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ABSTRACT

Recent advances in diffusion bridge models leverage Doob’s h-transform to es-
tablish fixed endpoints between distributions, demonstrating promising results in
image translation and restoration tasks. However, these approaches frequently
produce blurred or excessively smoothed image details and lack a comprehensive
theoretical foundation to explain these shortcomings. To address these limitations,
we propose a Unified framework for Diffusion Bridges (UniDB) based on Stochas-
tic Optimal Control (SOC). UniDB formulates the problem through an SOC-based
optimization and derives a closed-form solution for the optimal controller, thereby
unifying and generalizing existing diffusion bridge models. We demonstrate that
existing diffusion bridges employing Doob’s h-transform constitute a special case
of our framework, emerging when the terminal penalty coefficient in the SOC cost
function tends to infinity. By incorporating a tunable terminal penalty coefficient,
UniDB achieves an optimal balance between control costs and terminal penalties,
substantially improving detail preservation and output quality. Notably, UniDB
seamlessly integrates with existing diffusion bridge models, requiring only minimal
code modifications. Extensive experiments across diverse image restoration tasks
validate the superiority and adaptability of the proposed framework. Our code is
available at https://github.com/UniDB-SOC/UniDB/.

1 INTRODUCTION

The diffusion model has been extensively utilized across a range of applications, including image
generation and editing Ho et al. (2020); Kawar et al. (2022); Song et al. (2020); Xia et al. (2023); Li
et al. (2023), imitation learning Wu et al. (2024); Chi et al. (2023); Ze et al. (2024) and reinforcement
learning Yang et al. (2023); Ding et al. (2024a), etc. Despite its versatility, the standard diffusion
model faces limitations in transitioning between arbitrary distributions due to its inherent assumption
of a Gaussian noise prior. To overcome this problem, diffusion models Dhariwal & Nichol (2021);
Ho & Salimans (2022); Murata et al. (2023); Ding et al. (2024b); Chung et al. (2022); Tang et al.
(2024) often rely on meticulously designed conditioning mechanisms and classifier/loss guidance to
facilitate conditional sampling and ensure output alignment with a target distribution. However, these
methods can be cumbersome and may introduce manifold deviations during the sampling process.
Meanwhile, Diffusion Schrödinger Bridge Shi et al. (2024); De Bortoli et al. (2021); Somnath et al.
(2023) involves constraints that hinder direct optimization of the KL divergence, resulting in slow
convergence and limited model fitting capability.

To address this challenge, DDBMs Zheng et al. (2024) proposed a diffusion bridge model using
Doob’s h-transform. This framework is specifically designed to establish fixed endpoints between
two distinct distributions by learning the score function of the diffusion bridge from data, and then
solving the stochastic differential equation (SDE) based on these learned scores to transition from one

∗Equal contribution.
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Figure 1: Here we briefly compare the performance of UniDB to diffusion bridge with Doob’s h-
transform Yue et al. (2023) across various tasks, including Super-resolution, Inpainting and Deraining.
UniDB effectively balances control and terminal costs by modifying the terminal penalty coefficient,
alleviating the problems caused by Doob’s h-transform in these applications. This framework
significantly boosts the detail rendering ability of generated images while imposing minimal overhead
in code modifications.

endpoint distribution to another. However, the forward SDE in DDBMs lacks the mean information
of the terminal distribution, which restricts the quality of the generated images, particularly in image
restoration tasks. Subsequently, GOUB Yue et al. (2023) extends this framework by integrating Doob’s
h-transform with a mean-reverting SDE, achieving better results compared to DDBMs. Despite the
promising results in diffusion bridge with Doob’s h-transform, two fundamental challenges persist:
1) the theoretical mechanisms by which Doob’s h-transform governs the bridging process remain
poorly understood, lacking a rigorous framework to unify its empirical success; and 2) while effective
for global distribution alignment, existing methods frequently degrade high-frequency details—such
as sharp edges and fine textures—resulting in outputs with blurred or oversmoothed artifacts that
compromise perceptual fidelity. These limitations underscore the need for both theoretical grounding
and enhanced detail preservation in diffusion bridges.

In this paper, we revisit the diffusion bridges through the lens of stochastic optimal control (SOC) by
introducing a novel framework called UniDB, which formulates an optimization problem based on
SOC principles to implement diffusion bridges. It enables the derivation of a closed-form solution
for the optimal controller, along with the corresponding training objective for the diffusion bridge.
UniDB identifies Doob’s h-transform as a special case when the terminal penalty coefficient in
the SOC cost function approaches infinity. This explains why Doob’s h-transform may result in
suboptimal solutions with blurred or distorted details. To address this limitation, UniDB utilizes
the penalty coefficient in SOC to adjust the expressiveness of the image details and enhance the
authenticity of the generated outputs. Our main contributions are as follows:

• We introduce UniDB, a novel unified diffusion bridge framework based on stochastic optimal
control. This framework generalizes existing diffusion bridge models like DDBMs and
GOUB, offering a comprehensive understanding and extension of Doob’s h-transform by
incorporating general forward SDE forms.
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• We derive closed-form solutions for the SOC problem, demonstrating that Doob’s h-
transform is merely a special case within UniDB when the terminal penalty coefficient
in the SOC cost function approaches infinity. This insight reveals inherent limitations in the
existing diffusion bridge approaches, which UniDB overcomes. Notably, the improvement
of UniDB requires minimal code modification, ensuring easy implementation.

• UniDB achieves state-of-the-art results in various image restoration tasks, including super-
resolution (DIV2K), inpainting (CelebA-HQ), and deraining (Rain100H), which highlights
the framework’s superior image quality and adaptability across diverse scenarios.

2 RELATED WORK

Diffusion with Guidance. This technique tackles conditional generative tasks by leveraging a
differentiable loss function for guidance without the need for additional training Chung et al. (2022);
Shenoy et al. (2024); Bradley & Nakkiran (2024). However, it often yields suboptimal image quality
and a prolonged sampling process due to the necessity of small step sizes. Most importantly, the
sampling process is prone to manifold deviations and detail losses Yang et al. (2024). Furthermore,
enhancing the guidance of the diffusion typically requires the introduction of additional modules,
thereby increasing the model’s computational complexity.

Diffusion Bridge with Doob’s h-transform. Recent advances in diffusion bridging have demon-
strated the efficacy of Doob’s h-transform in enhancing transition quality between arbitrary distri-
butions. Notably, DDBMs Zhou et al. (2023) pioneered this approach by employing a linear SDE
combined with Doob’s h-transform to construct direct diffusion bridges. Subsequently, GOUB Yue
et al. (2023) extends this framework by integrating Doob’s h-transform with a mean-reverting SDE,
achieving state-of-the-art performance in image restoration tasks. Despite these empirical successes,
the theoretical foundations of Doob’s h-transform in this context remain insufficiently explored. In
addition, these methods often result in images with blurred or oversmoothed features, particularly
affecting the capture of high-frequency details crucial for perceptual fidelity.

Diffusion with Stochastic Optimal Control. The integration of SOC principles into diffusion
models has emerged as a promising paradigm for guiding distribution transitions. DIS Berner
et al. (2022) established a foundational theoretical linkage between diffusion processes and SOC,
while RB-Modulation Rout et al. (2024) operationalized SOC via a simplified SDE structure for
training-free style transfer using pre-trained diffusion models. Close to our work, DBFS Park et al.
(2024) leveraged SOC to construct diffusion bridges in infinite-dimensional function spaces and also
established equivalence between SOC and Doob’s h-transform. However, DBFS primarily extends
Doob’s h-transform to infinite Hilbert spaces via SOC, without addressing its intrinsic limitations.
Our analysis reveals a critical insight: Doob’s h-transform corresponds to a suboptimal solution that
can inherently lead to artifacts such as blurred or distorted details. To resolve this, we introduce a
unified SOC framework that jointly optimizes trajectory costs and terminal constraints, enhancing
detail preservation and image quality.

3 PRELIMINARIES

3.1 DENOISING DIFFUSION BRIDGE MODELS

Starting with an initial d-dimensional data distribution x0 ∼ qdata(x), diffusion models Song et al.
(2020); Ho et al. (2020); Sohl-Dickstein et al. (2015); Song & Ermon (2019) construct a diffusion
process, which can be achieved by defining a forward stochastic process evolving from x0 and
promise the transition probability p(xt | xs) remains Gaussian Zheng et al. (2024) through a
stochastic differential equation (SDE):

dxt = f(xt, t)dt+ gt dwt, f(xt, t) = f(t)xt. (1)
where t ranges over the interval [0, T ], f(t) is some scalar-valued function, g : [0, T ]→ R signifies
the scalar-valued diffusion coefficient and wt ∈ Rd is the Wiener process, also known as Brownian
motion. To realize transition between arbitrary distributions, DDBMs introduces Doob’s h-transform
Särkkä & Solin (2019), a mathematical technique applied to stochastic processes, which rectifies the
drift term of the forward diffusion process to pass through a preset terminal point xT ∈ Rd. Precisely,
the forward process of diffusion bridges after Doob’s h-transform becomes:

dxt =
[
f(xt, t) + g2th(xt, t,xT , T )

]
dt+ gt dwt, (2)
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where h(xt, t,xT , T ) = ∇xt
log p(xT | xt) is the h function. The diffusion bridge can connect

the initial x0 to any given terminal xT and thus is promising for various image restoration tasks.
Meanwhile, its backward reverse SDE Anderson (1982) is given by

dxt =
[
f(xt, t) + g2t∇xt

log p(xT | xt)− g2t∇xt
log p(xt | xT )

]
dt+ gt dw̃t. (3)

where w̃t is the reverse-time Wiener process and the unknown term ∇xt
log p(xt | xT ) can be

estimated by a score prediction neural network sθ Song et al. (2020).

3.2 GENERALIZED ORNSTEIN-UHLENBECK BRIDGE

Generalized Ornstein-Uhlenbeck (GOU) process describes a mean-reverting stochastic process
commonly used in finance, physics, and other fields in the following SDE form Ahmad (1988):

dxt = θt (µ− xt) dt+ gt dwt, (4)

where µ is a given state vector, θt denotes a scalar drift coefficient and gt represents the diffusion
coefficient with θt, gt satisfying the specified relationship g2t = 2λ2θt where λ2 is a given constant
scalar. Based on this, Generalized Ornstein-Uhlenbeck Bridge (GOUB) is a diffusion bridge model
Yue et al. (2023), which can address image restoration tasks without the need for specific prior
knowledge. With the introduction of µ, xt tends to µ as time t progresses. Through Doob’s
h-transform, denote θ̄s:t =

∫ t

s
θzdz, θ̄t =

∫ t

0
θzdz for simplification when s = 0 and σ̄2

s:t =

λ2(1− e−2θ̄s:t), the forward process of GOUB is formed as:

dxt = (θt + g2t
e−2θ̄t:T

σ̄2
t:T

) (xT − xt) dt+ gt dwt. (5)

And the forward transition p(xt | x0,xT ) is given by

p(xt | x0,xT ) = N (µ̄′
t, σ̄

′2
t I), µ̄′

t = e−θ̄t
σ̄2
t:T

σ̄2
T

x0 + (1− e−θ̄t
σ̄2
t:T

σ̄2
T

)xT , σ̄′2
t =

σ̄2
t σ̄

2
t:T

σ̄2
T

. (6)

Also, GOUB presents a new reverse ODE called Mean-ODE, which directly neglects the Brownian
term of (3):

dxt =
[
f(xt, t) + g2t∇xt log p(xT | xt)− g2t∇xt log p(xt | xT )

]
dt. (7)

3.3 STOCHASTIC OPTIMAL CONTROL

Stochastic Optimal Control (SOC) is a mathematical discipline that focuses on determining optimal
control strategies for dynamic systems under uncertainty. By integrating stochastic processes with op-
timization theory, SOC seeks to identify the best control strategies in scenarios involving randomness,
as commonly encountered in fields like finance Geering et al. (2010) and style transfer Rout et al.
(2024). Considering the dynamics described in (1), let us examine the following Linear Quadratic
SOC problem Bryson (2018); O’Connell (2003); Kappen (2008); Chen et al. (2023):

min
ut,γ∈U

∫ T

0

1

2
∥ut,γ∥22 dt+

γ

2
∥xu

T − xT ∥22 s.t. dxt = (f(xt, t) + gtut,γ) dt+ gt dwt, x
u
0 = x0,

(8)
where xu

t is the diffusion process under control, x0 and xT represent for the initial state and the preset
terminal respectively, ∥ut,γ∥22 is the instantaneous cost, γ

2 ∥x
u
T − xT ∥22 is the terminal cost with its

penalty coefficient γ. The SOC problem aims to design the controller ut,γ to drive the dynamic
system from x0 to xT with minimum cost.

4 METHODS

4.1 DIFFUSION BRIDGES CONSTRUCTED BY SOC PROBLEM

The forward SDE of the Diffusion Bridge with Doob’s h-transform is enforced to pass from the
predetermined origin x0 to the terminal xT . With a similar purpose, UniDB constructs a SOC
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problem where the constraints are an arbitrary linear SDE of the forward diffusion with a given initial
state, while the objective incorporates a penalty term steering the forward diffusion trajectory towards
the predetermined terminal xT . Meanwhile, compared with the linear drift term (1), we combined a
given state vector term m with the same dimension as xt and its related coefficient ht to improve the
generality of the linear SDE form:

f(xt, t) = ftxt + htm. (9)

Accordingly, our SOC problem with unified linear SDE (9) is formed as:

min
ut,γ∈U

∫ T

0

1

2
∥ut,γ∥22dt+

γ

2
∥xu

T − xT ∥22 s.t.dxt =
(
ftxt + htm+ gtut,γ

)
dt+ gtdwt, x

u
0 = x0.

(10)

According to the certainty equivalence principle Chen et al. (2023); Rout et al. (2024), the addition of
noise or perturbations to a linear system with quadratic costs does not change the optimal control.
Therefore, we can modify the SOC problem with the deterministic ODE condition to obtain the
optimal controller u∗

t,γ as follows,

min
ut,γ∈U

∫ T

0

1

2
∥ut,γ∥22dt+

γ

2
∥xu

T − xT ∥22 s.t.dxt =
(
ftxt + htm+ gtut,γ

)
dt, xu

0 = x0. (11)

We can derive the closed-form solution to the problem (11), which leads to the following Theorem
4.1:
Theorem 4.1. Consider the SOC problem (11), denote dt,γ = γ−1 + e2f̄T ḡ2t:T , f̄s:t =

∫ t

s
fzdz,

h̄s:t =
∫ t

s
e−f̄zhzdz and ḡ2s:t =

∫ t

s
e−2f̄zg2zdz, denote f̄t, h̄t and ḡ2t for simplification when s = 0,

then the closed-form optimal controller u∗
t,γ is

u∗
t,γ = gte

f̄t:T
xT − ef̄t:T xt −mef̄T h̄t:T

dt,γ
, (12)

and the transition of xt from x0 and xT is

xt = ef̄t

(
dt,γ
d0,γ

x0 +
ef̄T ḡ2t
d0,γ

xT +
(
h̄t −

e2f̄T h̄T ḡ
2
t

d0,γ

)
m

)
. (13)

The proof of Theorem 4.1 is provided in Appendix A.1. With Theorem 4.1, we can obtain an
optimally controlled forward SDE connected from x0 to the neighborhood of the terminal xT and
the transition of xt for the forward process. As for the backward process, similar to (3) and (7), the
backward reverse SDE and Mean-ODE are respectively formulated as:

dxt =
[
ftxt + htm+ gtu

∗
t,γ − g2t∇xt

log p(xt|xT )
]
dt+ gtdw̃t, (14)

dxt =
[
ftxt + htm+ gtu

∗
t,γ − g2t∇xt

log p(xt | xT )
]
dt. (15)

4.2 CONNECTIONS BETWEEN SOC AND DOOB’S h-TRANSFORM

We can intuitively see from the SOC problem that when γ →∞ in Theorem 4.1, it means that the
target of SDE process is precisely the predetermined endpoint Chen et al. (2023), which is also the
purpose of Doob’s h-transform and facilitates the following theorem:
Theorem 4.2. For the SOC problem (11), when γ → ∞, the optimal controller becomes u∗

t,∞ =
gt∇xt

log p(xT | xt), and the corresponding forward and backward SDE with the linear SDE form
(9) are the same as Doob’s h-transform as in (2) and (3).

The proof of Theorem 4.2 is presented in Appendix A.2. This theorem shows that existing diffusion
bridge models using Doob’s h-transform are merely special instances of our UniDB framework,
which offers a unified approach to diffusion bridges through the lens of SOC. Furthermore, using
Doob’s h-transform in diffusion bridge models is not necessarily optimal, as letting the terminal
penalty coefficient γ →∞ eliminates the consideration of control costs in SOC.
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4.3 TRAINING OBJECTIVE OF UNIDB

In this section, we focus on constructing the training objective of UniDB. According to maximum
log-likelihood Ho et al. (2020) and conditional score matching Song et al. (2020), the training
objective is based on the forward transition p(xt|x0,xT ). Thus, we begin by deriving this probability.
The closed-form expression in (13) represents the mean value of the forward transition after applying
reparameterization techniques. However, this expression lacks a noise component after the trans-
formation based on the certainty equivalence principle. To address this issue, we employ stochastic
interpolant theory Albergo et al. (2023) to introduce a noise term σ̄′

tϵ with σ̄′
0 = σ̄′

T = 0. We define
σ̄′2
t = σ̄2

t σ̄
2
t:T /σ̄

2
T similar to (6) with σ̄2

s:t = e2f̄t ḡ2s:t, leading to the following forward transition:

p(xt | x0, xT ) = N (µ̄t,γ , σ̄
′2
t I), µ̄t,γ = ef̄t

( dt,γ
d0,γ

x0 +
ef̄T ḡ2t
d0,γ

xT +
(
h̄t −

e2f̄T h̄T ḡ
2
t

d0,γ

)
m
)
. (16)

The derailed derivation is provided in Appendix A.3. Similar to Yue et al. (2023) using the l1 loss form
to bring improved visual quality and details at the pixel level Boyd (2004); Hastie et al. (2017), we can
derive the training objective. Denote at,γ = ef̄tdt,γ , assuming µt−1,θ, σ2

t−1,θ and µt−1,γ , σ2
t−1,γ are

respectively the mean values and variances of pθ(xt−1 | xt, xT ) and p(xt−1 | x0,xt, xT ), suppose
the score∇xt

log p(xt | xT ) is parameterized as −ϵθ(xt, xT , t)/σ̄
′
t, the final training objective is as

follows,

Lθ = Et,x0,xt,xT

[
1

2σ2
t−1,θ

∥∥µt−1,θ − µt−1,γ

∥∥
1

]
, σt−1,θ = gt,

µt−1,θ = xt − ftxt − htm− gtu
∗
t,γ +

g2t
σ̄′
t

ϵθ(xt, xT , t),µt−1,γ = µ̄t−1,γ +
σ̄′2
t−1at,γ

σ̄′2
t at−1,γ

(xt − µ̄t,γ).

(17)
Please refer to Appendix A.4 for detailed derivations. Therefore, we can recover or generate the
origin image x̂0 through Euler sampling iterations. So far, we’ve built the UniDB framework, which
establishes and expands the forward and backward process of the diffusion bridge model through
SOC and comprises Doob’s h-transform as a special case.

4.4 UNIDB UNIFIES DIFFUSION BRIDGE MODELS

Our UniDB is a unified framework for existing diffusion bridge models: DDBMs (VE) Zhou et al.
(2023), DDBMs (VP) Zhou et al. (2023) and GOUB Yue et al. (2023).

Proposition 4.3. UniDB encompasses existing diffusion bridge models by employing different hyper-
parameter spacesH as follows:

• DDBMs (VE) corresponds to UniDB with hyperparameterHVE(ft = 0, ht = 0, γ →∞)

• DDBMs (VP) corresponds to UniDB with hyperparameterHVP(ft = − g2
t

2 , ht = 0, γ →∞)

• GOUB corresponds to UniDB with hyperparameterHGOU(ft = −ht = θt,m = µ, γ →∞)

4.5 AN EXAMPLE: UNIDB-GOU

It is evident that these diffusion bridge models like DDBMs (VE), DDBMs (VP) and GOUB all
based on Doob’s h-transform are all special cases of UniDB with γ → ∞. We introduce UniDB
based on the GOU process (4) as an example, hereafter referred to as UniDB-GOU, which retains the
penalty coefficient γ as the hyper-parameter. Considering the SOC problem with GOU process (4),
the optimally controlled forward SDE and the mean value of forward transition p(xt | x0, xT ) are
respectively:

dxt = (θt+
g2t e

−2θ̄t:T

γ−1 + σ̄2
t:T

)(xT−xt)dt+gtdwt, µ̄t,γ = e−θ̄t
1 + γσ̄2

t:T

1 + γσ̄2
T

x0+(1−e−θ̄t
1 + γσ̄2

t:T

1 + γσ̄2
T

)xT .

(18)

Please refer to Appendix A.5 for detailed proof. It’s worth noting that our UniDB model can be a
plugin module to the existing diffusion bridge with Doob’s h-transform. Taking UniDB-GOU as an
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example, we highlight the key difference between UniDB-GOU and GOUB (the coefficient of x0 in
the mean value of forward transition and h-function term) as follows:

e−θ̄t
σ̄2
t:T

σ̄2
T

, gth =
gte

−2θ̄t:T (xT − xt)

σ̄2
t:T︸ ︷︷ ︸

GOUB

⇒ e−θ̄t
γ−1 + σ̄2

t:T

γ−1 + σ̄2
T

, u∗
t,γ =

gte
−2θ̄t:T (xT − xt)

γ−1 + σ̄2
t:T

.︸ ︷︷ ︸
UniDB-GOU

(19)

Hence, only a few lines of code need to be adjusted to generate more realistic images using the same
training method. We provide a pseudo-code for the training process of UniDB-GOU as follows.

Algorithm 1 UniDB Training
repeat

Take a pair of images x0 = x0, xT = xT

t ∼ Uniform({1, ..., T})
σt−1,θ = gt

at,γ = e−θ̄t σ̄2
t:T

σ̄2
T

← GOUB

at,γ = e−θ̄t γ−1+σ̄2
t:T

γ−1+σ̄2
T

← UniDB-GOU

xt = at,γx0 + (1− at,γ)xT + σ̄′
tϵ

µ̄t,γ = at,γx0 + (1− at,γ)xT

µt−1,θ = xt −
(
θt + g2t

e−2θ̄t:T

σ̄2
t:T

)
(xT − xt) +

g2
t

σ̄′2
t
ϵθ(xt, xT , t) ← GOUB

µt−1,θ = xt −
(
θt + g2t

e−2θ̄t:T

γ−1+σ̄2
t:T

)
(xT − xt) +

g2
t

σ̄′2
t
ϵθ(xt, xT , t) ← UniDB + GOU

µt−1,γ = µ̄t−1,γ +
σ̄′
t−1at,γ

σ̄′2
t at−1,γ

(xt − µ̄t,γ)

Take gradient descent step on∇θ

(
Lθ = Et,x0,xt,xT

[
1

2σ2
t−1,θ
∥µt−1,θ − µt−1,γ∥

])
until converged

5 EXPERIMENTS

In this section, we evaluate our models in image restoration tasks including Image 4×Super-resolution,
Image Deraining, and Image Inpainting. For simple expressions in the following sections, UniDB
(SDE) and UniDB (ODE) are applied to represent the UniDB-GOU with reverse SDE and reverse
Mean-ODE, respectively. Please refer to Appendix B and C for all related implementation details and
more experiment results, respectively.

Table 1: Qualitative comparison with the relevant baselines on DIV2K, Rain100H, and CelebA-HQ.

METHOD Image Super-Resolution METHOD Image Deraining METHOD Image Inpainting
PSNR↑ SSIM↑ LPIPS↓ FID↓ PSNR↑ SSIM↑ LPIPS↓ FID↓ PSNR↑ SSIM↑ LPIPS↓ FID↓

Bicubic 26.70 0.774 0.425 36.18 MAXIM 30.81 0.902 0.133 58.72 PromptIR 30.22 0.918 0.068 32.69
DDRM 24.35 0.592 0.364 78.71 MHNet 31.08 0.899 0.126 57.93 DDRM 27.16 0.899 0.089 37.02
IR-SDE 25.90 0.657 0.231 45.36 IR-SDE 31.65 0.904 0.047 18.64 IR-SDE 28.37 0.916 0.046 25.13

GOUB (SDE) 26.89 0.7478 0.220 20.85 GOUB (SDE) 31.96 0.9028 0.046 18.14 GOUB (SDE) 28.98 0.9067 0.037 4.30
GOUB (ODE) 28.50 0.8070 0.328 22.14 GOUB (ODE) 34.56 0.9414 0.077 32.83 GOUB (ODE) 31.39 0.9392 0.052 12.24
UniDB (SDE) 25.46 0.6856 0.179 16.21 UniDB (SDE) 32.05 0.9036 0.045 17.65 UniDB (SDE) 29.20 0.9077 0.036 4.08
UniDB (ODE) 28.64 0.8072 0.323 22.32 UniDB (ODE) 34.68 0.9426 0.074 31.16 UniDB (ODE) 31.67 0.9395 0.052 11.98

Image 4×Super-Resolution Tasks. In super-resolution, we evaluated our models based on DIV2K
dataset Agustsson & Timofte (2017), which contains 2K-resolution high-quality images. During
the experiment, all low-resolution images were 4× bicubic upscaling to the same image size as
the paired high-resolution images. For comparison, we choose Bicubic interpolantion Kawar et al.
(2022), DDRM Kawar et al. (2022), IR-SDE Luo et al. (2023), GOUB (SDE) Yue et al. (2023) and
GOUB (Mean-ODE) Yue et al. (2023) following abbreviated as GOUB (ODE) as the baselines. The
qualitative and quantitative results are illustrated in Table 1 and Figure 2 in Appendix C. Visually, our
proposed model demonstrates a significant improvement over the baseline across various metrics. It
also excels by delivering superior performance in both visual quality and detail compared to other
results.
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Image Deraining Tasks. For image deraining tasks, we conducted the experiments based on
Rain100H datasets Yang et al. (2017). Particularly, to be consistent with other deraining models Ren
et al. (2019); Zamir et al. (2021); Luo et al. (2023); Yue et al. (2023), PSNR and SSIM scores on
the Y channel (YCbCr space) are selected instead of the origin PSNR and SSIM. MAXIM Tu et al.
(2022), MHNet Gao et al. (2025), IR-SDE Luo et al. (2023), GOUB (SDE) Yue et al. (2023) and
GOUB (ODE) Yue et al. (2023) are chosen as the baselines. The relevant experimental results are
shown in the Table 1 and Figure 2 in Appendix C. Similarly, our model achieved state-of-the-art
results in the deraining task. Visually, it can also be observed that our model excels in capturing
details such as the eyebrows, eye bags, and lips.

Image Inpainting Tasks. In image inpainting tasks, we evaluated our methods on CelebA-HQ
256×256 datasets Karras (2017). For comparison, we choose DDRM Kawar et al. (2022), PromptIR
Potlapalli et al. (2023), IR-SDE Luo et al. (2023), GOUB (SDE) Yue et al. (2023) and GOUB (ODE)
Yue et al. (2023) as the baselines. As for mask type, we take 100 thin masks consistent with the
baselines. The relevant experimental results are shown in Table 1 and Figure 2 in Appendix C. It is
observed that our model achieved state-of-the-art results in all indicators and also delivered highly
competitive outcomes on other metrics. From a visual perspective, our model excels in capturing
details such as faces, eyes, chins, and noses.

5.1 ABLATION STUDY

Penalty Coefficient γ. To evaluate the specific impact of different penalty coefficients γ on model
performance, we conducted the experiments with several different γ. The final results are shown in
Table 2. The results across all tasks show that the choice of γ significantly influences the model’s
performance on all tasks, different optimal γ for different tasks, and our UniDB achieves the best
performance in almost all metrics. Particularly in super-resolution tasks, we focus on the significantly
better perceptual scores (LPIPS and FID) Luo et al. (2023), demonstrating that UniDB ensures to
capture and preserve more intricate image details and features as shown in Figure 2. These findings
underscore the importance of carefully tuning γ to achieve the best performance for specific tasks.

Table 2: Qualitative comparison with the different bridge models on CelebA-HQ, Rain100H, and
DIV2K datasets.

Different γ Image 4×Super-Resolution Image Deraining Image Inpainting
PSNR↑ SSIM↑ LPIPS↓ FID↓ PSNR↑ SSIM↑ LPIPS↓ FID↓ PSNR↑ SSIM↑ LPIPS↓ FID↓

5× 105 24.94 0.6419 0.234 20.33 28.73 0.9065 0.038 4.49 29.44 0.8715 0.058 24.96
1× 106 24.72 0.6587 0.199 18.37 29.15 0.9068 0.036 4.12 31.96 0.9018 0.045 18.37
1× 107 25.46 0.6856 0.179 16.21 29.20 0.9077 0.036 4.08 32.00 0.9029 0.046 17.87
1× 108 25.06 0.6393 0.289 23.76 28.65 0.9062 0.039 4.64 32.05 0.9036 0.045 17.65
∞ 26.89 0.7478 0.220 20.85 28.98 0.9067 0.037 4.30 31.96 0.9028 0.046 18.14

6 CONCLUSION

In this paper, we presented UniDB, a unified diffusion bridge framework based on stochastic optimal
control principles, offering a novel perspective on diffusion bridges. Through this framework, we
unify and extend existing diffusion bridge models with Doob’s h-transform like DDBMs and GOUB.
Moreover, we demonstrate that the diffusion bridge with Doob’s h-transform can be viewed as a
specific case within UniDB when the terminal penalty coefficient approaches infinity. This insight
helps elucidate why Doob’s h-transform may lead to suboptimal image restoration, often resulting in
blurred or distorted details. By simply adjusting this terminal penalty coefficient, UniDB achieves a
marked improvement in image quality with minimal code modifications. Our experimental results
underscore UniDB’s superiority and versatility across various image processing tasks, particularly
in enhancing image details for more realistic outputs. Despite these advantages, UniDB, like
other standard diffusion bridge models, faces the challenge of computationally intensive sampling
processes, especially with high-resolution images or complex restoration tasks. Future work will
focus on developing strategies to accelerate the sampling process, enhancing UniDB’s practicality,
particularly for real-time applications.
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A PROOF

A.1 PROOF OF THEOREM 4.1

Theorem 4.1. Consider the SOC problem (11), denote dt,γ = γ−1 + e2f̄T ḡ2t:T , f̄s:t =
∫ t

s
fzdz,

h̄s:t =
∫ t

s
e−f̄zhzdz and ḡ2s:t =

∫ t

s
e−2f̄zg2zdz, denote f̄t, h̄t and ḡ2t for simplification when s = 0,

then the closed-form optimal controller u∗
t,γ is

u∗
t,γ = gte

f̄t:T
xT − ef̄t:T xt −mef̄T h̄t:T

dt,γ
, (12)

and the transition of xt from x0 and xT is

xt = ef̄t

(
dt,γ
d0,γ

x0 +
ef̄T ḡ2t
d0,γ

xT +
(
h̄t −

e2f̄T h̄T ḡ
2
t

d0,γ

)
m

)
. (13)

Proof. According to Pontryagin Maximum Principle Levine (1972); Kirk (2004) recipe, one can
construct the Hamiltonian:

H(t,xt,ut,γ ,pt) =
1

2
∥ut,γ∥22 + pT

t (ftxt + htm+ gtut) . (20)

By setting:
∂H

∂ut,γ
= 0 ⇒ u∗

t,γ = −gtpt. (21)

Then the value function becomes

V ∗ = min
ut,γ

H(t,xt,pt,ut,γ) = H(t,xt,pt,u
∗
t,γ) = −

g2t
2
∥pt∥22 + ftp

T
t xt + htp

T
t m. (22)

Now, according to minimum principle theorem to obtain the following set of differential equations:

dxt

dt
= ∇pt

H
(
xt,pt,u

∗
t,γ , t

)
= −g2tpt + ftxt + htm, (23)

dpt

dt
= −∇xtH (xt,pt,u

∗
t , t) = −ptft, (24)

x0 = x0, (25)

pT = γ (xT − xT ) . (26)

Solving the Equation (24), we have:
pt = p0e

−f̄t ,

pT = p0e
−f̄T .

(27)
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Solve the Equation (23):

dxt

dt
= ftxt + htm− g2tpt

⇒ d(e−f̄txt)

dt
= e−f̄thtm− e−f̄tg2tpt,

⇒ e−f̄txt − x0 = mh̄t − p0ḡ
2
t ,

⇒ e−f̄txt − x0 = mh̄t − p0ḡ
2
t .

Hence, we can get:

xT = ef̄T x0 +mef̄T h̄T − pT e
2f̄T ḡ2T , (28)

and
xt = ef̄tx0 +mef̄t h̄t − pT e

f̄tef̄T ḡ2t . (29)

Take the Equation (28) into the Equation (26) and solve pT ,

pT = γ
(
ef̄T x0 +mef̄T h̄T − pT e

2f̄T ḡ2T − xT

)
(30)

⇒ pT =
γ
(
ef̄T x0 +mef̄T h̄T − xT

)
1 + γe2f̄T ḡ2T

. (31)

Also, take the Equation (30) into the equation (29),

xt = ef̄tx0 +mef̄t h̄t − ef̄tef̄T ḡ2t
ef̄T x0 +mef̄T h̄T − xT

γ−1 + e2f̄T ḡ2T
,

= ef̄t

(
dt,γ
d0,γ

x0 +
ef̄T ḡ2t
d0,γ

xT +
(
h̄t −

e2f̄T h̄T ḡ
2
t

d0,γ

)
m

)
.

(32)

Preserve γ,

u∗
t,γ = −gtpt,

= −gte−f̄tef̄T
ef̄T x0 +mef̄T h̄T − xT

γ−1 + e2f̄T ḡ2T
,

= −gte−f̄tef̄T
ef̄T x0 +mef̄T h̄T − xT

γ−1 + e2f̄T ḡ2T
,

= gte
f̄t:T

xT − ef̄t:T xt −mef̄T h̄t:T

dt,γ
,

(33)

with the fact (32)

xt = ef̄t

(
dt,γ
d0,γ

x0 +
ef̄T ḡ2t
d0,γ

xT +
(
h̄t −

e2f̄T h̄T ḡ
2
t

d0,γ

)
m

)
, (34)

which concludes the proof of the Proposition 4.1.

A.2 PROOF OF THEOREM 4.2

Theorem 4.2. For the SOC problem (11), when γ → ∞, the optimal controller becomes u∗
t,∞ =

gt∇xt
log p(xT | xt), and the corresponding forward and backward SDE with the linear SDE form

(9) are the same as Doob’s h-transform as in (2) and (3).
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Proof. Since in Proposition 4.1 we have solved the control problem and the optimal controller u∗
t,∞

is:

u∗
t,∞ = lim

γ→∞
u∗
t,γ = gte

f̄t:T
xT − ef̄t:T xt −mef̄T h̄t:T

e2f̄T ḡ2t:T
. (12)

Now we calculate the transition probability p(xT | xt) and related h function h(xt, t,xT , T ).

Consider F (xt, t) = xte
−f̄t , according to the Ito differential formula, we get:

dF = −ftxte
−f̄tdt+ e−f̄tdxt (35)

⇒ dF = −ftxte
−f̄tdt+ e−f̄t

(
(ftxt + htm) dt+ gtdwt

)
, (36)

⇒ dF = hte
−f̄tmdt+ e−f̄tgtdwt, (37)

⇒ xT e
−f̄T − xte

−f̄t = mh̄t:T +

∫ T

t

e−f̄zgzdwz, (38)

⇒ xT ∼ N
(
ef̄t:T xt +mef̄T h̄t:T , e

2f̄T ḡ2t:T I
)
, (39)

⇒ ∇xt
log p(xT |xt) = −∇xt

(xT − ef̄t:T xt −mef̄T h̄t:T )
2

2e2f̄T ḡ2t:T
=

ef̄t:T
(
xT − ef̄t:T xt −mef̄T h̄t:T

)
e2f̄T ḡ2t:T

,

(40)

⇒ u∗
t,∞ = gte

f̄t:T
xT − ef̄t:T xt −mef̄T h̄t:T

e2f̄T ḡ2t:T
= gt∇xt log p(xT |xt) = gth(xt, t,xT , T ). (41)

The forward SDEs obtained through SOC and Doob’s h-transform are both formed as

dxt =

ftxt + htm+ g2t

ef̄t:T
(
xT − ef̄t:T xt −mef̄T h̄t:T

)
e2f̄T ḡ2t:T

 dt+ gtdwt, (42)

and the both backward SDEs are

dxt =

ftxt + htm+ g2t

ef̄t:T
(
xT − ef̄t:T xt −mef̄T h̄t:T

)
e2f̄T ḡ2t:T

− g2t∇xt
p(xt|xT )

 dt+ gtdwt,

(43)
which concludes the proof of the Theorem 4.2.

A.3 DERIVATION OF THE TRANSITION PROBABILITY (16)

Suppose µ̄t,γ and σ̄′
t denote the mean value and variance of the transition probability p(xt | x0, xT ),

then
p(xt | x0, xT ) = N (µ̄t,γ , σ̄

′2
t I),

µ̄t,γ = ef̄t
( dt,γ
d0,γ

x0 +
ef̄T ḡ2t
d0,γ

xT +
(
h̄t −

e2f̄T h̄T ḡ
2
t

d0,γ

)
m
)
,

σ̄2
s:t = e2f̄t ḡ2s:t, σ̄′2

t =
σ̄2
t σ̄

2
t:T

σ̄2
T

.

(16)

Proof. Since µ̄t,γ remains the same as the closed-form relationship (13), we would focus on how to
obtain σ̄2

s:t and σ̄′2
t .

In Equation (35) of Theorem 4.2, we’ve obtained:

p(xt | xs) ∼ N
(
ef̄s:txs +mef̄t h̄s:t, e

2f̄t ḡ2s:tI
)
,

∼ N
(
ef̄s:txs +mef̄t h̄s:t, σ̄

2
s:tI
)
.

(44)
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Take σ̄2
s:t = e2f̄t ḡ2s:t as the coefficient of the noise term, then, through Bayes’ formula,

p(xt | x0, xT ) =
p(xT | xt, x0)p(xt | x0)

p(xT | x0)
=

p(xT | xt)p(xt | x0)

p(xT | x0)

⇒ σ̄′2
t =

σ̄2
t σ̄

2
t:T

σ̄2
T

,

which concludes the derivation of the the transition probability (16).

A.4 DERIVATION OF THE TRAINING OBJECTIVE (17)

Denote at,γ = ef̄tdt,γ , assuming µt−1,θ, σ2
t−1,θ and µt−1,γ , σ2

t−1,γ are respectively the mean values
and variances of pθ(xt−1 | xt, xT ) and p(xt−1 | x0,xt, xT ), suppose the score ∇xt

log p(xt | xT )
is parameterized as −ϵθ(xt, xT , t)/σ̄

′
t, the final training objective is as follows,

Lθ = Et,x0,xt,xT

[
1

2σ2
t−1,θ

∥∥µt−1,θ − µt−1,γ

∥∥
1

]
,

µt−1,θ = xt − ftxt − htm− gtu
∗
t,γ +

g2t
σ̄′
t

ϵθ(xt, xT , t),

µt−1,γ = µ̄t−1,γ +
σ̄′2
t−1at,γ

σ̄′2
t at−1,γ

(xt − µ̄t,γ), σt−1,θ = gt.

(17)

Proof. Firstly, as for the training objective (17), according to GOUB Yue et al. (2023):

Ep(x0)[log pθ(x0 | xT )] ≥ Ep(x0)

[
Ep(x1|x0) [log pθ (x0 | x1, xT )]

−
T∑

t=2

Ep(xt|x0)[KL (p (xt−1 | x0,xt, xT ) ||pθ (xt−1 | xt, xT ))]

]
= ELBO.

(45)

Accordingly,

KL (p (xt−1 | x0,xt, xT ) ||pθ (xt−1 | xt, xT ))

=Ep(xt−1|x0,xt,xT )

log 1√
2πσt−1

e−(xt−1−µt−1,γ)
2/2σ2

t−1

1√
2πσθ,t−1

e−(xt−1−µθ,t−1)2/2σ2
θ,t−1


=Ep(xt−1|x0,xt,xT )

[
log σθ,t−1 − log σt−1 − (xt−1 − µt−1,γ)

2/2σ2
t−1 + (xt−1 − µθ,t−1)

2/2σ2
θ,t−1

]
= log σθ,t−1 − log σt−1 −

1

2
+

σ2
t−1

2σ2
θ,t−1

+
(µt−1,γ − µθ,t−1)

2

2σ2
θ,t−1

.

(46)

Hence, we ignore some constants and minimizing the negative ELBO, leading to the training objective:

L = Et,x0,xt,xT

[
1

2σ2
t−1,θ

∥µt−1,θ − µt−1,γ∥

]
, (47)

Then, as for solving the closed form of µt−1,θ, σ2
t−1,θ and µt−1,γ , through Bayes’ formula,

p (xt−1 | x0,xt, xT ) =
p(xt | x0,xt−1, xT )p(xt−1 | x0,xT )

p(xt | x0, xT )

=
p(xt | xt−1, xT )p(xt−1 | x0,xT )

p(xt | x0, xT )
.

(48)
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According to Appendix A.3, applying the reparameterization tricks:

xt = ef̄t

(
γ−1 + e2f̄T ḡ2t:T
γ−1 + e2f̄T ḡ2T

x0 +
ef̄T ḡ2t

γ−1 + e2f̄T ḡ2T
xT +

(
h̄t −

e2f̄T h̄T ḡ
2
t

γ−1 + e2f̄T ḡ2T

)
m

)
+ σ̄′

tϵt

≜ at,γx0 + bt,γxT + ct,γm+ σ̄′
tϵt,

xt−1 = ef̄t−1

(
γ−1 + e2f̄T ḡ2t−1:T

γ−1 + e2f̄T ḡ2T
x0 +

ef̄T ḡ2t−1

γ−1 + e2f̄T ḡ2T
xT +

(
h̄t−1 −

e2f̄T h̄T ḡ
2
t−1

γ−1 + e2f̄T ḡ2T

)
m

)
+ σ̄′

t−1ϵt−1

= at−1,γx0 + bt−1,γxT + ct−1,γm+ σ̄′
t−1ϵt−1.

(49)

Therefore, eliminating x0 to obtain the relationships between xt, xt−1, xT , m and noise ϵ,

⇒ xt =
at,γ

at−1,γ
xt−1+

(
bt,γ − bt−1,γ

at,γ
at−1,γ

)
xT+

(
ct,γ − ct−1,γ

at,γ
at−1,γ

)
m+

√
σ̄′2
t − σ̄′2

t−1

a2t,γ
a2t−1,γ

ϵ.

(50)

The mean value µt−1,γ of p(xt−1 | x0,xt, xT ) can be calculated as:

µt−1,γ =
σ̄′2
t−1

at,γ

at−1,γ

[
xt −

(
bt,γ − bt−1,γ

at,γ

at−1,γ

)
xT −

(
ct,γ − ct−1,γ

at,γ

at−1,γ

)
m
]
+
(
σ̄′2
t − σ̄′2

t−1
a2
t,γ

a2
t−1,γ

)
µ̄t−1,γ

σ̄′2
t

= µ̄t−1,γ −
a2t,γ σ̄

′2
t−1

a2t−1,γ σ̄
′2
t

µ̄t−1,γ +
at,γ σ̄

′2
t−1

at−1,γ σ̄′2
t

[
xt −

(
bt,γ −

at,γbt−1,γ

at−1,γ

)
xT −

(
ct,γ −

at,γct−1,γ

at−1,γ

)
m

]
= µ̄t−1,γ +

at,γ σ̄
′2
t−1

at−1,γ σ̄′2
t

xt −
at,γ σ̄

′2
t−1

at−1,γ σ̄′2
t

µ̄t,γ

= µ̄t−1,γ +
σ̄′2
t−1at,γ

σ̄′2
t at−1,γ

(xt − µ̄t,γ).

(51)
with the fact that

µ̄t,γ =
at,γ

at−1,γ
µ̄t−1,γ +

(
bt,γ −

at,γbt−1,γ

at−1,γ

)
xT +

(
ct,γ −

at,γct−1,γ

at−1,γ

)
m, (52)

which can be easily proved by expanding and comparing the both sides of the equation.

As for µθ,t−1 and σ2
t−1,θ, parameterized from the SDE (14):

xt−1 = xt −

[
ftxt + htm+ g2t

xT − ef̄t:T xt −mef̄T h̄t:T

e−f̄t:T (γ−1 + e2f̄T ḡ2t:T )
− g2t∇xt

log p(xt | xT )

]
− gtϵt

≈ xt −

[
ftxt + htm+ g2t

xT − ef̄t:T xt −mef̄T h̄t:T

e−f̄t:T (γ−1 + e2f̄T ḡ2t:T )
− g2t

σ̄′
t

ϵθ(xt, xT , t)

]
− gtϵt,

(53)
where ϵt ∼ N(0,dtI).

Hence,

µθ,t−1 = xt −

[
ftxt + htm+ g2t

xT − ef̄t:T xt −mef̄T h̄t:T

e−f̄t:T (γ−1 + e2f̄T ḡ2t:T )
− g2t

σ̄′
t

ϵθ(xt, xT , t)

]
,

σθ,t−1 = gt,

(54)

which concludes the derivation of the training objective (17).
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A.5 DERIVATION OF UNIDB-GOU (FORWARD SDE AND MEAN VALUE OF FORWARD
TRANSITION (18))

Consider the SOC problem with GOU process (4), the optimally controlled forward SDE and the
mean value of forward transition p(xt | x0, xT ) are respectively:

dxt = (θt+
g2t e

−2θ̄t:T

γ−1 + σ̄2
t:T

)(xT−xt)dt+gtdwt, µ̄t,γ = e−θ̄t
1 + γσ̄2

t:T

1 + γσ̄2
T

x0+(1−e−θ̄t
1 + γσ̄2

t:T

1 + γσ̄2
T

)xT .

(18)

Proof. Consider the SOC problem with GOU process (4) in the deterministic form:

min
ut,γ

∫ T

0

1

2
∥ut,γ∥22dt+

γ

2
∥xu

T − xT ∥22

s.t. dxt = (θt(xT − xt) + gtut,γ) dt, x0 = x0

(55)

where the definition of µ and gt is the same as GOUB: µ = xT g2t = 2λ2θt.

Similarly to the proof of Proposition A.1, according to minimum principle theorem to obtain the
following set of differential equations:

dxt

dt
= ∇pt

H
(
xt,pt,u

∗
t,γ , t

)
= θtxT − θtxt − g2tpt, (56)

dpt

dt
= −∇xt

H
(
xt,pt,u

∗
t,γ , t

)
= θtpt, (57)

x0 = x0, (58)
pT = γ (xT − xT ) . (59)

Solving the equation (57), we have:
pt = p0e

θ̄t ,

pT = p0e
θ̄T ,

(60)

Then we solve the equation (56):

dxt

dt
= θtxT − θtxt − g2tpt

⇒ d(eθ̄txt)

dt
= eθ̄tθtxT − eθ̄tg2tpt,

⇒ eθ̄txt − x0 = xT

∫ t

0

eθ̄zθzdz − p0

∫ t

0

g2ze
2θ̄zdz,

⇒ eθ̄txt − x0 = xT (e
θ̄t − 1)− λ2p0(e

2θ̄t − 1).

Hence, we can get:

xT = e−θ̄T x0 + (1− e−θ̄T )xT − λ2pT (1− e−2θ̄T ), (61)

and
xt = e−θ̄tx0 + (1− e−θ̄t)xT − λ2e−θ̄TpT (e

θ̄t − e−θ̄t). (62)

Take the equation (61) into the equation (59) and solve pT ,

pT = γ
(
e−θ̄1x0 + (1− e−θ̄T )xT − λ2pT (1− e−2θ̄T )− xT

)
⇒ pT =

γe−θ̄T (x0 − xT )

1 + γλ2(1− e−2θ̄T )
.
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Hence,

xt = e−θ̄tx0 + (1− e−θ̄t)xT − λ2e−θ̄T (eθ̄t − e−θ̄t)
γe−θ̄T (x0 − xT )

1 + γλ2(1− e−2θ̄T )

=

(
e−θ̄t − γλ2e−2θ̄T (eθ̄t − e−θ̄t)

1 + γλ2(1− e−2θ̄T )

)
x0 +

(
1− e−θ̄t +

γλ2e−2θ̄T (eθ̄t − e−θ̄t)

1 + γλ2(1− e−2θ̄T )

)
xT

=

(
e−θ̄t

1 + γλ2(1− e−2θ̄t:T )

1 + γλ2(1− e−2θ̄T )

)
x0 +

(
1− e−θ̄t

1 + γλ2(1− e−2θ̄t:T )

1 + γλ2(1− e−2θ̄1)

)
xT

= e−θ̄t
1 + γσ̄2

t:T

1 + γσ̄2
T

x0 +

(
1− e−θ̄t

1 + γσ̄2
t:T

1 + γσ̄2
T

)
xT ,

(63)

which implies

µ̄t,γ = e−θ̄t
1 + γσ̄2

t:T

1 + γσ̄2
T

x0 +

(
1− e−θ̄t

1 + γσ̄2
t:T

1 + γσ̄2
T

)
xT . (64)

Then,

u∗
t,γ = −gtpt

= −gteθ̄te−θ̄T
γe−θ̄T (x0 − xT )

1 + γλ2(1− e−2θ̄T )

= −gteθ̄te−θ̄T
γe−θ̄T (x0 − xT )

1 + γσ̄2
T

= −gteθ̄te−θ̄T
γe−θ̄T eθ̄t(xt − xT )

1 + γσ̄2
t:T

= gt
e−2θ̄t:T (xT − xt)

γ−1 + σ̄2
t:T

.

(65)

And the optimally-controlled dynamics can be:

dxt =

(
θt + g2t

e−2θ̄t:T

γ−1 + σ̄2
t:T

)
(xT − xt)dt+ gtdwt, (66)

which concludes the derivation of UniDB-GOU (forward SDE and mean value of forward transition
(18)).

B IMPLEMENTATION DETAILS

In Image Restoration Tasks (Image 4×Super-resolution, Image Deraining and Image Inpainting), we
follow the experiment setting of GOUB Yue et al. (2023): the same noise network which is similar to
U-Net structure Chung et al. (2022), steady variance level λ2 = 302/2552, coefficient eθ̄T = 0.005
instead of zero, sampling step number T = 100, 128 patch size with 8 batch size when training,
Adam optimizer with β1 = 0.9 and β2 = 0.99 Kingma (2014), 1.2 million total training steps with
10−4 initial learning rate and decaying by half at 300, 500, 600, and 700 thousand iterations. With
respect to the schedule of θt, we choose a flipped version of cosine noise schedule Nichol & Dhariwal
(2021); Luo et al. (2023),

θt = 1−
cos( t/T+s

1+s
π
2 )

2

cos( s
1+s

π
2 )

2
(67)

where s = 0.008 to achieve a smooth noise schedule. gt is determined through g2t = 2λ2θt. As for
the datasets of the three main experiments, we take 800 images for training and 100 for testing for the
DIV2K dataset, 1800 images for training and 100 for testing for the Rain100H dataset, 27000 images
for training and 3000 for testing for the CelebA-HQ 256×256 dataset. Our models are trained on a
single NVIDIA H20 GPU with 96GB memory for about 2 days.
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C ADDITIONAL EXPERIMENTAL RESULTS

Here we will illustrate more experimental results.

Table 3: Qualitative comparison between different bridge models (DDBMs (VE) and DDBMs (VP))
and ours (UniDB-VE and UniDB-VP) on DIV2K and Rain100H datasets.

METHOD Image 4× Super-Resolution Image Deraining
PSNR↑ SSIM↑ LPIPS↓ FID↓ PSNR↑ SSIM↑ LPIPS↓ FID↓

DDBMs (VE) 23.34 0.4295 0.372 32.28 29.34 0.7654 0.185 43.22
UniDB-VE 23.84 0.4454 0.357 31.29 29.46 0.7671 0.185 42.57

DDBMs (VP) 22.11 0.4059 0.491 48.09 29.58 0.828 0.113 35.46
UniDB-VP 22.42 0.4097 0.486 44.52 30.11 0.8414 0.102 33.17
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Figure 2: Qualitative comparison of visual results between GOUB (SDE) and UniDB (SDE) on
DIV2K, Rain100H, and CelebA-HQ datasets on three tasks with zoomed-in image local regions
(UniDB based on GOU process).
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Figure 3: Additional visual results on deraining with Rain100H datasets.

GT GOUB UniDB GT GOUB UniDB GT GOUB UniDB

Figure 4: Additional visual results on thin mask inpainting with CelebA-HQ datasets to show our
excellence.
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