
Published in Transactions on Machine Learning Research (03/2025)

Relationship between Batch Size and Number of Steps
Needed for Nonconvex Optimization of Stochastic Gradient
Descent using Armijo-Line-Search Learning Rate

Yuki Tsukada yuki.t.1119@iiduka.net
Department of Computer Science
Meiji University

Hideaki Iiduka iiduka@cs.meiji.ac.jp
Department of Computer Science
Meiji University

Reviewed on OpenReview: https: // openreview. net/ forum? id= pqZ6nOm3WF

Abstract

While stochastic gradient descent (SGD) can use various learning rates, such as constant or
diminishing rates, previous numerical results showed that SGD performs better than other
deep-learning optimizers when it uses learning rates given by line search methods. In this
paper, we perform a convergence analysis on SGD with a learning rate given by an Armijo
line search for nonconvex optimization indicating that the upper bound of the expectation
of the squared norm of the full gradient becomes small when the number of steps and the
batch size are large. Next, we show that, for SGD with the Armijo-line-search learning rate,
the number of steps needed for nonconvex optimization is a monotone decreasing convex
function of the batch size; that is, the number of steps needed for nonconvex optimization
decreases as the batch size increases. Furthermore, we show that the stochastic first-order
oracle (SFO) complexity, which is the stochastic gradient computation cost, is a convex
function of the batch size; that is, there exists a critical batch size that minimizes the SFO
complexity. Finally, we provide numerical results that support our theoretical results.

1 Introduction

1.1 Background

Nonconvex optimization is useful for training deep neural networks, since the loss functions called the ex-
pected risk and empirical risk are nonconvex and they need only be minimized in order to find the model
parameters. Deep-learning optimizers have been presented for minimizing the loss functions. The simplest
one is stochastic gradient descent (SGD) (Robbins & Monro, 1951; Zinkevich, 2003; Nemirovski et al., 2009;
Ghadimi & Lan, 2012; 2013) and there are numerous theoretical analyses on using SGD for nonconvex
optimization (Jain et al., 2018; Vaswani et al., 2019; Fehrman et al., 2020; Chen et al., 2020; Scaman & Mal-
herbe, 2020; Loizou et al., 2021; Umeda & Iiduka, 2025). Variants of SGD have also been presented, such
as momentum methods (Polyak, 1964; Nesterov, 1983) and adaptive methods including Adaptive Gradient
(AdaGrad) (Duchi et al., 2011), Root Mean Square Propagation (RMSProp) (Tieleman & Hinton, 2012),
Adaptive Moment Estimation (Adam) (Kingma & Ba, 2015), Adaptive Mean Square Gradient (AMSGrad)
(Reddi et al., 2018), and Adam with decoupled weight decay (AdamW) (Loshchilov & Hutter, 2019). SGD
and its variants are useful for training not only deep neural networks but also generative adversarial networks
(Heusel et al., 2017; Naganuma & Iiduka, 2023; Sato & Iiduka, 2023).

The performance of deep-learning optimizers for nonconvex optimization depends on the batch size. The
previous numerical results in (Shallue et al., 2019) and (Zhang et al., 2019) have shown that the number of

1

https://openreview.net/forum?id=pqZ6nOm3WF

Published in Transactions on Machine Learning Research (03/2025)

steps K needed to train a deep neural network halves for each doubling of the batch size b and that there is
a region of diminishing returns beyond the critical batch size b⋆. This fact can be expressed as follows: there
is a positive number C such that N := Kb ≈ C for b ≤ b⋆ and N := Kb ≥ C for b ≥ b⋆. The deep neural
network model uses b gradients of the loss functions per step. Hence, when K is the number of steps required
to train a deep neural network, the model has a stochastic gradient computation cost of Kb. We will define
the stochastic first-order oracle (SFO) complexity (Iiduka, 2022; Sato & Iiduka, 2023) of a deep-learning
optimizer to be N := Kb. From the previous numerical results in (Shallue et al., 2019) and (Zhang et al.,
2019), the SFO complexity is minimized at a critical batch size b⋆ and there are diminishing returns once
the batch size exceeds b⋆. Therefore, it is desirable to use the critical batch size when minimizing the SFO
complexity of the deep-learning optimizer.

Not only the batch size but also the learning rate affects the performance of deep-learning optimizers for non-
convex optimization. A performance measure of a deep-learning optimizer generating a sequence (θk)k∈N is
the expectation of the squared norm of the gradient of a nonconvex loss function f , denoted by E[∥∇f(θk)∥2].
If this performance measure becomes small when the number of steps k is large, the deep-learning optimizer
approximates a local minimizer of f . For example, let us consider the problem of minimizing a smooth func-
tion f (see Section 2.1 for the definition of smoothness). Here, SGD uses a constant learning rate α = O(1

L)
satisfying mink∈[K] E

[
∥∇f(θk)∥2]

= O(1
K + α

b), where L is the Lipschitz constant of ∇f , b is the batch
size, and [K] := {1, 2, . . . , K} (see also Table 1). Moreover, SGD using a learning rate satisfying the Armijo
condition was presented in (Vaswani et al., 2019). The Armijo line search (Nocedal & Wright, 2006, Chapter
3.1) is a standard method for finding an appropriate learning rate αk giving a sufficient decrease in f , i.e.,
f(θk+1) < f(θk) (see Section 2.3.1 for the definition of the Armijo condition).

1.2 Motivation

The numerical results in (Vaswani et al., 2019) indicated that using the Armijo-line-search learning rate
is superior to using a constant learning rate when using SGD to train deep neural networks in the sense
of minimizing the training loss and improving test accuracy. Motivated by the useful numerical results in
(Vaswani et al., 2019), we decided to perform convergence analyses on SGD with the Armijo-line-search
learning rate for nonconvex optimization in deep neural networks.

Theorem 3 in (Vaswani et al., 2019) is a convergence analysis of SGD with the Armijo-line-search learning
rate for nonconvex optimization under a strong growth condition that implies the interpolation property.
Here, let f : Rd → R be an empirical risk defined by f(θ) := 1

n

∑
i∈[n] fi(θ), where n is the number of

training data and fi : Rd → R is a loss function corresponding to the i-th training data zi. We say that f has
the interpolation property if ∇f(θ) = 0 implies ∇fi(θ) = 0 (i ∈ [n]). The interpolation property holds for
optimization of a linear model with the squared hinge loss for binary classification on linearly separable data
(Vaswani et al., 2019, Section 2). However, the strong growth condition would be unrealistic for deep neural
networks, since their loss functions are nonconvex. The motivation behind this work is thus to show that
SGD with the Armijo-line-search learning rate can solve nonconvex optimization problems in deep neural
networks.

As indicated in the second paragraph in Section 1.1, the batch size has a significant effect on the performance
of SGD. Hence, in accordance with the first motivation stated above, we decided to investigate appropriate
batch sizes for SGD with the Armijo-line-search learning rate. In particular, we are interested in verifying
whether a critical batch size b⋆ minimizing the SFO complexity N exists for training deep neural networks
with SGD using the Armijo condition in theory and in practice. This is because the previous studies in
(Shallue et al., 2019; Zhang et al., 2019; Iiduka, 2022; Sato & Iiduka, 2023) showed the existence of critical
batch sizes for training deep neural networks or generative adversarial networks with optimizers with constant
or diminishing learning rates and without Armijo-line-search learning rates.

2

Published in Transactions on Machine Learning Research (03/2025)

1.3 Contribution

1.3.1 Convergence analysis of SGD with Armijo-line-search learning rates

The first contribution of this paper is to present a convergence analysis of SGD with Armijo-line-search
learning rates for general nonconvex optimization (Theorem 3.1); in particular, it is shown that SGD with
this rate αk satisfies that, for all K ≥ 1,

min
k∈[0:K−1]

E
[
∥∇f(θk)∥2]

≤

C1︷ ︸︸ ︷
2(f(θ0)− f∗)

α̃− (Lnα− 1)α
1
K︸ ︷︷ ︸

B(θ0,K)

+

C2︷ ︸︸ ︷
Lnα2σ2

α̃− (Lnα− 1)α
1
b︸ ︷︷ ︸

V (σ2,b)

, (1)

where the parameters are defined in Table 1 (see also Theorem 3.1). The inequality (1) indicates that the
upper bound of the performance measure mink∈[0:K−1] E[∥∇f(θk)∥2] that consists of a bias term B(θ0, K)
and variance term V (σ2, b) becomes small when the number of steps K is large and the batch size b is large.
Therefore, it is desirable to set K large and b large so that Algorithm 1 will approximate a local minimizer
of f .

The essential lemma to proving (1) is the guarantee of the existence of a lower bound on the learning rates
satisfying the Armijo condition (Lemma 2.1). Although, in general, learning rates satisfying the Armijo
condition do not have any lower bound (Lemma 2.1(i)), the corresponding learning rates computed by a
backtracking line search (Algorithm 1) have a lower bound (Lemma 2.1(ii)). In addition, the descent lemma
(i.e., f(y) ≤ f(x) + ⟨∇f(x), y − x⟩ + Ln

2 ∥y − x∥2 (x, y ∈ Rd)) holds from the smoothness condition on f .
Thus, we can prove (1) by using the existence of a lower bound on the learning rates satisfying the Armijo
condition and the descent lemma (see Appendix A.2 for details of the proof of Theorem 3.1).

Table 1: Relationship between batch size b and number of steps K to achieve an ϵ–approximation defined
by mink∈[0:K−1] E[∥∇f(θk)∥2] ≤ C1

K + C2
b = ϵ2 for SGD with a constant learning rate α ∈ (0, 2

Ln
) and for

SGD with Armijo-line-search learning rate αk ∈ [α, α] ([0 : K − 1] := {0, 1, . . . , K − 1}, f := 1
n

∑
i∈[n] fi

is bounded below by f∗, Li is the Lipschitz constant of ∇fi, Ln := 1
n

∑
i∈[n] Li, α̃ := 2δ(1−c)

Ln
, δ ∈ (1

4 , 1),
c ∈ (0, 1− 1

4δ), and σ2 is the upper bound of the variance of the stochastic gradient)

Learning Rate Upper Bound C1
K + C2

b Steps K SFO N Critical Batch b⋆

Constant α ∈
(

0,
2

Ln

)
C1 = 2(f(θ0)− f∗)

(2− Lnα)α K = C1b

ϵ2b− C2
N = C1b2

ϵ2b− C2
b⋆ = 2C2

ϵ2

C2 = Lnασ2

2− Lnα

Armijo α ∈
(

1
Ln

,
2

Ln

)
C1 = 2(f(θ0)− f∗)

α̃− (Lnα− 1)α K = C1b

ϵ2b− C2
N = C1b2

ϵ2b− C2
b⋆ = 2C2

ϵ2

C2 = Lnα2σ2

α̃− (Lnα− 1)α

1.3.2 Steps needed for ϵ–approximation of SGD with Armijo line-search-learning rates

The previous results in (Shallue et al., 2019; Zhang et al., 2019; Iiduka, 2022; Sato & Iiduka, 2023) indicated
that, for optimizers, the number of steps K needed to train a deep neural network or generative adversarial
networks decreases as the batch size increases. The second contribution of this paper is to show that, for
SGD with the Armijo-line-search learning rate, the number of steps K needed for nonconvex optimization
decreases as the batch size increases. Let us consider the case in which the right-hand side of (1) is equal to
ϵ2, where ϵ > 0 is the precision. Then, K is a rational function defined for a batch size b by

K = K(b) = C1b

ϵ2b− C2
, (2)

3

Published in Transactions on Machine Learning Research (03/2025)

where C1 and C2 are the positive constants defined in (1) (see also Table 1). We can easily show that K
defined above is a monotone decreasing and convex function with respect to b (Theorem 3.2). Accordingly,
the number of steps needed for nonconvex optimization decreases as the batch size increases.

1.3.3 Critical batch size minimizing SFO complexity of SGD with Armijo-line-search learning rates

Using K defined by (2) above, we can further define the SFO complexity N of SGD with Armijo-line-search
learning rates (see also Table 1):

N = Kb = K(b)b = C1b2

ϵ2b− C2
. (3)

We can easily show that N is convex with respect to b and that a global minimizer

b⋆ = 2C2

ϵ2 = 2Lnα2σ2

{α̃− (Lnα− 1)α}ϵ2 (4)

exists for it (Theorem 3.3). Accordingly, there is a critical batch size b⋆ at which N is minimized.

Here, we compare the number of steps KC and the SFO complexity NC for SGD using a constant learning
rate α with KA and NA for SGD using Armijo-line-search learning rate αk (∈ [α, α]). Let C1,C (resp. C2,C)
be C1 (resp. C2) in Table 1 for SGD using a constant learning rate and let C1,A (resp. C2,A) be C1 (resp.
C2) in Table 1 for SGD using the Armijo-line-search learning rate. We have that

C1,A < C1,C iff (2− Lnα)α < α̃− (Lnα− 1)α,

C2,A < C2,C iff α2σ2
A

α̃− (Lnα− 1)α <
ασ2

C
2− Lnα

,
(5)

where σ2
C (resp. σ2

A) denotes the upper bound of the variance of the stochastic gradient for SGD using
a constant learning rate α (resp. the Armijo-line-search learning rate). If (5) holds, then SGD using the
Armijo-line-search learning rate converges faster than SGD using a constant learning rate in the sense that

C1,Ab
ϵ2b−C2,A

= KA < KC = C1,Cb
ϵ2b−C2,C

and C1,Ab2

ϵ2b−C2,A
= NA < NC = C1,Cb2

ϵ2b−C2,C
. It would be difficult to check exactly

that (5) holds before implementing SGD, since (5) involves unknown parameters, such as Ln = 1
n

∑
i∈[n] Li,

σ2
C, and σ2

A. However, it can be expected that (5) holds, since it is known empirically (Vaswani et al., 2019,
Figure 5) that the relationship between the Armijo-line-search learning rate αk and a constant learning rate
α is α < αk < α.

1.3.4 Numerical results supporting our theoretical results

The numerical results in (Vaswani et al., 2019) showed that SGD with the Armijo-line-search learning rate
performs better than other optimizers in training deep neural networks (DNNs). Hence, we seek to determine
whether the numerical results match our theoretical results (Sections 1.3.1, 1.3.2, and 1.3.3). We trained
residual networks (ResNets) on the CIFAR-10 and MNIST datasets. We numerically found that increasing
the batch size b decreases the number of steps K needed to train a DNN and that there are critical batch
sizes minimizing the SFO complexities. To determine whether SGD using the Armijo-line-search learning
rate performs better than SGD using a constant learning rate (see the discussion in condition (5)), we
numerically compared SGD using the Armijo-line-search learning rate with not only SGD using a constant
learning rate but also variants of SGD, such as the momentum method, Adam, AdamW, and RMSProp. We
found that SGD using the Armijo-line-search learning rate and the critical batch size performs better than
other optimizers in the sense of minimizing the number of steps and the SFO complexities needed to train
a DNN (Section 4).

2 Mathematical Preliminaries

2.1 Definitions

Let N be the set of nonnegative integers, [n] := {1, 2, . . . , n} for n ≥ 1, and [0 : n] := {0, 1, . . . , n} for n ≥ 0.
Let Rd be a d–dimensional Euclidean space with inner product ⟨·, ·⟩ inducing the norm ∥ · ∥.

4

Published in Transactions on Machine Learning Research (03/2025)

Let f : Rd → R be continuously differentiable. We denote the gradient of f by ∇f : Rd → Rd. Let L > 0.
f : Rd → R is said to be L–smooth if ∇f : Rd → Rd is L–Lipschitz continuous, i.e., for all x, y ∈ Rd,
∥∇f(x)−∇f(y)∥ ≤ L∥x− y∥. When f : Rd → R is L–smooth, the following inequality, called the descent
lemma (Beck, 2017, Lemma 5.7), holds: for all x, y ∈ Rd, f(y) ≤ f(x) + ⟨∇f(x), y − x⟩+ L

2 ∥y − x∥2. Let
f∗ ∈ R. f : Rd → R is said to be bounded below by f∗ if, for all x ∈ Rd, f(x) ≥ f∗.

2.2 Assumptions and problem

Given a parameter θ ∈ Rd and a data point z in a data domain Z, a machine learning model provides a
prediction whose quality can be measured by a differentiable nonconvex loss function f(θ; z). We aim to
minimize the empirical average loss defined for all θ ∈ Rd by f(θ) = 1

n

∑
i∈[n] f(θ; zi) = 1

n

∑
i∈[n] fi(θ), where

S = (z1, z2, . . . , zn) denotes the training set and fi(·) := f(·; zi) denotes the loss function corresponding to
the i-th training data zi.

This paper considers the following smooth nonconvex optimization problem.
Problem 2.1 Suppose that fi : Rd → R (i ∈ [n]) is Li–smooth and bounded below by fi,∗. Then,

minimize f(θ) := 1
n

∑
i∈[n]

fi(θ) subject to θ ∈ Rd.

We assume the existence of SFO such that, for a given θ ∈ Rd, it returns a stochastic gradient Gξ(θ) of
the function f , where a random variable ξ is supported on a finite/an infinite set Ξ independently of θ. We
make the following standard assumptions.
Assumption 2.1

(A1) Let (θk)k∈N ⊂ Rd be the sequence generated by SGD. For each iteration k,

Eξk
[Gξk

(θk)] = ∇f(θk), (6)

where ξ0, ξ1, . . . are independent samples, the random variable ξk is independent of (θl)k
l=0, and Eξk

[·]
stands for the expectation with respect to ξk. There exists a nonnegative constant σ2 such that

Eξk

[
∥Gξk

(θk)−∇f(θk)∥2]
≤ σ2. (7)

(A2) For each iteration k, SGD samples a batch Bk of size b independently of k and estimates the full
gradient ∇f as

∇fBk
(θk) := 1

b

∑
i∈[b]

Gξk,i
(θk) = 1

b

∑
i∈[b]

∇fξk,i
(θk),

where ξk,i is a random variable generated by the i-th sampling in the k-th iteration.

From the independence of ξ0, ξ1, . . ., we can define the total expectation E by E = Eξ0Eξ1 · · ·Eξk
.

2.3 Stochastic gradient descent using Armijo-line-search learning rate

2.3.1 Armijo condition

Suppose that f : Rd → R is continuously differentiable. We would like to find a stationary point θ⋆ ∈ Rd

such that ∇f(θ⋆) = 0 by using an iterative method defined by

θk+1 := θk + αkdk, (8)

where αk > 0 is the step size (called a learning rate in the machine learning field) and dk ∈ Rd is the search
direction. Various methods can be used depending on the search direction dk. For example, the method

5

Published in Transactions on Machine Learning Research (03/2025)

(8) with dk := −∇f(θk) is gradient descent, while the method (8) with dk := −∇f(θk) + βk−1dk−1, where
βk ≥ 0, is the conjugate gradient method. If we define dk (e.g., dk := −∇f(θk)), it is desirable to set α⋆

k

satisfying

f(θk + α⋆
kdk) = min

α>0
f(θk + αdk). (9)

The step size α⋆
k defined by (9) can be easily computed when f is quadratic and convex. However, for a

general nonconvex function f , it is difficult to compute the step size α⋆
k in (9) exactly. Here, we can use the

Armijo condition for finding an appropriate step size αk: Let c ∈ (0, 1). We would like to find αk > 0 such
that

f(θk + αkdk) ≤ f(θk) + cαk⟨∇f(θk), dk⟩. (10)

When dk satisfies the descent property defined by ⟨∇f(θk), dk⟩ < 0 (e.g., gradient descent using dk :=
−∇f(θk) has the property such that ⟨∇f(θk), dk⟩ = −∥∇f(θk)∥2 < 0), the Armijo condition ensures that
f(θk+1) = f(θk + αkdk) < f(θk). Accordingly, αk satisfying the Armijo condition (10) is appropriate in the
sense of minimizing f .

The existence of step sizes satisfying the Armijo condition (10) is guaranteed.
Proposition 2.1 (Nocedal & Wright, 2006, Lemma 3.1) Let f : Rd → R be continuously differentiable. Let
θk ∈ Rd and let dk (̸= 0) have the descent property defined by ⟨∇f(θk), dk⟩ < 0. Let c ∈ (0, 1). Then, there
exists γk > 0 such that, for all αk ∈ (0, γk], the Armijo condition (10) holds.

2.3.2 Stochastic gradient descent under Armijo condition

The objective of this paper is to solve Problem 2.1 using mini-batch SGD under Assumption 2.1 defined by

θk+1 = θk + αkdk = θk − αk∇fBk
(θk)

= θk −
αk

b

∑
i∈[b]

Gξk,i
(θk),

where b > 0 is the batch size and αk > 0 is the learning rate. For each iteration k, we can use θk, fBk
, and

∇fBk
. Hence, the Armijo condition (Vaswani et al., 2019, (1)) written as

fik(θk − αk∇fik(θk)) ≤ fik(θk)− cαk∥∇fik(θk)∥2,

where ik is the training sample for iteration k, at the k-th iteration for SGD can be obtained by replacing
f in (10) with fBk

and using dk = −∇fBk
(θk):

fBk
(θk − αk∇fBk

(θk)) ≤ fBk
(θk)− cαk∥∇fBk

(θk)∥2. (11)

The Armijo condition (11) ensures that fBk
(θk+1) = fBk

(θk − αk∇fBk
(θk)) < fBk

(θk); i.e., the Armijo
condition (11) is appropriate in the sense of minimizing the estimated objective function fBk

from the full
objective function f . In fact, the numerical results in (Vaswani et al., 2019) indicate that SGD using the
Armijo condition (11) is superior to using other deep-learning optimizers to train DNNs.

Algorithm 1 is the SGD algorithm using the Armijo condition (11).

The search direction of Algorithm 1 is dk = −∇fBk
(θk) (̸= 0) which has the descent property defined by

⟨∇fBk
(θk), dk⟩ = −∥∇fBk

(θk)∥2 < 0. Hence, from Proposition 2.1, there exists a learning rate αk ∈ (0, γk]
satisfying the Armijo condition (11). Moreover, the proposition guarantees that the learning rate can be
chosen to be sufficiently small, e.g., lim infk→+∞ αk = 0.

The convergence analyses of Algorithm 1 use a lower bound of αk ∈ (0, γk] satisfying the Armijo condition
(11). To guarantee the existence of such a lower bound, we use the backtracking method ((Nocedal & Wright,
2006, Algorithm 3.1) and (Vaswani et al., 2019, Algorithm 2)) described in Algorithm 1.

The following lemma guarantees the existence of a lower bound on the learning rates computed by Algorithm
1. The proof is given in Appendix A.1.

6

Published in Transactions on Machine Learning Research (03/2025)

Algorithm 1 Stochastic gradient descent using Armijo-line-search learning rate
Require: c, δ ∈ (0, 1) (hyperparameter), b > 0 (batch size), θ0 ∈ Rd (initial point), K ≥ 1 (steps), α

(Initialization, see Algorithm 2), θk ∈ Rd, fBk
: Rd → R

Ensure: θK ∈ Rd

k ← 0
for k = 0, 1, . . . , K − 1 do

while α satisfying fBk
(θk − α∇fBk

(θk)) > fBk
(θk)− cα∥∇fBk

(θk)∥2 do
α← δα

end while
αk ← α
Compute θk+1 = θk − αk∇fBk

(θk)
end for

Lemma 2.1 Consider Algorithm 1 under Assumption 2.1 for solving Problem 2.1. Let αk be a learning
rate satisfying the Armijo condition (11) (whose existence is guaranteed by Proposition 2.1), let LBk

be the
Lipschitz constant of ∇fBk

. Then, the following hold.

(i) [Counter-example of (Vaswani et al., 2019, Lemma 1)] There exists Problem 2.1 such that αk does
not satisfy min{ 2(1−c)

LBk
, α} ≤ αk, where α is an upper bound of αk.

(ii) [Lower bound on learning rate determined by backtracking line search method] If αk can be computed
by Algorithm 1, then there exists a lower bound of αk such that 0 < α := 2δ(1−c)

L ≤ αk, where L is
the maximum value of Li.

3 Analysis of SGD using Armijo-Line-Search Learning Rate

3.1 Convergence analysis of Algorithm 1

Here, we present a convergence analysis of Algorithm 1. The proof of Theorem 3.1 is given in Appendix A.2.
Theorem 3.1 (Upper bound of the squared norm of the full gradient) Consider the sequence
(θk)k∈N generated by Algorithm 1 under Assumption 2.1 for solving Problem 2.1 and suppose that the
learning rate αk ∈ [α, α] is computed by Algorithm 1. Then, for all K ≥ 1, the following hold:

(i) In the case of 1
Ln
≥ α,

min
k∈[0:K−1]

E
[
∥∇f(θk)∥2]

≤

C1︷ ︸︸ ︷
2(f(θ0)− f∗)
(2− Lnα)α

1
K︸ ︷︷ ︸

B(θ0,K)

+

C2︷ ︸︸ ︷
{(Lnα− 1)α + α}σ2

(2− Lnα)α
1
b︸ ︷︷ ︸

V (σ2,b)

,

where Ln := 1
n

∑
i∈[n] Li, f∗ := 1

n

∑
i∈[n] fi,∗, α := 2δ(1−c)

L , δ ∈ (0, 1), and c ∈ (0, 1).

(ii) Suppose that the random variable ξk follows a discrete uniform distribution DUb(n). In the case of
1

Ln
< α < α̂ < 2

Ln
,

min
k∈[0:K−1]

E
[
∥∇f(θk)∥2]

≤

C1︷ ︸︸ ︷
2(f(θ0)− f∗)

α̃− (Lnα− 1)α
1
K︸ ︷︷ ︸

B(θ0,K)

+

C2︷ ︸︸ ︷
Lnα2σ2

α̃− (Lnα− 1)α
1
b︸ ︷︷ ︸

V (σ2,b)

,

where Ln := 1
n

∑
i∈[n] Li, f∗ := 1

n

∑
i∈[n] fi,∗, α̃ := 2δ(1−c)

Ln
, α̂ := 1+

√
1+8δ(1−c)
2Ln

, δ ∈ (1
4 , 1), and

c ∈ (0, 1− 1
4δ).

7

Published in Transactions on Machine Learning Research (03/2025)

Here, we sketch a proof of Theorem 3.1 (A detailed proof of Theorem 3.1 is given in Appendix A.2).

Proof outline of Theorem 3.1(i):

i. We show that there exists a lower bound α of αk satisfying the Armijo condition such that 0 < α :=
2δ(1−c)

L ≤ αk (Lemma 2.1(ii)).

ii. The descent lemma leads to the finding that

f(θk+1) ≤ f(θk)− αk

2 ∥∇f(θk)∥2 + 1
2(Lnαk − 1)αk∥∇fBk

(θk)∥2 + αk

2 ∥∇f(θk)−∇fBk
(θk)∥2.

iii. Under (A1) and (A2), mini-batch stochastic gradient ∇fBk
(θk) satisfies the equation

Eξk
[∇fBk

(θk)|θk] = ∇f(θk), Eξk

[
∥∇fBk

(θk)−∇f(θk)∥2|θk

]
≤ σ2

b (see (24)). Then, we have
Eξk

[
∥∇fBk

(θk)∥2|θk

]
≤ ∥∇f(θk)∥2 + σ2

b (see (25)).

iv. Items i, ii, and iii above, together with the conditions 0 < α ≤ αk ≤ α and 1
Ln
≥ α, lead to

Eξk
[f(θk+1)|θk] ≤ f(θk)− α

2 ∥∇f(θk)∥2 +
{

(Lnα− 1)α
2

}
∥∇f(θk)∥2 + {(Lnα− 1)α + α}σ2

2b
,

which implies that, for all k ∈ N,

α− (Lnα− 1)α
2 E[∥∇f(θk)∥2] ≤ E [f(θk)− f(θk+1)] + {(Lnα− 1)α + α}σ2

2b
.

Summing the above inequality from k = 0 to k = K − 1 ensures that

1
K

K−1∑
k=0

E
[
∥∇f(θk)∥2]

≤ 2(f(θ0)− f∗)
{α− (Lnα− 1)α}K + {(Lnα− 1)α + α}σ2

{α− (Lnα− 1)α}b .

Proof outline of Theorem 3.1(ii):

i. Items i, ii, and iii in the proof outline of Theorem 3.1(i), together with the conditions 0 < α ≤ αk ≤ α
and 1

Ln
< α, lead to

Eξk
[f(θk+1)] ≤ f(θk)− 1

2Eξk
[αk] ∥∇f(θk)∥2 + (Lnα− 1)α

2 ∥∇f(θk)∥2 + Lnα2σ2

2b
.

ii. Assuming ξk ∼ DUb(n) and applying Jensen’s inequality, we have Eξk
[αk] ≥ 2δ(1−c)

Ln
. Hence, we

have

α̃− (Lnα− 1)α
2

K−1∑
k=0

E
[
∥∇f(θk)∥2]

≤ E [f(θ0)− f∗] + Lnα2σ2K

2b
,

where α̃ := 2δ(1−c)
Ln

and f∗ := 1
n

∑
i∈[n] fi,∗.

iii. Let δ ∈ (1
4 , 1), c ∈ (0, 1− 1

4δ), and α̂ := 1+
√

1+8δ(1−c)
2Ln

< 2
Ln

. Since α̃ ≤ α < α̂, we have α̃− (Lnα−
1)α > 0, which implies

1
K

K−1∑
k=0

E
[
∥∇f(θk)∥2]

≤ 2(f(θ0)− f∗)
{α̃− (Lnα− 1)α}K + Lnα2σ2

{α̃− (Lnα− 1)α}b .

8

Published in Transactions on Machine Learning Research (03/2025)

Theorem 3.1 indicates that the upper bound of the minimum value of E[∥∇f(θk)∥2] consists of a bias term
B(θ0, K) and variance term V (σ2, b). When the number of steps K is large and the batch size b is large,
B(θ0, K) and V (σ2, b) become small. Therefore, we need to set K large and b large so that Algorithm 1 will
approximate a local minimizer of f .

Here, we compare Theorem 3.1 with the convergence analysis of SGD using a constant learning rate. SGD
using a constant learning rate α ∈ (0, 2

Ln
) satisfies

min
k∈[0:K−1]

E
[
∥∇f(θk)∥2]

≤ 2(f(θ0)− f∗)
(2− Lnα)α

1
K

+ Lnασ2

2− Lnα

1
b

(12)

(The proof of (12) is given in Appendix A.5). We need to set a constant learning rate α ∈ (0, 2
Ln

) depending
on the Lipschitz constant Ln of ∇f . However, since computing Ln is NP-hard (Virmaux & Scaman, 2018),
it is difficult to set α ∈ (0, 2

Ln
). Meanwhile, from Theorem 3.1(ii), we need to set c, δ ∈ (0, 1) in Algorithm 1

such that δ ∈ (1
4 , 1) and c ∈ (0, 1− 1

4δ) (see Section 4 for the performance of Algorithm 1 using δ = 0.9 and
small parameters c).

We also compare Theorem 3.1 with Theorem 3 in (Vaswani et al., 2019). Theorem 3 in (Vaswani et al.,
2019) indicates that, under a strong growth condition with a constant ρ (i.e., Ei[∥∇fi(θ)∥2] ≤ ρ∥∇f(θ)∥2

(θ ∈ Rd)) and the Armijo condition, SGD satisfies that

min
k∈[0:K−1]

E
[
∥∇f(θk)∥2]

≤ f(θ0)− f(θ⋆)
∆K

,

where L is the maximum value of the Lipschitz constant Li of ∇fi, c > 1 − L
ρLn

, α < 2
ρLn

, ∆ := (α +
2(1−c)

L) − ρ(α − 2(1−c)
L + Lnα2), and θ⋆ is a local minimizer of f . Theorem 3.1 is a convergence analysis

of Algorithm 1 without assuming the strong growth condition. Moreover, Theorem 3.1 shows that using a
large batch size is appropriate for SGD using Armijo line search (Algorithm 1).

3.2 Steps needed for ϵ–approximation

To investigate the relationship between the number of steps K needed for nonconvex optimization and the
batch size b, we consider an ϵ–approximation of Algorithm 1 defined as follows:

min
k∈[0:K−1]

E
[
∥∇f(θk)∥2]

≤ ϵ2, (13)

where ϵ > 0 is the precision.

Theorem 3.1 leads to the following theorem indicating the relationship between b and the values of K that
achieves an ϵ–approximation. The proof of Theorem 3.2 is given in Appendix A.3.
Theorem 3.2 (Steps needed for nonconvex optimization of SGD using Armijo line search)
Suppose that the assumptions in Theorem 3.1 hold. Define K : R→ R for all b > C2

ϵ2 by

K(b) = C1b

ϵ2b− C2
, (14)

where the positive constants C1 and C2 are defined as in Theorem 3.1. Then, the following hold:

(i) [Steps needed for nonconvex optimization] K defined by (14) achieves an ϵ–approximation (13).

(ii) [Properties of the steps] K defined by (14) is monotone decreasing and convex for b > C2
ϵ2 .

Theorem 3.2 ensures that the number of steps K needed for SGD using Armijo line search to be an ϵ–
approximation is small when the batch size b is large. Therefore, it is useful to set a sufficiently large batch
size in the sense of minimizing the steps needed for an ϵ–approximation of SGD using Armijo line search. In
other words, Theorem 3.2 implies that a large batch size accelerates DNN training.

9

Published in Transactions on Machine Learning Research (03/2025)

3.3 Critical batch size minimizing SFO complexity

The following theorem shows the existence of a critical batch size for SGD using Armijo line search. The
proof of Theorem 3.3 is given in Appendix A.4.
Theorem 3.3 (Existence of critical batch size for SGD using Armijo line search) Suppose that
the assumptions in Theorem 3.1 hold. Define SFO complexity N : R→ R for the number of steps K, defined
by (14), needed for an ϵ–approximation (13) and for a batch size b > C2

ϵ2 by

N(b) = K(b)b = C1b2

ϵ2b− C2
, (15)

where the positive constants C1 and C2 are defined as in Theorem 3.1(ii). Then, the following hold:

(i) [SFO complexity] N defined by (15) is convex for b > C2
ϵ2 .

(ii) [Critical batch size] There exists a critical batch size

b⋆ = 2C2

ϵ2 = σ2

ϵ2
L2

nα2

{2(1− c)δ − (Lnα− 1)Lnα}
(16)

such that b⋆ minimizes the SFO complexity (15).

While large batch sizes require substantial computational resources, the critical batch size that minimizes
SFO is small and practical, highlighting the importance of Theorem 3.3.

The previous results in (Shallue et al., 2019; Zhang et al., 2019; Iiduka, 2022) show that, for deep-learning
optimizers, there are critical batch sizes at which the SFO complexities are minimized. We are interested in
verifying whether a critical batch size exists for SGD using Armijo line search. Theorem 3.3(ii) indicates that
the critical batch size can be obtained from the hyperparameters. The next section numerically examines
the relationship between the batch size b and the number of steps K needed for nonconvex optimization and
the relationship between b and the SFO complexity N to check if there is a critical batch size b⋆ minimizing
N .

3.4 Insights into and relationships among Theorems 3.1, 3.2, and 3.3

Theorem 3.1 provides a convergence analysis of SGD using Armijo line search showing that an upper bound
of the gradient norm is represented by C1

K + C2
b and that the upper bound decreases as the number of steps

K and batch size b increase. Therefore, it is desirable for SGD with Armijo line search to use large values of
K and b. However, Theorem 3.1 does not directly indicate how large K and b should be for training DNNs.
Here, we are interested in clarifying the relationship between the K needed to train a DNN and batch size b.

To consider the case in which SGD minimizes the full gradient norm of the loss function, we assume that SGD
is an ϵ-approximation defined by mink∈[0:K−1] E[∥∇f(θk)∥2] ≤ ϵ2; that is, the upper bound of the gradient
norm shown in Theorem 3.1 is less than or equal to a certain small positive value ϵ2, i.e., C1

K + C2
b ≤ ϵ2.

Then, we have K ≥ C1b
ϵ2b−C2

. This implies that the number of steps needed to obtain an ϵ-approximation of
SGD with Armijo line search is K(b) = C1b

ϵ2b−C2
depending on batch size b.

On the basis of the above discussion, we aim to clarify the relationship between the required K for training a
DNN and batch size b. Theorem 3.2 elucidates the relationship between the number of steps K and batch size
b. In particular, Theorem 3.2(ii) indicates that the number of steps needed to train a DNN is monotonically
decreasing and convex with respect to batch size. That is, the number of steps K needed for SGD using
Armijo line search to be an ϵ–approximation is small when batch size b is large. Therefore, it is useful to
set a sufficiently large batch size in the sense of minimizing the steps needed for an ϵ–approximation of SGD
using Armijo line search. That is, a large batch size can accelerate DNN training.

One particularly intriguing question is how large the batch size should be. Here we consider SFO complexity
to be the stochastic gradient computation cost. Since a DNN model uses b gradients of the loss function,

10

Published in Transactions on Machine Learning Research (03/2025)

SFO complexity is K(b)b when the number of steps needed to train the DNN is K(b), which can be obtained
from Theorem 3.2. Theorem 3.3 establishes the relationship between batch size b and SFO complexity
K(b)b = C1b2

ϵ2b−C2
. In particular, Theorem 3.3(ii) indicates that there is a critical batch size that minimizes

SFO complexity N(b) = K(b)b, which is a convex function of batch size b. Theorem 3.2 demonstrates that,
as the batch size increases, the number of required steps decreases, suggesting that increasing the batch
size accelerates DNN training. However, excessively large batch sizes demand substantial computational
resources. Therefore, as Theorem 3.3 indicates, the critical batch size that minimizes SFO complexity is
significant and practical because moderate batch sizes are suitable for implementing SGD.

4 Numerical Results

We examined whether the numerical results match our theoretical results (Theorems 3.2 and 3.3). We
also compared the performance of Algorithm 1 with the performances of other optimizers, such as SGD
with a constant learning rate (SGD), a momentum method (Momentum), Adam, AdamW, and RMSProp.
The learning rate and hyperparameters of the five optimizers used in each experiment were determined on
the basis of a grid search. Python implementations of the methods used in the numerical experiments are
available at https://github.com/iiduka-researches/armijo_linesearch.

The metrics were the number of steps K and the SFO complexity N = Kb indicating for different batch
sizes b, at time k, the number of steps K needed for the average gradient norm over the past k steps to be
less than ϵ = 0.5. We used Algorithm 1 with the Armijo-line-search learning rate computed by Algorithm
1 with δ = 0.9, α = 10 (see https://github.com/IssamLaradji/sls for the setting of parameters), and
various values of c. We reset the step size each epoch by using Algorithm 2 with J = ⌈n

b ⌉ .

Algorithm 2 Reset step size
Require: αinit, J , αk−1, . . . , αk−J+1

if k ≤ J then
αk = αinit

else
αk = 2

J

∑J+1
j=1 αk−j

end if
return αk

We trained ResNet-18 on the CIFAR-10 dataset (n = 50000). Figure 1 plots the number of steps needed
to train ResNet-18 on the CIFAR-10 dataset for Algorithm 1 versus the batch size. It can be seen that
Algorithm 1 reduced the number of steps as the batch size was increased. Figure 2 plots the SFO complexities
of Algorithm 1 versus the batch size. It indicates that there are critical batch sizes that minimize the SFO
complexities. The Armijo condition (see (11)) implies that, if c is large, then αk satisfying the Armijo
condition is small, which implies that SGD with a small αk would not work. In fact, as indicated in Figure
1, for training ResNet-18 on the CIFAR-10 dataset, when the batch size exceeded 27, SGD using Armijo line
search with c = 0.1 required a greater number of steps for convergence than with c = 0.01, 0.001 because
the learning rate at c = 0.1 was much smaller than that at c = 0.01, 0.001 (see Appendix A.8). As a result,
as shown in Figure 2, SGD using Armijo line search with c = 0.1 had a larger SFO complexity than with
c = 0.01, 0.001. However, the trend in which smaller values of c resulted in fewer steps and reduced SFO
complexity was not observed when training ResNet-18 on the MINIST dataset (Figures 5 and 6). This
is because the learning rate increased with the batch size for the CIFAR-10 dataset (see Appendix A.8).
Therefore, we can conclude that the appropriate value for hyperparameter c depends on the specific training
dataset.

Figures 3 and 4 compare the performance of Algorithm 1 with c = 0.01 with those of SGD variants. The
figures indicate that, when the batch sizes are from 25 to 211, SGD+Armijo (Algorithm 1) performs better
than the other optimizers. In particular, the SFO complexity of SGD+Armijo (Algorithm 1) using c = 0.01
and the critical batch size (b⋆ = 28) is the smallest of the optimizers for any batch size.

11

https://github.com/iiduka-researches/armijo_linesearch
https://github.com/IssamLaradji/sls

Published in Transactions on Machine Learning Research (03/2025)

Therefore, we can conclude that Algorithm 1 using the critical batch size b⋆ (= 28) performs better than other
optimizers using any batch size in the sense of minimizing the SFO complexities needed to train ResNet18
on the CIFAR-10 dataset.

25 26 27 28 29 210 211

Batch Size

104

105

St
ep

s

c=0.1 c=0.01 c=0.001

Figure 1: Number of steps for Algorithm 1 versus
batch size needed to train ResNet-18 on CIFAR-
10

25 26 27 28 29 210 211

Batch Size

107

SF
O

c=0.1 c=0.01 c=0.001

Figure 2: SFO complexity for Algorithm 1 versus
batch size needed to train ResNet-18 on CIFAR-
10 (The double-circle symbol denotes the mea-
sured critical batch size)

25 26 27 28 29 210 211

Batch Size

104

105

St
ep

s

SGD+Armijo
SGD

Momentum
Adam

AdamW
RMSProp

Figure 3: Number of steps for Algorithm 1 with
c = 0.01 and SGD variants versus batch size
needed to train ResNet-18 on CIFAR-10

25 26 27 28 29 210 211

Batch Size

107

SF
O

SGD+Armijo
SGD

Momentum
Adam

AdamW
RMSProp

Figure 4: SFO complexity for Algorithm 1 with
c = 0.01 and SGD variants versus batch size
needed to train ResNet-18 on CIFAR-10 (The
double-circle symbol denotes the measured criti-
cal batch size)

25 26 27 28 29 210 211

Batch Size

103

104

St
ep

s

c=0.1 c=0.01 c=0.001

Figure 5: Number of steps for Algorithm 1 versus
batch size needed to train ResNet-18 on MNIST

25 26 27 28 29 210 211

Batch Size

106

4 × 105

6 × 105

SF
O

c=0.1 c=0.01 c=0.001

Figure 6: SFO complexity for Algorithm 1 versus
batch size needed to train ResNet-18 on MNIST
(The double-circle symbol denotes the measured
critical batch size)

12

Published in Transactions on Machine Learning Research (03/2025)

We also considered the case of training ResNet-18 on the MNIST dataset (n = 60000). Figure 5 plots the
number of steps needed to train ResNet-18 on the MNIST dataset for Algorithm 1 versus the batch size, and
Figure 6 plots the SFO complexities of Algorithm 1 versus the batch size. Here, there are critical batch sizes
that minimize the SFO complexities. As in Figures 5 and 6, these figures show that Algorithm 1 decreases
the number of steps as the batch size increases and there are critical batch sizes that minimize the SFO
complexities.

Figures 7 and 8 compare the performance of Algorithm 1 with c = 0.1 with those of SGD variants. Figures
7 and 8 show that the adaptive methods, i.e., Adam and AdamW, performed well. When the batch size was
from 25 to 28, SGD performed better than SGD using the Armijo-line-search learning rate in the sense of
minimizing the number of steps and SFO complexity. When the batch size was large such as b = 29, 210,
or 211, SGD using the Armijo-line-search learning rate performed better than SGD and Momentum in the
sense of minimizing the number of steps and SFO complexity. In short, Figures 3, 4, 7, and 8 show that,
when using a large batch size, SGD with Armijo line search performed better than SGD and Momentum.

25 26 27 28 29 210 211

Batch Size

103

104

St
ep

s

SGD+Armijo
SGD

Momentum
Adam

AdamW
RMSProp

Figure 7: Number of steps for Algorithm 1 with
c = 0.1 and SGD variants versus batch size
needed to train ResNet-18 on MNIST

25 26 27 28 29 210 211

Batch Size

105

106

SF
O

SGD+Armijo
SGD

Momentum
Adam

AdamW
RMSProp

Figure 8: SFO complexity for Algorithm 1
with c = 0.1 and SGD variants versus batch
size needed to train ResNet-18 on MNIST (The
double-circle symbol denotes the measured criti-
cal batch size)

5 Conclusion

This paper presented a convergence analysis of SGD using Armijo line search for nonconvex optimization.
We showed that the number of steps needed for nonconvex optimization is monotone decreasing and convex
with respect to the batch size; i.e., the steps decrease in number as the batch size increases. We also showed
that the SFO complexity needed for nonconvex optimization is convex with respect to the batch size and that
there exists a critical batch size at which the SFO complexity is minimized. We also presented numerical
results that corroborate our theoretical findings. In particular, the numerical results indicated that SGD
using Armijo line search and the critical batch size performs better than other optimizers using any batch
size in the sense of minimizing the SFO complexity needed to train ResNet-18 on the CIFAR-10 dataset.

Acknowledgments

We are sincerely grateful to the Action Editor, Alec Koppel, and the three anonymous reviewers for helping
us improve the original manuscript. This research is partly supported by the computational resources of
the DGX A100 named TAIHO at Meiji University. This work was supported by the Japan Society for the
Promotion of Science (JSPS) KAKENHI Grant Number 24K14846 awarded to Hideaki Iiduka.

13

Published in Transactions on Machine Learning Research (03/2025)

References
Amir Beck. First-Order Methods in Optimization. Society for Industrial and Applied Mathematics, Philadel-

phia, PA, 2017.

Hao Chen, Lili Zheng, Raed AL Kontar, and Garvesh Raskutti. Stochastic gradient descent in correlated set-
tings: A study on Gaussian processes. In Advances in Neural Information Processing Systems, volume 33,
2020.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and stochastic
optimization. Journal of Machine Learning Research, 12:2121–2159, 2011.

Benjamin Fehrman, Benjamin Gess, and Arnulf Jentzen. Convergence rates for the stochastic gradient
descent method for non-convex objective functions. Journal of Machine Learning Research, 21:1–48, 2020.

Leonardo Galli, Holger Rauhut, and Mark Schmidt. Don’t be so monotone: Relaxing stochastic line search
in over-parameterized models. arXiv preprint arXiv:2306.12747, 2023.

Saeed Ghadimi and Guanghui Lan. Optimal stochastic approximation algorithms for strongly convex stochas-
tic composite optimization I: A generic algorithmic framework. SIAM Journal on Optimization, 22:1469–
1492, 2012.

Saeed Ghadimi and Guanghui Lan. Optimal stochastic approximation algorithms for strongly convex stochas-
tic composite optimization II: Shrinking procedures and optimal algorithms. SIAM Journal on Optimiza-
tion, 23:2061–2089, 2013.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter. GANs
trained by a two time-scale update rule converge to a local nash equilibrium. In Advances in Neural
Information Processing Systems, volume 30, 2017.

Hideaki Iiduka. Critical bach size minimizes stochastic first-order oracle complexity of deep learning optimizer
using hyperparameters close to one. arXiv: 2208.09814, 2022.

Prateek Jain, Sham M. Kakade, Rahul Kidambi, Praneeth Netrapalli, and Aaron Sidford. Parallelizing
stochastic gradient descent for least squares regression: Mini-batching, averaging, and model misspecifi-
cation. Journal of Machine Learning Research, 18(223):1–42, 2018.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Proceedings of The
International Conference on Learning Representations, 2015.

Nicolas Loizou, Sharan Vaswani, Issam Laradji, and Simon Lacoste-Julien. Stochastic Polyak step-size for
SGD: An adaptive learning rate for fast convergence. In Proceedings of the 24th International Conference
on Artificial Intelligence and Statistics, volume 130, 2021.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In Proceedings of The International
Conference on Learning Representations, 2019.

Hiroki Naganuma and Hideaki Iiduka. Conjugate gradient method for generative adversarial networks. In
Proceedings of The 26th International Conference on Artificial Intelligence and Statistics, volume 206 of
Proceedings of Machine Learning Research, pp. 4381–4408. PMLR, 2023.

Arkadi Nemirovski, Anatoli Juditsky, Guanghui Lan, and Alexander Shapiro. Robust stochastic approxima-
tion approach to stochastic programming. SIAM Journal on Optimization, 19:1574–1609, 2009.

Yurii Nesterov. A method for unconstrained convex minimization problem with the rate of convergence
O(1/k2). Doklady AN USSR, 269:543–547, 1983.

Jorge Nocedal and Stephen J. Wright. Numerical Optimization. Springer Series in Operations Research and
Financial Engineering. Springer, New York, 2nd edition, 2006.

14

Published in Transactions on Machine Learning Research (03/2025)

Boris T. Polyak. Some methods of speeding up the convergence of iteration methods. USSR Computational
Mathematics and Mathematical Physics, 4:1–17, 1964.

Sashank J. Reddi, Satyen Kale, and Sanjiv Kumar. On the convergence of Adam and beyond. In Proceedings
of The International Conference on Learning Representations, 2018.

Herbert Robbins and Herbert Monro. A stochastic approximation method. The Annals of Mathematical
Statistics, 22:400–407, 1951.

Naoki Sato and Hideaki Iiduka. Existence and estimation of critical batch size for training generative
adversarial networks with two time-scale update rule. In Proceedings of the 40th International Conference
on Machine Learning, volume 202 of Proceedings of Machine Learning Research, pp. 30080–30104. PMLR,
2023.

Kevin Scaman and Cédric Malherbe. Robustness analysis of non-convex stochastic gradient descent using
biased expectations. In Advances in Neural Information Processing Systems, volume 33, 2020.

Christopher J. Shallue, Jaehoon Lee, Joseph Antognini, Jascha Sohl-Dickstein, Roy Frostig, and George E.
Dahl. Measuring the effects of data parallelism on neural network training. Journal of Machine Learning
Research, 20:1–49, 2019.

Tijmen Tieleman and Geoffrey Hinton. RMSProp: Divide the gradient by a running average of its recent
magnitude. COURSERA: Neural networks for machine learning, 4:26–31, 2012.

Hikaru Umeda and Hideaki Iiduka. Increasing both batch size and learning rate accelerates stochastic
gradient descent. Transactions on Machine Learning Research, 2025.

Sharan Vaswani, Aaron Mishkin, Issam Laradji, Mark Schmidt, Gauthier Gidel, and Simon Lacoste-Julien.
Painless stochastic gradient: Interpolation, line-search, and convergence rates. In Advances in Neural
Information Processing Systems, volume 32, 2019.

Aladin Virmaux and Kevin Scaman. Lipschitz regularity of deep neural networks: analysis and efficient
estimation. In Advances in Neural Information Processing Systems, volume 31, 2018.

Guodong Zhang, Lala Li, Zachary Nado, James Martens, Sushant Sachdeva, George E. Dahl, Christopher J.
Shallue, and Roger Grosse. Which algorithmic choices matter at which batch sizes? Insights from a noisy
quadratic model. In Advances in Neural Information Processing Systems, volume 32, 2019.

Martin Zinkevich. Online convex programming and generalized infinitesimal gradient ascent. In Proceedings
of the 20th International Conference on Machine Learning, pp. 928–936, 2003.

15

Published in Transactions on Machine Learning Research (03/2025)

A Appendix

A.1 Proof of Lemma 2.1

(i) Let k ∈ N and let LBk
be the Lipschitz constant of ∇fBk

. Lemma 1 in (Vaswani et al., 2019) is as follows:

∀fBk
: Rd → R ∀c ∈ (0, 1) ∀θk ∈ Rd ∀α > 0

∃αk ∈ (0, α] (fBk
(θk − αk∇fBk

(θk)) ≤ fBk
(θk)− cαk∥∇fBk

(θk)∥2)⇒ min
{

2(1− c)
LBk

, α

}
≤ αk.

(17)

The negative proposition of (17) is as follows:

∃fBk
: Rd → R ∃c ∈ (0, 1) ∃θk ∈ Rd ∃α > 0

∃αk ∈ (0, α] (fBk
(θk − αk∇fBk

(θk)) ≤ fBk
(θk)− cαk∥∇fBk

(θk)∥2) ∧min
{

2(1− c)
LBk

, α

}
> αk.

(18)

We will prove that (18) holds. Let n = b = 1, d = 1, c = 0.1, α = 1, and f(θ) = fBk
(θ) = θ2. From

∇f(θ) = 2θ, we have that LBk
= 2. Since θ∗ = 0 is the global minimizer of f , we set θk ∈ R such that

θk ̸= θ∗. The Armijo condition in this case is such that (θk − 2αkθk)2 ≤ θ2
k − cαk(2θk)2, which is equivalent

to αk ≤ 1− c = 0.9. Hence,

∃αk ∈ (0, 1] (αk ≤ 0.9) ∧ (min {0.9, 1} > αk)

⇔ ∃αk ∈ (0, α] (αk ≤ 1− c) ∧
(

min
{

2(1− c)
LBk

, α

}
> αk

)
⇔ ∃αk ∈ (0, α] (fBk

(θk − αk∇fBk
(θk)) ≤ fBk

(θk)− cαk∥∇fBk
(θk)∥2) ∧min

{
2(1− c)

LBk

, α

}
> αk,

which implies that (18) holds.

(ii) We can show Lemma 2.1(ii) using the proof (Case 2) of Lemma 1 in (Galli et al., 2023). Since αk

δ does
not satisfy the Armijo condition (11), we have that

fBk

(
θk −

αk

δ
∇fBk

(θk)
)

> fBk
(θk)− c

αk

δ
∥∇fBk

(θk)∥2. (19)

The LBk
–smoothness of fBk

ensures that the descent lemma is true, i.e.,

fBk

(
θk −

αk

δ
∇fBk

(θk)
)

≤ fBk
(θk) +

〈
∇fBk

(θk),
(

θk −
αk

δ
∇fBk

(θk)
)
− θk

〉
+ LBk

2

∥∥∥(
θk −

αk

δ
∇fBk

(θk)
)
− θk

∥∥∥2
,

which implies that

fBk

(
θk −

αk

δ
∇fBk

(θk)
)
≤ fBk

(θk) + αk

δ

(
LBk

αk

2δ
− 1

)
∥∇fBk

(θk)∥2. (20)

Hence, (19) and (20) imply that

−c
αk

δ
∥∇fBk

(θk)∥2 ≤ αk

δ

(
LBk

αk

2δ
− 1

)
∥∇fBk

(θk)∥2,

which in turn implies that

αk

δ

(
LBk

αk

2δ
− (1− c)

)
∥∇fBk

(θk)∥2 ≥ 0.

Accordingly,

LBk
αk

2δ
− (1− c) ≥ 0, i.e., αk ≥

2δ(1− c)
LBk

≥ 2δ(1− c)
L

=: α.

16

Published in Transactions on Machine Learning Research (03/2025)

A.2 Proof of Theorem 3.1

The definition of f(θ) := 1
n

∑
i∈[n] fi(θ) and the Li–smoothness of fi (i ∈ [n]) imply that, for all θ1, θ2 ∈ Rd,

∥∇f(θ1)−∇f(θ2)∥ ≤ 1
n

∑
i∈[n]

∥∇fi(θ1)−∇fi(θ2)∥ ≤
∑

i∈[n] Li

n
∥θ1 − θ2∥,

which in turn implies that ∇f is Lipschitz continuous with Lipschitz constant Ln := 1
n

∑
i∈[n] Li. Hence,

the descent lemma ensures that, for all k ∈ N,

f(θk+1) ≤ f(θk) + ⟨∇f(θk), θk+1 − θk⟩+ Ln

2 ∥θk+1 − θk∥2, (21)

which, together with θk+1 := θk − αk∇fBk
(θk), implies that

f(θk+1) ≤ f(θk)− αk⟨∇f(θk),∇fBk
(θk)⟩+ Lnα2

k

2 ∥∇fBk
(θk)∥2. (22)

From ⟨x, y⟩ = 1
2 (∥x∥2 + ∥y∥2 − ∥x− y∥2) (x, y ∈ Rd), we have that, for all k ∈ N,

⟨∇f(θk),∇fBk
(θk)⟩ = 1

2
(
∥∇f(θk)∥2 + ∥∇fBk

(θk)∥2 − ∥∇f(θk)−∇fBk
(θk)∥2)

.

Accordingly, (22) implies that, for all k ∈ N,

f(θk+1) ≤ f(θk)− αk

2
(
∥∇f(θk)∥2 + ∥∇fBk

(θk)∥2 − ∥∇f(θk)−∇fBk
(θk)∥2)

+ Lnα2
k

2 ∥∇fBk
(θk)∥2

= f(θk)− αk

2 ∥∇f(θk)∥2 + 1
2(Lnαk − 1)αk∥∇fBk

(θk)∥2 + αk

2 ∥∇f(θk)−∇fBk
(θk)∥2.

(i) We consider the case of 1
Ln
≥ α. The condition 0 < αk ≤ α implies that Lnαk − 1 ≤ Lnα − 1 and

0 ≥ Lnα− 1. From 0 < α = 2δ(1−c)
L ≤ αk, we have that, for all k ∈ N,

f(θk+1) ≤ f(θk)− α

2 ∥∇f(θk)∥2 + 1
2(Lnα− 1)α∥∇fBk

(θk)∥2 + α

2 ∥∇f(θk)−∇fBk
(θk)∥2. (23)

Assumption 2.1 guarantees that

Eξk
[∇fBk

(θk)|θk] = ∇f(θk) and Eξk

[
∥∇fBk

(θk)−∇f(θk)∥2|θk

]
≤ σ2

b
. (24)

Hence, we have

Eξk

[
∥∇fBk

(θk)∥2|θk

]
= Eξk

[
∥∇fBk

(θk)−∇f(θk) +∇f(θk)∥2|θk

]
= Eξk

[
∥∇fBk

(θk)−∇f(θk)∥2|θk

]
+ 2Eξk

[⟨∇fBk
(θk)−∇f(θk),∇f(θk)⟩|θk] + Eξk

[
∥∇f(θk)∥2|θk

]
≤ ∥∇f(θk)∥2 + σ2

b
.

(25)

Inequalities (23), (24), and (25) guarantee that, for all k ∈ N,

Eξk
[f(θk+1)|θk] ≤ f(θk)− α

2 ∥∇f(θk)∥2 + 1
2(Lnα− 1)α

(
∥∇f(θk)∥2 + σ2

b

)
+ ασ2

2b

= f(θk)− α

2 ∥∇f(θk)∥2+
{

(Lnα− 1)α
2

}
∥∇f(θk)∥2 + {(Lnα− 1)α + α}σ2

2b
.

(26)

17

Published in Transactions on Machine Learning Research (03/2025)

Taking the total expectation on both sides of (26) thus ensures that, for all k ∈ N,

α− (Lnα− 1)α
2 E

[
∥∇f(θk)∥2]

≤ E [f(θk)− f(θk+1)] + {(Lnα− 1)α + α}σ2

2b
. (27)

Let K ≥ 1. Summing (27) from k = 0 to k = K − 1 ensures that

α− (Lnα− 1)α
2

K−1∑
k=0

E
[
∥∇f(θk)∥2]

≤ E [f(θ0)− f(θK)] + {(Lnα− 1)α + α}σ2K

2b
,

which, together with the boundedness of f , i.e., f∗ ≤ f(θk), implies that

α− (Lnα− 1)α
2

K−1∑
k=0

E
[
∥∇f(θk)∥2]

≤ E [f(θ0)− f∗] + {(Lnα− 1)α + α}σ2K

2b
.

Accordingly,

1
K

K−1∑
k=0

E
[
∥∇f(θk)∥2]

≤ 2(f(θ0)− f∗)
{α− (Lnα− 1)α}K + {(Lnα− 1)α + α}σ2

{α− (Lnα− 1)α}b .

Moreover, since we have

min
k∈[0:K−1]

E
[
∥∇f(θk)∥2]

≤ 1
K

K−1∑
k=0

E
[
∥∇f(θk)∥2]

,

the assertion in Theorem 3.1(i) holds.

(ii) Let us consider the case of 1
Ln

< α < α̂ := 1+
√

1+8(1−c)δ

2Ln
. From 0 < αk ≤ α, we have that, for all k ∈ N,

Lnαk − 1 ≤ Lnα− 1 and 0 < Lnα− 1. For all k ∈ N,

f(θk+1) ≤ f(θk)− αk

2 ∥∇f(θk)∥2 + 1
2(Lnα− 1)α∥∇fBk

(θk)∥2 + α

2 ∥∇f(θk)−∇fBk
(θk)∥2. (28)

Inequalities (24), (25), and (28) guarantee that, for all k ∈ N,

Eξk
[f(θk+1)|θk] ≤ f(θk)− Eξk

[αk

2 ∥∇f(θk)∥2
∣∣∣θk

]
+ 1

2(Lnα− 1)α
(
∥∇f(θk)∥2 + σ2

b

)
+ ασ2

2b
. (29)

Since ξk and θk(ξk−1) are independent, we have that

Eξk

[αk

2 ∥∇f(θk)∥2
∣∣∣θk

]
= Eξk

[αk

2 ∥∇f(θk)∥2
]

= 1
2∥∇f(θk)∥2Eξk

[αk] .

Hence, (29) implies that

Eξk
[f(θk+1)] ≤ f(θk)− 1

2Eξk
[αk] ∥∇f(θk)∥2 + (Lnα− 1)α

2 ∥∇f(θk)∥2 + Lnα2σ2

2b
. (30)

Here, let us assume that ξk ∼ DUb(n). Then, we have that

Eξk
[LBk

] = Eξk

[
1
b

b∑
i=1

Lξk,i

]
= 1

b

b∑
i=1

Eξk,i

[
Lξk,i

]
= 1

b

b∑
i=1

n∑
j=1

LjP(ξk,i = j) = 1
b

b∑
i=1

1
n

n∑
j=1

Lj = Ln.

Moreover, Jensen’s inequality implies that

α ≥ Eξk
[αk] ≥ Eξk

[
2δ(1− c)

LBk

]
≥ 2δ(1− c)

Eξk
[LBk

] = 2δ(1− c)
Ln

=: α̃.

18

Published in Transactions on Machine Learning Research (03/2025)

Hence, (30) ensures that, for all k ∈ N,

Eξk
[f(θk+1)] ≤ f(θk)− 1

2 α̃∥∇f(θk)∥2 + (Lnα− 1)α
2 ∥∇f(θk)∥2 + Lnα2σ2

2b
. (31)

Taking the total expectation on both sides of (31) thus ensures that, for all k ∈ N,
α̃− (Lnα− 1)α

2 E
[
∥∇f(θk)∥2]

≤ E [f(θk)− f(θk+1)] + Lnα2σ2

2b
. (32)

Let K ≥ 1. Summing (32) from k = 0 to k = K − 1 ensures that

α̃− (Lnα− 1)α
2

K−1∑
k=0

E
[
∥∇f(θk)∥2]

≤ E [f(θ0)− f(θK)] + Lnα2σ2K

2b
,

which, together with the boundedness of f , i.e., f∗ ≤ f(θk), implies that

α̃− (Lnα− 1)α
2

K−1∑
k=0

E
[
∥∇f(θk)∥2]

≤ E [f(θ0)− f∗] + Lnα2σ2K

2b
.

Let δ ∈ (1
4 , 1), c ∈ (0, 1− 1

4δ), and

α̂ :=
1 +

√
1 + 8(1− c)δ

2Ln
<

[1−c< 1
δ]

2
Ln

.

Then, we have that 4(1− c)δ > 1, 1− 1
δ < 0 < c, and 1− c < 1

δ . Hence,
2(1− c)δ < 2⇔ 2(1− c)δ − 1 < 1⇔ 8(1− c)δ {2(1− c)δ − 1}+ 1 < 8(1− c)δ + 1

⇔ {4(1− c)δ − 1}2
< 8(1− c)δ + 1⇔ 4(1− c)δ < 1 +

√
8(1− c)δ + 1

⇔ α̂ :=
1 +

√
1 + 8(1− c)δ

2Ln
> α̃ := 2δ(1− c)

Ln
.

Since α < α̂, we have that

0 < α < α̂ :=
1 +

√
1 + 8(1− c)δ

2Ln
⇔ 0 < α < α̂ =

1 +
√

1 + 4Ln
2(1−c)δ

Ln

2Ln

⇔ 0 < α < α̂ = 1 +
√

1 + 4Lnα̃

2Ln
⇔ 1−

√
1 + 4Lnα̃

2Ln
< 0 < α < α̂ = 1 +

√
1 + 4Lnα̃

2Ln

⇔ −Lnα2 + α + α̃ > 0⇔ α̃− (Lnα− 1)α > 0.

Therefore, we have

1
K

K−1∑
k=0

E
[
∥∇f(θk)∥2]

≤ 2(f(θ0)− f∗)
{α̃− (Lnα− 1)α}K + Lnα2σ2

{α̃− (Lnα− 1)α}b .

A.3 Proof of Theorem 3.2

(i) We have
C1

K
+ C2

b
= ϵ2

is equivalent to
K = K(b) = C1b

ϵ2b− C2
.

Hence, Theorem 3.1 leads to an ϵ–approximation.

(ii) We have
dK(b)

db
= −C1C2

(ϵ2b− C2)2 ≤ 0 and d2K(b)
db2 = 2C1C2ϵ2

(ϵ2b− C2)3 ≥ 0,

which implies that K is monotone decreasing and convex with respect to b.

19

Published in Transactions on Machine Learning Research (03/2025)

A.4 Proof of Theorem 3.3

(i) From

N(b) = C1b2

ϵ2b− C2
,

we have
dN(b)

db
= C1b(ϵ2b− 2C2)

(ϵ2b− C2)2 and d2N(b)
db2 = 2C1C2

2
(ϵ2b− C2)3 ≥ 0,

which implies that N is convex with respect to b.

(ii) We have

dN(b)
db


< 0 if b < b⋆,

= 0 if b = b⋆ = 2C2
ϵ2 ,

> 0 if b > b⋆.

Hence, the point b⋆ minimizes N .

From Theorem 3.1(ii), we have that

Ln := 1
n

∑
i∈[n]

Li = 2δ(1− c)
α̃

.

Hence,

b⋆ = 2C2

ϵ2 = 2Lnα2σ2

{α̃− (Lnα− 1)α}ϵ2 = 2Lnα2σ2

{(2δ(1− c)/Ln)− (Lnα− 1)α}ϵ2

= σ2

ϵ2
L2

nα2

{2(1− c)δ − (Lnα− 1)Lnα}
.

A.5 Proof of (12)

Let K ≥ 1. From (22) and αk := α > 0, we have that, for all k ∈ N,

f(θk+1) ≤ f(θk)− α⟨∇f(θk),∇fBk
(θk)⟩+ Lnα2

2 ∥∇fBk
(θk)∥2.

Hence, (24) and (25) ensure that, for all k ∈ N,

E [f(θk+1)] ≤ E [f(θk)]− αE
[
∥∇f(θk)∥2]

+ Lnα2

2

(
E

[
∥∇f(θk)∥2]

+ σ2

b

)
,

which implies that, for all k ∈ N,

α

(
1− Lnα

2

)
E

[
∥∇f(θk)∥2]

≤ E [f(θk)− f(θk+1)] + Lnα2σ2

2b
.

Summing the above inequalities from k = 0 to k = K − 1 ensures that

α

(
1− Lnα

2

) K−1∑
k=0

E
[
∥∇f(θk)∥2]

≤ E [f(θ0)− f(θK)] + Lnα2σ2K

2b
.

Since f is bounded below by f∗ := 1
n

∑
i∈[n] fi,∗, we have

min
k∈[0:K−1]

E
[
∥∇f(θk)∥2]

≤ 1
K

K−1∑
k=0

E
[
∥∇f(θk)∥2]

≤ 2E [f(θ0)− f∗]
α(2− Lnα)K + Lnασ2

(2− Lnα)b .

20

Published in Transactions on Machine Learning Research (03/2025)

A.6 Estimation of critical batch size

We estimated the critical batch size by using Theorem 3.3(iii) and the ideas presented in (Iiduka, 2022) and
(Sato & Iiduka, 2023). We used Algorithm 1 with c = 0.001 for training ResNet-18 on the CIFAR-10 dataset
(Figure 2). Theorem 3.3(iii) indicates that the equation of the critical batch size involves the unknown value
σ2. We checked that the Armijo-line-search learning rates for Algorithm 1 with c = 0.001 are about 10 (see
also (Vaswani et al., 2019, Figure 5 (Left))). Hence, we used α ≈ 10. We estimated the unknown value
X = σ2

ϵ2 in equation (16) of the critical batch size by using δ = 0.9, b⋆ = 28 (see Figure 2) and α ≈ 10 as
follows:

b⋆ = σ2

ϵ2
L2

nα2

{2(1− c)δ − (Lnα− 1)Lnα}
.

We consider case of 1
Ln
≥ α, since b⋆ is monotonically increasing when Ln ≥ 0. We have

b⋆ ≤ X
1

2(1− c)δ .

Setting c = 0.001 and b⋆ = 28 (see Figure 2) gives

28 ≥ X
1

2(1− 0.001)0.9 .

Let us estimate the critical batch size using X ≈ 460, and Theorem 3.3(iii). For example, when Algorithm 1
with c = 0.01 is used to train ResNet-18 on the CIFAR-10 dataset, the equation of the critical batch size is

X
1

2(1− c)δ ≈ 258 ≈ 28 = b⋆,

which implies that the estimated critical batch size 258 is close to the measured critical batch size b⋆ = 28 =
256 in Figure 2.

A.7 Test accuracies of SGD using Armijo-line-search learning rate for training ResNet-18 on
CIFAR-10 and MINIST datasets

0 20 40 60 80 100 120
Epochs

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 A
cc

ur
ac

y

SGD+Armijo
SGD
Momentum
Adam
AdamW
RMSProp

Figure 9: Comparison of test accuracy of SGD
using Armijo-line-search learning rate with c =
0.1 and those of SGD variants for training
ResNet-18 on CIFAR-10 dataset (commonly used
batch size was 128).

0 20 40 60 80 100
Epochs

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Te
st

 A
cc

ur
ac

y

SGD+Armijo
SGD
Momentum
Adam
AdamW
RMSProp

Figure 10: Comparison of test accuracy of
SGD using Armijo-line-search learning rate with
c = 0.1 and those of SGD variants for training
ResNet-18 on MNIST dataset (commonly used
batch size was 128).

21

Published in Transactions on Machine Learning Research (03/2025)

25 26 27 28 29 210 211

Batch Size

103

104

St
ep

s

SGD+Armijo
SGD

Momentum
Adam

AdamW
RMSProp

Figure 11: Number of steps for Algorithm 1 with
c = 0.1 and SGD variants to achieve test accu-
racy more than 0.90 versus batch size for training
ResNet-18 on CIFAR-10 dataset.

25 26 27 28 29 210 211

Batch Size

106

SF
O

SGD+Armijo
SGD

Momentum
Adam

AdamW
RMSProp

Figure 12: SFO complexity for Algorithm 1 with
c = 0.1 and SGD variants to achieve test accu-
racy more than 0.90 versus batch size for training
ResNet-18 on CIFAR-10 dataset.

25 26 27 28 29 210 211

Batch Size

102

103

St
ep

s

SGD+Armijo
SGD

Momentum
Adam

AdamW
RMSProp

Figure 13: Number of steps for Algorithm 1 with
c = 0.1 and SGD variants to achieve test accu-
racy more than 0.99 versus batch size for training
ResNet-18 on MNIST dataset.

25 26 27 28 29 210 211

Batch Size

105

106

107

SF
O

SGD+Armijo
SGD

Momentum
Adam

AdamW
RMSProp

Figure 14: SFO complexity for Algorithm 1 with
c = 0.1 and SGD variants to achieve test accu-
racy more than 0.99 versus batch size for training
ResNet-18 on MNIST dataset.

22

Published in Transactions on Machine Learning Research (03/2025)

A.8 Learning rates satisfying Armijo condition for training ResNet-18 on CIFAR-10 and MINIST
datasets

0 20 40 60 80 100 120
Epoch

10 1

100

101

St
ep

 S
iz

e

c=0.1
c=0.01
c=0.001

Figure 15: Learning rate adjustment until average gradient norm over previous k steps falls below ϵ = 0.5
when training ResNet-18 on CIFAR-10 dataset with batch size of 25.

0 5 10 15 20 25 30 35
Epoch

10 1

100

101

St
ep

 S
iz

e

c=0.1
c=0.01
c=0.001

Figure 16: Learning rate adjustment until average gradient norm over previous k steps falls below ϵ = 0.5
when training ResNet-18 on CIFAR-10 dataset with batch size of 26.

0 5 10 15 20 25 30 35 40
Epoch

10 1

100

101

St
ep

 S
iz

e

c=0.1
c=0.01
c=0.001

Figure 17: Learning rate adjustment until average gradient norm over previous k steps falls below ϵ = 0.5
when training ResNet-18 on CIFAR-10 dataset with batch size of 27.

23

Published in Transactions on Machine Learning Research (03/2025)

0 10 20 30 40 50 60 70
Epoch

10 1

100

101

St
ep

 S
iz

e

c=0.1
c=0.01
c=0.001

Figure 18: Learning rate adjustment until average gradient norm over previous k steps falls below ϵ = 0.5
when training ResNet-18 on CIFAR-10 dataset with batch size of 28.

0 25 50 75 100 125 150 175
Epoch

10 1

100

101

St
ep

 S
iz

e

c=0.1
c=0.01
c=0.001

Figure 19: Learning rate adjustment until average gradient norm over previous k steps falls below ϵ = 0.5
when training ResNet-18 on CIFAR-10 dataset with batch size of 29.

24

Published in Transactions on Machine Learning Research (03/2025)

0 100 200 300 400
Epoch

10 2

10 1

100

101

St
ep

 S
iz

e

c=0.1
c=0.01
c=0.001

Figure 20: Learning rate adjustment until average gradient norm over previous k steps falls below ϵ = 0.5
when training ResNet-18 on CIFAR-10 dataset with batch size of 210.

0 5 10 15 20
Epoch

10 1

100

101

St
ep

 S
iz

e

c=0.1
c=0.01
c=0.001

Figure 21: Learning rate adjustment until average gradient norm over previous k steps falls below ϵ = 0.5
when training ResNet-18 on MNIST dataset with batch size of 25.

0 2 4 6 8 10
Epoch

10 1

100

101

St
ep

 S
iz

e

c=0.1
c=0.01
c=0.001

Figure 22: Learning rate adjustment until average gradient norm over previous k steps falls below ϵ = 0.5
when training ResNet-18 on MNIST dataset with batch size of 26.

25

Published in Transactions on Machine Learning Research (03/2025)

0 2 4 6 8
Epoch

10 1

100

101

St
ep

 S
iz

e

c=0.1
c=0.01
c=0.001

Figure 23: Learning rate adjustment until average gradient norm over previous k steps falls below ϵ = 0.5
when training ResNet-18 on MNIST dataset with batch size of 27.

0 2 4 6 8 10
Epoch

10 1

100

101

St
ep

 S
iz

e

c=0.1
c=0.01
c=0.001

Figure 24: Learning rate adjustment until average gradient norm over previous k steps falls below ϵ = 0.5
when training ResNet-18 on MNIST dataset with batch size of 28.

0 2 4 6 8 10 12 14 16
Epoch

10 1

100

101

St
ep

 S
iz

e

c=0.1
c=0.01
c=0.001

Figure 25: Learning rate adjustment until average gradient norm over previous k steps falls below ϵ = 0.5
when training ResNet-18 on MNIST dataset with batch size of 29.

26

Published in Transactions on Machine Learning Research (03/2025)

0 5 10 15 20
Epoch

10 1

100

101

St
ep

 S
iz

e

c=0.1
c=0.01
c=0.001

Figure 26: Learning rate adjustment until average gradient norm over previous k steps falls below ϵ = 0.5
when training ResNet-18 on MNIST dataset with batch size of 210.

0 5 10 15 20 25 30
Epoch

10 1

100

101

St
ep

 S
iz

e

c=0.1
c=0.01
c=0.001

Figure 27: Learning rate adjustment until average gradient norm over previous k steps falls below ϵ = 0.5
when training ResNet-18 on MNIST dataset with batch size of 211.

A.9 Comparisons of SGD using Armijo-line-search learning rate with SGD using constant learning
rate 1/

√
K for training ResNet-18 on CIFAR-10 and MINIST datasets

0 20 40 60 80 100 120
Epochs

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 A
cc

ur
ac

y

SGD+Armijo
SGD

Figure 28: Comparison of test accuracy of SGD
using Armijo-line-search learning rate with c =
0.1 and that of SGD using constant learning rate
α = 1/

√
K = 1/

√
(50000/128)× 120 ≈ 0.004 for

training ResNet-18 on CIFAR-10 dataset (com-
monly used batch size was 128).

0 20 40 60 80 100 120
Epochs

10 3

10 2

10 1

100

Tr
ai

ni
ng

 lo
ss

SGD+Armijo
SGD

Figure 29: Comparison of training loss of SGD
using Armijo-line-search learning rate with c =
0.1 and that of SGD using constant learning rate
α = 1/

√
K = 1/

√
(50000/128)× 120 ≈ 0.004 for

training ResNet-18 on CIFAR-10 dataset (com-
monly used batch size was 128).

27

Published in Transactions on Machine Learning Research (03/2025)

0 20 40 60 80 100 120
Epochs

0.4

0.5

0.6

0.7

0.8

0.9

Te
st

 A
cc

ur
ac

y
SGD+Armijo
SGD

Figure 30: Comparison of test accuracy of SGD
using Armijo-line-search learning rate with c =
0.1 and that of SGD using constant learning rate
α = 1/

√
K = 1/

√
(60000/120)× 100 ≈ 0.004

for training ResNet-18 on MNIST dataset (com-
monly used batch size was 128).

0 20 40 60 80 100 120
Epochs

10 8

10 7

10 6

10 5

10 4

10 3

10 2

10 1

Tr
ai

ni
ng

 lo
ss

SGD+Armijo
SGD

Figure 31: Comparison of training loss of SGD
using Armijo-line-search learning rate with c =
0.1 and that of SGD using constant learning rate
α = 1/

√
K = 1/

√
(60000/128)× 120 ≈ 0.004

for training ResNet-18 on MNIST dataset (com-
monly used batch size was 128).

28

	1 Introduction
	1.1 Background
	1.2 Motivation
	1.3 Contribution
	1.3.1 Convergence analysis of SGD with Armijo-line-search learning rates
	1.3.2 Steps needed for –approximation of SGD with Armijo line-search-learning rates
	1.3.3 Critical batch size minimizing SFO complexity of SGD with Armijo-line-search learning rates
	1.3.4 Numerical results supporting our theoretical results

	2 Mathematical Preliminaries
	2.1 Definitions
	2.2 Assumptions and problem
	2.3 Stochastic gradient descent using Armijo-line-search learning rate
	2.3.1 Armijo condition
	2.3.2 Stochastic gradient descent under Armijo condition

	3 Analysis of SGD using Armijo-Line-Search Learning Rate
	3.1 Convergence analysis of Algorithm 1
	3.2 Steps needed for –approximation
	3.3 Critical batch size minimizing SFO complexity
	3.4 Insights into and relationships among Theorems 3.1, 3.2, and 3.3

	4 Numerical Results
	5 Conclusion
	A Appendix
	A.1 Proof of Lemma 2.1
	A.2 Proof of Theorem 3.1
	A.3 Proof of Theorem 3.2
	A.4 Proof of Theorem 3.3
	A.5 Proof of (12)
	A.6 Estimation of critical batch size
	A.7 Test accuracies of SGD using Armijo-line-search learning rate for training ResNet-18 on CIFAR-10 and MINIST datasets
	A.8 Learning rates satisfying Armijo condition for training ResNet-18 on CIFAR-10 and MINIST datasets
	A.9 Comparisons of SGD using Armijo-line-search learning rate with SGD using constant learning rate 1/K for training ResNet-18 on CIFAR-10 and MINIST datasets

