.52% 30.03 43.27 19.32% 39.55 56.78 22.60% 40.87 55.13 23.02%
TrendGCN 18.81 30.68 12.25% 23.83 37.10 17.53% 27.35 43.10 19.32% 27.90 44.83 20.38%
STExplainer-CGIB 19.14 30.77 12.91% 25.76 38.36 16.05% 31.72 48.51 17.98% 28.43 44.69 16.85%
STExplainer 18.57 30.14 12.13% 24.48 36.78 15.89% 31.39 47.18 18.05% 29.60 46.41 17.37%
STGKD 18.69 30.46 12.34% 24.35 37.06 16.31% 28.53 44.74 17.66% 29.24 46.28 18.63%
BiTGraph 18.82 30.44 12.25% 24.73 37.08 16.03% 31.65 47.52 18.20% 29.85 46.75 17.50%
STC-Dropout 18.75 30.38 12.33% 26.85 39.32 16.50% 34.15 51.22 20.54% 33.74 50.37 19.98%
STG-NCDE 19.21 31.09 12.76% 24.82 37.41 17.30% 29.24 44.17 19.44% 30.97 47.19 20.86%
FreTS 18.77 30.45 12.25% 24.68 37.05 16.00% 31.60 47.45 18.17% 29.82 46.65 17.48%
RSTIB-MLP 18.46 30.14 12.22% 23.64 36.44 15.22% 27.15 42.85 17.19% 27.16 43.43 17.76%
Dataset PEMS07
STID 20.41 33.68 8.74% 27.99 45.02 12.37% 31.83 55.26 13.62% 32.38 57.29 14.07%
GWN 20.25 33.32 8.63% 28.25 45.47 12.51% 32.15 55.81 13.76% 37.71 59.86 25.21%
TrendGCN 20.43 34.32 8.51% 26.87 44.65 14.59% 31.94 55.28 20.78% 36.78 57.89 23.22%
STExplainer-CGIB 20.55 35.12 8.61% 28.14 44.07 12.18% 34.92 57.60 14.22% 35.12 59.17 16.78%
STExplainer 20.00 33.45 8.50% 28.30 44.21 12.22% 31.58 54.03 14.82% 32.52 57.64 15.48%
STGKD 20.30 34.30 8.87% 27.04 43.83 12.23% 31.64 55.16 13.69% 32.16 56.89 14.08%
BiTGraph 20.25 33.75 8.60% 28.55 44.55 12.35% 31.84 54.37 14.94% 32.77 58.00 15.60%
STC-Dropout 20.47 33.91 8.75% 28.63 44.67 12.41% 31.72 54.42 15.01% 32.91 58.13 15.69%
STG-NCDE 20.53 33.84 8.80% 28.79 44.62 14.22% 32.21 56.23 15.78% 33.48 58.83 16.78%
FreTS 19.92 33.65 8.70% 28.60 44.40 14.10% 32.05 56.00 15.65% 33.30 58.60 16.65%
RSTIB-MLP 19.84 33.90 8.33% 26.55 43.77 11.37% 30.15 54.08 12.65% 30.94 56.79 12.91%
Dataset PEMS08
STID 14.87 23.97 10.43% 20.26 32.24 14.05% 26.64 45.73 15.63% 27.76 48.64 16.45%
GWN 14.67 23.49 9.52% 20.52 32.65 14.19% 26.91 46.19 15.78% 28.04 49.13 16.61%
TrendGCN 15.15 24.26 9.51% 20.81 32.49 14.92% 24.74 41.46 23.74% 26.90 45.69 22.95%
STExplainer-CGIB 14.87 24.07 10.26% 23.66 35.49 24.34% 24.87 43.14 15.32% 26.50 44.62 15.54%
STExplainer 14.59 23.91 9.80% 20.28 32.86 13.37% 25.42 43.41 16.77% 27.17 45.79 15.26%
STGKD 15.13 24.80 10.66% 20.62 32.45 14.99% 25.63 43.29 16.03% 25.93 44.03 16.59%
BiTGraph 14.85 24.20 9.90% 20.55 33.15 13.50% 25.70 43.75 16.90% 27.45 46.10 15.40%
STC-Dropout 14.70 24.32 9.75% 20.35 32.25 13.95% 25.55 44.82 15.25% 26.75 47.15 16.15%
STG-NCDE 15.45 24.81 9.92% 21.36 33.25 15.23% 28.35 41.89 16.33% 29.44 47.32 18.62%
FreTS 14.85 24.15 9.89% 20.52 33.12 13.45% 25.68 43.75 16.88% 27.41 46.05 15.35%
RSTIB-MLP 14.51 24.18 9.44% 19.90 31.86 12.92% 23.16 40.46 14.26% 24.37 43.77 14.36%
Dataset LargeST(SD)
STID 17.60 29.05 11.92% 26.53 40.35 16.91% 34.82 54.03 20.62% 35.21 55.26 21.52%
GWN 17.74 29.62 11.88% 27.39 40.95 17.81% 32.87 55.64 18.84% 37.32 58.25 23.23%
TrendGCN 17.39 29.63 11.64% 25.84 39.64 16.23% 31.45 51.71 17.83% 33.63 52.18 18.85%
STExplainer-CGIB 18.60 30.29 12.69% 26.17 40.46 17.55% 32.11 53.39 18.37% 34.56 52.88 19.43%
STExplainer 17.51 28.86 11.57% 25.68 39.48 16.24% 31.41 51.49 17.87% 33.39 51.96 18.80%
STGKD 17.60 29.42 11.62% 25.85 39.71 16.08% 31.52 51.37 17.67% 33.93 52.67 18.97%
BiTGraph 18.85 29.80 12.68% 25.81 39.34 16.23% 31.16 52.13 17.74% 33.74 51.98 18.86%
STC-Dropout 17.55 29.36 11.68% 25.78 39.64 16.14% 31.48 51.42 17.73% 33.87 52.73 18.92%
STG-NCDE 17.58 29.14 11.87% 26.24 40.39 16.52% 31.83 52.67 17.86% 33.76 52.23 18.97%
FreTS 17.54 29.01 11.95% 26.16 40.21 16.53% 31.60 52.99 17.71% 34.09 52.51 18.86%
RSTIB-MLP 17.50 28.75 11.20% 25.02 38.37 15.42% 30.60 50.52 16.85% 32.78 50.38 17.92%
Dataset Weather2K-R
STID 3997.92 6199.77 65.34% 4950.47 6610.89 67.06% 6301.76 8071.43 76.94% 7654.47 9660.18 82.08%
GWN 3991.24 6207.50 66.00% 5218.42 6896.87 66.72% 6883.07 8681.24 74.27% 8324.23 9832.49 83.08%
TrendGCN 3987.92 6223.53 65.30% 4589.04 6274.23 63.31% 5982.71 7688.16 72.99% 7108.36 8964.54 81.53%
STExplainer-CGIB 3994.82 6200.83 65.35% 4789.03 6540.73 67.32% 6215.86 7985.24 75.72% 7775.50 9812.44 81.61%
STExplainer 3992.57 6198.33 65.22% 4786.53 6537.73 67.18% 6213.36 7982.24 75.58% 7773.00 9809.44 81.47%
STGKD 3990.07 6195.83 65.08% 4784.03 6534.73 67.02% 6210.86 7979.24 75.44% 7770.50 9805.94 81.33%
BiTGraph 3989.32 6216.03 65.21% 4588.67 6274.45 63.15% 5981.76 7680.34 72.91% 7103.92 8964.87 81.38%
STC-Dropout 3986.43 6205.21 65.35% 4792.87 6543.12 67.25% 6205.49 7975.08 75.45% 7782.56 9817.33 81.60%
STG-NCDE 3992.57 6199.03 65.22% 4787.33 6538.53 67.15% 6214.36 7983.04 75.58% 7774.00 9810.24 81.46%
FreTS 3984.37 6219.03 65.12% 4585.09 6269.53 63.13% 5978.26 7683.56 72.81% 7104.06 8959.94 81.35%
RSTIB-MLP 3964.53 6191.08 64.94% 4561.97 6239.33 62.96% 5948.52 7645.33 72.64% 7073.69 8914.37 81.17%
Dataset Electricity
STID 20.18 39.82 15.92% 26.08 47.98 21.74% 37.25 65.27 28.23% 50.97 81.16 45.78%
GWN - - - - - - - - - - - -
TrendGCN 19.98 39.62 15.72% 25.23 46.48 20.37% 34.35 63.82 26.78% 47.26 78.65 42.38%
STExplainer-CGIB - - - - - - - - - - - -
STExplainer - - - - - - - - - - - -
STGKD 20.15 40.05 15.89% 25.40 46.75 20.65% 34.90 64.90 27.65% 48.75 79.80 44.90%
BiTGraph 19.98 39.87 16.12% 25.52 47.10 21.05% 35.68 65.82 28.55% 49.78 78.95 43.78%
STC-Dropout 19.92 39.85 16.47% 26.12 48.25 21.69% 36.68 68.32 30.27% 49.30 78.03 42.78%
STG-NCDE 19.85 39.92 16.52% 26.05 48.12 21.78% 36.75 68.45 30.18% 49.23 77.90 42.85%
FreTS 20.12 40.45 16.22% 26.15 47.88 21.95% 37.30 69.25 31.05% 52.98 78.75 43.78%
RSTIB-MLP 19.80 39.67 15.72% 24.50 45.85 19.95% 33.80 62.50 25.85% 45.30 74.60 40.75%

7



Information Bottleneck-guided MLPs for Robust Spatial-temporal Forecasting

Figure 3. Feature Variance (Var) of Different Methods w.r.t differ-
ent noise ratio (γ) in PEMS04 Dataset
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Figure 4. Ablation Study Results on Different Benchmark Datasets
When Combating Noises with Different Noise Ratios

in Table 2, the results demonstrate that RSTIB-MLP can
achieve better or comparably good predictive performance
when combating noise perturbation, even when comparing
with robust baselines with dedicate model design. This
finding underscores the robustness of RSTIB-MLP, which
can be attributed to its consideration of both noisy input
and target information conveyed with theoretical guarantee.
In contrast, previous approaches typically consider only a
single noisy area. Our method’s ability to handle both noisy
patterns contributes to its enhanced robustness.

Learning with Clean Data. In this analysis, we investi-
gate the behavior of RSTIB-MLP when learning with clean
data. As depicted in Table 2 and Table 10 in Appendix K.1,
we observe some improvements in performance metrics on
clean datasets, although not significant. It is noteworthy
that while our primary objective is to enhance robustness on
noisy datasets, the observed slight improvement on clean
datasets suggests potential benefits. However, we hypoth-
esize that the marginal improvement could stem from the
challenge of effectively balancing the informative terms
within the learning objective, thus impacting the overall
performance.

Inspecting Representation Learning from a Feature Vari-

ance Perspective: A Case Study. In this case study, we
examine the superiority of our method from the perspective
of feature variance, a crucial aspect for effective model eval-
uation. As discussed in (Bardes et al., 2021), maintaining
feature diversity is essential to mitigate feature collapse and
enhance model robustness. The quantitative case findings
in Fig.3 indicate that our proposed knowledge distillation
module significantly boosts feature variance, a critical factor
in capturing the intricate and dynamic spatial-temporal pat-
terns. This observation underscores the effectiveness of ac-
counting for the noise impact on different time series when
balancing the informative terms in the learning objective,
which is achieved by incorporating knowledge distillation
into the training regime. We also provide a model inter-
pretation case study to visualize the distribution of learned
representation in Appendix. K.8.

5.2. Ablation Study

We assess our proposed components within RSTIB-MLP
through its various variants: i) “w/o IB & KD”: Excludes
any Information Bottleneck (IB)-based enhancement and
the knowledge distillation module. ii) “w/o RSTIB &
KD”: Similar to the first variant but implements vanilla
IB. iii) “w/o KD”: Removes the knowledge distillation mod-
ule while instantiating the RSTIB principle. The ablation
study, as shown in Fig.4, reveals significant performance
degradation without IB instantiation in most scenarios, em-
phasizing its role in mitigating the detrimental effects of
spatial-temporal data noise. However, the results also show
some circumstances where implementing the vanilla IB prin-
ciple results in even worse performance. The potential rea-
son is that vanilla IB has not considered noisy information
conveyed by the target, while also challenging to balance the
informative terms within its objective. Besides, instantiating
RSTIB can make significant performance improvements
compared with vanilla IB instantiation or non-IB enhanced
instantiation. This underscores the importance of minimiz-
ing the noisy information conveyed by both input and target
data ends in the spatio-temporal forecasting scenario. Fur-
thermore, the knowledge distillation module contributes to
performance enhancement, due to the better balance of the
informative terms during robust representation learning.

5.3. Computational Efficiency

This section compares the efficiency of RSTIB-MLP with
some representative state-of-the-art STGNN-based meth-
ods. We also include an MLP-based method, STID (Shao
et al., 2022a), as an MLP-based baseline. We measure the
efficiency by recording the average training time per epoch
of all methods on the PEMS04 dataset. All evaluations are
conducted on an NVIDIA RTX 3090Ti GPU. Fig.5 displays
the results. We can see that prior STGNN-based works re-
quire more time due to the sophisticated model design (See
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Figure 5. Computational Efficiency Results on PEMS04

Section H). By contrast, our work utilizes computationally
more efficient MLP networks, resulting in a more stream-
lined model architecture, allowing faster processing and
shorter training time. However, the RSTIB-MLP implemen-
tation reduces the efficiency compared to STID. Therefore,
our method is inherently a trade-off. Combining the results
from Table 2, this trade-off proves to be well-balanced.

6. Conclusion
The problem we aim to investigate in this study is: can sim-
ple neural networks achieve robust spatial-temporal fore-
casting yet still be efficient? To this end, we first propose the
Robust Spatial-Temporal Information Bottleneck (RSTIB)
principle for guiding robust representation learning. We then
instantiate the computationally efficient and robust RSTIB-
MLP using pure MLP networks. Additionally, we incor-
porate a knowledge distillation module into our training
regime. Knowledge distillation can enhance feature diver-
sity and improve predictive accuracy by better leveraging the
knowledge from previously trained teacher models to bal-
ance informative terms within the objective of RSTIB-MLP.
Through comprehensive evaluation encompassing feature
variance and predictive performance metrics, our approach
demonstrates a superior trade-off between efficiency and
robustness. It achieves robust forecasting accuracy under
challenging conditions while still being computationally
more efficient than state-of-the-art STGNN-based methods.
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Palomar, D. P. and Verdú, S. Lautum information. IEEE
transactions on information theory, 54(3):964–975, 2008.

10



Information Bottleneck-guided MLPs for Robust Spatial-temporal Forecasting

Papyan, V., Han, X., and Donoho, D. L. Prevalence of
neural collapse during the terminal phase of deep learn-
ing training. Proceedings of the National Academy of
Sciences, 117(40):24652–24663, 2020.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga,
L., et al. Pytorch: An imperative style, high-performance
deep learning library. Advances in neural information
processing systems, 32, 2019.

Peng, X. B., Kanazawa, A., Toyer, S., Abbeel, P., and
Levine, S. Variational discriminator bottleneck: Improv-
ing imitation learning, inverse rl, and gans by constrain-
ing information flow. arXiv preprint arXiv:1810.00821,
2018.

Qin, Y., Luo, H., Zhao, F., Fang, Y., Tao, X., and Wang,
C. Spatio-temporal hierarchical mlp network for traffic
forecasting. Information Sciences, 632:543–554, 2023.

Rao, X., Wang, H., Zhang, L., Li, J., Shang, S., and Han,
P. Fogs: First-order gradient supervision with learning-
based graph for traffic flow forecasting. In Proceedings of
International Joint Conference on Artificial Intelligence,
IJCAI. ijcai. org, 2022.

Shao, Z., Zhang, Z., Wang, F., Wei, W., and Xu, Y. Spatial-
temporal identity: A simple yet effective baseline for
multivariate time series forecasting. In Proceedings of
the 31st ACM International Conference on Information
& Knowledge Management, pp. 4454–4458, 2022a.

Shao, Z., Zhang, Z., Wang, F., and Xu, Y. Pre-training
enhanced spatial-temporal graph neural network for mul-
tivariate time series forecasting. In Proceedings of the
28th ACM SIGKDD Conference on Knowledge Discovery
and Data Mining, pp. 1567–1577, 2022b.

Shao, Z., Zhang, Z., Wei, W., Wang, F., Xu, Y., Cao, X., and
Jensen, C. S. Decoupled dynamic spatial-temporal graph
neural network for traffic forecasting. Proceedings of the
VLDB Endowment, 15(11):2733–2746, 2022c.

Song, C., Lin, Y., Guo, S., and Wan, H. Spatial-temporal
synchronous graph convolutional networks: A new frame-
work for spatial-temporal network data forecasting. In
Proceedings of the AAAI conference on artificial intelli-
gence, volume 34, pp. 914–921, 2020.

Tang, J., Xia, L., and Huang, C. Explainable spatio-temporal
graph neural networks. In Proceedings of the 32nd ACM
International Conference on Information and Knowledge
Management, pp. 2432–2441, 2023.

Tang, J., Wei, W., Xia, L., and Huang, C. Spatio-temporal
graph knowledge distillation, 2024. URL https://
openreview.net/forum?id=akKNGGWegr.

Tishby, N., Pereira, F. C., and Bialek, W. The informa-
tion bottleneck method. arXiv preprint physics/0004057,
2000.

Wang, H., Chen, J., Pan, T., Fan, Z., Zhang, B., Jiang, R.,
Zhang, L., Xie, Y., Wang, Z., and Song, X. Easy begun
is half done: Spatial-temporal graph modeling with st-
curriculum dropout. 2023a.

Wang, Z., Nie, Y., Sun, P., Nguyen, N. H., Mulvey, J., and
Poor, H. V. St-mlp: A cascaded spatio-temporal linear
framework with channel-independence strategy for traffic
forecasting. arXiv preprint arXiv:2308.07496, 2023b.

Wieczorek, A. and Roth, V. On the difference between the
information bottleneck and the deep information bottle-
neck. Entropy, 22(2):131, 2020.

Wu, T., Ren, H., Li, P., and Leskovec, J. Graph information
bottleneck. Advances in Neural Information Processing
Systems, 33:20437–20448, 2020.

Wu, Z., Pan, S., Long, G., Jiang, J., and Zhang, C. Graph
wavenet for deep spatial-temporal graph modeling. In
Proceedings of the 28th International Joint Conference
on Artificial Intelligence, pp. 1907–1913, 2019.

Yi, K., Zhang, Q., Fan, W., Wang, S., Wang, P., He, H.,
An, N., Lian, D., Cao, L., and Niu, Z. Frequency-domain
mlps are more effective learners in time series forecasting.
Advances in Neural Information Processing Systems, 36,
2024.

Yu, B., Yin, H., and Zhu, Z. Spatio-temporal graph convo-
lutional networks: A deep learning framework for traffic
forecasting. In Proceedings of the 27th International Joint
Conference on Artificial Intelligence, pp. 3634–3640,
2018.

Yuan, H., Sun, Q., Fu, X., Zhang, Z., Ji, C., Peng, H., and
Li, J. Environment-aware dynamic graph learning for
out-of-distribution generalization. Advances in Neural
Information Processing Systems, 36, 2024.

Zhang, Q., Huang, C., Xia, L., Wang, Z., Yiu, S. M., and
Han, R. Spatial-temporal graph learning with adversarial
contrastive adaptation. In International Conference on
Machine Learning, pp. 41151–41163. PMLR, 2023.

Zhou, K., Wang, W., Hu, T., and Deng, K. Time series fore-
casting and classification models based on recurrent with
attention mechanism and generative adversarial networks.
Sensors, 20(24):7211, 2020.

Zhou, Z., Yao, J., Liu, J., Guo, X., Yao, Q., He, L., Wang,
L., Zheng, B., and Han, B. Combating bilateral edge
noise for robust link prediction. In Advances in Neural
Information Processing Systems, 2023.

11

https://openreview.net/forum?id=akKNGGWegr
https://openreview.net/forum?id=akKNGGWegr


Information Bottleneck-guided MLPs for Robust Spatial-temporal Forecasting

Zhu, J., Shwartz-Ziv, R., Chen, Y., and LeCun, Y. Variance-
covariance regularization improves representation learn-
ing. arXiv preprint arXiv:2306.13292, 2023a.

Zhu, X., Xiong, Y., Wu, M., Nie, G., Zhang, B., and Yang,
Z. Weather2k: A multivariate spatio-temporal benchmark
dataset for meteorological forecasting based on real-time
observation data from ground weather stations. Interna-
tional Conference on Artificial Intelligence and Statistics,
(C):2704–2722, 2023b.

12



Information Bottleneck-guided MLPs for Robust Spatial-temporal Forecasting

Appendix

A. Notations
Our notations are elaborated in Table 3.

B. Additional Preliminaries
B.1. Mathematical Preliminaries and Definitions

This section provides mathematical preliminaries concerning entropy and mutual information using three discrete random
variables X , Y , and Z for illustrative purposes. It is important to note that these variables do not carry specific meanings
within this context and the notations used here are distinct from those in the main discussion. Additionally, this section
offers an intuitive understanding of each term.

Definition B.1. Entropy. We define the entropy H(X) of a discrete random variable X as a measure of its uncertainty,
using its marginal distribution p(x). Mathematically, entropy is expressed as:

H(X) = −
∑
x∈X

p(x) log p(x), (7)

where the summation extends over all possible outcomes x of the random variable X . The function H(X) quantifies the
expected information content or uncertainty inherent in X’s outcomes.

Definition B.2. Joint Entropy. The entropy of two random variables X and Y can be jointly considered by viewing them
as components of a single vector-valued random variable. This joint entropy is defined as:

H(X,Y ) = −
∑

x∈X,y∈Y

p(x, y) log p(x, y)

= −
∑
x∈X

∑
y∈Y

p(x, y) log p(x, y), (8)

where p(x, y) represents the joint probability distribution of X and Y . This definition encapsulates the total uncertainty
present when considering the distribution of both variables simultaneously.

Definition B.3. Conditional Entropy. Given two discrete random variables X and Y , the conditional entropy of X given
Y is defined as:

H(X|Y ) = −
∑
y∈Y

p(y)
∑
x∈X

p(x|y) log p(x|y), (9)

where p(x|y) is the conditional probability of X given Y , and p(y) is the marginal distribution of Y . A value of H(X|Y ) = 0
implies that knowing Y completely determines X , signifying no remaining uncertainty about X once Y is observed.

This concept allows us to understand H(X) as a priori entropy of X , while H(X|Y ) represents a posteriori en-
tropy—reflecting the uncertainty in X after Y is known. The reduction in entropy, H(X) − H(X|Y ), quantifies the
amount of information Y provides about X , which is formally termed mutual information in Definition B.5.

Remark B.4. Conditional Entropy w.r.t three variables. The conditional entropy H(Z|X,Y ) quantifies the residual
uncertainty in a random variable Z when the values of other variables X and Y are known. It is mathematically defined as:

H(Z|X,Y ) = −
∑

x∈X,y∈Y

p(x, y)
∑
z∈Z

p(z|x, y) log p(z|x, y) (10)

Here, p(x, y) represents the joint distribution of X and Y , and p(z|x, y) is the conditional probability of Z given that X
and Y take the values x and y respectively. This measure effectively describes how much uncertainty in Z remains after
observing both X and Y .
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Table 3. Notations
Symbol Description
N The number of time series(i.e., nodes).
P The length of historical input.
F The length of forecasting target.
C The number of features in each input or target time series at a specific time slot.
Xh The historical spatial-temporal data Xh ∈ RP×N×C , with N time series of C features

in each time series within P nearest historical time slots, with each Xh
t,i ∈ RC .

X The input to RSTIB-MLP model, generated from Xh. The dimension of X , along
with Xt,i, depends on Xh and the attachment of spatial-temporal information from a
specially designed module.

Y The forecasting target data Y ∈ RF×N×C with N time series of C features in each
time series within F nearest future time slots, with each Yt,i ∈ RC .

X̃ The reparameterized input.
Ỹ The reparameterized target.
Y T The teacher model’s output.
Y S The RSTIB-MLP model’s output.
d The hidden dimension of each z ∈ Z, i.e., zi ∈ Rd for i = 1, . . . , N .
Z The encoded spatial-temporal representation, comprised of a series of latent spatial-

temporal representations (z1, z2, . . . , zN ) where zi ∈ Rd for i = 1, . . . , N . Z ∈
RN×d.

Cov The covariance matrix of Z, with each Covii representing the variance of the i-th
feature across the representations, i.e., the diagonal elements of Cov.

Var The feature variance defined in Eq.(1).
D The distance function for calculating the noise impact indicators.
α̂ The noise impact indicator, where α̂i is computed for each time series.
β The Lagrange multiplier defining the trade-off between the compression of X and

preservation of Y in the IB objective.
β1, β2 The Lagrange multipliers defining the informative terms within the RSTIB objective.
λx, λy, λz The Lagrange multipliers defining the balance between the informative terms within

the RSTIB-MLP objective.
LIB The original objective of IB principle.
LRSTIB The objective of RSTIB principle.
LRSTIB−MLP The learning objective of RSTIB-MLP.
Lreg The typical regression loss.
Lx, Ly , Lz The upper bounds of input regularization, target regularization, representation regular-

ization.
L The number of layers.
Nd The time slots in a day.
Nw The number of days in a week.
fT The teacher model.
η The learning rate.
E The expectation of a random variable, i.e., the mean of the possible values a random

variable can take, weighted by the probability of those outcomes.
E The maximum epoch number.
B The batch size.
r The decay factor.
τ The non-linear activation.
γ The noise ratio.
H(·) The entropy of a discrete random variable, e.g., H(X) represents the entropy of X .
I(·, ·) The mutual information between two discrete random variables, e.g., I(X;Y ) repre-

sents the mutual information between X and Y .
LI(·, ·) The lautum information between two discrete random variables, e.g., LI(X;Y ) repre-

sents the lautum information between X and Y .
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Definition B.5. Mutual Information. Given two discrete random variables X and Y , their mutual information (MI),
denoted as I(X;Y ), is defined by:

I(X;Y ) = H(X)−H(X|Y )

= −
∑
x∈X

p(x) log p(x) +
∑

x∈X,y∈Y

p(x, y) log p(x|y)

= −
∑
x∈X

log p(x)
∑
y∈Y

p(x, y) +
∑

x∈X,y∈Y

p(x, y) log p(x|y)

=
∑

x∈X,y∈Y

p(x, y) log

(
p(x|y)
p(x)

)
, (11)

where p(x, y) is the joint distribution between X and Y , p(x) is the marginal distribution of X and p(x|y) is the conditional
probability distribution of X given Y , respectively.

Definition B.6. Relative Entropy. The relative entropy, or Kullback-Leibler (KL) distance, between two probability mass
functions p(x) and q(x) is defined as follows:

KL(p||q) =
∑
x∈X

p(x) log
p(x)

q(x)
. (12)

The mutual information between X and Y can also be expressed as I(X;Y ) = KL(p(x, y)||p(x)p(y)), which implies that
mutual information is the relative entropy between the joint distribution p(x, y) and the product of the marginal distributions
p(x)p(y).

Remark B.7. Mutual information satisfies the following identities:

I(X;Y ) = H(X)−H(X|Y ) = H(Y )−H(Y |X) = I(Y ;X) (13)

I(X;Y ) = H(X)−H(X|Y ) = H(X) +H(Y )−H(X,Y ). (14)

The relationships among H(X), H(Y ), H(X|Y ), H(Y |X), I(X;Y ), and H(X,Y ) can be visualized in a Venn diagram,
as shown in Fig. 6.

Figure 6. Relationship between H(X), H(Y ), H(X|Y ), H(Y |X), I(X;Y ), H(X,Y ). (1): H(X|Y ); (2): I(X;Y ); (3):H(Y |X);
(1+2): H(X); (2+3): H(Y ); (1+2+3): H(X,Y ).

Remark B.8. Mutual Information w.r.t to three variables I(Z;X,Y ). The mutual information I(Z;X,Y ) quantifies the
shared information between the variable Z and the variables consisted of both X and Y . It is defined mathematically as:

I(Z;X,Y ) =
∑

x∈X,y∈Y,z∈Z

p(x, y, z) log
p(z|x, y)
p(z)

(15)

where p(x, y, z) represents the joint probability distribution of the variables X , Y , and Z. This expression highlights how
much uncertainty in Z is reduced by knowing both X and Y .
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Definition B.9. Lautum Information. Because of the non-symmetry of the KL divergence, Lautum information is defined
as the divergence from the product of the marginal distributions to the joint distribution of two random variables X and Y
and is given by:

LI(X;Y ) = KL(p(x)p(y) ∥ p(x, y)), (16)

where p(x, y) is the joint distribution of X and Y . p(x) and p(y) are the marginal distributions of X and Y respectively.
This concept was introduced by (Palomar & Verdú, 2008).

Definition B.10. Conditional Mutual Information. The conditional mutual information between X and Y given Z,
denoted as I(X;Y |Z), measures the amount of information shared between X and Y that is unique and not already
explained by Z. It is defined as:

I(X;Y |Z) = H(X|Z)−H(X|Y, Z)

=
∑

x∈X,y∈Y,z∈Z

p(x, y, z) log

(
p(x, y|z)

p(x|z)p(y|z)

)

=
∑

x∈X,y∈Y,z∈Z

p(x, y, z) log

(
p(x|y, z)
p(x|z)

)
.

(17)

which quantifies the additional information about X obtained by observing Y when the influence of Z is already known.

Definition B.11. Interaction Information. The interaction information concerning the variables X , Y , and Z quantifies
the unique information shared by these three variables. It is formally defined as:

I(X;Y ;Z) = I(X;Y )− I(X;Y |Z) (18)

This measure reveals whether the mutual information between X and Y is increased or decreased by conditioning on Z.

B.2. Preliminaries for IB and DVIB

Here, we detail the preliminaries regarding the Information Bottleneck(IB) and Deep Variational Information Bottle-
neck(DVIB). We denote X as the input to different IB models, Z as the encoding from X, and Y as the target.

Figure 7. Comparison of IB(a) and DVIB with lifted markov assumption Z −X − Y (b). Refer to Fig. 2 for more details.

In Fig. 7, the entropy of X , i.e., H(X), and the entropy of Y , i.e., H(Y ), are depicted as circles, with their mutual
information I(X;Y ) represented in the overlapping area. The representation learning guided by the IB principle aims to
optimize the information flow by retaining as much relevant information about Y in Z as possible while minimizing the
redundant information from X . This principle targets reducing the irrelevant information H(X|Y ) Z captures, namely
I(X;Z|Y ), aiming for what is termed the “minimal sufficient representation”, ideally encapsulating solely I(X;Y ).
Achieving this optimal representation presents substantial challenges due to the intrinsic complexities of the models and the
varied selection of parameters and hyperparameters, such as β in Eq. (2).

Incorporating the IB model with deep learning, where mutual information terms are modeled using deep neural networks
(DNNs), has proven successful. The DVIB method leverages deep learning to approximate the IB model, finding a sufficient
statistic Z given X while retaining pertinent side information about Y . The approach involves parameterizing the conditional
probabilities P (Z|X) and P (Y |Z) using DNNs, thus enabling direct recovery of the terms in the original IB objectives.
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Regarding the assumptions of the Markov chain, the typical practice in the original IB formulation assumes Z−X−Y . This
assumption is also utilized to derive DVIB. Additionally, by its construction, the DVIB model satisfies the data generating
process, which implies that the Markov assumption X − Z − Y holds. Adhering to both Markov chain restrictions in DVIB
may seem overly restrictive, and as pointed out by (Wieczorek & Roth, 2020), no directed acyclic graph (DAG) with three
vertices can faithfully represent such a distribution. Consequently, (Wieczorek & Roth, 2020) theoretically explore the
possibility of relaxing the Z −X − Y restriction by demonstrating how I(Z;Y ) can be lower bounded, thus potentially
circumventing the necessity for the Z −X − Y configuration. As illustrated in Fig.7(a), the original IB method does not
encompass a region representing I(Z;Y |X), owing to its reliance on the Z−X −Y Markov chain assumption. Conversely,
in the DVIB approach with this assumption lifted, i.e.the proposed RSTIB approach, the term I(Z;Y |X) ̸= 0 is represented
in Fig.7(b). Detailed explanations regarding the derivation are provided in Proofs. F.5.

Algorithm 1 RSTIB-MLP for Spatial-Temporal Forecasting

Input: Historical spatial-temporal data Xh, input adjacency matrix A (optional), trained teacher model fT , N time series,
Nd time slots in a day, Nw = 7, Lagrange multipliers λx, λy , λz , max epochs E, learning rate η

Output: Trained model parameters Θ
1: for e = 1 to E do
2: // Obtain noise impact indicator
3: Obtain Y T = fT (A,Xh)
4: Compute α̂i for each series i (Eq. 5)
5: // Prepare RSTIB-MLP input
6: Add spatial-temporal info to Xh using Eq. 20
7: // Data reparameterization for X̃, Ỹ
8: Encode to get ϕ̂x, ϕ̂y ∼ N (µ̂, σ̂2)
9: Derive ϕx, ϕy ∼ N (µ, σ2), with µ = x+ µ̂

10: Sample x̃, ỹ from reparameterization using ϵ ∼ N (0, 1)
11: // Input/Target regularization
12: Compute upper bounds via Proposition 4.6
13: // Latent Z representation
14: Reuse encoder to get Pϕz

∼ N (µz, σ
2
z)

15: Sample Z by z = µz + σzϵ
16: // Representation regularization
17: Compute upper bound via Proposition 4.7
18: // Decoder and optimization
19: Decode Z to get Y S

20: Compute loss LRSTIB−MLP (Eq. 6)
21: Update Θ = Θ− η · ∇ΘLRSTIB−MLP

22: end for
23: return Θ

B.3. Preliminaries for Sample Indistinguishability

A recent work (Deng et al., 2021) identifies that the essential element for the efficacy of STGNNs lies in the capability of
GCN to mitigate the issue of spatial indistinguishability. Thus, in MLP for spatial-temporal forecasting, additional modules
are needed to alleviate the sample indistinguishability bottleneck by attaching the spatial-temporal information. In this study,
spatial-temporal prompts (Tang et al., 2024), which is an extension of spatial-temporal identity (Shao et al., 2022a), are
adopted to attach this information to the historical input data Xh for obtaining the input X to the models.

B.3.1. SPATIAL-TEMPORAL IDENTITIES

With the spatial-temporal identities technique, inputs can be attached with spatial-temporal identity information, which is as
follows:

Xt,i = FC(Xh
t,i)∥Ei∥TTiD

t ∥TDiW
t , (19)

where FC refers to fully connected layers that map the dimension of the historical input data Xh from RP×N×C to the
dimension RP×N×C′

. Assuming N time series, Nd time slots in a day and Nw = 7 days in a week, the spatial-temporal
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Figure 8. The framework of RSTIB-MLP. The historical input data Xh is attached with the spatial-temporal information to generate
RSTIB-MLP’s input X . Then, input regularization, target regularization and representation regularization are imposed, along with the
optimization for supervision. Xh is also used to calculate the noise impact indicators to quantify the noise impact on each time series to
balance the informative terms within this framework better.

identities are in three trainable embedding matrices, i.e., E ∈ RN×C′
with each Ei ∈ RC′

, TTiD ∈ RNd×C′
with each

TTiD
t ∈ RC′

, and TDiW ∈ RNw×C′
with each TDiW

t ∈ RC′
. The input to the model will be X ∈ RP×N×4C′

by
concatenating (∥) each term.

B.3.2. SPATIAL-TEMPORAL PROMPTS

With the spatial-temporal prompts technique, inputs can be attached with spatial-temporal contextual information, including
which is as follows:

Xt,i = FC1(X
h
t,i)∥FC2(E

(α)
i )∥FC3(E

(β)
t )∥FC4(E

(ToD)
t )∥FC5(E

(DoW )
t ). (20)

Here, the terms E(α) ∈ RN×Ĉ with each E
(α)
i ∈ RĈ represents learnable spatial prompt, E(ToD) ∈ RNd×Ĉ with each

E
(ToD)
t ∈ RĈ and E(DoW ) ∈ RNw×Ĉ with each E

(DoW )
t ∈ RĈ represent the learnable temporal prompts, with the same

settings that we have N time series, Nd time slots in a day and Nw = 7 days in a week. E(β)
t−P :t ∈ RP×N×Ĉ with each

E
(β)
t,i ∈ RĈ represents the dynamic spatio-temporal transitional prompt, inherent from (Han et al., 2021). FCi, where

i = 1 . . . 5, refers to fully connected layers that map the data and all the embeddings to the same dimension C ′. In this case,
the input fitted into the MLP networks will be X ∈ RP×N×5C′

, with each Xt,i ∈ R5C′
.

C. Algorithm
Our learning framework is shown in Figure 8. Our algorithm is detailed in Algorithm 1 .

D. Baselines
All baselines for comparisons are based on their original implementations. We list their source links here.

• STID, https://github.com/zezhishao/STID

• STExplainer, https://github.com/HKUDS/STExplainer

• TrendGCN, https://github.com/juyongjiang/TrendGCN
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• STG-NCDE, https://github.com/jeongwhanchoi/STG-NCDE

• DSTAGNN, https://github.com/SYLan2019/DSTAGNN

• STGCN, https://github.com/VeritasYin/STGCN IJCAI-18

• GWN, https://github.com/nnzhan/Graph-WaveNet

• AGCRN, https://github.com/LeiBAI/AGCRN

• GMSDR, https://github.com/dcliu99/MSDR

• FOGS, https://github.com/kevin-xuan/FOGS

• BiTGraph, https://github.com/chenxiaodanhit/BiTGraph

• FreTS, https://github.com/aikunyi/FreTS

E. Datasets

Table 4. Statistics of Datasets
Dataset # Node #Time Steps #Sample Rate #Time Span

PEMS04 307 16992 5min 01/2018 - 02/2018
PEMS07 883 28224 5min 05/2017 - 08/2017
PEMS08 170 17856 5min 07/2016 - 08/2016
LargeST(SD) 716 35040 15min 01/2017 – 12/2021
Weather2K-R 1866 40896 1hour 01/2017 – 08/2021
Electricity 336 2184 1hour 10/2014 – 12/2014

The statistical information for six datasets is summarized in Table 4.

The PEMS04/07/08 datasets are a comprehensive collection of traffic data gathered from Districts 4, 7, and 8 of Caltrans,
respectively. These datasets typically include flow (vehicles per hour), speed (miles per hour), and occupancy (percentage of
time the detector is occupied), recorded across multiple lanes and aggregated into 5-minute intervals. Public accessed data
can be found in (Guo et al., 2021b): https://github.com/guoshnBJTU/ASTGNN/tree/main/data

The versions of the datasets are the same as the sources’ default versions.

LargeST (Liu et al., 2024a): It is publicly available at https://github.com/liuxu77/LargeST.

Weather2K-R (Zhu et al., 2023b): It is publicly available at https://github.com/bycnfz/weather2k.

Electricity (Deng et al., 2021): It is publicly available at https://github.com/JLDeng/ST-Norm.

F. Theoretical Proofs
F.1. Proof for Proposition 4.3

Proof. We firstly provide the proof for I(X;Y | Z) = H(X,Z) +H(Y, Z)−H(X,Y, Z)−H(Z).

By utilizing the definition of conditional mutual information, I(X;Y | Z) can be expressed as follows:

I(X;Y | Z) = H(X | Z) +H(Y | Z)−H(X,Y | Z) (21)

By expanding each term using the definition of conditional entropy, we can obtain:

H(X | Z) = H(X,Z)−H(Z) (22)

19

https://github.com/jeongwhanchoi/STG-NCDE
https://github.com/SYLan2019/DSTAGNN
https://github.com/VeritasYin/STGCN_IJCAI-18
https://github.com/nnzhan/Graph-WaveNet
https://github.com/LeiBAI/AGCRN
https://github.com/dcliu99/MSDR
https://github.com/kevin-xuan/FOGS
https://github.com/chenxiaodanhit/BiTGraph
https://github.com/aikunyi/FreTS
https://github.com/guoshnBJTU/ASTGNN/tree/main/data
https://github.com/liuxu77/LargeST
https://github.com/bycnfz/weather2k
https://github.com/JLDeng/ST-Norm


Information Bottleneck-guided MLPs for Robust Spatial-temporal Forecasting

H(Y | Z) = H(Y, Z)−H(Z) (23)

H(X,Y | Z) = H(X,Y, Z)−H(Z) (24)

Then we have:

I(X;Y | Z) = (H(X,Z)−H(Z)) + (H(Y,Z)−H(Z))− (H(X,Y, Z)−H(Z)) (25)

Simplifying the equation, we can obtain:

I(X;Y | Z) = H(X,Z) +H(Y,Z)−H(X,Y, Z)−H(Z) (26)

Proofs of I(X;Y | Z) = H(X,Z) +H(Y,Z)−H(X,Y, Z)−H(Z) have been completed. Then, we have the following
equivalent expression:

I(X;Y | Z) = H(X,Z) +H(Y, Z)−H(X,Y, Z)−H(Z)

= [H(X) +H(Y )−H(X,Y )]

− [H(Z) +H(X,Y )−H(X,Y, Z)]

+ [H(Z, Y ) +H(X,Y )−H(X,Y, Z)−H(Y )]

+ [H(Z,X) +H(Y,X)−H(X,Y, Z)−H(X)]

(27)

By using the following definitions:

I(X;Y ) = H(X) +H(Y )−H(X,Y ), (28)
I(Z;X,Y ) = H(Z) +H(X,Y )−H(X,Y, Z), (29)
I(Z;X | Y ) = H(Z, Y ) +H(X,Y )−H(X,Y, Z)−H(Y ), (30)
I(Z;Y | X) = H(Z,X) +H(Y,X)−H(X,Y, Z)−H(X), (31)

We have:
I(X;Y | Z) = I(X;Y )− (I(Z;X,Y )− I(Z;X | Y )− I(Z;Y | X)) (32)

According to Definition B.11, we draw the conclusion as follows:

I(Z;Y | X) + I(Z;X | Y ) = I(Z;X,Y )− I(X;Y ;Z) (33)

F.2. Proof for Proposition 4.5

Proof. Consider the mutual information I(X̃;X) defined as follows:

I(X̃;X) = EX̃,X

[
log

(
P (X̃|X)

P (X̃)

)]
. (34)

We parameterize the conditional distribution P (X̃|X) by utilizing Pϕx
(X̃|X), and substituting the marginal distribution

P (X̃) with a variational approximation Q(X̃), which introduces an extra KL(P (X̃)∥Q(X̃)) term, we get:

I(X̃;X) = EX̃,X

[
log

(
Pϕx(X̃|X)

Q(X̃)

)]
−KL(P (X̃)∥Q(X̃)). (35)
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Using the non-negativity of the Kullback-Leibler divergence, we establish an upper bound:

I(X̃;X) ≤ E
[
KL(Pϕx

(X̃|X)∥Q(X̃))
]
. (36)

Similarly, for the mutual information I(Ỹ ;Y ), we have:

I(Ỹ ;Y ) ≤ E
[
KL(Pϕy (Ỹ |Y )∥Q(Ỹ ))

]
. (37)

F.3. Proof for Proposition 4.6

Proof. We demonstrate the proofs by utilizing Lx as an example, which is the upper bound of the input regularization.
Considering Lx as the Kullback-Leibler divergence from a normal distributionN (µx, σ

2
x) to the standard normal distribution

N (0, 1), the divergence is given by:

Lx = KL
(
N (µx, σ

2
x) ∥N (0, 1)

)
=

∫
1√
2πσ2

x

exp

(
− (x− µx)

2

2σ2
x

)
log

 exp
(
− (x−µx)

2

2σ2
x

)
√
2πσ2

x exp
(
−x2

2

)
 dx

=

∫
1√
2πσ2

x

exp

(
− (x− µx)

2

2σ2
x

)[
−1

2
log(2πσ2

x)−
(x− µx)

2

2σ2
x

+
x2

2

]
dx

=
1

2

[
− log(σ2

x) + 1− 1

σ2
x

∫
exp

(
− (x− µx)

2

2σ2
x

)
(x− µx)

2 dx+

∫
exp

(
− (x− µx)

2

2σ2
x

)
x2 dx

]
=

1

2

[
− log(σ2

x) + σ2
x + µ2

x − 1
]
.

(38)

Analogously, the upper bound of the target regularization, denoted as Ly , can be similarly derived and results in:

Ly =
1

2

(
− log σ2

y + σ2
y + µ2

y − 1
)
. (39)

F.4. Proof for Proposition 4.7

Proof. The proof can be found in the similar Proof. F.2 and Proof. F.3.

F.5. Proof for Proposition 4.8

Proof. Without holding the Markov chain condition Z −X − Y , we cannot derive the lower bound of I(Z;Y ) in (Alemi
et al., 2017). Therefore, We re-derive the substituted lower bound of I(Z;Y ) with the additional term I(Z;Y |X) that arises
upon relaxing the constraint Z −X − Y . Then, we establish the lower bound for our objective.
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I(Z; Ỹ ) = KL

(∫
P (Z|Ỹ , X)P (Ỹ , X) dx∥P (Z)P (Ỹ )

)
=

∫
P (Z|X, Ỹ )P (X, Ỹ ) log

P (Ỹ |Z)P (Z)

P (Z)P (Ỹ )
dz dx dỹ

= EP (X,Ỹ )

[∫
P (Z|X, Ỹ ) logP (Ỹ |Z) dz

]
− EP (X,Ỹ )

[
logP (Ỹ )

∫
P (Z|X, Ỹ ) dz

]
= EP (X,Ỹ )EP (Z|X,Ỹ )[logP (Ỹ |Z)] +H(Ỹ )

= EP (X)EP (Ỹ |X)EP (Z|X,Ỹ )[logP (Ỹ |Z,X)] +H(Ỹ )

= EP (X)

∫ ∫
P (Z, Ỹ |X) logP (Z, Ỹ |X) dz dỹ +H(Ỹ )

= EP (X)

∫ ∫
P (Z, Ỹ |X) log

P (Ỹ |X)P (Z, Ỹ |X)

P (Ỹ |X)P (Z|X)
dz dỹ +H(Ỹ )

= EP (X)[KL
(
P (Ỹ , Z|X)

∥∥∥P (Ỹ |X)P (Z|X)
)
+

∫ ∫
P (Z, Ỹ |X) logP (Ỹ |X) dz dỹ] +H(Ỹ )

= EP (X)[KL
(
P (Ỹ , Z|X)

∥∥∥P (Ỹ |X)P (Z|X)
)
+

∫
P (Ỹ |X) logP (Ỹ |X) dỹ] +H(Ỹ )

= EP (X)[KL
(
P (Ỹ , Z|X)

∥∥∥P (Ỹ |X)P (Z|X)
)
+

∫ ∫
P (Ỹ |X)P (Z|X) logP (Z|X) dz dỹ] +H(Ỹ )

= EP (X)[KL
(
P (Ỹ , Z|X)

∥∥∥P (Ỹ |X)P (Z|X)
)

+

∫ ∫
P (Ỹ |X)P (Z|X) log

P (Z|X)P (Ỹ |X)P (Z, Ỹ |X)

P (Z, Ỹ |X)P (Z|X)
dz dỹ] +H(Ỹ )

= EP (X)[KL
(
P (Ỹ , Z|X)

∥∥∥P (Ỹ |X)P (Z|X)
)
+KL

(
P (Ỹ |X)P (Z|X)

∥∥∥P (Ỹ , Z|X)
)
] +H(Ỹ )

= EP (X)[KL
(
P (Ỹ , Z|X)

∥∥∥P (Ỹ |X)P (Z|X)
)
+KL

(
P (Ỹ |X)P (Z|X)

∥∥∥P (Ỹ , Z|X)
)

+ EP (Z|X)P (Ỹ |X)log(P (Ỹ |Z,X))] +H(Ỹ )

= I(Ỹ ;Z|X) + LI(Ỹ ;Z|X) + EP (X)EP (Z|X)P (Ỹ |X) logP (Ỹ |Z) +H(Ỹ )

≥ EP (X)EP (Z|X)P (Ỹ |X) logP (Ỹ |Z) +H(Ỹ )

(40)

Let Q(Ỹ |Z) be the variational approximation of the intractable P (Ỹ |Z), similar to Eq.(35). By the non-negativity of the
KL divergence, we have:

KL(P (Ỹ |Z) ∥ Q(Ỹ |Z)) ≥ 0. (41)

Thus, the inequality simplifies to:

I(Z; Ỹ ) ≥ EP (X)EP (Z|X)P (Ỹ |X) logP (Ỹ |Z) +H(Ỹ )

≥ EP (X)EP (Z|X)P (Ỹ |X) logQ(Ỹ |Z) +H(Ỹ ).
(42)

Since the entropy H(Ỹ ) is independent of the optimization, we can maximize I(Z, Ỹ ) by maximizing
EP (X)EP (Z|X)P (Ỹ |X) logQ(Ỹ |Z) ≈ −Lreg(Y

S , Ỹ ), where Y S represents the predictive outputs of RSTIB-MLP model.

G. Sanity Check for RSTIB-MLP
In this section, we perform a sanity check on the RSTIB-MLP model to determine whether the instantiation impairs the
Information Bottleneck(IB) nature. By conducting this analysis, we aim to theoretically ensure that the RSTIB principle, as

22



Information Bottleneck-guided MLPs for Robust Spatial-temporal Forecasting

an extension of the IB, does not reduce to undesirable degenerate solutions.

Table 5. Comparison of Assumed Markov Chains, Structural Equations, and Corresponding Directed Acyclic Graphs (DAGs)

Assumed Markov chain Z X Y X Z Y

Possible set of structural equations
Z = fZ(X, ηZ)

Y = fY (X, ηY )

Z = fZ(X, ηZ)

Y = fY (Z, ηY )

Corresponding DAG X Y

Z

X Z Y

As articulated by (Wieczorek & Roth, 2020), the assumptions underlying different Information Bottleneck (IB) principles
correspond to different admissible information flows, which can be effectively represented using Directed Acyclic Graphs
(DAGs). This approach allows for a convenient elucidation of the properties in different IB models. The arrows in the DAGs
explicitly symbolize the data generation process rigorously defined by a corresponding set of equations.

Figure 9. Admissible DAGs Under Different Markov Assumptions while not impairing IB nature. (a) Z −X − Y ; (b) X − Z − Y .

Figure 10. DAGs of RSTIB-MLP.

As depicted in Fig.9, the Markov chain assumption Z − X − Y serves as a sufficient condition to preclude the model
from deriving the trivial solution Z = Y . Nonetheless, the necessary condition is that Z should not directly depend on Y .
Consequently, the requirement Z −X − Y can be relaxed to merely prohibiting a direct edge from Y to Z in the DAGs, i.e.,
Y → Z. This relaxation is achieved by adhering to the admissible DAGs under the Markov assumption X − Z − Y , as
depicted in Fig.9. Moreover, Z must encapsulate information about both X and Y , necessitating the exclusion of structures
Z → X ← Y and Z → Y ← X in the DAGs, which would otherwise result in I(Z;Y ) = 0 and I(X;Z) = 0, respectively.
To summarize, since we also lift the Markov restriction Z −X − Y by just holding X − Z − Y condition, it is imperative
to adhere to the DAGs outlined in Fig. 9. This mandates a thorough sanity check of the RSTIB-MLP model.

The DAGs of RSTIB-MLP are presented in Fig. 10. As is shown in the figure, our model effectively ensures that it does
not reduce to the solution Z = Y while simultaneously guaranteeing the preservation of information from both X and Y ,
thereby maintaining the nature of the information bottleneck principle.
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H. Computational Complexity Analysis
In this analysis, we theoretically compare the computational complexities of our RSTIB-MLP with other leading baselines in
spatial-temporal forecasting. Many advanced STGNN-based methods integrate Temporal Convolutional Networks (TCNs)
and Graph Convolutional Networks (GCNs) with self-attention mechanisms to effectively capture temporal and spatial
dependencies, respectively. In contrast, our RSTIB-MLP employs Multi-Layer Perceptrons (MLPs) alone, simplifying
the model architecture. This section provides a detailed analysis of the computational complexity associated with these
fundamental model architectures.

Table 6. Notation for Computational Complexity Analysis of GCNs and Self-Attention Mechanisms.
Symbol Description
N The number of time series
E The edge matrix
|E| The number of edges
A The adjacency matrix, where A ∈ RN×N

d The hidden dimension of each time series
deg The average degree of the time series
Â The adjacency matrix with self-loops, Â = A+ I where I is the identity matrix
D̂ The diagonal degree matrix corresponding to Â, where D̂ii =

∑
j Âij

Â′ The normalized adjacency matrix, Â′ = D̂− 1
2 ÂD̂− 1

2

Z The feature matrix, where Z ∈ RN×d

W (l) The feature transformation matrix for the l-th layer, ∈ Rd×d

τ(·) A non-linear activation function
L The total number of layers in the network
W

(l)
Q The query matrix for the l-th layer of the self-attention mechanism, W (l)

Q ∈ Rd×d

W
(l)
K The key matrix for the l-th layer of the self-attention mechanism, W (l)

K ∈ Rd×d

W
(l)
V The value matrix for the l-th layer of the self-attention mechanism, W (l)

V ∈ Rd×d

Computational Complexity of GCN. We detail the computational complexities of GCNs based on the notations provided
in Table 6. The computation at the l-th layer of a GCN can be expressed as:

Z(l+1) = τ(Â′Z(l)W (l)) (43)

which can typically be divided into two primary operations:

• Feature Transformation: Z ′(l) = Z(l)W (l).

• Neighborhood Aggregation: Z(l+1) = τ(Â′Z ′(l)).

Thus, naively, the computational complexity of GCN can be expressed as:

O(L · (N · d2 +N2 · d)) (44)

In practice, the scatter function from Pytorch (Paszke et al., 2019) can efficiently handle the graph structure’s sparsity. Given
that the average degree of nodes is denoted by deg, the complexity for neighborhood aggregation per node is O(deg × d),
resulting in a total of O(N × deg × d) = O(|E| × d). Thus, the practical computational complexity of a GCN is:

O(L · (N · d2 + |E| · d)) (45)

Generally, the complexity of the activation function τ(·), being an element-wise operation, is negligible and can be
approximated as O(N).

When combining GCNs with a Self-Attention mechanism, the query, key, and value matrices in the l-th layer, denoted as
W l

Q, W l
K , and W l

V respectively, are all d× d matrices. The self-attention mechanism involves the following computations:
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1. Compute Q(l) = Z(l)W
(l)
Q , K(l) = Z(l)W

(l)
K , and V (l) = Z(l)W

(l)
V , each with a computational cost of O(Nd2).

2. Compute the product Q(l)K(l)⊤, which incurs a cost of O(N2d).

3. Compute the final attention scores, requiring O(N2d) time.

Therefore, the total computational complexity when incorporating self-attention is:

O(L · (N2d+Nd2)) (46)

Computational Complexity of TCNs. We detail the computational complexities of TCNs based on the notations provided
in Table 7. TCNs integrated with attention mechanisms are often benchmarked against sequential models such as RNNs and
LSTMs. The computational complexity for these sequence models is typically O(L× T ×N2 × d2). However, similar
to the above analysis, TCNs equipped with attention mechanisms generally incur lower computational costs, estimated at
O(L×N × T 2 × d). The reduced complexity is attributed to the faster learning dynamics of T 2 compared to (N × d)2.
Although TCNs have been demonstrated to enhance efficiency significantly (Zhou et al., 2020), they are still considered
sub-optimal compared to MLP networks.

Table 7. Notation for Computational Complexity Analysis of TCNs with Attention Mechanisms.
Symbol Description
L The number of layers in the model
T The length of the time series
N The number of time series
d The hidden dimension

Computational Complexity of RSTIB-MLP Networks. The RSTIB-MLP architecture employs a straightforward encoder-
decoder MLP network design. We denote din as the input dimension, dout as the output dimension, and d as the dimension
of the hidden layer. The computational complexity of the model can be succinctly expressed as O(N× (din×d+dout×d)),
where N represents the number of time series being processed.

Table 8. Notation for Computational Complexity Analysis of RSTIB-MLP Networks.
Symbol Description
N The number of time series
din The dimension of the input
dout The dimension of the output
d The dimension of the hidden layer in the MLP network

Thus, theoretically, RSTIB-MLP’s computational complexity is considerably more efficient than that of STGNN-based
methods, primarily due to its streamlined MLP-based model architecture.

I. Further Discussions
I.1. Limitations

Our general framework leaves many interesting questions for future investigation. For example, could we automatically
search for better regularization coefficients with theoretical and empirical efficiency guarantees? Besides, MLPs with
specially designed modules have been proven to be effective. Could we instantiate the RSTIB principle to incorporate more
reliable spatial-temporal information from the module design? These are all the limitations and future directions that we are
attempting to explore.

I.2. A further comparison of RSTIB and other IB principles

This section elaborates on the comparative analysis between the Information Bottleneck(IB), its variants and our proposed
Robust Spatial-Temporal Information Bottleneck (RSTIB) principle. Notably, RSTIB extends the capabilities of Deep
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Variational Information Bottleneck (DVIB) and Robust Graph Information Bottleneck (RGIB). Given that RGIB itself
generalizes the Graph Information Bottleneck (GIB), our comparison primarily focuses on the IB model as introduced
by (Tishby et al., 2000), alongside its significant extensions: DVIB (Alemi et al., 2017), GIB (Wu et al., 2020), RGIB (Zhou
et al., 2023), and our RSTIB.

Briefly speaking, compared to IB, as well as DVIB and GIB derivatives, the RSTIB introduces significant advancements by
accounting for spatial-temporal data noise present both in input and target regions, enhancing robustness in both theoretical
constructs and instantiation. While the RSTIB extends the RGIB principle, it diverges by considering lifting specific Markov
assumption typically held to explicitly minimize the irrelevant information terms. The subsequent reformulations can ensure
the integrity of the IB principle. In other words, RSTIB ensures, both theoretically and practically, that encoding Z does
not reduce to the trivial solution Z = Y and preserves information from both X and Y . This enhancement is meticulously
analyzed in Section G, a thoroughness not typically found in RGIB’s analysis. Furthermore, the instantiation of the RSTIB
principle does not depend on specific data structural assumptions inherent to the instantiations of RGIB, which are based on
graph data and assume that the number of edges in the pruned graph, denoted as |ZA|, does not exceed those in the original
graph, |A|. Therefore, the RSTIB framework demonstrates more general potential applications and robustness, making it
suitable for instantiating in Multi-Layer Perceptron (MLP) networks for spatial-temporal forecasting.

Analytically, traditional models such as IB, DVIB, and GIB predominantly focus on minimizing the conditional entropy
H(X|Y ) while maximally preserving H(Y |X). These models operate under the implicit assumption that I(Z;Y |X) = 0,
adhering strictly to the Markov chain condition Z − X − Y . This approach proves effective for specific applications,
such as classification tasks. However, in spatial-temporal forecasting, with the Assumption 4.1 and 4.2 proposed about
spatial-temporal data, such Markov assumption is too restrictive. The noise-related irrelevant information could be obscured
within this restriction, thereby questioning the direct adoption of the Markov assumption Z − X − Y . Besides, RGIB,
by its definition, considers an explicit relationship between the information terms and attempts to balance them in a self-
controlled way. Some of its derived terms, such as H(Z|X,Y ), is minimized by controlling H(Z) to be within the range
γ−
H < H(Z) < γ+

H , given that H(Z) ≥ max{H(Z|X), H(Z|Y )} ≥ H(Z|X,Y ). This requires a delicate balance within
the RGIB objective. In comparison to these, RSTIB adopts a distinct approach. It lifts the Markov condition of Z −X − Y
by adhering to only the X − Z − Y assumption, which is less restrictive while not impairing the bottleneck nature of the
representation Z. This formulation introduces I(Z;Y |X) ̸= 0, with the existing I(Z;X|Y ) to be minimized, enhancing
robustness against noise perturbations in both input and target. Besides, RSTIB focuses on learning the “minimal sufficient
representation” while minimizing explicitly expressed and reformulated irrelevant information under the X − Z − Y
Markov assumption. This strategic orientation provides a theoretical guarantee that the encoding of Z neither reduces to the
trivial solution Z = Y nor compromises the information from X and Y which results in I(X;Z) = 0 and I(Z;Y ) = 0
respectively.

Regarding instantiations, the GIB is inherently intertwined with the Graph Attention Network (GAT) architecture. While
the RGIB mitigates this constraint by eliminating the need to modify the Graph Neural Network (GNN) architecture, it
still necessitates reliance on GNNs and their inherent graph structures. This dependence is under the assumption that the
number of edges in the pruned graph, denoted as |ZA|, does not exceed those in the original graph, denoted as |A|. However,
such an assumption can not hold when generalizing to Multi-Layer Perceptron (MLP) networks, where graph structures are
inapplicable. Meanwhile, spatial-temporal data often comes with no pre-defined graph structure. GIB/RGIB-based method
can not directly be applied to such scenario. Besides, the DVIB adheres strictly to both Markov chain assumptions, which
imposes overly restrictive constraints on the optimization process for the potential set of joint distributions P (X,Y, Z).
In response to these limitations, we propose the RSTIB-MLP instantiation, as outlined in Section 4.2. The information
flow of RSTIB-MLP follows Fig.10, which is under less restrictive Markov assumption for a wider array of potential
joint distributions while not impairing IB nature with theoretical guarantees. Besides, it integrates three independent and
identically distributed (i.i.d.) Gaussian distributions as the prior distributions for the input, representation, and target regions,
which play the role of minimizing the irrelevant information during the optimization. These circumvent the dependency on
graph structures, which can be instantiated in MLPs for spatial-temporal forecasting.

I.3. Linking feature diversity with spatial-temporal heterogeneity

To link feature diversity with spatial-temporal heterogeneity, we propose the Average Node Deviation (AND) metric (Chen
& Liang, 2025), which measures the average pairwise squared difference across all node features. Given a feature matrix
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X ∈ Rn×d, where n is the number of samples (e.g., nodes) and d is the feature dimension, the AND metric is defined as:

D(X) =
1

n2

n∑
i=1

n∑
j=1

d∑
k=1

(xik − xjk)
2 (47)

To connect the AND metric with the overall variance, we derive it as follows:

D(X) =
1

n2

n∑
i=1

n∑
j=1

d∑
k=1

(xik − xjk)
2

=
1
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(
x2
ik + x2

jk − 2xikxjk
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2n
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x2
ik − 2
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xik

)2

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x2
ik −

(
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xik
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2(n− 1)
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(
1

n− 1
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(
x2
ik − nx̄2
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(48)

=
2(n− 1)

n
· tr(Cov)

where x̄k = 1
n

∑n
i=1 xik is the sample mean of the k-th feature dimension, and Cov ∈ Rd×d denotes the sample covariance

matrix of X. The trace of the covariance matrix is given by:

tr(Cov) =

d∑
k=1

(
1

n− 1

n∑
i=1

x2
ik − nx̄2

k

)
(49)

This derivation shows that the AND metric is proportional to the total variance across all feature dimensions:

D(X) ∝ tr(Cov) (50)

The AND metric emphasizes total variance, but it does not distinguish whether such variance is evenly distributed across
features. In contrast, our investigated Var metric (see Eq.(1)) emphasizes balanced standard deviations across feature
dimensions, thus promoting uniform diversity.

I.4. The Role of Knowledge Distillation in Enhancing Feature Diversity and Robustness

In our framework, the Lagrange multipliers associated with regularization terms are fixed as constants. This implies that the
trade-off between the preservation of the target and regularization strength remains uniform across all time series, which
may be suboptimal in scenarios with heterogeneous noise patterns. Moreover, the use of strong regularization can restrict
the representational capacity of the MLP backbone, potentially impeding its ability to capture complex temporal-spatial
dependencies.

Based on the above, we introduce a dynamic regularization mechanism based on a noise impact indicator, implemented via
a KD module. Our motivation stems from the empirical observation that the feature variance tends to decrease significantly
under higher noise ratios. Therefore, we propose to adaptively adjust the KD-based regularization strength according to the
estimated noise impact of each individual time series. Specifically, when the noise impact is low, we relax the regularization
imposed by KD to avoid unnecessary suppression of informative features; conversely, when the noise impact is high, we
intensify the regularization to encourage robustness by suppressing noise-sensitive components.
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This noise-aware KD mechanism allows the model to dynamically modulate the regularization pressure, thereby improving
feature variance and mitigating the negative effects of noise. Notably, the noise impact indicator, which quantifies the
corruption level of each input time series, plays a crucial role in guiding this adaptive behavior during training.

Empirically, we observe consistent performance improvements when incorporating the KD module. These gains are
attributed to KD’s ability to rebalance the optimization objective across time series with varying noise levels, enabling the
MLP—despite its limited capacity—to prioritize cleaner, more informative inputs. However, we also note that while KD
contributes to improved robustness, its impact on predictive accuracy is less pronounced compared to the gains brought
by the RSTIB mechanism. This is likely because the overall objective still necessitates a delicate trade-off between target
preservation and the compression effect induced by reparameterization. Although KD adjusts the relative weighting, it
remains constrained by the inherent optimization objective.

J. Experimental Implementation Details
We provide a comprehensive description of the experimental settings. For all experiments, the best models are selected
based on the Mean Absolute Error (MAE) metric on the validation set. All comparative baselines are trained using their
default settings. The models are trained on NVIDIA GeForce RTX 3090Ti GPUs, utilizing the PyTorch framework (Paszke
et al., 2019). The main code bases referenced are STID (Shao et al., 2022a) and STExplainer (Tang et al., 2023), as
implemented in https://github.com/zezhishao/STID and https://github.com/HKUDS/STExplainer, respectively. Besides,
regarding the attachment of spatial-temporal information, we adopt the spatial-temporal prompts technique in STGKD (Tang
et al., 2024)(https://openreview.net/forum?id=akKNGGWegr). It combines spatial-temporal identity (Shao et al., 2022a)
with dynamic graph construction (Han et al., 2021). The reference implementation for this technique can be found in
https://github.com/zezhishao/STID and https://github.com/liangzhehan/DMSTGCN. We implement the noise injection by
firstly loading the original datasets, then we conduct the data normalization. Further, we build the index information about
time of day and day of week. Notably, The index information is not perturbed by the noise. It is concatenated with perturbed
input afterwards. Besides, the robustness experimental setup is inspired by the approach used in RobustTSF (Cheng
et al., 2024), which investigates time series forecasting under anomalous conditions. While their work focuses on time
series forecasting with outliers and noise, we investigate similar setting but under spatial-temporal forecasting scenario
by introducing noise perturbations and artificial data missing patterns into spatial-temporal graphs. Both works share a
similar methodology of injecting synthetic corruptions into the data to evaluate robustness under controlled perturbations.
We implement this attachment by adopting the default settings in their works and combining them following the guideline
of (Tang et al., 2024) for fair comparison. The additional hyperparameter settings and additional experimental details are
provided in the subsequent sub-sections.

J.1. Implementation Details for RSTIB-MLP

We adopt PyTorch 1.13.1 on NVIDIA RTX 3090Ti GPUs. The algorithm of RSTIB-MLP is shown in Algorithm 1. We
follow STID (Shao et al., 2022a)’s default model configuration, using 3 Multi-Layer Perceptrons layers. The nonlinear
activation τ is ReLU. We follow STID’s default learning rate setting, i.e., we initialize the learning rate η = 0.002, and
apply a decay factor r = 0.5 for all three benchmarks. A summary of the default hyperparameter settings is in Table 9.
Table 9 provides the hyperparameters that produce the results in Section 5.1. For some specific hyperparameters with
a searching space, we provide the results of hyperparameter investigation, mainly consisted of the Lagrange multipliers
λx ∈ {0.01, 0.001, 0.0001, 0.00001}, λy ∈ {0.01, 0.001, 0.0001, 0.00001}, λz ∈ {0.01, 0.001, 0.0001, 0.00001}, and the
distance function D ∈ {MAE,SmoothL1,MSE}, evaluated in PEMS04 dataset in Section K.9.

J.2. Additional Details for Robustness Study

Each specified data noise ratio is termed as γ. And we perform random spatial-temporal noise perturbation by adding
independent Gaussian noise γ · ϵ to each feature dimension of the time series, where ϵ ∼ N(0, 1).
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Table 9. Hyperparameter scope for Section 5.1
Hyperparameters Value/Search space Type

Batch Size B 32 Fixed*
Epoch E 200 Fixed

Learning Rate η 0.002 Fixed
Decay Factor r 0.5 Fixed

Hidden Dimension d 64 Fixed
Number of MLP Layers L 3 Fixed
Non-Linear Activation τ ReLU Fixed

Input Regularization Coefficient λx {0.01, 0.001, 0.0001, 0.00001} Choice†
Target Regularization Coefficient λy {0.01, 0.001, 0.0001, 0.00001} Choice

Representation Regularization Coefficient λz {0.01, 0.001, 0.0001, 0.00001} Choice
Distance Function D {MAE, SmoothL1,MSE} Choice

*Fixed: a constant value

†Choice: choose from a set of discrete values

The boldface numbers: Default setting that produces the result for Section 5.1

K. Further Empirical Results
K.1. Additional Performance Comparison on Clean PEMS Datasets

In this section, we provide additional empirical study for the comparison between the performance of RSTIB-MLP and more baselines
targeting on spatial-temporal traffic forecasting. The results are shown in Table 10. By examing the results, it’s more convincing that our
predictive performance when learning with clean data can be superior, even when comparing with STGNNs.

Table 10. Performance Comparison Under Clean PEMS04, PEMS07, PEMS08 Datasets. The boldface means the best results.

Dataset Metrics Methods

STGCN AGCRN GMSDR FOGS DSTAGNN STHMLP TrendGCN RSTIB-MLP

PEMS04
MAE 20.05 19.83 20.49 19.74 19.30 18.88 18.81 18.46

RMSE 32.07 32.26 32.13 31.66 31.46 30.31 30.68 30.14
MAPE(%) 13.09 12.97 14.15 13.05 12.70 12.74 12.25 12.22

PEMS07
MAE 21.98 22.37 22.27 21.28 21.42 20.71 20.43 19.84

RMSE 35.66 36.55 34.94 34.88 34.51 33.99 34.32 33.90
MAPE(%) 9.28 9.12 9.86 8.95 9.00 8.75 8.51 8.33

PEMS08
MAE 16.39 15.95 16.36 15.73 15.67 15.22 15.15 14.51

RMSE 25.60 25.22 25.58 24.92 24.77 24.18 24.26 24.18
MAPE(%) 10.34 10.09 10.28 9.88 9.94 9.82 9.51 9.44

K.2. Further Ablation Study on Each Regularizations

Table 11. Performance of RSTIB-MLP under different noise ratios and ablated regularization on PEMS04.

Noise Ratio 10% 30% 50%
Method MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE
RSTIB-MLP w/o x+y+z 24.97 37.67 16.55% 29.64 45.75 20.43% 29.80 46.71 19.23%
RSTIB-MLP w/o x+y 24.50 37.28 16.23% 28.84 45.12 17.91% 29.19 45.87 18.79%
RSTIB-MLP w/o y 23.81 36.60 15.56% 27.49 43.58 16.72% 27.98 44.48 17.85%
RSTIB-MLP 23.64 36.44 15.22% 27.15 42.85 17.19% 27.16 43.43 17.76%

In this section, we aim to separately examine each regularization term within the objective function, including input, target, and

29



Information Bottleneck-guided MLPs for Robust Spatial-temporal Forecasting

representation regularizations. For simplicity, we denote ”w/o” meaning the word ”without”, ”x” as input regularization, ”y” as target
regularization and ”z” as representation regularization respectively. As is shown in Table 11, all the regularization terms can enhance the
performance. Notably, there is a fact that the input regularization contributes significantly compared with other regularization terms, while
the contributions from the representation and target regularization terms are comparable. The potential reason may lies on the fact that
applying input regularization ensures that the signals passed to subsequent layers are less noisy. Besides, input regularization can prevent
the model from overly relying on specific input patterns, thereby enhancing robustness. In contrast, solely regularizing the representation
may not sufficiently address the complexity and noise present in the input data.

K.3. Further Empirical Study of Combating Data Missing

To demonstrate broader applicability, we conduct a performance comparison and an ablation study showcasing how each module performs
when combating against noise arising from data missing. We conduct this experiment on the PEMS04 dataset, where we randomly drop
the data by certain ratios. The results are shown in Table 12 and Table 13.

Table 12. Performance comparison of different methods under varying missing ratios.

Missing Ratio 10% 30%
Method MAE RMSE MAPE MAE RMSE MAPE
STG-NCDE 20.25 32.58 13.22% 26.32 40.38 15.27%
STGKD 20.57 32.77 13.40% 29.06 44.22 16.34%
STID 22.65 35.52 13.87% 30.21 44.98 16.85%
RSTIB-MLP 19.83 31.79 12.82% 25.45 39.61 14.94%

Table 13. Ablation Study of RSTIB-MLP modules on the PEMS04 dataset with different missing ratios

Missing Ratio 10% 30%
Method MAE RMSE MAPE MAE RMSE MAPE
RSTIB-MLP 19.83 31.79 12.82% 25.45 39.61 14.94%
RSTIB-MLP w/o KD 19.95 32.10 12.91% 26.31 40.46 15.22%
RSTIB-MLP w/o KD + RSTIB 20.57 32.77 13.40% 29.06 44.22 16.34%
RSTIB-MLP w/o KD + IB 21.35 33.76 13.94% 29.34 44.69 17.91%

These results indicate that RSTIB-MLP can surpass all the MLP-based baselines, even be comparable with STGNNs like STG-NCDE
(Choi et al., 2022). Besides, each module also contributes to the overall robustness. Observing from the results, it is obvious that RSTIB
implementation can significantly enhance the robustness, especially when combating data missing with higher missing data ratio. Besides,
traditional IB implementation and knowledge distillation can also contribute to robustness enhancement, sharing similar conclusions from
our previous results.

K.4. Model Architecture agnostic Study

To ensure consistency, we implement RSTIB on STID (Shao et al., 2022a) to evaluate whether each module’s contribution on enhancing
robustness is model- or network architecture-agnostic. Table 14 demonstrates the results conducted on PEMS04. We keep the same
notations as in Section 5.2.

Table 14. Results of RSTIB implementation on STID for clean and noisy PEMS04 datasets.
Noise Ratio 0% (Clean) 10% 30% 50%
Metrics MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE
STID 18.79 30.37 12.57% 27.83 41.34 17.31% 36.53 52.74 21.11% 36.22 52.15 21.45%
STID+IB 18.65 30.23 12.53% 25.70 38.17 17.17% 34.55 48.07 19.10% 34.99 50.94 19.59%
STID+RSTIB 18.57 30.16 12.51% 24.27 36.89 16.34% 28.67 44.73 18.06% 29.02 46.44 18.37%
STID+RSTIB+KD 18.50 30.02 12.32% 23.99 36.57 16.22% 28.12 44.31 17.81% 28.86 45.63 17.92%

The above results demonstrate the consistency of our method’s performance:

• Each evaluated module contributes to the enhancement of predictive performance under clean setting. However, we observe that the
enhancement of the performance may not be significant. The potential reason could be the fact that our objective function includes
more regularization terms, achieving an optimal balance may be harder, leading to potential over-regularization under clean data.
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• Each module can also be applied to another baseline model, which is STID (Shao et al., 2022a) in this evaluation. Besides,
the enhancement from different modules under noisy scenarios can also be clearly observed. Thus, the RSTIB implementation
contributes significantly to the enhancement of STID’s ability in combating the noise.

K.5. The Average Improvements of RSTIB-MLP When Combating Against Noise Perfurbation

In this section, we calculate the average improvements of RSTIB-MLP when comparing with the best competing methods by averaging
over all the noise ratios on each noisy dataset. The results are summarized in Table 15. We can tell from the table that RSTIB-MLP can
gain large improvement on several datasets when comparing with specific baselines. For example, RSTIB-MLP improves MAE, RMSE
and MAPE by 8.39%, 5.51%, and 3.74% on PEMS04 dataset, and by 7.02%, 4.75%, and 8.08% on PEMS08 dataset compared to one of
the best competing methods, STExplainer (Tang et al., 2023).

Table 15. Average Improvements of RSTIB-MLP Compared with Each Baselines Under Noisy Datasets
Noise Ratio PEMS04 PEMS07 PEMS08
Metrics MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE
STID 33.53(+21.92%) 48.74(+15.78%) 19.96%(+15.95%) 30.73(+4.96%) 52.52(+1.93%) 13.35%(+7.82%) 24.89(+9.02%) 42.20(+7.57%) 15.38%(+9.84%)
GWN 36.82(+28.73%) 51.73(+20.51%) 21.65%(+22.67%) 32.70(+10.06%) 53.71(+3.99%) 17.16%(+21.99%) 25.16(+10.02%) 42.66(+8.58%) 15.53%(+10.71%)
TrendGCN 26.36(+1.39%) 41.68(+1.83%) 19.08%(+12.35%) 31.86(+7.56%) 52.61(+2.01%) 19.53%(+35.20%) 24.15(+6.72%) 39.88(+2.85%) 20.54%(+30.26%)
STExplainer-CGIB 28.64(+8.70%) 43.85(+6.50%) 16.96%(+4.99%) 32.73(+10.40%) 53.61(+3.60%) 14.39%(+13.58%) 25.01(+10.27%) 41.08(+6.12%) 18.4%(+20.48%)
STExplainer 28.49(+8.39%) 43.46(+5.51%) 17.10%(+3.74%) 30.79(+5.19%) 51.96(+0.85%) 14.17%(+12.73%) 24.29(+7.02%) 40.69(+4.75%) 15.13%(+8.08%)
STGKD 27.37(+4.96%) 42.69(+3.69%) 17.53%(+4.34%) 30.28(+3.44%) 51.96(+0.76%) 13.33%(+7.65%) 24.06(+6.38%) 39.92(+2.98%) 15.87%(+12.76%)
BiTGraph 28.74(+9.21%) 43.78(+6.22%) 17.24%(+4.03%) 31.05(+5.97%) 52.31(+1.46%) 14.29%(+13.50%) 24.57(+8.09%) 41.00(+5.49%) 15.27%(+8.89%)
STC-Dropout 31.58(+17.32%) 46.97(+12.48%) 19.01%(+11.73%) 31.09(+6.07%) 52.41(+1.65%) 14.37%(+13.94%) 24.22(+6.82%) 40.63(+6.04%) 15.12%(+8.32%)
STG-NCDE 28.34(+8.07%) 42.92(+4.52%) 19.20%(+12.82%) 31.49(+7.25%) 53.22(+3.07%) 15.59%(+20.98%) 26.38(+14.12%) 40.82(+5.03%) 16.73%(+16.91%)
FreTS 28.70(+9.07%) 43.72(+6.08%) 17.22%(+3.96%) 31.32(+6.73%) 53.01(+2.65%) 15.47%(+20.33%) 24.54(+7.98%) 40.97(+5.43%) 15.23%(+8.64%)
RSTIB-MLP 25.98 40.91 16.72% 29.21 51.55 12.31% 22.48 38.70 13.85%
Noise Ratio LargeST(SD) Weather2K-R Electricity
Metrics MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE
STID 32.19(+8.24%) 49.88(+6.74%) 19.68(+14.61%) 6302.23(+7.01%) 8114.17(+6.21%) 75.36%(+4.27%) 38.10(+8.81%) 64.80(+5.59%) 31.92%(+9.22%)
GWN 32.53(+9.24%) 51.61(+9.67%) 19.96%(+15.61%) 6808.57(+13.73%) 8470.20(+10.27%) 74.69%(+3.38%) - - -
TrendGCN 30.31(+2.80%) 47.84(+2.98%) 17.64%(+5.14%) 5893.37(+0.55%) 7642.31(+0.56%) 72.61%(+0.49%) 35.61(+2.88%) 62.98(+2.86%) 29.84%(+3.13%)
STExplainer-CGIB 30.13(+4.75%) 49.08(+5.38%) 18.45%(+9.39%) 6260.13(+6.02%) 8112.80(+6.01%) 74.88%(+3.69%) - - -
STExplainer 29.50(+2.86%) 47.64(+2.58%) 17.69%(+5.15%) 6257.63(+5.98%) 8109.80(+5.97%) 74.74%(+3.51%) - - -
STGKD 30.43(+2.99%) 47.92(+2.70%) 17.57%(+4.76%) 5891.45(+5.94%) 7639.89(+5.93%) 72.48(+3.32%) 36.35(+4.59%) 63.82(+4.05%) 31.07%(+6.38%)
BiTGraph 30.24(+2.75%) 47.81(+3.30%) 17.61%(+5.00%) 5891.45(+0.52%) 7639.88(+0.53%) 72.48%(+0.31%) 36.99(+6.09%) 63.96(+4.40%) 31.13%(+7.20%)
STC-Dropout 30.34(+2.88%) 47.93(+2.83%) 17.60%(+5.64%) 6260.31(+6.02%) 8111.84(+5.99%) 74.77%(+3.54%) 37.37(+7.39%) 64.87(+5.96%) 31.58%(+9.18%)
STG-NCDE 30.72(+4.12%) 48.43(+4.38%) 17.78%(+5.97%) 6258.56(+6.00%) 8110.60(+5.98%) 74.73%(+3.50%) 37.34(+7.32%) 64.82(+5.88%) 31.60%(+9.22%)
FreTS 30.62(+3.79%) 48.57(+4.43%) 17.70%(+5.52%) 5889.14(+0.48%) 7637.68(+0.50%) 72.43%(+0.24%) 38.81(+10.06%) 65.29(+6.42%) 32.26%(+10.93%)
RSTIB-MLP 29.47 46.42 16.73% 5861.39 7599.68 72.26% 34.53 60.98 28.84%

K.6. A Study of Average Performance Decay Comparison

Table 16. Average Performance Decay Comparison Under Noisy Datasets
Noise Ratio PEMS04 PEMS07 PEMS08
Metrics MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE
STID 33.53(-78.45%) 48.74(-60.49%) 19.96%(-59.55%) 30.73(-50.56%) 52.52(-55.94%) 13.35%(-52.75%) 24.89(-67.38%) 42.20(-76.05%) 15.38%(-47.46%)
GWN 36.82(-91.57%) 51.73(-68.28%) 21.65%(-72.92%) 32.70(-61.48%) 53.71(-61.19%) 17.16%(-98.84%) 25.16(-71.51%) 42.66(-81.61%) 15.53%(-63.13%)
TrendGCN 26.36(-40.14%) 41.68(-35.85%) 19.08%(-55.76%) 31.86(-55.95%) 52.61(-53.29%) 19.53%(-129.49%) 24.15(-59.41%) 39.88(-64.39%) 20.54%(-115.98%)
STExplainer-CGIB 28.64(-49.63%) 43.85(-42.51%) 16.96%(-31.37%) 32.73(-59.27%) 53.61(-52.65%) 14.39%(-67.13%) 25.01(-68.19%) 41.08(-70.67%) 18.4%(-79.34%)
STExplainer 28.49(-53.42%) 43.46(-44.19%) 17.10%(-40.97%) 30.79(-53.95%) 51.96(-55.34%) 14.17%(-66.71%) 24.29(-66.48%) 40.69(-70.18%) 15.13%(-54.39%)
STGKD 27.37(-46.44%) 42.69(-40.15%) 17.53%(-42.06%) 30.28(-49.16%) 51.96(-51.49%) 13.33%(-50.28%) 24.06(-59.02%) 39.92(-60.97%) 15.87%(-48.87%)
BiTGraph 28.74(-52.71%) 43.78(-43.82%) 17.24%(-40.73%) 31.05(-53.33%) 52.31(-54.99%) 14.29%(-66.16%) 24.57(-65.45%) 41.00(-69.42%) 15.27%(-54.24%)
STC-Dropout 31.58(-68.43%) 46.97(-54.61%) 19.01%(-54.18%) 31.09(-51.88%) 52.41(-54.56%) 14.37%(-64.23%) 24.22(-64.76%) 40.63(-67.06%) 15.12%(-55.08%)
STG-NCDE 28.34(-47.53%) 42.92(-38.05%) 19.20%(-50.47%) 31.49(-53.39%) 53.22(-57.27%) 15.59%(-77.16%) 26.38(-70.74%) 40.82(-64.53%) 16.73%(-68.65%)
FreTS 28.70(-52.90%) 43.72(-43.58%) 17.22%(-40.57%) 31.32(-57.23%) 53.01(-57.53%) 15.47%(-77.82%) 24.54(-65.25%) 40.97(-69.65%) 15.23%(-53.99%)
RSTIB-MLP 25.98(-40.74%) 40.91(-35.73%) 16.72%(-36.82%) 29.21(-47.23%) 51.55(-52.06%) 12.31%(-47.78%) 22.48(-54.93%) 38.70(-60.05%) 13.85%(-46.72%)
Noise Ratio LargeST(SD) Weather2K-R Electricity
Metrics MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE
STID 32.19(-82.90%) 49.88(-71.70%) 19.68(-65.10%) 6302.23(-57.64%) 8114.17(-30.88%) 75.36%(-15.34%) 38.10(-88.80%) 64.80(-62.73%) 31.92%(-100.50%)
GWN 32.53(-83.37%) 51.61(-74.24%) 19.96%(-68.01%) 6808.57(-70.59%) 8470.20(-36.45%) 74.69%(-13.17%) - - -
TrendGCN 30.31(-74.30%) 47.84(-61.46%) 17.64%(-51.55%) 5893.37(-47.78%) 7642.31(-22.80%) 72.61%(-11.19%) 35.61(-78.23%) 62.98(-58.96%) 29.84%(-89.82%)
STExplainer-CGIB 30.13(-61.99%) 49.08(-62.03%) 18.45%(-45.39%) 6260.13(-56.71%) 8112.80(-30.83%) 74.88%(-14.58%) - - -
STExplainer 29.50(-68.48%) 47.64(-65.07%) 17.69%(-52.90%) 6257.63(-56.73%) 8109.80(-30.84%) 74.74%(-14.60%) - - -
STGKD 30.43(-72.90%) 47.92(-62.88%) 17.57%(-51.20%) 5891.45(-47.65%) 7639.89(-23.31%) 72.48%(-11.37%) 36.35(-80.40%) 63.82(-59.35%) 31.07%(-95.53%)
BiTGraph 30.24(-60.42%) 47.81(-60.44%) 17.61%(-38.88%) 5891.45(-47.68%) 7639.88(-22.91%) 72.48%(-11.15%) 36.99(-85.14%) 63.96(-60.42%) 31.13%(-93.11%)
STC-Dropout 30.34(-72.88%) 47.93(-63.25%) 17.60%(-50.68%) 6260.31(-57.04%) 8111.84(-30.73%) 74.77%(-14.41%) 37.37(-87.60%) 64.87(-62.79%) 31.58%(-91.74%)
STG-NCDE 30.72(-74.74%) 48.43(-66.20%) 17.78%(-49.79%) 6258.56(-56.76%) 8110.60(-30.84%) 74.73%(-14.58%) 37.34(-88.11%) 64.82(-62.37%) 31.60%(-91.28%)
FreTS 30.62(-74.57%) 48.57(-67.43%) 17.70%(-48.12%) 5889.14(-47.81%) 7637.68(-22.81%) 72.43%(-11.23%) 38.81(-92.89%) 65.29(-61.41%) 32.26%(-98.89%)
RSTIB-MLP 29.47(-68.40%) 46.42(-61.46%) 16.73%(-49.38%) 5861.39(-47.85%) 7599.68(-22.75%) 72.26%(-11.27%) 34.53(-74.39%) 60.98(-53.72%) 28.84%(-83.46%)

In this section, we aim to investigate if RSTIB-MLP’s performance is also superior regarding performance degradation caused by
the noise perturbation. The detailed average performance degradation of each baseline, including RSTIB-MLP, by averaging across
different noise ratios compared with clean scenario on Table 16. Notably, the performance regarding the average performance decline of
RSTIB-MLP is still more superior compared with other baselines. For all the metrics, including MAE, RMSE, MAPE in 6 benchmark
datasets((3× 6 = 18) cases), only 3 cases that RSTIB-MLP has not achieved the best or second-best results. Along with the absolute
best performance achieved by RSTIB-MLP in all cases, it is still reasonable to claim that RSTIB-MLP has better, or comparably good,
robustness, while achieveing substantially improved computationally efficiency.
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K.7. Performance Comparison with Transformer-based baselines

In this section, we aim to investigate the performance comparison with large amount of parameters equipped transformer based baselines
with RSTIB-MLPs. PDFormer (Jiang et al., 2023a), STAEformer (Liu et al., 2023) are chosen as the baseline models, which are
designed for spatial-temporal traffic forecasting, thus the results for the PEMS08 and PEMS04 datasets are provided in Table 17 and
Fig.11.

Figure 11. MAE metric of different baselines on PEMS04 and PEMS08 when Subjecting to Noises

As expected, it is observed that RSTIB-MLP is less effective under cleaner conditions, while it shows superior performance as the noise
ratio increases. This suggests that STAEformer and PDFormer may experience faster degradation in performance under noisy conditions
due to their complex architectures, which is also pointed out in (Yi et al., 2024). Thus, this analysis aids in understanding the trade-off
between efficiency and robustness against noise when selecting models for practical deployment.

Table 17. Performance Comparison with Transformer-based Baselines
Noise Ratio 0%(clean) 10% 30% 50%
Metrics MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE
Dataset PEMS08
STAEformer 13.50 23.11 8.96% 16.81 26.09 14.89% 25.38 42.26 15.62% 45.30 63.89 32.69%
PDFormer 13.64 23.54 9.09% 20.21 32.35 15.52% 28.23 43.22 17.84% 52.20 67.12 35.26%
RSTIB-MLP 14.51 24.18 9.44% 19.90 31.86 12.92% 23.16 40.46 14.26% 24.37 43.77 14.36%

Dataset PEMS04
STAEformer 18.27 30.38 12.10% 20.88 32.05 14.02% 28.64 43.84 19.10% 56.20 74.20 38.02%
PDFormer 18.40 29.94% 12.04% 24.72 38.25 16.31% 33.78 45.21 21.93% 58.32 76.23 39.45%
RSTIB-MLP 18.46 30.14 12.22% 23.64 36.44 15.22% 27.15 42.85 17.19% 27.16 43.43 17.76%

K.8. Model Interpretation Case Study

To gain deeper insights into the learned intermediate representations, we tend to visualize the representations learnt by different models.
Specifically, GWN (Wu et al., 2019), STID (Shao et al., 2022a), STGKD (Tang et al., 2024), RSTIB-MLP are included as the case models.
The case study we conduct follows the steps below:

First, representations of the spatial-temporal signals in the test set are mapped into a R2 space using t-SNE method for dimension
reduction. Then, Gaussian Kernel Density Estimation is adopted to estimate the distribution of the embeddings. The models are all trained
under noise perturbation with the noise ratio = 0.1. We can tell from the results that baselines except RSTIB-MLP tend to result in the
fragmentation of regions into several disconnected subspaces, or collapse into just individual region. In comparison to this, RSTIB-MLP
can be more effective in organizing different spatial regions into larger subspaces with a better cohesion.

K.9. Full Hyperparameter Investigation Results

We have undertaken a hyperparameter investigation, where we selectively vary specific hyperparameters while maintaining the rest at
their default settings. Our investigation centers on 2 kinds of key hyperparameters: the Lagrange multipliers in RSTIB-MLP, denoted
as λ(λx, λy, λz) and the distance function to calculate the noise impact indicator α̂. We are conducting this comprehensive study to
understand how these hyperparameters influence the overall model performance. The experimental outcomes on the PEMS04 dataset are
presented in Fig. 13. Here follows what we have drawn from our observations: i) The Lagrange Multipliers We set λx, λy, λz to be the
same with each other and vary within the range of 1× 10−2, 1× 10−3, 1× 10−4, 1× 10−5. ii) Distance function to calculate noise
impact indicators. We explore different distance functions to calculate the impact indicator for knowledge distillation. Our options for
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Figure 12. Model Interpretation Case Study: Representations of the Spatial-temporal signals in the test set are mapped into a R2 space
using t-SNE method for dimension reduction. Then, Gaussian Kernel Density Estimation is adopted to estimate the distribution of the
embeddings.(Learned by GWN, STID, STGKD, RSTIB-MLP from the left to right respectively, under the noisy PEMS04 dataset with
noise ratio = 30%)
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Figure 13. Hyperparameter Analysis of λ and Distance Function
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the distance functions include Mean Absolute Error(MAE), Mean Squared Error(MSE), and Smooth L1 Loss(SmoothL1).

We observe that, in the PEMS04 dataset, concerning the choice of λ, setting λ = 1× 10−3 allows the MAE and RMSE values to achieve
the best results. In contrast, setting λ = 1× 10−4 yields an optimal value for MAPE. As for selecting the distance function, using MAE
as the distance function leads to the best outcomes for the corresponding MAE and RMSE metrics. Meanwhile, employing the MSE to
compute the impact indicator results in optimized MAPE.

Table 18. Teacher Model Agnostic on PEMS07 Dataset with Varied Noise Ratios
Noise Ratio(γ) 0% 50% 90%

MAE RMSE MAPE(%) MAE RMSE MAPE(%) MAE RMSE MAPE(%)

STID 20.41 33.68 8.74 32.38 57.29 14.07 33.33 58.50 13.96
STGKD 20.30 34.30 8.87 32.16 56.89 14.08 34.59 59.24 14.24
STExplainer-CGIB 20.55 35.12 8.61 35.12 59.17 16.78 44.14 69.23 18.87
STExplainer 20.00 33.45 8.51 32.52 57.64 15.48 45.37 70.57 19.90
TrendGCN 20.43 34.32 8.51 36.78 57.89 23.22 55.99 80.22 32.76
STG-NCDE 20.53 33.84 8.80 33.48 58.83 16.78 46.20 66.33 21.32
Ours-t-MLP 19.93 34.11 8.36 30.74 56.02 12.95 31.36 57.50 13.08
Ours-t-STGCN 19.84 33.90 8.33 30.94 56.79 12.91 30.93 56.91 12.91

K.10. Teacher Model Agnostic Study

We assert that our superior performance is independent of the choice of the teacher model. Table 18 presents our results, where Ours-t-MLP
indicates the adoption of MLP networks as the teacher model, and Ours-t-STGCN indicates the adoption of STGCN networks as the
teacher model. It is important to note that the teacher models are pre-trained, with their parameters fixed during the training of the
RSTIB-MLP. A plausible explanation for these statistics is that we aim to obtain the normalized indicators, thus indicating a relative
relationship among time series. Consequently, the overall performance of its different teacher models does not significantly influence the
RSTIB-MLP’s performance, allowing for a more flexible configuration.

K.11. Replication Study

This section provides the statistically significant robustness study of the RSTIB-MLP compared with some chosen baselines when
subjected to random initialization. We conducted multiple experiments on the PEMS 04/07/08 datasets, selecting five random seeds and
five noisy conditions to ensure statistical significance. We report the average performance and standard deviation. The statistical outcomes
of this investigation are detailed in Table 19, Table 20, Table 21, Table 22, Table 23. The empirical findings indicate RSTIB-MLP’s
remarkable resilience to various initialization conditions.

Table 19. Replication Study for Performance Comparison Under Noise Perturbation with Noise Ratio γ = 10% on three Datasets. The
boldface means the best results.

Method STID STGKD STExplainer-CGIB STExplainer TrendGCN STG-NCDE RSTIB-MLP
Dataset Metric

PEMS04 MAE 27.79±0.45 24.26±0.41 25.86±0.41 24.51±0.26 23.76±0.15 25.02±0.21 23.70 ± 0.50
RMSE 41.45±0.07 37.13±0.24 38.37±0.48 36.94±0.24 37.06±0.27 37.31±0.15 36.58 ± 0.44
MAPE(%) 17.41±0.37 16.13±0.33 16.00±0.17 16.01±0.29 17.56±0.05 17.48±0.27 15.33 ± 0.22

PEMS07 MAE 27.87±0.22 26.89±0.23 27.98±0.49 28.26±0.30 26.76±0.25 28.87±0.41 26.64 ± 0.27
RMSE 45.10±0.45 43.64±0.45 43.89±0.35 44.07±0.15 44.70±0.03 44.55±0.41 43.82 ± 0.48
MAPE(%) 12.33±0.42 12.19±0.46 12.00±0.29 12.13±0.19 14.61±0.01 14.19±0.05 11.55 ± 0.15

PEMS08 MAE 20.26±0.41 20.78±0.41 23.53±0.21 20.22±0.41 20.65±0.21 21.29±0.25 19.91 ± 0.02
RMSE 32.30±0.41 32.52±0.49 35.43±0.11 32.69±0.20 32.65±0.39 33.16±0.32 32.04 ± 0.39
MAPE(%) 14.17±0.11 15.11±0.14 24.28±0.21 13.52±0.09 14.92±0.45 15.27±0.04 13.10 ± 0.36
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Table 20. Replication Study for Performance Comparison Under Noise Perturbation with Noise Ratio γ = 30% on three Datasets. The
boldface means the best results.

Method STID STGKD STExplainer-CGIB STExplainer TrendGCN STG-NCDE RSTIB-MLP
Dataset Metric

PEMS04 MAE 36.46±0.50 28.64±0.09 31.78±0.39 31.41±0.49 27.16±0.34 29.10±0.11 27.31 ± 0.05
RMSE 52.60±0.05 44.85±0.12 48.47±0.18 46.98±0.07 42.96±0.11 44.36±0.42 43.03 ± 0.47
MAPE(%) 21.23±0.43 17.48±0.07 18.09±0.16 17.98±0.45 19.43±0.43 19.26±0.02 17.21 ± 0.44

PEMS07 MAE 31.87±0.49 31.59±0.39 34.89±0.20 31.43±0.23 31.82±0.11 32.29±0.19 30.29 ± 0.15
RMSE 55.21±0.03 55.24±0.29 57.44±0.16 54.21±0.09 55.23±0.40 56.29±0.04 54.14 ± 0.30
MAPE(%) 13.63±0.07 13.62±0.33 14.32±0.20 14.98±0.27 20.68±0.33 15.84±0.39 12.80 ± 0.34

PEMS08 MAE 26.61±0.42 25.65±0.45 24.88±0.38 25.60±0.30 24.90±0.42 28.41±0.40 23.24 ± 0.20
RMSE 45.79±0.08 43.46±0.28 43.15±0.15 43.37±0.37 41.58±0.40 41.99±0.10 40.47 ± 0.02
MAPE(%) 15.64±0.35 16.21±0.29 15.44±0.21 16.75±0.47 23.55±0.38 16.29±0.45 14.38 ± 0.27

Table 21. Replication Study for Performance Comparison Under Noise Perturbation with Noise Ratio γ = 50% on three Datasets. The
boldface means the best results.

Method STID STGKD STExplainer-CGIB STExplainer TrendGCN STG-NCDE RSTIB-MLP
Dataset Metric

PEMS04 MAE 36.26±0.40 29.15±0.29 28.48±0.07 29.45±0.44 27.90±0.05 31.06±0.29 27.29 ± 0.06
RMSE 52.32±0.21 46.40±0.09 44.74±0.05 46.50±0.46 44.81±0.15 47.29±0.36 43.60 ± 0.46
MAPE(%) 21.42±0.01 18.56±0.33 16.88±0.30 17.23±0.34 20.31±0.39 20.74±0.41 17.60 ± 0.12

PEMS07 MAE 32.56±0.15 32.10±0.28 35.08±0.44 32.53±0.49 36.82±0.11 33.34±0.39 30.97 ± 0.15
RMSE 57.40±0.00 56.93±0.30 59.06±0.17 57.47±0.16 57.72±0.21 58.99±0.24 56.92 ± 0.22
MAPE(%) 13.91±0.22 14.02±0.33 16.75±0.26 15.41±0.47 23.41±0.11 16.76±0.34 12.98 ± 0.39

PEMS08 MAE 27.73±0.46 25.88±0.24 26.63±0.32 27.16±0.02 26.86±0.25 29.40±0.01 24.47 ± 0.24
RMSE 48.49±0.24 43.94±0.16 44.60±0.43 45.70±0.03 45.67±0.26 47.13±0.25 43.84 ± 0.26
MAPE(%) 16.27±0.26 16.77±0.37 15.61±0.17 15.30±0.40 23.15±0.44 18.45±0.47 14.41 ± 0.24

Table 22. Replication Study for Performance Comparison Under Noise Perturbation with Noise Ratio γ = 70% on three Datasets. The
boldface means the best results.

Method STID STGKD STExplainer-CGIB STExplainer TrendGCN STG-NCDE RSTIB-MLP
Dataset Metric

PEMS04 MAE 31.34±0.47 29.86±0.48 38.56±0.38 33.31±0.38 33.07±0.34 33.21±0.09 27.08 ± 0.26
RMSE 47.12±0.28 46.06±0.30 58.65±0.24 52.14±0.17 51.04±0.42 49.79±0.27 43.12 ± 0.22
MAPE(%) 18.49±0.17 17.66±0.04 21.69±0.27 19.26±0.25 24.38±0.02 22.24±0.37 17.42 ± 0.12

PEMS07 MAE 32.42±0.03 32.80±0.18 41.48±0.41 43.83±0.09 43.07±0.05 43.25±0.32 31.02 ± 0.25
RMSE 58.15±0.28 57.58±0.41 66.23±0.22 68.77±0.48 64.76±0.18 63.26±0.29 57.03 ± 0.20
MAPE(%) 13.89±0.47 14.17±0.22 17.30±0.23 17.95±0.38 29.23±0.28 18.76±0.28 13.01 ± 0.20

PEMS08 MAE 26.32±0.00 25.02±0.08 28.28±0.09 28.15±0.49 32.49±0.40 30.35±0.15 24.36 ± 0.30
RMSE 45.72±0.22 45.55±0.36 45.83±0.02 46.96±0.24 47.82±0.23 49.25±0.22 43.70 ± 0.50
MAPE(%) 16.54±0.18 15.04±0.10 17.55±0.25 16.86±0.07 28.25±0.20 20.15±0.00 14.24 ± 0.28

Table 23. Replication Study for Performance Comparison Under Noise Perturbation with Noise Ratio γ = 90% on three Datasets. The
boldface means the best results.

Method STID STGKD STExplainer-CGIB STExplainer TrendGCN STG-NCDE RSTIB-MLP
Dataset Metric

PEMS04 MAE 33.62±0.06 29.26±0.10 33.11±0.39 34.37±0.44 46.22±0.12 37.06±0.42 28.11 ± 0.29
RMSE 49.02±0.41 45.89±0.37 49.52±0.09 53.38±0.26 67.66±0.03 56.11±0.40 44.67 ± 0.41
MAPE(%) 20.37±0.26 17.88±0.21 24.49±0.46 26.70±0.41 38.52±0.27 25.79±0.24 17.05 ± 0.36

PEMS07 MAE 33.42±0.05 34.77±0.39 44.25±0.13 45.40±0.49 55.86±0.09 46.33±0.07 31.00 ± 0.43
RMSE 58.39±0.12 59.33±0.10 69.36±0.29 70.63±0.43 80.23±0.41 66.36±0.40 56.96 ± 0.16
MAPE(%) 14.13±0.32 14.09±0.32 19.04±0.14 19.95±0.17 32.67±0.05 21.25±0.40 13.10 ± 0.06

PEMS08 MAE 26.50±0.27 25.37±0.46 32.71±0.02 28.72±0.17 46.71±0.48 32.59±0.04 24.43 ± 0.30
RMSE 45.26±0.13 44.89±0.07 53.49±0.25 47.20±0.18 65.12±0.26 53.41±0.33 44.04 ± 0.39
MAPE(%) 15.97±0.03 15.64±0.37 20.04±0.05 18.27±0.48 38.77±0.39 23.44±0.12 14.22 ± 0.47
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