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ABSTRACT

We study the global convergence and global optimality of actor-critic, one of the
most popular families of reinforcement learning algorithms. While most exist-
ing works on actor-critic employ bi-level or two-timescale updates, we focus on
the more practical single-timescale setting, where the actor and critic are updated
simultaneously. Specifically, in each iteration, the critic update is obtained by ap-
plying the Bellman evaluation operator only once while the actor is updated in the
policy gradient direction computed using the critic. Moreover, we consider two
function approximation settings where both the actor and critic are represented by
linear or deep neural networks. For both cases, we prove that the actor sequence
converges to a globally optimal policy at a sublinear O(K−1/2) rate, where K
is the number of iterations. To the best of our knowledge, we establish the rate
of convergence and global optimality of single-timescale actor-critic with linear
function approximation for the first time. Moreover, under the broader scope of
policy optimization with nonlinear function approximation, we prove that actor-
critic with deep neural network finds the globally optimal policy at a sublinear rate
for the first time.

1 INTRODUCTION

In reinforcement learning (RL) (Sutton et al., 1998), the agent aims to make sequential decisions that
maximize the expected total reward through interacting with the environment and learning from the
experiences, where the environment is modeled as a Markov Decision Process (MDP) (Puterman,
2014). To learn a policy that achieves the highest possible total reward in expectation, the actor-critic
method (Konda and Tsitsiklis, 2000) is among the most commonly used algorithms. In actor-critic,
the actor refers to the policy and the critic corresponds to the value function that characterizes the
performance of the actor. This method directly optimizes the expected total return over the policy
class by iteratively improving the actor, where the update direction is determined by the critic. In
particular, recently, actor-critic combined with deep neural networks (LeCun et al., 2015) achieves
tremendous empirical successes in solving large-scale RL tasks, such as the game of Go (Silver
et al., 2017), StarCraft (Vinyals et al., 2019), Dota (OpenAI, 2018), Rubik’s cube (Agostinelli et al.,
2019; Akkaya et al., 2019), and autonomous driving (Sallab et al., 2017). See Li (2017) for a detailed
survey of the recent developments of deep reinforcement learning.

Despite these great empirical successes of actor-critic, there is still an evident chasm between theory
and practice. Specifically, to establish convergence guarantees for actor-critic, most existing works
either focus on the bi-level setting or the two-timescale setting, which are seldom adopted in practice.
In particular, under the bi-level setting (Yang et al., 2019a; Wang et al., 2019; Agarwal et al., 2019;
Fu et al., 2019; Liu et al., 2019; Abbasi-Yadkori et al., 2019a;b; Cai et al., 2019; Hao et al., 2020;
Mei et al., 2020; Bhandari and Russo, 2020), the actor is updated only after the critic solves the
policy evaluation sub-problem completely, which is equivalent to applying the Bellman evaluation
operator to the previous critic for infinite times. Consequently, actor-critic under the bi-level setting
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is a double-loop iterative algorithm where the inner loop is allocated for solving the policy evaluation
sub-problem of the critic. In terms of theoretical analysis, such a double-loop structure decouples
the analysis for the actor and critic. For the actor, the problem is essentially reduced to analyzing the
convergence of a variant of the policy gradient method (Sutton et al., 2000; Kakade, 2002) where
the error of the gradient estimate depends on the policy evaluation error of the critic. Besides, under
the two-timescale setting (Borkar and Konda, 1997; Konda and Tsitsiklis, 2000; Xu et al., 2020;
Wu et al., 2020; Hong et al., 2020), the actor and the critic are updated simultaneously, but with
disparate stepsizes. More concretely, the stepsize of the actor is set to be much smaller than that
of the critic, with the ratio between these stepsizes converging to zero. In an asymptotic sense,
such a separation between stepsizes ensures that the critic completely solves its policy evaluation
sub-problem asymptotically. In other words, such a two-timescale scheme results in a separation
between actor and critic in an asymptotic sense, which leads to asymptotically unbiased policy
gradient estimates. In sum, in terms of convergence analysis, the existing theory of actor-critic
hinges on decoupling the analysis for critic and actor, which is ensured via focusing on the bi-level
or two-timescale settings.

However, most practical implementations of actor-critic are under the single-timescale setting (Pe-
ters and Schaal, 2008a; Schulman et al., 2015; Mnih et al., 2016; Schulman et al., 2017; Haarnoja
et al., 2018), where the actor and critic are simultaneously updated, and particularly, the actor is
updated without the critic reaching an approximate solution to the policy evaluation sub-problem.
Meanwhile, in comparison with the two-timescale setting, the actor is equipped with a much larger
stepsize in the the single-timescale setting such that the asymptotic separation between the analysis
of actor and critic is no longer valid.

Furthermore, when it comes to function approximation, most existing works only analyze the con-
vergence of actor-critic with either linear function approximation (Xu et al., 2020; Wu et al., 2020;
Hong et al., 2020), or shallow-neural-network parameterization (Wang et al., 2019; Liu et al., 2019).
In contrast, practically used actor-critic methods such as asynchronous advantage actor-critic (Mnih
et al., 2016) and soft actor-critic (Haarnoja et al., 2018) oftentimes represent both the actor and critic
using deep neural networks.

Thus, the following question is left open:

Does single-timescale actor-critic provably find a globally optimal policy under the function
approximation setting, especially when deep neural networks are employed?

To answer such a question, we make the first attempt to investigate the convergence and global
optimality of single-timescale actor-critic with linear and neural network function approximation. In
particular, we focus on the family of energy-based policies and aim to find the optimal policy within
this class. Here we represent both the energy function and the critic as linear or deep neural network
functions. In our actor-critic algorithm, the actor update follows proximal policy optimization (PPO)
(Schulman et al., 2017) and the critic update is obtained by applying the Bellman evaluation operator
only once to the current critic iterate. As a result, the actor is updated before the critic solves the
policy evaluation sub-problem. Such a coupled updating structure persists even when the number
of iterations goes to infinity, which implies that the update direction of the actor is always biased
compared with the policy gradient direction. This brings an additional challenge that is absent in the
bi-level and the two-timescale settings, where the actor and critic are decoupled asymptotically.

To tackle such a challenge, our analysis captures the joint effect of actor and critic updates on the
objective function, dubbed as the “double contraction” phenomenon, which plays a pivotal role for
the success of single-timescale actor-critic. Specifically, thanks to the discount factor of the MDP,
the Bellman evaluation operator is contractive, which implies that, after each update, the critic makes
noticeable progress by moving towards the value function associated with the current actor. As a
result, although we use a biased estimate of the policy gradient, thanks to the contraction brought
by the discount factor, the accumulative effect of the biases is controlled. Such a phenomenon
enables us to characterize the progress of each iteration of joint actor and critic update, and thus
yields the convergence to the globally optimal policy. In particular, for both the linear and neural
settings, we prove that, single-timescale actor-critic finds a O(K−1/2)-globally optimal policy after
K iterations. To the best of our knowledge, we seem to establish the first theoretical guarantee of
global convergence and global optimality for actor-critic with function approximation in the single-
timescale setting. Moreover, under the broader scope of policy optimization with nonlinear function
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approximation, our work seems to prove convergence and optimality guarantees for actor-critic with
deep neural network for the first time.

Contribution. Our contribution is two-fold. First, in the single-timescale setting with linear function
approximation, we prove that, after K iterations of actor and critic updates, actor-critic returns a
policy that is at most O(K−1/2) inferior to the globally optimal policy. Second, when both the
actor and critic are represented by deep neural networks, we prove a similar O(K−1/2) rate of
convergence to the globally optimal policy when the architecture of the neural networks are properly
chosen.

Related Work. Our work extends the line of works on the convergence of actor-critic under the
function approximation setting. In particular, actor-critic is first introduced in Sutton et al. (2000);
Konda and Tsitsiklis (2000). Later, Kakade (2002); Peters and Schaal (2008b) propose the natural
actor-critic method which updates the policy via the natural gradient (Amari, 1998) direction. The
convergence of (natural) actor-critic with linear function approximation are studied in Bhatnagar
et al. (2008; 2009); Bhatnagar (2010); Castro and Meir (2010); Maei (2018). However, these works
only characterize the asymptotic convergence of actor-critic and their proofs all resort to tools from
stochastic approximation via ordinary differential equations (Borkar, 2008). As a result, these works
only show that actor-critic with linear function approximation converges to the set of stable equilibria
of a set of ordinary differential equations. Recently, Zhang et al. (2019) propose a variant of actor-
critic where Monte-Carlo sampling is used to ensure the critic and the policy gradient estimates
are unbiased. Although they incorporate nonlinear function approximation in the actor, they only
establish finite-time convergence result to a stationary point of the expected total reward. Moreover,
due to having an inner loop for solving the policy evaluation sub-problem, they focus on the bi-level
setting. Moreover, under the two-timescale setting, Wu et al. (2020); Xu et al. (2020) show that actor-
critic with linear function approximation finds an ε-stationary point with Õ(ε−5/2) samples, where
ε measures the squared norm of the policy gradient. All of these results establish the convergence
of actor-critic, without characterizing the optimality of the policy obtained by actor-critic.

In terms of the global optimality of actor-critic, Fazel et al. (2018); Malik et al. (2018); Tu and
Recht (2018); Yang et al. (2019a); Bu et al. (2019); Fu et al. (2019) show that policy gradient and
bi-level actor-critic methods converge to the globally optimal policies under the linear-quadratic
setting, where the state transitions follow a linear dynamical system and the reward function is
quadratic. For general MDPs, Bhandari and Russo (2019) recently prove the global optimality of
vanilla policy gradient under the assumption that the families of policies and value functions are
both convex. In addition, our work is also related to Liu et al. (2019) and Wang et al. (2019),
where they establish the global optimality of proximal policy optimization and (natural) actor-critic,
respectively, where both the actor and critic are parameterized by two-layer neural networks. Our
work is also related to Agarwal et al. (2019); Abbasi-Yadkori et al. (2019a;b); Cai et al. (2019);
Hao et al. (2020); Mei et al. (2020); Bhandari and Russo (2020), which focus on characterizing the
optimality of natural policy gradient in tabular and/or linear settings. However, these aforementioned
works all focus on bi-level actor-critic, where the actor is updated only after the critic solves the
policy evaluation sub-problem to an approximate optimum. Besides, these works consider linear
or two-layer neural network function approximations whereas we focus on the setting with deep
neural networks. Furthermore, under the two-timescale setting, Xu et al. (2020); Hong et al. (2020)
prove that linear actor-critic requires a sample complexity of Õ(ε−4) for obtaining an ε-globally
optimal policy. In comparison, our O(K−1/2) convergence for single-timescale actor-critic can be
translated into a similar Õ(ε−4) sample complexity directly. Moreover, when reusing the data, our
result leads to an improved Õ(ε−2) sample complexity. In addition, our work is also related to
Geist et al. (2019), which proposes a variant of policy iteration algorithm with Bregman divergence
regularization. Without considering an explicit form of function approximation, their algorithm
is shown to converge to the globally optimal policy at a similar O(K−1/2) rate, where K is the
number of policy updates. In contrast, our method is single-timescale actor-critic with linear or
deep neural network function approximation, which enjoys both global convergence and global
optimality. Meanwhile, our proof is based on a finite-sample analysis, which involves dealing with
the algorithmic errors that track the performance of actor and critic updates as well as the statistical
error due to having finite data.
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Our work is also related to the literature on deep neural networks. Previous works (Daniely, 2017;
Jacot et al., 2018; Wu et al., 2018; Allen-Zhu et al., 2018a;b; Du et al., 2018; Zou et al., 2018; Chizat
and Bach, 2018; Jacot et al., 2018; Li and Liang, 2018; Cao and Gu, 2019a;b; Arora et al., 2019; Lee
et al., 2019; Gao et al., 2019) analyze the computational and statistical rates of supervised learning
methods with overparameterized neural networks. In contrast, our work employs overparameterized
deep neural networks in actor-critic for solving RL tasks, which is significantly more challenging
than supervised learning due to the interplay between the actor and the critic.

Notation. We denote by [n] the set {1, 2, . . . , n}. For any measure ν and 1 ≤ p ≤ ∞, we denote by
‖f‖ν,p = (

∫
X |f(x)|pdν)1/p and ‖f‖p = (

∫
X |f(x)|pdµ)1/p, where µ is the Lebesgue measure.

2 BACKGROUND

In this section, we introduce the background on discounted Markov decision processes (MDPs) and
actor-critic methods.

2.1 DISCOUNTED MDP

A discounted MDP is defined by a tuple (S,A, P, ζ, r, γ). Here S and A are the state and action
spaces, respectively, P : S × S × A → [0, 1] is the Markov transition kernel, ζ : S → [0, 1] is the
initial state distribution, r : S × A → R is the deterministic reward function, and γ ∈ [0, 1) is the
discount factor. A policy π(a | s) measures the probability of taking the action a at the state s. We
focus on a family of parameterized policies defined as follows,

Π = {πθ(· | s) ∈ P(A) : s ∈ S}, (2.1)

where P(A) is the probability simplex on the action space A and θ is the parameter of the policy
πθ. For any state-action pair (s, a) ∈ S ×A, we define the action-value function as follows,

Qπ(s, a) = (1− γ) · Eπ
[ ∞∑
t=0

γt · r(st, at)
∣∣∣ s0 = s, a0 = a

]
, (2.2)

where st+1 ∼ P (· | st, at) and at+1 ∼ π(· | st+1) for any t ≥ 0. We use Eπ[·] to denote that the
actions follow the policy π, which further affect the transition of the states. We aim to find an optimal
policy π∗ such that Qπ

∗
(s, a) ≥ Qπ(s, a) for any policy π and state-action pair (s, a) ∈ S × A.

That is to say, such an optimal policy π∗ attains a higher expected total reward than any other
policy π, regardless of the initial state-action pair (s, a). For notational convenience, we denote by
Q∗(s, a) = Qπ

∗
(s, a) for any (s, a) ∈ S ×A hereafter.

Meanwhile, we denote by νπ(s) and ρπ(s, a) = νπ(s) · π(a | s) the stationary state distribution and
stationary state-action distribution of the policy π, respectively, for any (s, a) ∈ S×A. Correspond-
ingly, we denote by ν∗(s) and ρ∗(s, a) the stationary state distribution and stationary state-action
distribution of the optimal policy π∗, respectively, for any (s, a) ∈ S ×A. For ease of presentation,
given any functions g1 : S → R and g2 : S ×A → R, we define two operators P and Pπ as follows,

[Pg1](s, a) = E[g1(s1) | s0 = s, a0 = a], [Pπg2](s, a) = Eπ[g2(s1, a1) | s0 = s, a0 = a], (2.3)

where s1 ∼ P (· | s0, a0) and a1 ∼ π(· | s1). Intuitively, given the current state-action pair
(s0, a0), the operator P pushes the agent to its next state s1 following the Markov transition kernel
P (· | s0, a0), while the operator Pπ pushes the agent to its next state-action pair (s1, a1) following
the Markov transition kernel P (· | s0, a0) and policy π(· | s1). These operators also relate to the
Bellman evaluation operator Tπ , which is defined for any function g : S ×A → R as follows,

Tπg = (1− γ) · r + γ · Pπg. (2.4)

The Bellman evaluation operator Tπ is used to characterize the actor-critic method in the following
section. By the definition in (2.2), it is straightforward to verify that the action-value function Qπ is
the fixed point of the Bellman evaluation operator Tπ defined in (2.4), that is, Qπ = TπQπ for any
policy π. For notational convenience, we let P` denote the `-fold composition PP · · ·P, where there
are ` operators P composed together. Such notation is also adopted for other linear operators such
as Pπ and Tπ .
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2.2 ACTOR-CRITIC METHOD

To obtain an optimal policy π∗, the actor-critic method (Konda and Tsitsiklis, 2000) aims to maxi-
mize the expected total reward as a function of the policy, which is equivalent to solving the follow-
ing maximization problem,

max
π∈Π

J(π) = Es∼ζ,a∼π(· | s)
[
Qπ(s, a)

]
, (2.5)

where ζ is the initial state distribution,Qπ is the action-value function defined in (2.2), and the family
of parameterized polices Π is defined in (2.1). The actor-critic method solves the maximization
problem in (2.5) via first-order optimization using an estimator of the policy gradient∇θJ(π). Here
θ is the parameter of the policy π. In detail, by the policy gradient theorem (Sutton et al., 2000), we
have

∇θJ(π) = E(s,a)∼%π
[
Qπ(s, a) · ∇θ log π(a | s)

]
. (2.6)

Here %π is the state-action visitation measure of the policy π, which is defined as %π(s, a) =
(1 − γ) ·

∑∞
t=0 γ

t · Pr[st = s, at = a]. Based on the closed form of the policy gradient in (2.6),
the actor-critic method consists of the following two parts: (i) the critic update, where a policy eval-
uation algorithm is invoked to estimate the action-value function Qπ , e.g., by applying the Bellman
evaluation operator Tπ to the current estimator of Qπ , and (ii) the actor update, where a policy
improvement algorithm, e.g., the policy gradient method, is invoked using the updated estimator of
Qπ .

In this paper, we consider the following variant of the actor-critic method,

πk+1 ← argmax
π∈Π

Eνπk
[
〈Qk(s, ·), π(· | s)〉 − β · KL

(
π(· | s) ‖πk(· | s)

)]
,

Qk+1(s, a)← Eπk+1

[
(1− γ) · r(s0, a0) + γ ·Qk(s1, a1)

∣∣ s0 = s, a0 = a
]
, (2.7)

for any (s, a) ∈ S × A, where s1 ∼ P (· | s0, a0), a1 ∼ πk+1(· | s1), and we write Eνπk [·] =

Es∼νπk [·] for notational convenience. Here Π is defined in (2.1) and KL(π(· | s) ‖πk(· | s)) is the
Kullback-Leibler (KL) divergence between π(· | s) and πk(· | s), which is defined for any s ∈ S as
follows, KL(π(· | s) ‖πk(· | s)) =

∑
a∈A log(π(a | s)/πk(a | s)) · π(a | s). In (2.7), the actor update

uses the proximal policy optimization (PPO) method (Schulman et al., 2017), while the critic update
applies the Bellman evaluation operator Tπk+1 defined in (2.4) toQk only once, which is the current
estimator of the action-value function. Furthermore, we remark that the updates in (2.7) provide a
general framework in the following two aspects. First, the critic update can be extended to letting
Qk+1 ← (Tπk+1)τQk for any fixed τ ≥ 1, which corresponds to updating the value function via τ -
step rollouts following πk+1. Here we only focus on the case with τ = 1 for simplicity. Our theory
can be easily modified for any fixed τ . Moreover, the KL divergence used in the actor step can also
be replaced by other Bregman divergences between probability distributions over A. Second, the
actor and critic updates in (2.7) is a general template that admits both on- and off-policy evaluation
methods and various function approximators in the actor and critic. In the next section, we present an
incarnation of (2.7) with on-policy sampling and linear and neural network function approximation.

Furthermore, for analyzing the actor-critic method, most existing works (Yang et al., 2019a; Wang
et al., 2019; Agarwal et al., 2019; Fu et al., 2019; Liu et al., 2019) rely on (approximately) obtaining
Qπk+1 at each iteration, which is equivalent to applying the Bellman evaluation operator Tπk+1

infinite times to Qk. This is usually achieved by minimizing the mean-squared Bellman error ‖Q−
Tπk+1Q‖2ρπk+1

,2 using stochastic semi-gradient descent, e.g., as in the temporal-difference method
(Sutton, 1988), to update the critic for sufficiently many iterations. The unique global minimizer
of the mean-squared Bellman error gives the action-value function Qπk+1 , which is used in the
actor update. Meanwhile, the two-timescale setting is also considered in existing works (Borkar
and Konda, 1997; Konda and Tsitsiklis, 2000; Xu et al., 2019; 2020; Wu et al., 2020; Hong et al.,
2020), which require the actor to be updated more slowly than the critic in an asymptotic sense.
Such a requirement is usually satisfied by forcing the ratio between the stepsizes of the actor and
critic updates to go to zero asymptotically.

In comparison with the setting with bi-level updates, we consider the single-timescale actor and
critic updates in (2.7), where the critic involves only one step of update, that is, applying the Bell-
man evaluation operator Tπ to Qk only once. Meanwhile, in comparison with the two-timescale
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setting, where the actor and critic are updated simultaneously but with the ratio between their step-
sizes asymptotically going to zero, the single-timescale setting is able to achieve a faster rate of
convergence by allowing the actor to be updated with a larger stepsize, while updating the critic
simultaneously. In particular, such a single-timescale setting better captures a broader range of prac-
tical algorithms (Peters and Schaal, 2008a; Schulman et al., 2015; Mnih et al., 2016; Schulman et al.,
2017; Haarnoja et al., 2018), where the stepsize of the actor is not asymptotically zero. In §3, we
discuss the implementation of the updates in (2.7) for different schemes of function approximation.
In §4, we compare the rates of convergence between the two-timescale and single-timescale settings.

3 ALGORITHMS

We consider two settings, where the actor and critic are parameterized using linear functions and
deep neural networks (which is deferred to §A of the appendix), respectively. We consider the
energy-based policy πθ(a | s) ∝ exp(τ−1fθ(s, a)), where the energy function fθ(s, a) is parameter-
ized with the parameter θ. Also, for the (estimated) action-value function, we consider the parame-
terization Qω(s, a) for any (s, a) ∈ S ×A, where ω is the parameter. For such parameterizations of
the actor and critic, the updates in (2.7) have the following forms.

Actor Update. The following proposition gives the closed form of πk+1 in (2.7).

Proposition 3.1. Let πθk(a | s) ∝ exp(τ−1
k fθk(s, a)) be an energy-based policy and π̃k+1 =

argmaxπ Eνk
[
〈Qωk(s, ·), π(· | s)〉 − β · KL

(
π(· | s) ‖πθk(· | s)

)]
. Then π̃k+1 has the following

closed form: π̃k+1(a | s) ∝ exp
(
β−1Qωk(s, a) + τ−1

k fθk(s, a)
)
, for any (s, a) ∈ S × A, where

νk = νπθk is the stationary state distribution of πθk .

See §G.1 for a detailed proof of Proposition 3.1. Motivated by Proposition 3.1, to implement the ac-
tor update in (2.7), we update the actor parameter θ by solving the following minimization problem,

θk+1 ← argmin
θ

Eρk
[(
fθ(s, a)− τk+1 ·

(
β−1Qωk(s, a) + τ−1

k fθk(s, a)
))2]

, (3.1)

where ρk = ρπθk is the stationary state-action distribution of πθk .

Critic Update. To implement the critic update in (2.7), we update the critic parameter ω by solving
the following minimization problem,

ωk+1 ← argmin
ω

Eρk+1

[(
[Qω − (1− γ) · r − γ · Pπθk+1Qωk ](s, a)

)2]
, (3.2)

where ρk+1 = ρπθk+1
is the stationary state-action distribution of πθk+1

and the operator Pπ is
defined in (2.3).

3.1 LINEAR FUNCTION APPROXIMATION

In this section, we consider linear function approximation. More specifically, we parameterize the
action-value function using Qω(s, a) = ω>ϕ(s, a) and the energy function of the energy-based
policy πθ using fθ(s, a) = θ>ϕ(s, a). Here ϕ(s, a) ∈ Rd is the feature vector, where d > 0 is
the dimension. Without loss of generality, we assume that ‖ϕ(s, a)‖2 ≤ 1 for any (s, a) ∈ S × A,
which can be achieved by normalization.

Actor Update. The minimization problem in (3.1) admits the following closed-form solution,

θk+1 = τk+1 · (β−1ωk + τ−1
k θk), (3.3)

which corresponds to a step of the natural policy gradient method (Kakade, 2002).

Critic Update. The minimization problem in (3.2) admits the following closed-form solution,

ω̃k+1 =
(
Eρk+1

[ϕ(s, a)ϕ(s, a)>]
)−1Eρk+1

[
[(1− γ) · r + γ · Pπθk+1Qωk ](s, a) · ϕ(s, a)

]
. (3.4)

Since the closed-form solution ω̃k+1 in (3.4) involves the expectation over the stationary state-action
distribution ρk+1 of πθk+1

, we use data to approximate such an expectation. More specifically,
we sample {(s`,1, a`,1)}`∈[N ] and {(s`,2, a`,2, r`,2, s′`,2, a′`,2)}`∈[N ] such that (s`,1, a`,1) ∼ ρk+1,
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(s`,2, a`,2) ∼ ρk+1, r`,2 = r(s`,2, a`,2), s′`,2 ∼ P (· | s`,2, a`,2), and a′`,2 ∼ πθk+1
(· | s′`,2), where N

is the sample size. We approximate ω̃k+1 using ωk+1, which is defined as follows,

ωk+1 = ΓR

{( N∑
`=1

ϕ(s`,1, a`,1)ϕ(s`,1, a`,1)>
)−1

(3.5)

·
N∑
`=1

(
(1− γ) · r`,2 + γ ·Qωk(s′`,2, a

′
`,2)
)
· ϕ(s`,2, a`,2)

}
.

Here ΓR is the projection operator, which projects the parameter onto the centered ball with radius
R in Rd. Such a projection operator stabilizes the algorithm (Konda and Tsitsiklis, 2000; Bhatnagar
et al., 2009). It is worth mentioning that one may also view the update in (3.5) as one step of the
least-squares temporal difference method (Bradtke and Barto, 1996), which can be modified for the
off-policy setting (Antos et al., 2007; Yu, 2010; Liu et al., 2018; Nachum et al., 2019; Xie et al.,
2019; Zhang et al., 2020; Uehara and Jiang, 2019; Nachum and Dai, 2020). Such a modification
allows the data points in (3.5) to be reused in the subsequent iterations, which further improves the
sample complexity. Specifically, let ρbhv ∈ P(S × A) be the stationary state-action distribution
induced by a behavioral policy πbhv. We replace the actor and critic updates in (3.1) and (3.2) by

θk+1 ← argmin
θ

Eρbhv

[(
fθ(s, a)− τk+1 ·

(
β−1Qωk(s, a) + τ−1

k fθk(s, a)
))2]

, (3.6)

ωk+1 ← argmin
ω

Eρbhv

[(
[Qω − (1− γ) · r − γ · Pπθk+1Qωk ](s, a)

)2]
, (3.7)

respectively. With linear function approximation, the actor update in (3.6) is reduced to (3.3), while
the critic update in (3.7) admits a closed form solution

ω̃k+1 =
(
Eρbhv [ϕ(s, a)ϕ(s, a)>]

)−1 · Eρbhv

[
[(1− γ) · r + γ · Pπθk+1Qωk ](s, a) · ϕ(s, a)

]
,

which can be well approximated using state-action pairs drawn from ρbhv. See §4 for a detailed
discussion. Finally, by assembling the updates in (3.3) and (3.5), we present the linear actor-critic
method in Algorithm 1, which is deferred to §B of the appendix.

4 THEORETICAL RESULTS

In this section, we upper bound the regret of the linear actor-critic method. We defer the analysis of
the deep neural actor-critic method to §C of the appendix. Hereafter we assume that |r(s, a)| ≤ rmax

for any (s, a) ∈ S × A, where rmax is a positive absolute constant. First, we impose the following
assumptions. Recall that ρ∗ is the stationary state-action distribution of π∗, while ρk is the stationary
state-action distribution of πθk . Moreover, let ρ ∈ P(S × A) be a state-action distribution with
respect to which we aim to characterize the performance of the actor-critic algorithm. Specifically,
after K + 1 actor updates, we are interested in upper bounding the following regret

E
[ K∑
k=0

(
‖Q∗ −Qπθk+1 ‖ρ,1

)]
= E

[ K∑
k=0

(
Q∗(s, a)−Qπθk+1 (s, a)

)]
, (4.1)

where the expectation is taken with respect to {θk}k∈[K+1] and (s, a) ∼ ρ. Here we allow ρ to be
any fixed distribution for generality, which might be different from ρ∗.
Assumption 4.1 (Concentrability Coefficient). The following statements hold.

(i) There exists a positive absolute constant φ∗ such that φ∗k ≤ φ∗ for any k ≥ 1, where
φ∗k = ‖dρ∗/dρk‖ρk,2.

(ii) We assume that for any k ≥ 1 and a sequence of policies {πi}i≥1, the k-step future-state-
action distribution ρPπ1 · · ·Pπk is absolutely continuous with respect to ρ∗, where ρ is the
same as the one in (4.1) Also, it holds for such ρ that Cρ,ρ∗ = (1−γ)2

∑∞
k=1 k

2γk ·c(k) <
∞, where c(k) = sup{πi}i∈[k] ‖d(ρPπ1 · · ·Pπk)/dρ∗‖ρ∗,∞.

In Assumption 4.1, Cρ,ρ∗ is known as the discounted-average concentrability coefficient of the
future-state-action distributions. Such an assumption indeed measures the stochastic stability prop-
erties of the MDP, and the class of MDPs with such properties is quite large. See Szepesvári and

7



Published as a conference paper at ICLR 2021

Munos (2005); Munos and Szepesvári (2008); Antos et al. (2008a;b); Scherrer (2013); Scherrer et al.
(2015); Farahmand et al. (2016); Yang et al. (2019b); Geist et al. (2019); Chen and Jiang (2019) for
more examples and discussion.
Assumption 4.2 (Zero Approximation Error). It holds for any ω, θ ∈ B(0, R) that
inf ω̄∈B(0,R) Eρπθ

[(
[TπθQω − ω̄>ϕ](s, a)

)2]
= 0, where Tπθ is defined in (2.4).

Assumption 4.2 imposes a structural assumption of the MDP under the linear setting. Specifically
speaking, it assumes that the Bellman operator of each policy maps a linear value function to a
linear function. Therefore, the value function associated with each policy (which is the fixed point
of the corresponding Bellman operator) lies in the linear function class. Since the value functions are
linear here, the energy-based policy class approximately covers the optimal policy as the temperature
parameter τ goes to zero. In summary, our Assumption 4.2 ensures that the energy-based policy
class approximately captures the optimal policy and thus there is no approximation error. When
Assumption 4.2 does not hold, we only need to add an additional bias term to the regret upper bound
in our theorem without much change in the proof.
Assumption 4.3 (Well-Conditioned Feature). The minimum singular value of the matrix
Eρk [ϕ(s, a)ϕ(s, a)>] is uniformly lower bounded by a positive absolute constant σ∗ for any k ≥ 1.

Assumption 4.3 ensures that the minimization problem in (3.2) admits a unique minimizer, which
is used in the critic update. Similar assumptions are commonly imposed in the literature (Bhandari
et al., 2018; Xu et al., 2019; Zou et al., 2019; Wu et al., 2020).

Under Assumptions 4.1, 4.2, and 4.3, we upper bound the regret of Algorithm 1 in the following
theorem.
Theorem 4.4. We assume that Assumptions 4.1, 4.2, and 4.3 hold. Let ρ be a state-action distri-
bution satisfying (ii) of Assumption 4.1. Also, for any sufficiently large K > 0, let β = K1/2,
N = Ω(KC2

ρ,ρ∗ · (φ∗/σ∗)2 · log2N), and the sequence of policy parameters {θk}k∈[K+1] be gen-
erated by Algorithm 1. It holds that

E
[ K∑
k=0

(
Q∗(s, a)−Qπθk+1 (s, a)

)]
≤
(
2(1− γ)−3 · log |A|+O(1)

)
·K1/2, (4.2)

where the expectation is taken with respect to {θk}k∈[K+1] and (s, a) ∼ ρ.

We sketch the proof in §D. See §E.1 for a detailed proof. Theorem 4.4 establishes an O(K1/2)
regret of Algorithm 1, where K is the total number of iterations. Here O(·) omits terms involving
(1 − γ)−1 and log |A|. To better understand Theorem 4.4, we consider the ideal setting, where we
have access to the action-value function Qπ of any policy π. In such an ideal setting, the critic
update is unnecessary. However, the natural policy gradient method, which only uses the actor
update, achieves the same O(K1/2) regret (Liu et al., 2019; Agarwal et al., 2019; Cai et al., 2019).
In other words, in terms of the iteration complexity, Theorem 4.4 shows that in the single-timescale
setting, using only one step of the critic update along with one step of the actor update is as efficient
as the natural policy gradient method in the ideal setting.

Furthermore, by the regret bound in (4.2), to obtain an ε-globally optimal policy, it suffices to set
K � (1 − γ)−6 · ε−2 · log2 |A| in Algorithm 1 and output a randomized policy that is drawn from
{πθk}

K+1
k=1 uniformly. Plugging such a K into N = Ω(KC2

ρ,ρ∗(φ
∗/σ∗)2 · log2N), we obtain that

N = Õ(ε−2), where Õ(·) omits the logarithmic terms. Thus, to achieve an ε-globally optimal
policy, the total sample complexity of Algorithm 1 is Õ(ε−4). This matches the sample complexity
results established in Xu et al. (2020); Hong et al. (2020) for two-timescale actor-critic methods.
Meanwhile, notice that here the critic updates are on-policy and we draw N new data points in each
critic update. As discussed in §3.1, under the off-policy setting, the critic updates given in (3.7)
can be implemented using a fixed dataset sampled from ρbhv, the stationary state-action distribution
induced by the behavioral policy. Under this scenario, the total number of data points used by the
algorithm is equal toN . Moreover, by imposing similar assumptions on ρbhv as in (i) of Assumption
4.1 and Assumption 4.3, we can establish a similar O(K1/2) regret as in (4.2) for the off-policy
setting. As a result, with data reuse, to obtain an ε-globally optimal policy, the sample complexity
of Algorithm 1 is essentially Õ(ε−2), which demonstrates the advantage of our single-timescale
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actor-critic method. Besides, only focusing on the convergence to an ε-stationary point, Wu et al.
(2020); Xu et al. (2020) establish the sample complexity of Õ(ε−5/2) for two-timescale actor-critic,
where ε measures the squared Euclidean norm of the policy gradient. In contrast, by adopting the
natural policy gradient (Kakade, 2002) in actor updates, we achieve convergence to the globally
optimal policy. We remark that the idea of off-policy evaluation cannot be applied to typical two-
timescale setting (Wu et al., 2020; Xu et al., 2020), where the critic is updated using TD learning
(e.g. TD(0) and TD(λ)), since it is shown that off-policy TD method may diverge even with linear
function approximation (Baird et al., 1995; Sutton et al., 2008). To the best of our knowledge,
we establish the rate of convergence and global optimality of the actor-critic method with function
approximation in the single-timescale setting for the first time.

Furthermore, as we will show in Theorem C.5 of §B, when both the actor and the critic are repre-
sented using overparameterized deep neural networks, we establish a similar O((1− γ)−3 · log |A| ·
K1/2) regret when the architecture of the actor and critic neural networks are properly chosen. To
our best knowledge, this seems the first theoretical guarantee for the actor-critic method with deep
neural network function approximation in terms of the rate of convergence and global optimality.
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Antos, A., Szepesvári, C. and Munos, R. (2008a). Fitted Q-iteration in continuous action-space
MDPs. In Advances in Neural Information Processing Systems.
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Sutton, R. S., Szepesvári, C. and Maei, H. R. (2008). A convergent o (n) algorithm for off-policy
temporal-difference learning with linear function approximation. Advances in neural information
processing systems, 21 1609–1616.
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Zhang, K., Koppel, A., Zhu, H. and Başar, T. (2019). Global convergence of policy gradient methods
to (almost) locally optimal policies. arXiv preprint arXiv:1906.08383.

Zhang, R., Dai, B., Li, L. and Schuurmans, D. (2020). Gendice: Generalized offline estimation of
stationary values. arXiv preprint arXiv:2002.09072.

Zou, D., Cao, Y., Zhou, D. and Gu, Q. (2018). Stochastic gradient descent optimizes over-
parameterized deep ReLU networks. arXiv preprint arXiv:1811.08888.

Zou, S., Xu, T. and Liang, Y. (2019). Finite-sample analysis for SARSA with linear function ap-
proximation. In Advances in Neural Information Processing Systems.

13



Published as a conference paper at ICLR 2021

A DEEP NEURAL NETWORK APPROXIMATION

In this section, we consider deep neural network approximation. We first formally define deep neural
networks. Then we introduce the actor-critic method under such a parameterization.

A deep neural network (DNN) uθ(x) with the input x ∈ Rd, depth H , and width m is defined as

x(0) = x, x(h) =
1√
m
· σ(W>h x

(h−1)), for h ∈ [H], uθ(x) = b>x(H). (A.1)

Here σ : Rm → Rm is the rectified linear unit (ReLU) activation function, which is define as σ(y) =
(max{0, y1}, . . . ,max{0, ym})> for any y = (y1, . . . , ym)> ∈ Rm. Also, we have b ∈ {−1, 1}m,
W1 ∈ Rd×m, and Wh ∈ Rm×m for 2 ≤ h ≤ H . Meanwhile, we denote the parameter of the
DNN uθ as θ = (vec(W1)>, . . . , vec(WH)>)> ∈ Rmall with mall = md + (H − 1)m2. We call
{Wh}h∈[H] the weight matrices of θ. Without loss of generality, we normalize the input x such that
‖x‖2 = 1.

We initialize the DNN such that each entry ofWh follows the standard Gaussian distributionN (0, 1)
for any h ∈ [H], while each entry of b follows the uniform distribution Unif({−1, 1}). Without loss
of generality, we fix b during training and only optimize {Wh}h∈[H]. We denote the initialization of
the parameter θ as θ0 = (vec(W 0

1 )>, . . . , vec(W 0
H)>)>. Meanwhile, we restrict θ within the ball

B(θ0, R) during training, which is defined as follows,
B(θ0, R) =

{
θ ∈ Rmall : ‖Wh −W 0

h‖F ≤ R, for h ∈ [H]
}
. (A.2)

Here {Wh}h∈[H] and {W 0
h}h∈[H] are the weight matrices of θ and θ0, respectively. By (A.2), we

have ‖θ − θ0‖2 ≤ R
√
H for any θ ∈ B(θ0, R). Now, we define the family of DNNs as

U(m,H,R) =
{
uθ : θ ∈ B(θ0, R)

}
, (A.3)

where uθ is a DNN with depth H and width m.

We parameterize the action-value function using Qω(s, a) ∈ U(mc, Hc, Rc) and the energy func-
tion of the energy-based policy πθ using fθ(s, a) ∈ U(ma, Ha, Ra). Here U(mc, Hc, Rc) and
U(ma, Ha, Ra) are the families of DNNs defined in (A.3). Hereafter we assume that the energy
function fθ and the action-value function Qω share the same architecture and initialization, i.e.,
ma = mc, Ha = Hc, Ra = Rc, and θ0 = ω0. Such shared architecture and initialization of the
DNNs ensure that the parameterizations of the policy and the action-value function are approxi-
mately compatible. See Sutton et al. (2000); Konda and Tsitsiklis (2000); Kakade (2002); Peters
and Schaal (2008a); Wang et al. (2019) for a detailed discussion.

Actor Update. To solve (3.1), we use projected stochastic gradient descent, whose n-th iteration
has the following form,
θ(n+ 1)

← ΓB(θ0,Ra)

(
θ(n)− α ·

(
fθ(n)(s, a)− τk+1 ·

(
β−1Qωk(s, a) + τ−1

k fθk(s, a)
))
· ∇θfθ(n)(s, a)

)
.

Here ΓB(θ0,Ra) is the projection operator, which projects the parameter onto the ball B(θ0, Ra)
defined in (A.2). The state-action pair (s, a) is sampled from the stationary state-action distribution
ρk. We summarize the update in Algorithm 3, which is deferred to §B of the appendix.

Critic Update. To solve (3.2), we apply projected stochastic gradient descent. More specifically, at
the n-th iteration of projected stochastic gradient descent, we sample a tuple (s, a, r, s′, a′), where
(s, a) ∼ ρk+1, r = r(s, a), s′ ∼ P (· | s, a), and a′ ∼ πθk+1

(· | s′). We define the residual at the n-th
iteration as δ(n) = Qω(n)(s, a)− (1− γ) · r − γ ·Qωk(s′, a′). Then the n-th iteration of projected
stochastic gradient descent has the following form,

ω(n+ 1)← ΓB(ω0,Rc)

(
ω(n)− η · δ(n) · ∇ωQω(n)(s, a)

)
.

Here ΓB(ω0,Rc) is the projection operator, which projects the parameter onto the ball B(ω0, Rc)
defined in (A.2). We summarize the update in Algorithm 4, which is deferred to §B of the appendix.

By assembling Algorithms 3 and 4, we present the deep neural actor-critic method in Algorithm 2,
which is deferred to §B of the appendix.

Finally, we remark that the off-policy actor and critic updates given in (3.6) and (3.7) can also
incorporate deep neural network approximation with a slight modification, which enables data reuse
in the algorithm.
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B DETAILS OF ALGORITHMS

In this section, we summarize the algorithms in §3. We first introduce the actor-critic method with
linear function approximation in Algorithm 1.

Algorithm 1 Linear Actor-Critic Method
Input: Number of iterations K, sample size N , temperature parameter β.
Initialization: Set τ0 ←∞, and randomly initialize the actor parameter θ0 and the critic param-
eter ω0.
for k = 0, 1, 2, . . . ,K do

Actor Update: Update θk+1 via (3.3) with τ−1
k+1 = (k + 1) · β−1.

Critic Update: Sample {(s`,1, a`,1)}`∈[N ] and {(s`,2, a`,2, r`,2, s′`,2, a′`,2)}`∈[N ] as specified
in §3.1. Update ωk+1 via (3.5).

end for
Output: {πθk}k∈[K+1], where πθk ∝ exp(τ−1

k fθk).

We introduce the actor-critic method with DNN approximation in Algorithm 2, which relies on
Algorithms 3 and 4 for the actor and critic updates.

Algorithm 2 Deep Neural Actor-Critic Method
Input: Number of iterations K,Na, Nc, stepsizes α, η, and temperature parameter β.
Initialization: Set τ0 ←∞ and initialize DNNs fθ0 and Qω0 as specified in §A.
for k = 0, 1, 2, . . . ,K do

Actor Update: Update θk+1 via Algorithm 3 with input πθk , θ0,Qωk , α, β, τk+1 = (k+1)−1 ·
β, and Na.
Critic Update: Update ωk+1 via Algorithm 4 with input πθk+1

, Qωk , ω0, η, and Nc.
end for
Output: {πθk}k∈[K+1], where πθk ∝ exp(τ−1

k fθk).

Algorithm 3 Actor Update for Deep Neural Actor-Critic Method
Input: Policy πθ ∝ exp(τ−1fθ), initial actor parameter θ0, action-value function Qω , stepsize α,
temperature parameter β, temperature τ̃ , and number of iterations Na.
Initialization: Set θ(0)← θ0.
for n = 0, 1, 2, . . . , Na − 1 do

Sample (s, a) as specified in §A.
Set θ(n + 1) ← ΓB(θ0,Ra)(θ(n) − α · (fθ(n)(s, a) − τ̃ · (β−1Qω(s, a) + τ−1fθ(s, a))) ·
∇θfθ(n)(s, a)).

end for
Output: θ = 1/Na ·

∑Na

n=1 θ(n).

Algorithm 4 Critic Update for Deep Neural Actor-Critic Method
Input: Policy πθ, action-value function Qω , initial critic parameter ω0, stepsize η, and number of
iterations Nc.
Initialization: Set ω(0)← ω0.
for n = 0, 1, 2, . . . , Nc − 1 do

Sample (s, a, r, s′, a′) as specified in §A.
Set δ(n)← Qω(n)(s, a)− (1− γ) · r − γ ·Qω(s′, a′).
Set ω(n+ 1)← ΓB(ω0,Rc)(ω(n)− η · δ(n) · ∇ωQω(n)(s, a)).

end for
Output: ω = 1/Nc ·

∑Nc

n=1 ω(n).
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C CONVERGENCE RESULTS OF ALGORITHM 2

In this section, we upper bound the regret of the deep neural actor-critic method. Hereafter we
assume that |r(s, a)| ≤ rmax for any (s, a) ∈ S × A, where rmax is a positive absolute constant.
First, we impose the following assumptions in parallel to Assumption 4.1. Recall that ρ∗ is the
stationary state-action distribution of π∗, while ρk is the stationary state-action distribution of πθk .

Assumption C.1 (Concentrability Coefficient). The following statements hold.

(i) There exists a positive absolute constant φ∗ such that φ∗k ≤ φ∗ for any k ≥ 1, where
φ∗k = ‖dρ∗/dρk‖ρk,2.

(ii) For the state-action distribution ρ used to define the regret in (4.1), we assume that for
any k ≥ 1 and a sequence of policies {πi}i≥1, the k-step future-state-action distribution
ρPπ1 · · ·Pπk is absolutely continuous with respect to ρ∗. Also, it holds that

Cρ,ρ∗ = (1− γ)2
∞∑
k=1

k3γk · c(k) <∞,

where c(k) = sup{πi}i∈[k] ‖d(ρPπ1 · · ·Pπk)/dρ∗‖ρ∗,∞.

Meanwhile, we impose the following assumption in parallel to Assumption 4.2.

Assumption C.2 (Zero Approximation Error). For any Qω ∈ U(mc, Hc, Rc) and policy π, it holds
that TπQω ∈ U(mc, Hc, Rc), where Tπ is defined in (2.4).

Assumption C.2 states that U(mc, Hc, Rc) is closed under the Bellman evaluation operator Tπ ,
which is commonly imposed in the literature (Munos and Szepesvári, 2008; Antos et al., 2008a;
Farahmand et al., 2010; 2016; Tosatto et al., 2017; Yang et al., 2019b; Liu et al., 2019).

We upper bound the regret of the deep neural actor-critic method in Algorithm 2 in the sequel. To
establish such an upper bound, we first establish the rates of convergence of Algorithms 3 and 4 as
follows.

Proposition C.3. For any sufficiently large Na > 0, let ma =

Ω(d3/2R−1
a H

−3/2
a log(m

1/2
a /Ra)3/2), Ha = O(N

1/4
a ), and Ra = O(m

1/2
a H−6

a (logma)−3).
We denote by θ the output of Algorithm 3 with input πθ ∝ exp(τ−1fθ), θ0, Qω , α, β,
τ̃ = (τ−1 + β−1)−1, and Na. Also, let f̃ = τ̃ · (β−1Qω + τ−1fθ). With probability at least
1− exp(−Ω(R

2/3
a m

2/3
a Ha)) over the random initialization θ0, we have

E
[(
fθ(s, a)− f̃(s, a)

)2]
= O(R2

aN
−1/2
a +R8/3

a m−1/6
a H7

a logma).

Here the expectation is taken over the randomness of θ conditioning on the initialization θ0 and
(s, a) ∼ ρπθ , where ρπθ is the stationary state-action distribution of πθ.

Proof. See §G.2 for a detailed proof.

Proposition C.4. For any sufficiently large Nc > 0, let mc =

Ω(d3/2R−1
c H

−3/2
c log(m

1/2
c /Rc)3/2), Hc = O(N

1/4
c ), and Rc = O(m

1/2
c H−6

c (logmc)−3).
We denote by ω the output of Algorithm 4 with input πθ, Qω , ω0, η, and Nc. Also, let
Q̃ = (1−γ) · r+γ ·PπθQω . With probability at least 1− exp(−Ω(R

2/3
c m

2/3
c Hc)) over the random

initialization ω0, we have

E
[(
Qω̄(s, a)− Q̃(s, a)

)2]
= O(R2

cN
−1/2
c +R8/3

c m−1/6
c H7

c logmc).

Here the expectation is taken over the randomness of ω conditioning on the initialization ω0 and
(s, a) ∼ ρπθ , where ρπθ is the stationary state-action distribution of πθ.

Proof. See §G.3 for a detailed proof.
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Propositions C.3 and C.4 characterize the errors that arise from the actor and critic updates in Algo-
rithm 2, respectively. In particular, if the widths ma and mc of the DNNs fθ and Qω are sufficiently
large, the errors characterized in Propositions C.3 and C.4 decay to zero at the rates of O(N

−1/2
a )

and O(N
−1/2
c ), respectively. Propositions C.3 and C.4 act as the key ingredients to upper bounding

the regret of the deep neural actor-critic method.

Based on Propositions C.3 and C.4, we upper bound the regret of Algorithm 2 in the following
theorem, which is in parallel to Theorem 4.4.
Theorem C.5. We assume that Assumptions C.1 and C.2 hold. Let ρ be a state-action distri-
bution satisfying (ii) of Assumption C.1. Also, for any sufficiently large K > 0, let Na =

Ω(K2C4
ρ,ρ∗(φ

∗ + ψ∗ + 1)4R4
a), Nc = Ω(K2C4

ρ,ρ∗φ
∗4R4

c), Ha = Hc = O(N
1/4
c ), Ra = Rc =

O(m
1/2
c H−6

c (logmc)−3),ma = mc = Ω(d3/2K6C12
ρ,ρ∗(φ

∗+ψ∗+1)12R16
c H

42
c log(m

1/2
c /Rc)3/2),

β = K1/2, and the sequence {θk}k∈[K] be generated by Algorithm 2. With probability at least
1− 1/K over the random initialization θ0 and ω0, it holds that

E
[ K∑
k=0

Q∗(s, a)−Qπθk+1 (s, a)
]
≤
(
2(1− γ)−3 log |A|+O(1)

)
·K1/2,

where the expectation is taken over the randomness of (s, a) ∼ ρ and {θk+1}k∈[K] conditioning on
the initialization θ0 and ω0.

Proof. See §E.2 for a detailed proof.

When the architecture of the actor and critic neural networks are properly chosen, Theorem C.5
establishes anO(K1/2) regret of Algorithm 2, whereK is the total number of iterations. Specifically
speaking, to establish such a regret upper bound, we need the widths ma and mc of the DNNs fθ
and Qω to be sufficiently large. Meanwhile, to control the errors of actor update and critic update in
Algorithm 2, we also run sufficiently large numbers of iterations in Algorithms 3 and 4.

In terms of the total sample complexity, to simplify our discussion, we omit constant and logarithmic
terms here. To obtain an ε-globally optimal policy, it suffices to set K � ε−2 in Algorithm 2. By
plugging such a K into Na = Ω(K2C4

ρ,ρ∗(φ
∗ + ψ∗ + 1)4R4

a) and Nc = Ω(K2C4
ρ,ρ∗φ

∗4R4
c) as

required in Theorem C.5, we have Na = Õ(ε−4) and Nc = Õ(ε−4). Thus, to achieve an ε-globally
optimal policy, the total sample complexity of Algorithm 2 is Õ(ε−6). With the modification to off-
policy setting as in §3.1, the total sample complexity of Algorithm 2 is Õ(ε−4). In comparison, Liu
et al. (2019) requires a total sample complexity of Õ(ε−8) to achieve an ε-globally optimal policy,
which is worse than our single-timescale algorithm. Meanwhile, since Liu et al. (2019) uses TD(0)
in the critic update, which is shown to diverge under off-policy setting even with linear function
approximation (Baird et al., 1995), the method of data reuse cannot be applied to Liu et al. (2019)
to eliminate the total sample complexity.

To the best of our knowledge, we establish the rate of convergence and global optimality of the
actor-critic method under single-timescale setting with DNN approximation for the first time.

D PROOF SKETCH OF MAIN THEOREM 4.4

In this section, we sketch the proof of Theorem 4.4. Recall that ρ is a state-action distribution
satisfying (ii) of Assumption 4.1. We first upper bound

∑K
k=0(Q∗(s, a) − Qπθk+1 (s, a)) for any

(s, a) ∈ S × A in part 1. Then by further taking the expectation over ρ in part 2, we conclude the
proof of Theorem 4.4. See §E.1 for a detailed proof.

Part 1. In the sequel, we upper bound
∑K
k=0(Q∗(s, a)−Qπθk+1 (s, a)) for any (s, a) ∈ S ×A. We

first decompose Q∗ −Qπθk+1 into the following three terms,
K∑
k=0

[Q∗ −Qπθk+1 ](s, a) =

K∑
k=0

[
(I − γPπ

∗
)−1(A1,k +A2,k +A3,k)

]
(s, a), (D.1)
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the proof of which is deferred to (E.1) and (E.2) in §E.1 of the appendix. Here the operator Pπ∗ is
defined in (2.3), (I − γPπ∗)−1 =

∑∞
i=0(γPπ∗)i, and A1,k, A2,k, and A3,k are defined as follows,

A1,k(s, a) = [γ(Pπ
∗
− Pπθk+1 )Qωk ](s, a), (D.2)

A2,k(s, a) =
[
γPπ

∗
(Qπθk+1 −Qωk)

]
(s, a), (D.3)

A3,k(s, a) = [Tπθk+1Qωk −Q
πθk+1 ](s, a). (D.4)

To understand the intuition behind A1,k, A2,k, and A3,k, we interpret them as follows.

Interpretation ofA1,k. As defined in (D.2),A1,k arises from the actor update and measures the con-
vergence of the policy πθk+1

towards a globally optimal policy π∗, which implies the convergence
of Pπθk+1 towards Pπ∗ .

Interpretation of A3,k. Note that by (2.2) and (2.4), we have Qπθk+1 = Tπθk+1Qπθk+1 and Tπθk+1

is a γ-contraction, which implies that applying the Bellman evaluation operator Tπθk+1 to any Q,
e.g., Qωk , infinite times yields Qπθk+1 . As defined in (D.4), A3,k measures the error of tracking
the action-value function Qπθk+1 of πθk+1

by applying the Bellman evaluation operator Tπθk+1 to
Qωk only once, which arises from the critic update. Also, as A3,k = Tπθk+1 (Qωk −Q

πθk+1 ), A3,k

measures the difference between Qπθk , which is approximated by Qωk as discussed subsequently,
and Qπθk+1 . Such a difference can also be viewed as the difference between πθk and πθk+1

, which
arises from the actor update. Therefore, the convergence of A3,k to zero implies the contractions
of not only the critic update but also the actor update, which illustrates the “double contraction”
phenomenon. We establish the convergence of A3,k to zero in (D.10) subsequently.

Interpretation of A2,k. Assuming that A3,k−1 converges to zero, we have TπθkQωk−1
≈ Qπθk .

Moreover, assuming that the number of data points N is sufficiently large and ignoring the pro-
jection in (3.5), we have TπθkQωk−1

= Qω̃k ≈ Qωk as ω̃k defined in (3.4) is an estimator of ωk.
Hence, we have Qπθk ≈ Qωk . Such an approximation error is characterized by εck defined in (D.5)
subsequently. Hence, A2,k measures the difference between πθk and πθk+1

through the difference
between Qπθk ≈ Qωk and Qπθk+1 , which relies on the convergence of A3,k−1 to zero.

In the sequel, we upper bound A1,k, A2,k, and A3,k, respectively. To establish such upper bounds,
we define the following quantities,

εck+1(s, a) = [Tπθk+1Qωk −Qωk+1
](s, a), (D.5)

ek+1(s, a) = [Qωk − Tπθk+1Qωk ](s, a), (D.6)

ϑk(s) = KL
(
π∗(· | s) ‖πθk(· | s)

)
− KL

(
π∗(· | s) ‖πθk+1

(· | s)
)
. (D.7)

To understand the intuition behind εck+1, ek+1, and ϑk, we interpret them as follows.

Interpretation of εck+1. Recall that ω̃k+1 is defined in (3.4), which parameterizes Tπθk+1Qωk (ig-
noring the projection in (3.5)). Here εck+1 arises from approximating ω̃k+1 using ωk+1 as an estima-
tor, which is constructed based on ωk and the N data points. In particular, εck+1 decreases to zero as
N →∞, which is used in characterizing A2,k defined in (D.3).

Interpretation of ek+1. Assuming that A3,k−1 defined in (D.4) and εck defined in (D.5) converge
to zero, which implies TπθkQωk−1

≈ Qπθk and TπθkQωk−1
≈ Qωk , respectively, we have Qωk ≈

Qπθk . Therefore, as defined in (D.6), ek+1 = Qωk − Tπθk+1Qωk ≈ Qπθk − Tπθk+1Qπθk =
(Tπθk −Tπθk+1 )Qπθk measures the difference between πθk and πθk+1

, which implies the difference
between Tπθk and Tπθk+1 . We remark that ek+1 fully characterizes A3,k defined in (D.4) as shown
in (D.8) subsequently.

Interpretation of ϑk. As defined in (D.7), ϑk measures the difference between πθk and πθk+1
in

terms of their differences with π∗, which are measured by the corresponding KL-divergences. In
particular, ϑk is used in characterizing A1,k and A2,k defined in (D.2) and (D.3), respectively.

We remark that εck+1 measures the statistical error in the critic update, while ϑk measures the opti-
mization error in the actor update. As discussed above, the convergence of A3,k to zero implies the
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k
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ϑk

Critic Update:

Actor Update:

Figure 1: Illustration of the relationship amongA1,k,A2,k,A3,k, εck+1, ek+1, and ϑk. Here {θk, ωk}
and {θk+1, ωk+1} are two consecutive iterates of actor-critic. The red arrow from Qωk to Qωk+1

represents the critic update and the red arrow from Qπθk to Qπθk+1 represents the action-value
functions associated with the two policies in any actor update. Here ϑk given in (D.7) quantifies the
difference between πθk and πθk+1

in terms of their KL distances to π∗. In addition, the cyan arrows
represent quantities A1,k, A2,k, and A3,k introduced in (D.2)–(D.4), which are intermediate terms
used for analyzing the error Q∗ −Qπk+1 . Finally, the blue arrows represent εck+1 and ek+1 defined
in (D.5) and (D.6), respectively. Here εck+1 corresponds to the statistical error due to having finite
data whereas ek+1 essentially quantifies the difference between πθk and πθk+1

.

contraction of both the actor update and the critic update, which illustrates the “double contraction”
phenomenon. Meanwhile, since ek+1 fully characterizes A3,k as shown in (D.8) subsequently, ek+1

plays a key role in the “double contraction” phenomenon. In particular, the convergence of ek+1 to
zero is established in (D.9) subsequently. See Figure 1 for an illustration of these quantities.

With the quantities defined in (D.5), (D.6), and (D.7), we upper bound A1,k, A2,k, and A3,k as
follows,

A1,k(s, a) ≤ γβ · [Pϑk](s, a),

A2,k(s, a) ≤
[
(γPπ

∗
)k+1(Q∗ −Qω0)

]
(s, a) + γβ ·

k−1∑
i=0

[
(γPπ

∗
)k−iPϑi

]
(s, a)

+

k−1∑
i=0

[
(γPπ

∗
)k−iεci+1

]
(s, a),

A3,k(s, a) =
[
γPπθk+1 (I − γPπθk+1 )−1ek+1

]
(s, a), (D.8)

the proof of which is deferred to Lemmas E.1, E.2, and E.3 in §E.1 of the appendix, respectively.
Meanwhile, by recursively expanding (D.5) and (D.6), we have

ek+1(s, a) ≤
[
γk
( k∏
s=1

Pπθs
)
e1 +

k∑
i=1

γk−i
( k∏
s=i+1

Pπθs
)

(I − γPπθi )εci
]
(s, a), (D.9)
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the proof of which is deferred to Lemma E.4 in §E.1 of the appendix. By plugging (D.9) into (D.8),
we have

A3,k(s, a) ≤
[
γPπθk+1 (I − γPπθk+1 )−1

(
γk
( k∏
s=1

Pπθs
)
e1 (D.10)

+

k∑
i=1

γk−i
( k∏
s=i+1

Pπθs
)

(I − γPπθi )εci
)]

(s, a).

To better understand (D.10) and how it relates to the convergence of A3,k, A2,k, and A1,k to zero,
we discuss in the following two steps.

Step (i). We assume εci = 0, which corresponds to the number of data points N →∞. Then (D.10)
yields A3,k = O(γk), which implies that A3,k defined in (D.4) converges to zero driven by the
discount factor γ. As discussed above, the convergence of A3,k to zero also implies the contraction
between πθk and πθk+1

of the actor update and the contraction between Qωk and Qπθk of the critic
update, which illustrates the “double contraction” phenomenon.

Step (ii). The convergence of A3,k to zero further ensures that A2,k converges to zero. To see
this, we further assume A3,k = 0, which together with the assumption that εck+1 = 0 implies
Qπθk+1 = Tπθk+1Qωk = Qωk+1

by their definitions in (D.4) and (D.5), respectively. Then by
telescoping the sum of A2,k defined in (D.3), which cancels out Qωk+1

and Qπθk+1 , we obtain the
convergence of A2,k to zero. Meanwhile, telescoping the sum of A1,k defined in (D.2) and the sum
of its upper bound in (D.8) implies that A1,k converges to zero.

Now, by plugging (D.8) and (D.10) into (D.1), we establish an upper bound of
∑K
k=0(Q∗(s, a) −

Qπθk+1 (s, a)) for any (s, a) ∈ S × A, which is deferred to (E.12) in §E.1 of the appendix. Hence,
we conclude the proof in part 1. See part 1 of §E.1 for details.

Part 2. Recall that ρ is a state-action distribution satisfying (ii) of Assumption 4.1. In the sequel, we
take the expectation over ρ in (E.12) and upper bound each term. We first introduce the following
lemma, which upper bounds εck+1 defined in (D.5).

Lemma D.1. Under Assumptions 4.2 and 4.3, it holds for any k ≥ 1 that

E
[
εck+1(s, a)2

]
= E

[(
Qωk+1

(s, a)− [TπθkQωk ](s, a)
)2] ≤ 16(rmax +R)2

Nσ∗4
· log(N + d)2,

where the expectation is taken with respect to randomness of ωk+1 and (s, a) ∼ ρk+1.

Proof. See §H.1 for a detailed proof.

On the right-hand side of (E.12) in §E.1 of the appendix, for the terms not involving εck+1, i.e., M1,
M2, and M3 in (E.13), we take the expectation over ρ and establish their upper bounds in the `∞-
norm over (s, a) in Lemma E.5. On the other hand, for the terms involving εck+1, i.e., M4 and M5 in
(E.14), we take the expectation over ρ and then change the measure from ρ to ρk+1. By Assumption
4.1 and Lemma D.1, which relies on ρk+1, we establish the upper bounds in Lemma E.6. See part 2
of §E.1 for details.

Combining Lemmas E.5 and E.6 yields Theorem 4.4. See §E.1 for a detailed proof.

E PROOFS OF THEOREMS

E.1 PROOF OF THEOREM 4.4

Recall that ρ is a state-action distribution satisfying (ii) of Assumption 4.1. We first upper bound∑K
k=0(Q∗(s, a) − Qπθk+1 (s, a)) for any (s, a) ∈ S × A in part 1. Then by further taking the

expectation over ρ and invoking Lemma D.1 in part 2, we conclude the proof of Theorem 4.4.
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Part 1. In the sequel, we upper bound
∑K
k=0(Q∗(s, a)−Qπθk+1 (s, a)) for any (s, a) ∈ S ×A. By

the definition of Q∗ in (2.2), it holds for any (s, a) ∈ S ×A that
[Q∗ −Qπθk+1 ](s, a)

=

∞∑
`=0

[
(1− γ) · (γPπ

∗
)`r
]
(s, a)−Qπθk+1 (s, a)

=

∞∑
`=0

[
(1− γ) · (γPπ

∗
)`r + (γPπ

∗
)`+1Qπθk+1 − (γPπ

∗
)`+1Qπθk+1

]
(s, a)−Qπθk+1 (s, a)

=

∞∑
`=0

[
(1− γ) · (γPπ

∗
)`r + (γPπ

∗
)`+1Qπθk+1 − (γPπ

∗
)`Qπθk+1

]
(s, a)

=

∞∑
`=0

[
(γPπ

∗
)`
(
(1− γ) · r + γ · Pπ

∗
Qπθk+1 −Qπθk+1

)]
(s, a), (E.1)

where Pπ∗ is defined in (2.3). We upper bound [(1− γ) · r+ γ · Pπ∗Qπθk+1 −Qπθk+1 ](s, a) on the
RHS of (E.1) in the sequel. By calculation, we have[

(1− γ) · r + γ · Pπ
∗
Qπθk+1 −Qπθk+1

]
(s, a)

=
[(

(1− γ) · r + γ · Pπ
∗
Qπθk+1

)
−
(
(1− γ) · r + γ · Pπ

∗
Qωk

)]
(s, a)

+
[(

(1− γ) · r + γ · Pπ
∗
Qωk

)
−
(
(1− γ) · r + γ · Pπθk+1Qωk

)]
(s, a)

+
[(

(1− γ) · r + γ · Pπθk+1Qωk
)
−Qπθk+1

]
(s, a)

= A1,k(s, a) +A2,k(s, a) +A3,k(s, a), (E.2)
where A1,k, A2,k, and A3,k are defined as follows,

A1,k(s, a) =
[
γ(Pπ

∗
− Pπθk+1 )Qωk

]
(s, a),

A2,k(s, a) =
[
γPπ

∗
(Qπθk+1 −Qωk)

]
(s, a),

A3,k(s, a) = [Tπθk+1Qωk −Q
πθk+1 ](s, a). (E.3)

Here Tπθk+1 is defined in (2.4). By the following three lemmas, we upper bound A1,k, A2,k, and
A3,k on the RHS of (E.2), respectively.
Lemma E.1. It holds for any (s, a) ∈ S ×A that

A1,k(s, a) =
[
γ(Pπ

∗
− Pπθk+1 )Qωk

]
(s, a) ≤

[
γβ · P(ϑk + εak+1)

]
(s, a),

where ϑk and εak+1 are defined as follows,

ϑk(s) = KL
(
π∗(· | s) ‖πθk(· | s)

)
− KL

(
π∗(· | s) ‖πθk+1

(· | s)
)
, (E.4)

εak+1(s) =
〈
log
(
πθk+1

(· | s)/πθk(· | s)
)
− β−1 ·Qωk(s, ·), π∗(· | s)− πθk+1

(· | s)
〉
. (E.5)

Proof. See §H.2 for a detailed proof.

We remark that εak+1 = 0 for any k in the linear actor-critic method. Meanwhile, such a term is
included in Lemma E.1 only aiming to generalize to the deep neural actor-critic method.
Lemma E.2. It holds for any (s, a) ∈ S ×A that

A2,k(s, a) ≤
[
(γPπ

∗
)k+1(Q∗ −Qω0)

]
(s, a) + γβ ·

k−1∑
i=0

[
(γPπ

∗
)k−iP(ϑi + εai+1)

]
(s, a)

+

k−1∑
i=0

[
(γPπ

∗
)k−iεci+1

]
(s, a),

where ϑi is defined in (E.4) of Lemma E.1, εai+1 is defined in (E.5) of Lemma E.1, and εci+1 is
defined as follows,

εci+1(s, a) = [Tπθi+1Qωi −Qωi+1
](s, a). (E.6)
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Proof. See §H.3 for a detailed proof.

We remark that εak+1 = 0 for any k in the linear actor-critic method. Meanwhile, such a term is
included in Lemma E.2 only aiming to generalize to the deep neural actor-critic method.

Lemma E.3. It holds for any (s, a) ∈ S ×A that

A3,k(s, a) =
[
γPπθk+1 (I − γPπθk+1 )−1ek+1

]
(s, a),

where ek+1 is defined as follows,

ek+1(s, a) = [Qωk − Tπθk+1Qωk ](s, a). (E.7)

Proof. See §H.4 for a detailed proof.

We upper bound ek+1 in (E.7) of Lemma E.3 using Lemma E.4 as follows.

Lemma E.4. It holds for any (s, a) ∈ S ×A that

ek+1(s, a) ≤
[
γk
( k∏
s=1

Pπθs
)
e1 +

k∑
i=1

γk−i
( k∏
s=i+1

Pπθs
)(
γβPεbi+1 + (I − γPπθi )εci

)]
(s, a).

where εci (s, a) is defined in (E.6) of Lemma E.2 and εbi+1(s) is defined as follows,

εbi+1(s) =
〈
log
(
πθi+1

(· | s)/πθi(· | s)
)
− β−1 ·Qωi(s, ·), πθi(· | s)− πθi+1

(· | s)
〉
. (E.8)

Proof. See §H.5 for a detailed proof.

We remark that εbi+1 = 0 for any i in the linear actor-critic method. Meanwhile, such a term is
included in Lemma E.4 only aiming to generalize to the deep neural actor-critic method.

Combining Lemmas E.3 and E.4, we obtain the following upper bound of A3,k,

A3,k(s, a) =
[
γPπθk+1 (I − γPπθk+1 )−1ek+1

]
(s, a)

≤
[
γPπθk+1 (I − γPπθk+1 )−1

(
γk
( k∏
s=1

Pπθs
)
e1 (E.9)

+

k∑
i=1

γk−i
( k∏
s=i+1

Pπθs
)(
βγPεbi+1 + (I − γPπθi )εci

))]
(s, a).

Combining (E.1), (E.2), Lemma E.1 and Lemma E.2, it holds for any (s, a) ∈ S ×A that

K∑
k=0

[Q∗ −Qπθk+1 ](s, a)

≤
K∑
k=0

[
(I − γPπ

∗
)−1
(
(γPπ

∗
)k+1(Q∗ −Qω0

) +

k∑
i=0

(γPπ
∗
)k−iγβP(ϑi + εai+1)

+

k−1∑
i=0

(γPπ
∗
)k−iεci+1 +A3,k

)]
(s, a)

=

[
(I − γPπ

∗
)−1
( K∑
k=0

(γPπ
∗
)k+1(Q∗ −Qω0

) +

K∑
k=0

k∑
i=0

(γPπ
∗
)k−iγβPεai+1 (E.10)

+

K∑
k=0

k−1∑
i=0

(γPπ
∗
)k−iεci+1 +

K∑
k=0

A3,k +

K∑
k=0

k∑
i=0

(γPπ
∗
)k−iγβPϑi

)]
(s, a),
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where ϑi, εai+1, εci+1, and ek+1 are defined in (E.4) of Lemma E.1, (E.5) of Lemma E.1, (E.6) of
Lemma E.2, and (E.7) of Lemma E.3, respectively. We upper bound the last term as follows,[ K∑

k=0

k∑
i=0

(γPπ
∗
)k−iγβPϑi

]
(s, a) =

[ K∑
k=0

k∑
i=0

γβ(γPπ
∗
)iPϑk−i

]
(s, a)

=

[ K∑
i=0

γβ(γPπ
∗
)iP

K∑
k=i

ϑk−i

]
(s, a)

=

[ K∑
i=0

γβ(γPπ
∗
)iP

K∑
k=i

(
KL
(
π∗ ‖πθk−i

)
− KL

(
π∗ ‖πθk−i+1

))]
(s, a)

=

[ K∑
i=0

γβ(γPπ
∗
)iP
(
KL(π∗ ‖πθ0)− KL(π∗ ‖πθK−i+1

)
)]

(s, a)

≤
[ K∑
i=0

γβ(γPπ
∗
)iPKL(π∗ ‖πθ0)

]
(s, a), (E.11)

where we use the definition of ϑk−i in (E.4) of Lemma E.1 and the non-negativity of the KL diver-
gence in the second equality and the last inequality, respectively. By plugging (E.9) and (E.11) into
(E.10), we have
K∑
k=0

[Q∗ −Qπθk+1 ](s, a)

≤
[
(I − γPπ

∗
)−1

( K∑
k=0

(γPπ
∗
)k+1(Q∗ −Qω0) +

K∑
k=0

k∑
i=0

(γPπ
∗
)k−iγβPεai+1 (E.12)

+

K∑
k=0

k−1∑
i=0

(γPπ
∗
)k−iεci+1 +

K∑
k=0

γk+1Pπθk+1 (I − γPπθk+1 )−1
( k∏
s=1

Pπθs
)
e1

+

K∑
k=0

Pπθk+1 (I − γPπθk+1 )−1
k∑
`=1

γk−`+1
( k∏
s=`+1

Pπθs
)(
γβPεb`+1 + (I − γPπθ` )εc`

))]
(s, a).

+

K∑
i=0

(γPπ
∗
)iγβPKL(π∗ ‖πθ0)

We remark that εai+1 = εbi+1 = 0 for any i in the linear actor-critic method. Meanwhile, such terms is
included in (E.12) only aiming to generalize to the deep neural actor-critic method. This concludes
the proof in part 1.

Part 2. Recall that ρ is a state-action distribution satisfying (ii) of Assumption 4.1. In the sequel,
we take the expectation over ρ in (E.12) and upper bound each term. Recall that εai+1 = εbi+1 = 0
for any i in the linear actor-critic method. Hence, we only need to consider terms in (E.12) that do
not involve εai+1 or εbi+1. We first upper bound terms on the RHS of (E.12) that do not involve εci+1.
More specifically, for any measure ρ satisfying satisfying (ii) of Assumption 4.1, we upper bound
the following three terms,

M1 = Eρ
[
(I − γPπ

∗
)−1

K∑
k=0

(γPπ
∗
)k+1(Q∗ −Qω0

)
]
,

M2 = Eρ
[
(I − γPπ

∗
)−1

K∑
k=0

γk+1Pπθk+1 (I − γPπθk+1 )−1
( k∏
s=1

Pπθs
)
e1

]
,

M3 = Eρ
[
(I − γPπ

∗
)−1

K∑
i=0

(γPπ
∗
)iγβPKL(π∗ ‖πθ0)

]
. (E.13)

We upper bound M1, M2, and M3 in the following lemma.
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Lemma E.5. It holds that

|M1| ≤ 4(1− γ)−2 · (rmax +R), |M2| ≤ (1− γ)−3 · (2R+ rmax),

|M3| ≤ (1− γ)−2 · log |A| ·K1/2,

where M1, M2, and M3 are defined in (E.13).

Proof. See §H.6 for a detailed proof.

Now, we upper bound terms on the RHS of (E.12) that involve εci+1. More specifically, for any
measure ρ satisfying (ii) of Assumption 4.1, we upper bound the following two terms,

M4 = Eρ
[
(I − γPπ

∗
)−1

K∑
k=0

k∑
i=0

(γPπ
∗
)k−iεci+1

]
, (E.14)

M5 = Eρ
[
(I − γPπ

∗
)−1

K∑
k=0

Pπθk+1 (I − γPπθk+1 )−1
k∑
`=1

γk−`+1
( k∏
s=`+1

Pπθs
)

(I − γPπθ` )εc`
]
.

We upper bound M4 and M5 in the following lemma.

Lemma E.6. It holds that

|M4| ≤ 3KCρ,ρ∗ · εQ, |M5| ≤ KCρ,ρ∗ · εQ.

where M4 and M5 are defined in (E.14).

Proof. See §H.7 for a detailed proof.

Now, by plugging Lemmas E.5 and E.6 into (E.12), we have

Eρ
[ K∑
k=0

Q∗(s, a)−Qπθk+1 (s, a)
]

≤ 2(1− γ)−3 · log |A| ·K1/2 + 4KCρ,ρ∗ · εQ +O(1). (E.15)

Meanwhile, by changing measure from ρ∗ to ρk+1, it holds for any k that

Eρ∗ [|εck+1|] ≤
√
Eρk+1

[
(εck+1(s, a))2

]
· φ∗k+1, (E.16)

where φ∗k+1 is defined in Assumption 4.1. Also, by Lemma D.1, it holds that√
Eρk+1

[
(εck+1(s, a))2

]
= O

(
1/(
√
Nσ∗) · logN). (E.17)

Now, by plugging (E.17) into (E.16), combining the definition of εQ = maxk Eρ∗ [|εck+1|], we have

εQ = O
(
φ∗/(
√
Nσ∗) · logN). (E.18)

Combining (E.15), (E.18), and the choices of parameters stated in the theorem that

N = Ω
(
KC2

ρ,ρ∗(φ
∗/σ∗)2 · log2N

)
,

we have

Eρ
[ K∑
k=0

Q∗(s, a)−Qπθk+1 (s, a)
]
≤
(
2(1− γ)−3 log |A|+O(1)

)
·K1/2,

which concludes the proof of Theorem 4.4.
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E.2 PROOF OF THEOREM C.5

We follow the proof of Theorem 4.4 in §E.1. Following similar arguments when deriving (E.12) in
§E.1, we have

K∑
k=0

[Q∗ −Qπθk+1 ](s, a)

≤
[
(I − γPπ

∗
)−1 ·

( K∑
k=0

(γPπ
∗
)k+1(Q∗ −Qω0

) +

K∑
k=0

k∑
i=0

(γPπ
∗
)k−i · γβPεai+1 (E.19)

+

K∑
k=0

k−1∑
i=0

(γPπ
∗
)k−iεci+1 +

K∑
i=0

(γPπ
∗
)i · γβP · KL(π∗ ‖πθ0)

+

K∑
k=0

γk+1Pπθk+1 (I − γPπθk+1 )−1
( k∏
s=1

Pπθs
)
e1

+

K∑
k=0

Pπθk+1 (I − γPπθk+1 )−1
k∑
`=1

γk−`+1
( k∏
s=`+1

Pπθs
)(
βγPεb`+1 − (I − γPπθ` )εc`

))]
(s, a),

for any (s, a) ∈ S × A. Here εai+1, εb`+1, εci+1, and e1 are defined in (E.5), (E.8), (E.6), and (E.7),
respectively.

Now, it remains to upper bound each term on the RHS of (E.19). We introduce the following error
propagation lemma.

Lemma E.7. Suppose that

Eρk
[(
fθk+1

(s, a)− τk+1 · (β−1Qωk(s, a)− τ−1
k fθk(s, a))

)2]1/2 ≤ εk+1,f . (E.20)

Then, we have

Eν∗
[
|εak+1(s)|

]
≤
√

2τ−1
k+1 · εk+1,f · (φ∗k + ψ∗k), Eν∗

[
|εbk+1(s)|

]
≤
√

2τ−1
k+1 · εk+1,f · (1 + ψ∗k),

where εak+1 and εbk+1 are defined in (E.5) and (E.8), respectively, φ∗k and ψ∗k are defined in Assump-
tion C.1.

Proof. See §H.8 for a detailed proof.

Following from Lemma F.4, with probability at least 1 − O(Hc) exp(−Ω(H−1
c mc)), we have

|Qω0 | ≤ 2. Also, from the fact that |r(s, a)| ≤ rmax, we know that |Q∗| ≤ rmax. Therefore,
for any measure ρ, we have

∣∣∣Eρ[(I − γPπ∗)−1
K∑
k=0

(γPπ
∗
)k+1(Q∗ −Qω0

)
]∣∣∣

≤ Eρ
[
(I − γPπ

∗
)−1

K∑
k=0

(γPπ
∗
)k+1|Q∗ −Qω0

|
]

≤ rmax(1− γ)−1
K∑
k=0

γk+1 ≤ rmax(1− γ)−2. (E.21)

25



Published as a conference paper at ICLR 2021

Also, by changing the index of summation, we have

∣∣∣Eρ[(I − γPπ∗)−1
K∑
k=0

k∑
i=0

(γPπ
∗
)k−iγβPεai+1

]∣∣∣
=
∣∣∣Eρ[ K∑

k=0

k∑
i=0

∞∑
j=0

(γPπ
∗
)k−i+jγβPεai+1

]∣∣∣
=
∣∣∣Eρ[ K∑

k=0

k∑
i=0

∞∑
t=k−i

(γPπ
∗
)tγβPεai+1

]∣∣∣
≤

K∑
k=0

k∑
i=0

∞∑
t=k−i

∣∣Eρ[(γPπ∗)tγβPεai+1

]∣∣, (E.22)

where we expand (I − γPπ∗)−1 into an infinite sum in the first equality. Further, by changing the
measure of the expectation on the RHS of (E.22), we have

K∑
k=0

k∑
i=0

∞∑
t=k−i

∣∣Eρ[(γPπ∗)tγβPεai+1

]∣∣ ≤ K∑
k=0

k∑
i=0

∞∑
t=k−i

βγt+1c(t) · Eν∗ [|εAi+1|], (E.23)

where c(t) is defined in Assumption C.1. Further, by Lemma E.7 and interchanging the summation
on the RHS of (E.23), we have

∣∣∣Eρ[(I − γPπ∗)−1
K∑
k=0

k∑
i=0

(γPπ
∗
)k−iγβPεai+1

]∣∣∣
≤ 2

K∑
k=0

∞∑
t=0

k∑
i=max{0,k−t}

βγt+1c(t) · τ−1
i+1εf (φ∗i + ψ∗i )

≤
K∑
k=0

∞∑
t=0

4ktγt+1c(t) · εf (φ∗ + ψ∗)

≤ γ
K∑
k=0

4Cρ,ρ∗ · εf (φ∗ + ψ∗) ≤ 2γKCρ,ρ∗(φ
∗ + ψ∗) · εf , (E.24)

where εf = maxi Eρi [(fθi+1
(s, a)−τi+1 ·(β−1Qωi(s, a)−τ−1

i fθi(s, a)))2]1/2, andCρ,ρ∗ is defined
in Assumption C.1. Here in the second inequality, we use the fact that τ−1

i+1 = (i + 1) · β−1, and
φ∗i ≤ φ∗ and ψ∗i ≤ ψ∗ by Assumption C.1.

By similar arguments in the derivation of (E.24), we have

∣∣∣Eρ[(I − γPπ∗)−1
K∑
k=0

k−1∑
i=0

(γPπ
∗
)k−iεci+1

]∣∣∣ ≤ 2(K + 1)Cρ,ρ∗φ
∗ · εQ, (E.25)

∣∣∣Eρ[(I − γPπ∗)−1
K∑
i=0

(γPπ
∗
)iγβPKL(π∗ ‖πθ0)

]∣∣∣ ≤ log |A| ·K1/2(1− γ)−2,

Eρ
[
(I − γPπ

∗
)−1

K∑
k=0

γk+1Pπθk+1 (I − γPπθk+1 )−1
( k∏
s=1

Pπθs
)
e1

]
≤ (2 + rmax) · (1− γ)−3,

where εQ = maxi Eρ∗ [|εci+1|]. And we use the fact that β = K1/2.
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Now, it remains to upper bound the last term on the RHS of (E.19). We first consider the terms
involving εb`+1. We have

Eρ
[
(I − γPπ

∗
)−1

K∑
k=0

Pπθk+1 (I − γPπθk+1 )−1
k∑
`=1

γk−`+1
( k∏
s=`+1

Pπθs
)
βγPεb`+1

]

=

∞∑
j=0

∞∑
i=0

K∑
k=0

k∑
`=1

Eρ
[
(γPπ

∗
)j(γPπθk+1 )i+1γk−`

( k∏
s=`+1

Pπθs
)
βγPεb`+1

]

≤ βγ
K∑
k=0

k∑
`=1

∞∑
j=0

∞∑
i=0

γi+j+k−`+1 · Eρ∗ [|Pεb`+1|] · c(i+ j + k − `+ 1)

≤ 2γ

K∑
k=0

k∑
`=1

∞∑
j=0

∞∑
i=0

γi+j+k−`+1 · (`+ 1)εf · (1 + ψ∗` ) · c(i+ j + k − `+ 1), (E.26)

where we expand (I − γPπ∗)−1 and (I − γPπθk+1 )−1 to infinite sums in the first equality, change
the measure of the expectation in the first inequality, and use Lemma E.7 in the last inequality. Now,
by changing the index of the summation, we have

γ

K∑
k=0

k∑
`=1

∞∑
j=0

∞∑
i=0

γi+j+k−`+1 · (`+ 1)εf · (1 + ψ∗` ) · c(i+ j + k − `+ 1)

= γ

K∑
k=0

k∑
`=1

∞∑
j=0

∞∑
t=j+k−`+1

γt · (`+ 1)εf · (1 + ψ∗` ) · c(t)

≤ γ
K∑
k=0

∞∑
j=0

∞∑
t=j+1

k∑
`=max{0,j+k−t+1}

γt · (`+ 1)εf · (1 + ψ∗) · c(t), (E.27)

where we use the fact that ψ∗` ≤ ψ∗ from Assumption C.1 in the last inequality. By further manipu-
lating the order of summations of the RHS of (E.27), we have

γ

K∑
k=0

∞∑
j=0

∞∑
t=j+1

k∑
`=max{0,j+k−t+1}

γt · (`+ 1)εf (1 + ψ∗) · c(t)

≤ γ
K∑
k=0

∞∑
j=0

(j+k+1∑
t=j+1

(t− j)(2k + j − k + 1) · γtc(t) +

∞∑
t=j+k+2

k2 · γtc(t)
)
· εf (1 + ψ∗)

= γ

K∑
k=0

( ∞∑
t=1

t−1∑
j=max{0,t−k−1}

(t− j)(2k + j − k + 1) · γtc(t)

+

∞∑
t=k+2

t−k−2∑
j=1

k2 · γtc(t)
)
· εf (1 + ψ∗)

≤ 20γ

K∑
k=0

( ∞∑
t=1

k2 · tγtc(t) +

∞∑
t=1

k2 · tγtc(t)
)
· εf (1 + ψ∗)

≤ 20γK · Cρ,ρ∗ · εf (1 + ψ∗), (E.28)

where we use the definition of Cρ,ρ∗ from Assumption C.1 in the last inequality. Now, combining
(E.26), (E.27), and (E.28), we have

Eρ
[
(I − γPπ

∗
)−1

K∑
k=0

Pπθk+1 (I − γPπθk+1 )−1
k∑
`=1

γk−`+1
( k∏
s=`+1

Pπθs
)
βγPεb`+1

]
≤ 20γK · Cρ,ρ∗ · εf · (1 + ψ∗). (E.29)
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Following from similar arguments when deriving (E.29), we have

Eρ
[
(I − γPπ

∗
)−1

K∑
k=0

Pπθk+1 (I − γPπθk+1 )−1
k∑
`=1

γk−`+1
( k∏
s=`+1

Pπθs
)

(I − γPπθ` )εc`
]

≤ 20K · Cρ,ρ∗φ∗ · εQ, (E.30)

Now, by plugging (E.21), (E.24), (E.25), (E.29), and (E.30) into (E.19), with probability at least
1−O(Hc) exp(−Ω(H−1

c mc)), we have

Eρ
[ K∑
k=0

Q∗(s, a)−Qπθk+1 (s, a)
]

(E.31)

≤ 2 log |A| ·K1/2(1− γ)−3 + 60KCρ,ρ∗(φ
∗ + ψ∗ + 1) · εf + 50KCρ,ρ∗φ

∗ · εQ.
Meanwhile, following from Propositions C.3 and C.4, it holds with probability at least 1−1/K that

εf = O
(
RaN

−1/4
a +R4/3

a m−1/12
a H7/2

a (logma)1/2),

εQ = O
(
RcN

−1/4
c +R4/3

c m−1/12
c H7/2

c (logmc)1/2). (E.32)
Combining (E.31), (E.32), and the choices of parameters stated in the theorem, it holds with proba-
bility at least 1− 1/K that

Eρ
[ K∑
k=0

Q∗(s, a)−Qπθk+1 (s, a)
]
≤
(
2(1− γ)−3 log |A|+O(1)

)
·K1/2,

which concludes the proof of Theorem C.5.

F SUPPORTING RESULTS

In this section, we provide some supporting results in the proof of Theorems 4.4 and C.5. We
introduce Lemma F.1, which applies to both Algorithms 1 and 2. To introduce Lemma F.1, for any
policy π and action-value function Q, we define π̃(a | s) ∝ exp(β−1Q(s, a)) · π(a | s).
Lemma F.1. For any s ∈ S and π†, we have

β−1 · 〈Q(s, ·), π†(· | s)− π̃(· | s)〉 ≤ KL
(
π†(· | s) ‖π(· | s)

)
− KL

(
π†(· | s) ‖ π̃(· | s)

)
+
〈
log
(
π̃(· | s)/π(· | s)

)
− β−1 ·Q(s, ·), π†(· | s)− π̃(· | s)

〉
.

Proof. By calculation, it suffices to show that〈
log(π̃(· | s)/π(· | s)), π†(· | s)− π̃(· | s)

〉
≤ KL(π†(· | s) ‖π(· | s))− KL(π†(· | s) ‖ π̃(· | s)).

By the definition of the KL divergence, it holds for any s ∈ S that

KL(π†(· | s) ‖π(· | s))− KL(π†(· | s) ‖ π̃(· | s))
=
〈
log(π̃(· | s)/π(· | s)), π†(· | s)

〉
. (F.1)

Meanwhile, for the term on the RHS of (F.1), we have〈
log(π̃(· | s)/πθk(· | s)), π†(· | s)

〉
=
〈
log(π̃(· | s)/π(· | s)), π†(· | s)− π̃(· | s)

〉
+
〈
log(π̃(· | s)/π(· | s)), π̃(· | s)

〉
=
〈
log(π̃(· | s)/π(· | s)), π†(· | s)− π̃(· | s)

〉
+ KL(π̃(· | s) ‖π(· | s))

≥
〈
log(π̃(· | s)/π(· | s)), π†(· | s)− π̃(· | s)

〉
. (F.2)

Combining (F.1) and (F.2), we obtain that〈
log(π̃(· | s)/π(· | s)), π†(· | s)− π̃(· | s)

〉
≤ KL(π†(· | s) ‖π(· | s))− KL(π†(· | s) ‖ π̃(· | s)),

which concludes the proof of Lemma F.1.
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F.1 LOCAL LINEARIZATION OF DNNS

In the proofs of Propositions C.3 and C.4 in §G.2 and §G.3, respectively, we utilize the linearization
of DNNs. We introduce some related auxiliary results here. First, we define the linearization ūθ of
the DNN uθ ∈ U(w,H,R) as follows,

ūθ(·) = uθ0(·) + (θ − θ0)>∇θ0uθ(·),

where θ0 is the initialization of uθ. The following lemmas characterize the linearization error.

Lemma F.2. Suppose that H = O(m1/12R−1/6(logm)−1/2) and m = Ω(d3/2R−1H−3/2 ·
log(m1/2/R)3/2). Then with probability at least 1 − exp(−Ω(R2/3m2/3H)) over the random ini-
tialization θ0, it holds for any θ ∈ B(θ0, R) and any (s, a) ∈ S ×A that

‖∇θuθ(s, a)−∇θuθ0(s, a)‖2 = O
(
R1/3m−1/6H5/2(logm)1/2

)
and

‖∇θuθ(s, a)‖2 = O(H).

Proof. See the proof of Lemma A.5 in Gao et al. (2019) for a detailed proof.

Lemma F.3. Suppose that H = O(m1/12R−1/6(logm)−1/2) and m = Ω(d3/2R−1H−3/2 ·
log(m1/2/R)3/2). Then with probability at least 1 − exp(−Ω(R2/3m2/3H)) over the random ini-
tialization θ0, it holds for any θ ∈ B(θ0, R) and any (s, a) ∈ S ×A that

|uθ(s, a)− ūθ(s, a)| = O
(
R4/3m−1/6H5/2(logm)1/2

)
.

Proof. Recall that

ūθ(s, a) = uθ0(s, a) + (θ − θ0)>∇θuθ0(s, a).

By mean value theorem, there exists t ∈ [0, 1], which depends on θ and (s, a), such that

uθ(s, a)− ūθ(s, a) = (θ − θ0)>
(
∇θuθ0+t(θ−θ0)(s, a)−∇θuθ0(s, a)

)
.

Further by Lemma F.2, we have

|uθ(s, a)− ūθ(s, a)| ≤ ‖θ − θ0‖2 ·
∥∥∇θuθ0+t·(θ−θ0)(s, a)−∇θuθ0(s, a)

∥∥
2

= O
(
R4/3m−1/6H5/2(logm)1/2

)
,

where we use Cauchy-Schwarz inequality in the first inequality. This concludes the proof of Lemma
F.3.

We denote by x(h) the output of the h-th layer of the DNN uθ ∈ U(m,H,R), and x(h),0 the output
of the h-th layer of the DNN uθ0 ∈ U(m,H,R). The following lemma upper bounds the distance
between x(h) and x(h),0.

Lemma F.4. With probability at least 1−exp(−Ω(R2/3m2/3H)) over the random initialization θ0,
for any θ ∈ B(θ0, R) and any h ∈ [H], we have

‖x(h) − x(h),0‖2 = O
(
RH5/2m−1/2(logm)1/2

)
.

Also, with probability at least 1 − O(H) exp(−Ω(H−1m)) over the random initialization θ0, for
any θ ∈ B(θ0, R) and any h ∈ [H], it holds that

2/3 ≤ ‖x(h)‖2 ≤ 4/3.

Proof. The first inequality follows from Lemma A.5 in Gao et al. (2019), and the second inequality
follows from Lemma 7.1 in Allen-Zhu et al. (2018b).
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G PROOFS OF PROPOSITIONS

G.1 PROOF OF PROPOSITION 3.1

The proof follows the proof of Proposition 3.1 in Liu et al. (2019). First, we write the update
π̃k+1 ← argmaxπ Eνk [〈Qωk(s, ·), π(· | s)〉 − β ·KL(π(· | s) ‖πθk(· | s))] as a constrained optimiza-
tion problem in the following way,

max
π

Eνk
[
〈π(· | s), Qωk(s, ·)〉 − β · KL(π(· | s) ‖πθk(· | s))

]
s.t.

∑
a∈A

π(a | s) = 1, for any s ∈ S.

We consider the Lagrangian of the above program,∫
s∈S

(
〈π(· | s), Qωk(s, ·)〉 − β · KL

(
π(· | s) ‖πθk(· | s)

))
dνk(s) +

∫
s∈S

(∑
a∈A

π(a | s)− 1
)

dλ(s),

where λ(·) is the dual parameter, which is a function on S. Now, by plugging in

πθk(a | s) =
exp(τ−1

k fθk(s, a))∑
a′∈A exp(τ−1

k fθk(s, a′))
,

we have the following optimality condition,

Qωk(s, a) + βτ−1
k fθk(s, a)− β ·

(
log
(∑
a′∈A

exp(τ−1
k fθk(s, a′))

)
+ log π(a |s) + 1

)
+

λ(s)

νk(s)
= 0,

for any (s, a) ∈ S ×A. Note that log(
∑
a′∈A exp(τ−1

k fθk(s, a′))) is only a function of s. Thus, we
have

π̂k+1(a | s) ∝ exp(β−1Qωk(s, a) + τ−1
k fθk(s, a))

for any (s, a) ∈ S ×A, which concludes the proof of Proposition 3.1.

G.2 PROOF OF PROPOSITION C.3

We define the local linearization of fθ as follows,

f̄θ = fθ0 + (θ − θ0)>∇θ0fθ. (G.1)

Meanwhile, we denote by

gn =
(
fθ(n) − τ̃ · (β−1Qω + τ−1fθ)

)
· ∇θfθ(n), gen = Eρπθ [gn],

ḡn =
(
f̄θ(n) − τ̃ · (β−1Qω + τ−1fθ)

)
· ∇θfθ0 , ḡen = Eρπθ [ḡn],

g∗ =
(
fθ∗ − τ̃ · (β−1Qω + τ−1fθ)

)
· ∇θfθ∗ , ge∗ = Eρπθ [g∗],

ḡ∗ =
(
f̄θ∗ − τ̃ · (β−1Qω + τ−1fθ)

)
· ∇θfθ0 , ḡe∗ = Eρπθ [ḡ∗], (G.2)

where θ∗ satisfies that

θ∗ = ΓB(θ0,Ra)(θ∗ − α · ḡe∗). (G.3)

By Algorithm 3, we know that

θ(n+ 1) = ΓB(θ0,Ra)(θ(n)− α · gn). (G.4)

By (G.3) and (G.4), we have

Eρπθ
[
‖θ(n+ 1)− θ∗‖22 | θ(n)

]
= Eρπθ

[
‖ΓB(θ0,Ra)(θ(n)− α · gn)− ΓB(θ0,Ra)(θ∗ − α · ḡe∗)‖22 | θ(n)

]
≤ Eρπθ

[
‖(θ(n)− α · gn)− (θ∗ − α · ḡe∗)‖22 | θ(n)

]
= ‖θ(n)− θ∗‖22 + 2α · 〈θ∗ − θ(n), gen − ḡe∗〉︸ ︷︷ ︸

(i)

+α2 · Eρπθ
[
‖gn − ḡe∗‖22 | θ(n)

]︸ ︷︷ ︸
(ii)

, (G.5)
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where we use the fact that ΓB(θ0,Ra) is a contraction mapping in the first inequality. We upper bound
term (i) and term (ii) on the RHS of (G.5) in the sequel.

Upper Bound of Term (i). By Cauchy–Schwarz inequality, it holds that
〈θ∗ − θ(n), gen − ḡe∗〉 = 〈θ∗ − θ(n), gen − ḡen〉+ 〈θ∗ − θ(n), ḡen − ḡe∗〉

≤ ‖θ∗ − θ(n)‖2 · ‖gen − ḡen‖2 + 〈θ∗ − θ(n), ḡen − ḡe∗〉
≤ 2Ra · ‖gen − ḡen‖2 + 〈θ∗ − θ(n), ḡen − ḡe∗〉, (G.6)

where we use the fact that θ(n), θ∗ ∈ B(θ0, Ra) in the last inequality. Further, by the definitions in
(G.2), it holds that

〈θ∗ − θ(n), ḡen − ḡe∗〉 = Eρπθ
[
(f̄θ(n) − f̄θ∗) · 〈θ∗ − θ(n),∇θfθ0〉

]
= Eρπθ

[
(f̄θ(n) − f̄θ∗) · (f̄θ∗ − f̄θ(n))

]
= −Eρπθ

[
(f̄θ(n) − f̄θ∗)2

]
, (G.7)

where we use (G.1) in the second equality. Combining (G.6) and (G.7), we obtain the following
upper bound of term (i),

〈θ∗ − θ(n), gen − ḡe∗〉 ≤ 2Ra · ‖gen − ḡen‖2 − Eρπθ
[
(f̄θ(n) − f̄θ∗)2

]
. (G.8)

Upper Bound of Term (ii). We now upper bound term (ii) on the RHS of (G.5). It holds by
Cauchy-Schwarz inequality that

Eρπθ
[
‖gn − ḡe∗‖22 | θ(n)

]
≤ 2Eρπθ

[
‖gn − gen‖22 | θ(n)

]
+ 2‖gen − ḡe∗‖22

≤ 2Eρπθ
[
‖gn − gen‖22 | θ(n)

]︸ ︷︷ ︸
(ii).a

+4 ‖gen − ḡen‖22︸ ︷︷ ︸
(ii).b

+4 ‖ḡen − ḡe∗‖22︸ ︷︷ ︸
(ii).c

. (G.9)

We upper bound term (ii).a, term (ii).b, and term (ii).c in the sequel.

Upper Bound of Term (ii).a. Note that
Eρπθ

[
‖gn − gen‖22 | θ(n)

]
= Eρπθ

[
‖gn‖22 − ‖gen‖22 | θ(n)

]
≤ Eρπθ

[
‖gn‖22 | θ(n)

]
. (G.10)

Meanwhile, by the definition of gn in (G.2), it holds that

‖gn‖22 =
(
fθ(n) − τ̃ · (β−1Qω + τ−1fθ)

)2 · ‖∇θfθ(n)‖22. (G.11)
We first upper bound fθ as follows,

f2
θ = x(Ha)>bb>x(Ha) = x(Ha)>x(Ha) = ‖x(Ha)‖22,

where x(Ha) is the output of the Ha-th layer of the DNN fθ. Further combining Lemma F.4, it holds
with probability at least 1−O(Ha) exp(−Ω(H−1

a ma)) that
|fθ| ≤ 2. (G.12)

Following from similar arguments, with probability at least 1−O(Ha) exp(−Ω(H−1
a ma)), we have

|Qω| ≤ 2, |fθ(n)| ≤ 2. (G.13)
Combining Lemma F.2, (G.10), (G.11), (G.12), and (G.13), it holds with probability at least 1 −
exp(−Ω(R

2/3
a m

2/3
a Ha)) that

Eρπθ
[
‖gn − gen‖22 | θ(n)

]
= O(H2

a ), (G.14)
which establishes an upper bound of term (ii).a.

Upper Bound of Term (ii).b. It holds that
‖gen − ḡen‖2 =

∥∥Eρπθ [(fθ(n) − τ̃ · (β−1Qω + τ−1fθ)
)
· ∇θfθ(n)

−
(
f̄θ(n) − τ̃ · (β−1Qω + τ−1fθ)

)
· ∇θfθ0

]∥∥
2

≤ Eρπθ
[
‖fθ(n)∇θfθ(n) − f̄θ(n)∇θfθ0‖2

]
+ τ̃ · Eρπθ

[
‖(β−1Qω + τ−1fθ) · (∇θfθ0 −∇θfθ(n))‖2

]
≤ Eρπθ

[
‖fθ(n)∇θfθ0 − f̄θ(n)∇θfθ0‖2

]
+ Eρπθ

[
‖fθ(n)∇θfθ(n) − fθ(n)∇θfθ0‖2

]
(G.15)

+ Eρπθ
[
‖τ̃ · (β−1Qω + τ−1fθ) · (∇θfθ0 −∇θfθ(n))‖2

]
.
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We upper bound the three terms on the RHS of (G.15) in the sequel, respectively.

For the term ‖fθ(n)∇θfθ0 − f̄θ(n)∇θfθ0‖2 on the RHS of (G.15), following from Lemmas F.2 and
F.3, it holds with probability at least 1− exp(−Ω(R

2/3
a m

2/3
a Ha)) that

‖fθ(n)∇θfθ0 − f̄θ(n)∇θfθ0‖2 = O
(
R4/3

a m−1/6
a H7/2

a (logma)1/2
)
. (G.16)

For the term ‖fθ(n)∇θfθ(n) − fθ(n)∇θfθ0‖2 on the RHS of (G.15), following from (G.13) and
Lemma F.2, with probability at least 1− exp(−Ω(R

2/3
a m

2/3
a Ha)), we have

‖fθ(n)∇θfθ(n) − fθ(n)∇θfθ0‖2 = O
(
R1/3

a m−1/6
a H5/2

a (logma)1/2
)
. (G.17)

For the term ‖τ̃ · (β−1Qω + τ−1fθ) · (∇θfθ0 − ∇θfθ(n))‖2 on the RHS of (G.15), we first upper
bound τ̃ · (β−1Qω + τ−1fθ) as follows,

|τ̃ · (β−1Qω + τ−1fθ)| ≤ 2,

where we use (G.12), (G.13), and the fact that τ̃−1 = β−1 + τ−1. Further combining Lemma F.2, it
holds with probability at least 1− exp(−Ω(R

2/3
a m

2/3
a Ha)) that

‖τ̃ · (β−1Qω + τ−1fθ) · (∇θfθ0 −∇θfθ(n))‖2 = O
(
R1/3

a m−1/6
a H5/2

a (logma)1/2
)
. (G.18)

Now, combining (G.15), (G.16), (G.17), and (G.18), it holds with probability at least 1 −
exp(−Ω(R

2/3
a m

2/3
a Ha)) that

‖gen − ḡen‖22 = O
(
R8/3

a m−1/3
a H7

a logma

)
, (G.19)

which establishes an upper bound of term (ii).b.

Upper Bound of Term (ii).c. It holds that

‖ḡen − ḡe∗‖22 =
∥∥Eρπθ [(f̄θ(n) − f̄θ∗)∇θfθ0 ]

∥∥2

2
≤ Eρπθ

[
(f̄θ(n) − f̄θ∗)2 · ‖∇θfθ0‖22

]
.

Further combining Lemma F.2, it holds with probability at least 1− exp(−Ω(R
2/3
a m

2/3
a Ha)) that

‖ḡen − ḡe∗‖22 ≤ O(H2
a ) · Eρπθ

[
(f̄θ(n) − f̄θ∗)2

]
, (G.20)

which establishes an upper bound of term (ii).c.

Now, combining (G.9), (G.14), (G.19), and (G.20), we have

Eρπθ
[
‖gn − ḡe∗‖22 | θ(n)

]
≤ O

(
R8/3

a m−1/3
a H7

a logma

)
+O(H2

a ) · Eρπθ
[
(f̄θ(n) − f̄θ∗)2

]
, (G.21)

which is an upper bound of term (ii) on the RHS of (G.5).

By plugging the upper bound of term (i) in (G.8) and the upper bound of term (ii) in (G.21) into
(G.5), combining (G.19), with probability at least 1− exp(−Ω(R

2/3
a m

2/3
a Ha)), we have

Eρπθ
[
‖θ(n+ 1)− θ∗‖22 | θ(n)

]
≤ ‖θ(n)− θ∗‖22 + 2α ·

(
O
(
R7/3

a m−1/6
a H7/2

a (logma)1/2
)
− Eρπθ

[
(f̄θ(n) − f̄θ∗)2

])
(G.22)

+ α2 ·
(
O
(
R8/3

a m−1/3
a H7

a logma

)
+O(H2

a ) · Eρπθ
[
(f̄θ(n) − f̄θ∗)2

])
.

Rearranging terms in (G.22), it holds with probability at least 1− exp(−Ω(R
2/3
a m

2/3
a Ha)) that

(2α− α2 ·O(H2
a )) · Eρπθ

[
(f̄θ(n) − f̄θ∗)2

]
≤ ‖θ(n)− θ∗‖22 − Eρπθ

[
‖θ(n+ 1)− θ∗‖22 | θ(n)

]
+ α ·O

(
R8/3

a m−1/6
a H7

a logma

)
.

(G.23)
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By telescoping the sum and using Jensen’s inequality in (G.23), we have

Eρπθ
[
(f̄θ̄ − f̄θ∗)2

]
≤ 1

Na
·
Na−1∑
n=0

Eρπθ
[
(f̄θ(n) − f̄θ∗)2

]
≤ 1/Na ·

(
2α− α2 ·O(H2

a )
)−1 ·

(
‖θ0 − θ∗‖22 + αNa ·O(R8/3

a m−1/6
a H7

a logma)
)

≤ N−1/2
a · ‖θ0 − θ∗‖22 +O(R8/3

a m−1/6
a H7

a logma),

where the last line comes from the choices that α = N
−1/2
a andHa = O(N

1/4
a ). Further combining

Lemma F.3 and using triangle inequality, we have

Eρπθ
[
(fθ̄ − f̄θ∗)2

]
= O(R2

aN
−1/2
a +R8/3

a m−1/6
a H7

a logma). (G.24)

By the definition of θ∗ in (G.3), we know that

〈ḡe∗, θ − θ∗〉 ≥ 0, for any θ ∈ B(θ0, Ra). (G.25)

By plugging the definition of ḡe∗ into (G.25), we have

Eρπθ
[
〈f̄θ∗ − τ̃ · (β−1Qω + τ−1fθ), f̄θ† − f̄θ∗〉

]
≥ 0, for any θ† ∈ B(θ0, Ra),

which is equivalent to

θ∗ = argmin
θ†∈B(θ0,Ra)

Eρπθ
[(
f̄θ† − τ̃ · (β−1Qω + τ−1fθ)

)2]
. (G.26)

Meanwhile, by the fact that θ0 = ω0, we have

τ̃ · (β−1Q̄ω + τ−1f̄θ) = τ̃ ·
(
β−1 · (Qω0 + (ω − ω0)>∇ωQω0) + τ−1 · (fθ0 + (θ − θ0)>∇θfθ0)

)
= fθ0 +

(
τ̃ · (β−1ω + τ−1θ)− θ0

)>∇θfθ0 ,
where the second line comes from τ̃−1 = β−1 + τ−1. Note that θ ∈ B(θ0, Ra), ω ∈ B(ω0, Rc),
θ0 = ω0, and Ra = Rc, we know that τ̃ · (β−1ω + τ−1θ) ∈ B(θ0, Ra). Therefore, with probability
at least 1− exp(−Ω(R

2/3
a m

2/3
a Ha)) we have

Eρπθ
[(
f̄θ∗ − τ̃ · (β−1Qω + τ−1fθ)

)2]
≤ Eρπθ

[(
τ̃ · (β−1Q̄ω + τ−1f̄θ)− τ̃ · (β−1Qω + τ−1fθ)

)2]
≤ τ̃2 · β−2 · Eρπθ [(Q̄ω −Qω)2] + τ̃2 · τ−2 · Eρπθ [(f̄θ − fθ)2]

= O(R8/3
a m−1/3

a H5
a logma), (G.27)

where the first inequality comes from (G.26), and the last inequality comes from Lemma F.3 and the
fact that Rc = Ra, mc = ma, and Hc = Ha. Combining (G.24) and (G.27), by triangle inequality,
we have

Eρπθ
[(
fθ(s, a)− τ̃ · (β−1Qω(s, a) + τ−1fθ(s, a))

)2]
= O(R2

aN
−1/2
a +R8/3

a m−1/6
a H7

a logma),

which finishes the proof of Proposition C.3.

G.3 PROOF OF PROPOSITION C.4

The proof is similar to that of Proposition C.3 in §G.2. For the completeness of the paper, we present
it here. We define the local linearization of Qω as follows,

Q̄ω = Qω0 + (ω − ω0)>∇ω0Qω. (G.28)

We denote by

gn =
(
Qω(n)(s0, a0)− γ ·Qω(s1, a1)− (1− γ) · r0

)
· ∇ωQω(n)(s0, a0), gen = Eπθ [gn],

ḡn =
(
Q̄ω(n)(s0, a0)− γ ·Qω(s1, a1)− (1− γ) · r0

)
· ∇ωQω0(s0, a0), ḡen = Eπθ [ḡn],

g∗ =
(
Qω∗(s0, a0)− γ ·Qω(s1, a1)− (1− γ) · r0

)
· ∇ωQω∗(s0, a0), ge∗ = Eπθ [g∗],

ḡ∗ =
(
Q̄ω∗(s0, a0)− γ ·Qω(s1, a1)− (1− γ) · r0

)
· ∇ωQω0(s0, a0), ḡe∗ = Eπθ [ḡ∗],

(G.29)

33



Published as a conference paper at ICLR 2021

where ω∗ satisfies that

ω∗ = ΓB(ω0,Rc)(ω∗ − α · ḡe∗). (G.30)

Here the expectation Eπθ [·] is taken following (s0, a0) ∼ ρπθ (·), s1 ∼ P (· | s0, a0), a1 ∼ πθ(· | s1),
and r0 = r(s0, a0). By Algorithm 4, we know that

ω(n+ 1) = ΓB(ω0,Rc)(ω(n)− η · gn).

Note that

Eπθ
[
‖ω(n+ 1)− ω∗‖22 |ω(n)

]
= Eπθ

[
‖ΓB(ω0,Rc)(ω(n)− η · gn)− ΓB(ω0,Rc)(ω∗ − η · ḡe∗)‖22 |ω(n)

]
≤ Eπθ

[
‖(ω(n)− η · gn)− (ω∗ − η · ḡe∗)‖22 |ω(n)

]
= ‖ω(n)− ω∗‖22 + 2η · 〈ω∗ − ω(n), gen − ḡe∗〉︸ ︷︷ ︸

(iii)

+η2 · Eπθ
[
‖gn − ḡe∗‖22 |ω(n)

]︸ ︷︷ ︸
(iv)

. (G.31)

We upper bound term (iii) and term (iv) on the RHS of (G.31) in the sequel.

Upper Bound of Term (iii). By Hölder’s inequality, it holds that

〈ω∗ − ω(n), gen − ḡe∗〉
= 〈ω∗ − ω(n), gen − ḡen〉+ 〈ω∗ − ω(n), ḡen − ḡe∗〉
≤ ‖ω∗ − ω(n)‖2 · ‖gen − ḡen‖2 + 〈ω∗ − ω(n), ḡen − ḡe∗〉
≤ 2Rc · ‖gen − ḡen‖2 + 〈ω∗ − ω(n), ḡen − ḡe∗〉, (G.32)

where we use the fact that ω(n), ω∗ ∈ B(ω0, Rc) in the last line. Further, by the definitions in
(G.29), it holds that

〈ω∗ − ω(n), ḡen − ḡe∗〉
= Eπθ

[
(Q̄ω(n)(s0, a0)− Q̄ω∗(s0, a0)) · 〈ω∗ − ω(n),∇ωQω0

(s0, a0)〉
]

= Eπθ
[
(Q̄ω(n)(s0, a0)− Q̄ω∗(s0, a0)) · (Q̄ω∗(s0, a0)− Q̄ω(n)(s0, a0))

]
= −Eπθ

[
(Q̄ω(n)(s0, a0)− Q̄ω∗(s0, a0))2

]
= −Eρπθ

[
(Q̄ω(n) − Q̄ω∗)2

]
, (G.33)

where the second equality comes from (G.28), and the last equality comes from the fact that the
expectation is only taken to the state-action pair (s0, a0). Combining (G.32) and (G.33), we obtain
the following upper bound of term (i),

〈ω∗ − ω(n), gen − ḡe∗〉 ≤ 2Rc · ‖gen − ḡen‖2 − Eρπθ
[
(Q̄ω(n) − Q̄ω∗)2

]
. (G.34)

Upper Bound of Term (iv). We now upper bound term (iv) on the RHS of (G.31). It holds by
Cauchy-Schwarz inequality that

Eπθ
[
‖gn − ḡe∗‖22 |ω(n)

]
≤ 2Eπθ

[
‖gn − gen‖22 |ω(n)

]
+ 2‖gen − ḡe∗‖22

≤ 2Eπθ
[
‖gn − gen‖22 |ω(n)

]︸ ︷︷ ︸
(iv).a

+4 ‖gen − ḡen‖22︸ ︷︷ ︸
(iv).b

+4 ‖ḡen − ḡe∗‖22︸ ︷︷ ︸
(iv).c

. (G.35)

We upper bound term (iv).a, term (iv).b, and term (iv).c in the sequel.

Upper Bound of Term (iv).a. We now upper bound term (iv).a on the RHS of (G.35). By expanding
the square, we have

Eπθ
[
‖gn − gen‖22 |ω(n)

]
= Eπθ

[
‖gn‖22 − ‖gen‖22 |ω(n)

]
≤ Eπθ

[
‖gn‖22 |ω(n)

]
. (G.36)

Meanwhile, by the definition of gn in (G.29), it holds that

‖gn‖22 =
(
Qω(n)(s0, a0)− γ ·Qω(s1, a1)− (1− γ) · r0

)2 · ‖∇ωQω(n)(s0, a0)‖22. (G.37)
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We first upper bound Qω as follows,

Q2
ω = x(Hc)>bb>x(Hc) = x(Hc)>x(Hc) = ‖x(Hc)‖22,

where x(Hc) is the output of the Hc-th layer of the DNN Qω . Further combining Lemma F.4, it
holds that

|Qω| ≤ 2. (G.38)

Similarly, we have

|Qω(n)| ≤ 2. (G.39)

Combining Lemma F.2, (G.36), (G.37), (G.38), and (G.39), we have

Eπθ
[
‖gn − gen‖22 |ω(n)

]
= O(H2

c ). (G.40)

Upper Bound of Term (iv).b. We now upper bound term (iv).b on the RHS of (G.35). It holds that

‖gen − ḡen‖2
=
∥∥Eπθ[(Qω(n)(s0, a0)− γ ·Qω(s1, a1)− (1− γ) · r0

)
· ∇ωQω(n)(s0, a0)

−
(
Q̄ω(n)(s0, a0)− γ ·Qω(s1, a1)− (1− γ) · r0

)
· ∇ωQω0

(s0, a0)
]∥∥

2

≤ Eπθ
[∥∥(γ ·Qω(s1, a1) + (1− γ) · rt

)
· (∇ωQω0(s0, a0)−∇ωQω(n)(s0, a0))

∥∥
2

]
+ Eρπθ

[
‖Qω(n)∇ωQω(n) − Q̄ω(n)∇ωQω0

‖2
]

≤ Eπθ
[∥∥(γ ·Qω(s1, a1) + (1− γ) · r0

)
· (∇ωQω0(s0, a0)−∇ωQω(n)(s0, a0))

∥∥
2

]
(G.41)

+ Eρπθ
[
‖(Qω(n) − Q̄ω(n)) · ∇ωQω0

‖2
]

+ Eρπθ
[
‖Qω(n) · (∇ωQω(n) −∇ωQω0

)‖2
]
.

We now upper bound the three terms on the RHS of (G.41) in the sequel, respectively.

For the term Eρπθ [‖(Qω(n) − Q̄ω(n)) · ∇ωQω0
‖2] on the RHS of (G.41), following from Lemmas

F.2 and F.3, it holds with probability at least 1− exp(−Ω(R
2/3
c m

2/3
c Hc)) that

Eρπθ
[
‖(Qω(n) − Q̄ω(n)) · ∇ωQω0

‖2
]

= O
(
R4/3

c m−1/6
c H7/2

c (logmc)1/2
)
. (G.42)

For the term Eρπθ [‖Qω(n) · (∇ωQω(n) −∇ωQω0
)‖2] on the RHS of (G.41), following from (G.39)

and Lemma F.2, with probability at least 1− exp(−Ω(R
2/3
c m

2/3
c Hc)), we have

Eρπθ
[
‖Qω(n) · (∇ωQω(n) −∇ωQω0

)‖2
]

= O
(
R1/3

c m−1/6
c H5/2

c (logmc)1/2
)
. (G.43)

For the term Eπθ [‖(γ ·Qω(s1, a1) + (1− γ) · r0) · (∇ωQω0
(s0, a0)−∇ωQω(n)(s0, a0))‖2] on the

RHS of (G.41), we first upper bound |γ ·Qω(s1, a1) + (1− γ) · r0| as follows,

|γ ·Qω(s1, a1) + (1− γ) · r0| ≤ 2 + rmax,

where we use (G.38) and the fact that |r(s, a)| ≤ rmax for any (s, a) ∈ S × A. Further combining
Lemma F.2, with probability at least 1− exp(−Ω(R

2/3
c m

2/3
c Hc)), we have

Eπθ
[∥∥(γ ·Qω(s1, a1) + (1− γ) · r0

)
· (∇ωQω0

(s0, a0)−∇ωQω(n)(s0, a0))
∥∥

2

]
= O

(
R1/3

c m−1/6
c H5/2

c (logmc)1/2
)
. (G.44)

Now, combining (G.41), (G.42), (G.43), and (G.44), it holds with probability at least 1 −
exp(−Ω(R

2/3
c m

2/3
c Hc)) that

‖gen − ḡen‖22 = O(R8/3
c m−1/3

c H7
c logmc). (G.45)

Upper Bound of Term (iv).c. We now upper bound term (iv).c on the RHS of (G.35). It holds that

‖ḡen − ḡe∗‖22 =
∥∥Eρπθ [(Q̄ω(n) − Q̄ω∗)∇ωQω0

]
∥∥2

2
≤ Eρπθ

[
(Q̄ω(n) − Q̄ω∗)2 · ‖∇ωQω0

‖22
]
.
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Further combining Lemma F.2, it holds that

Eπθ
[
‖ḡen − ḡe∗‖22 |ω(n)

]
≤ O(H2

c ) · Eρπθ
[
(Q̄ω(n) − Q̄ω∗)2

]
. (G.46)

Combining (G.35), (G.40), (G.45), and (G.46), we obtain the following upper bound for term (iv)
on the RHS of (G.31),

Eπθ
[
‖gn − ḡe∗‖22 |ω(n)

]
≤ O(R8/3

c m−1/3
c H7

c logmc) +O(H2
c ) · Eρπθ

[
(Q̄ω(n) − Q̄ω∗)2

]
.

(G.47)

We continue upper bounding (G.31). By plugging (G.34) and (G.47) into (G.31), it holds with
probability at least 1− exp(−Ω(R

2/3
c m

2/3
c Hc)) that

Eπθ
[
‖ω(n+ 1)− ω∗‖22 |ω(n)

]
≤ ‖ω(n)− ω∗‖22 + 2η ·

(
O
(
R7/3

c m−1/6
c H7/2

c (logmc)1/2
)
− Eρπθ

[
(Q̄ω(n) − Q̄ω∗)2

])
+ η2 ·

(
O
(
R8/3

c m−1/3
c H7

c logmc

)
+O(H2

c ) · Eρπθ
[
(Q̄ω(n) − Q̄ω∗)2

])
. (G.48)

Rearranging terms in (G.48), it holds with probability at least 1− exp(−Ω(R
2/3
c m

2/3
c Hc)) that

(2η − η2 ·O(H2
c )) · Eρπθ

[
(Q̄ω(n) − Q̄ω∗)2

]
≤ ‖ω(n)− ω∗‖22 − Eρπθ [‖ω(n+ 1)− ω∗‖22 |ω(n)] + η ·O(R8/3

c m−1/3
c H7

c logmc).

(G.49)

By telescoping the sum and using Jensen’s inequality in (G.49), we have

Eρπθ
[
(Q̄ω̄ − Q̄ω∗)2

]
≤ 1

Nc
·
Nc−1∑
n=0

Eρπθ
[
(Q̄ω(n) − Q̄ω∗)2

]
≤ 1/Nc ·

(
2η − η2 ·O(H2

c )
)−1 ·

(
‖ω0 − ω∗‖22 + ηNc ·O(R8/3

c m−1/6
c H7

c logmc)
)

≤ N−1/2
c · ‖θ0 − θ∗‖22 +O(R8/3

c m−1/6
c H7

c logmc),

where the last line comes from the choices that η = N
−1/2
c and Hc = O(N

1/4
c ). Further combining

Lemma F.3 and using triangle inequality, we have

Eρπθ
[
(Qω̄ − Q̄ω∗)2

]
= O(R2

cN
−1/2
c +R8/3

c m−1/6
c H7

c logmc). (G.50)

To establish the upper bound of Eρπθ [(Q̄ω∗−Q̃)2], we upper bound Eρπθ [(Q̄ω∗−Q̃)2] in the sequel.
By the definition of ω∗ in (G.30), following a similar argument to derive (G.26), we have

ω∗ = argmin
ω†∈B(ω0,Rc)

Eρπθ
[
(Q̄ω†(s0, a0)− Q̃(s0, a0))2

]
. (G.51)

From the fact that Q̃ ∈ U(mc, Hc, Rc) by Assumption C.2, we know that Q̃ = Qω̃ for some
ω̃ ∈ B(ω0, Rc). Therefore, by (G.51), with probability at least 1 − exp(−Ω(R

2/3
c m

2/3
c Hc)), we

have

Eρπθ
[
(Q̄ω∗ − Q̃)2

]
≤ Eρπθ

[
(Q̄ω̃ − Q̃)2

]
= O(R8/3

c m−1/3
c H5

c logmc), (G.52)

where we use Lemma F.3 in the last inequality. Now, combining (G.50) and (G.52), by triangle
inequality, with probability at least 1− exp(−Ω(R

2/3
c m

2/3
c Hc)), we have

Eρπθ
[
(Qω̄ − Q̃)2

]
≤ 2Eρπθ

[
(Qω̄ − Q̄ω∗)2

]
+ 2Eρπθ

[
(Q̄ω∗ − Q̃)2

]
= O(R2

cN
−1/2
c +R8/3

c m−1/6
c H7

c logmc),

which concludes the proof of Proposition C.4.
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H PROOFS OF LEMMAS

H.1 PROOF OF LEMMA D.1

W denote by Q̃ = TπθkQωk . In the sequel, we upper bound Eρk+1
[(Qωk+1

− Qω̄k+1
)2], where

ω̄k+1 = ΓR(ω̃k+1) and ω̃k+1 is defined in (3.4). Note that by the fact that ‖ϕ(s, a)‖2 ≤ 1 uniformly,
it suffices to upper bound ‖ωk+1 − ω̃k+1‖2. By the definitions of ωk+1 and ω̃k+1 in (3.5) and (3.4),
respectively, we have

‖ωk+1 − ω̄k+1‖2 ≤ ‖Φ̂v̂ − Φv‖2 ≤ ‖Φ‖2 · ‖v̂ − v‖2 + ‖Φ̂− Φ‖2 · ‖v̂‖2. (H.1)

Here, we use the fact that the projection ΓR(·) is a contraction in the first inequality, and triangle
inequality in the second inequality. Also, for notational convenience, we denote by Φ̂, Φ, v̂, and v
in (H.1) as follows,

Φ̂ =
( 1

N

N∑
`=1

ϕ(s`,1, a`,1)ϕ(s`,1, a`,1)>
)−1

, Φ =
(
Eρk+1

[ϕ(s, a)ϕ(s, a)>]
)−1

,

v̂ =
1

N

N∑
`=1

(
(1− γ)r`,2 + γQωk(s′`,2, a

′
`,2)
)
· ϕ(s`,2, a`,2),

v = Eρk+1

[(
(1− γ)r + γPπθk+1Qωk

)
(s, a) · ϕ(s, a)

]
.

By the fact that ‖ϕ(s, a)‖2 ≤ 1, |r(s, a)| ≤ rmax, and ‖ωk‖2 ≤ R we have

‖Φ‖2 ≤ 1/σ∗, ‖v̂‖2 ≤ rmax +R. (H.2)

Now, following from matrix Bernstein inequality (Tropp, 2015) and Assumption 4.3, we have

E
[
‖Φ̂− Φ‖2

]
≤ 2√

N(σ∗)2
· log(N + d), (H.3)

where σ∗ is defined in Assumption 4.3. Similarly, we have

E
[
‖v̂ − v‖2

]
≤ 2(rmax +R)/

√
N · log(N + d). (H.4)

Now, combining (H.1), (H.2), (H.3), and (H.4), we have

E
[
‖ωk+1 − ω̄k+1‖2

]
≤ 4(rmax +R)√

N(σ∗)2
· log(N + d).

Therefore, it holds that

E
[
(Qωk+1

−Qω̄k+1
)2
]
≤ 16(rmax +R)2

N(σ∗)2
· log2(N + d). (H.5)

Meanwhile, by Assumption 4.2 and the definition of ω̄k+1, we have

Q̃ = Qω̄k+1
. (H.6)

Combining (H.5) and (H.6), we have

E
[
(Qωk+1

− Q̃)2
]
≤ 16(rmax +R)2

N(σ∗)4
· log2(N + d),

which concludes the proof of Lemma D.1.

H.2 PROOF OF LEMMA E.1

Following from the definitions of Pπ and P in (2.3), we have

A1,k(s, a) =
[
γ(Pπ

∗
− Pπθk+1 )Qωk

]
(s, a) =

[
γP〈Qωk , π∗ − πθk+1

〉
]
(s, a). (H.7)

By invoking Lemma F.1 and combining (H.7), it holds for any (s, a) ∈ S ×A that

A1,k(s, a) =
[
γ(Pπ

∗
− Pπθk+1 )Qωk

]
(s, a) ≤

[
γβ · P(ϑk + εak+1)

]
(s, a),

where ϑk and εak+1 are defined in (E.4) and (E.5) of Lemma E.1, respectively. We conclude the
proof of Lemma E.1.
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H.3 PROOF OF LEMMA E.2

By the definition that Q∗ is the action-value function of an optimal policy π∗, we know that
Q∗(s, a) ≥ Qπ(s, a) for any policy π and state-action pair (s, a) ∈ S × A. Therefore, for any
(s, a) ∈ S ×A, we have

A2,k(s, a) =
[
γPπ

∗
(Qπθk+1 −Qωk)

]
(s, a) ≤

[
γPπ

∗
(Q∗ −Qωk)

]
(s, a). (H.8)

In the sequel, we upper bound Q∗(s, a)−Qωk(s, a) for any (s, a) ∈ S ×A. We define

Q̃k+1 = (1− γ) · r + γ · Pπθk+1Qωk .

By its definition, we know that Q̃k+1 = Tπθk+1Qωk . It holds for any (s, a) ∈ S ×A that

Q∗(s, a)−Qωk+1
(s, a)

= Q∗(s, a)− Q̃k+1(s, a) + Q̃k+1(s, a)−Qωk+1
(s, a)

=
[(

(1− γ) · r + γ · Pπ
∗
Q∗
)
−
(
(1− γ) · r + γ · Pπθk+1Qωk

)]
(s, a) + εck+1(s, a)

= γ · [Pπ
∗
Q∗ − Pπθk+1Qωk ](s, a) + εck+1(s, a)

= γ · [Pπ
∗
Q∗ − Pπ

∗
Qωk ](s, a) + γ · [Pπ

∗
Qωk − Pπθk+1Qωk ](s, a) + εck+1(s, a)

= γ ·
[
Pπ
∗
(Q∗ −Qωk)

]
(s, a) +A1,k(s, a) + εck+1(s, a)

≤ γ ·
[
Pπ
∗
(Q∗ −Qωk)

]
(s, a) + γβ ·

[
P(ϑk + εak+1)

]
(s, a) + εck+1(s, a), (H.9)

where εck+1 and A1,k are defined in (E.6) and (E.3), respectively. Here, we use Lemma E.1 to upper
bound A1,k in the last line. We remark that (H.9) upper bounds Q∗ − Qωk+1

using Q∗ − Qωk . By
recursively applying a similar argument as in (H.9), we have

Q∗(s, a)−Qωk(s, a)

≤
[
(γPπ

∗
)k(Q∗ −Qω0

)
]
(s, a) + γβ ·

k−1∑
i=0

[
(γPπ

∗
)k−i−1P(ϑi + εai+1)

]
(s, a) (H.10)

+

k−1∑
i=0

[
(γPπ

∗
)k−i−1εci+1

]
(s, a).

Combining (H.8) and (H.10), it holds for any (s, a) ∈ S ×A that

A2,k(s, a) ≤
[
γPπ

∗
(Q∗ −Qωk)

]
(s, a)

≤
[
(γPπ

∗
)k+1(Q∗ −Qω0

)
]
(s, a) + γβ ·

k−1∑
i=0

[
(γPπ

∗
)k−iP(ϑi + εai+1)

]
(s, a)

+

k−1∑
i=0

[
(γPπ

∗
)k−iεci+1

]
(s, a),

where ϑi, εai+1, and εci+1 are defined in (E.4) of Lemma E.1, (E.5) of Lemma E.1, and (E.6) of
Lemma E.2, respectively. We conclude the proof of Lemma E.2.
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H.4 PROOF OF LEMMA E.3

Note that for any (s, a) ∈ S ×A, we have
A3,k(s, a) = [Tπθk+1Qωk −Q

πθk+1 ](s, a)

=
[(

(1− γ) · r + γPπθk+1Qωk
)
−Qπθk+1

]
(s, a)

=
[(

(1− γ) · r + γPπθk+1Qωk
)
−
∞∑
t=0

(1− γ)(γPπθk+1 )tr
]
(s, a)

=

[ ∞∑
t=1

(
(γPπθk+1 )tQωk − (γPπθk+1 )t+1Qωk

)
−
∞∑
t=1

(1− γ)(γPπθk+1 )tr

]
(s, a)

=

∞∑
t=1

[
(γPπθk+1 )t

(
Qωk − γP

πθk+1Qωk − (1− γ) · r
)]

(s, a)

=

∞∑
t=1

[
(γPπθk+1 )t

(
Qωk − Tπθk+1Qωk

)]
(s, a)

=

∞∑
t=1

[
(γPπθk+1 )tek+1

]
(s, a) =

[
γPπθk+1 (I − γPπθk+1 )−1ek+1

]
(s, a),

where the term ek+1 in the last line is defined in (E.7). We conclude the proof of Lemma E.3.

H.5 PROOF OF LEMMA E.4

We invoke Lemma F.1 in §F, which gives
β−1 · 〈Qωk(s, ·), πθk(· | s)− πθk+1

(· | s)〉
≤
〈
log(πθk+1

(· | s)/πθk(· | s))− β−1 ·Qωk(s, ·), πθk(· | s)− πθk+1
(· | s)

〉
− KL(πθk(· | s) ‖πθk+1

(· | s))
≤
〈
log(πθk+1

(· | s)/πθk(· | s))− β−1 ·Qωk(s, ·), πθk(· | s)− πθk+1
(· | s)

〉
= εbk+1(s).

(H.11)
Combining (H.11) and the definition of Pπ in (2.3), we have

[PπθkQωk − Pπθk+1Qωk ](s, a) ≤ β[Pεbk+1](s). (H.12)
By the definition of ek+1 in (E.7), we have

ek+1(s, a) =
[
Qωk − γ · P

πθk+1Qωk − (1− γ) · r
]
(s, a)

≤
[
Qωk − γ · PπθkQωk − (1− γ) · r

]
(s, a) + βγ · [Pεbk+1](s, a) (H.13)

=
[
Q̃k − γ · Pπθk Q̃k − (1− γ) · r

]
(s, a) +

[
βγPεbk+1 − (I − γPπθk )εck

]
(s, a),

where we use (H.12) in the first inequality, and

Q̃k = (1− γ) · r + γ · PπθkQωk−1
. (H.14)

For the first term on the RHS of (H.13), by (H.14), it holds that

Q̃k − γ · Pπθk Q̃k − (1− γ) · r
= (1− γ) · r + γ · PπθkQωk−1

− γ(1− γ) · Pπθk r − (γPπθk )2Qωk−1
− (1− γ) · r

= γ · Pπθk
(
Qωk−1

− γPπθkQωk−1
− (1− γ)r

)
= γ · Pπθk ek. (H.15)

Combining (H.13) and (H.15), we have for any (s, a) ∈ S ×A that

ek+1(s, a) ≤ [γPπθk ek](s, a) +
[
βγPεbk+1 − (I − γPπθk )εck

]
(s, a). (H.16)

By telescoping (H.16), it holds that

ek+1(s, a) ≤
[( k∏

s=1

γPπθs
)
e1 +

k∑
i=1

γk−i
( k∏
s=i+1

Pπθs
)(
βγPεbi+1 − (I − γPπθi )εci

)]
(s, a).

This finishes the proof of the lemma.
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H.6 PROOF OF LEMMA E.5

Note that ‖ω0‖2 ≤ R and |r(s, a)| ≤ rmax for any (s, a) ∈ S×A, which implies that |Qω0
(s, a)| ≤

R and |Q∗(s, a)| ≤ rmax by their definitions. Thus, for M1, we have

|M1| ≤ Eρ
[
(I − γPπ

∗
)−1

K∑
k=0

(γPπ
∗
)k+1|Q∗ −Qω0

|
]

≤ 4(1− γ)−1
K∑
k=0

γk+1 · (rmax +R) ≤ 4(1− γ)−2 · (rmax +R). (H.17)

For M2, by the definition of e1 in (E.7), |ωk| ≤ R, |φ(s, a)| ≤ 1, and |r(s, a)| ≤ rmax, we have

|e1(s, a)| =
∣∣[Qωk − Tπθk+1Qωk ](s, a)

∣∣
=
∣∣ω>k φ(s, a)− γ · ω>k [Pπθk+1φ](s, a)− (1− γ) · r(s, a)

∣∣
≤ 2R+ rmax (H.18)

for any (s, a) ∈ S ×A. Therefore, we have

|M2| ≤ (1− γ)−3 · (2R+ rmax). (H.19)

Meanwhile, by the initialization τ0 = ∞ in Algorithm 1, the initial policy πθ0(· | s) is a uniform
distribution over A. Therefore, it holds for any s ∈ S that

KL
(
π∗(· | s) ‖πθ0(· | s)

)
=

∫
A
π∗(a | s) log

π∗(a | s)
πθ0(a | s)

da

=

∫
A
π∗(a | s) log π∗(a | s)da−

∫
A
π∗(a | s) log πθ0(a | s)da

≤ −
∫
A
π∗(a | s) log πθ0(a | s)da

=

∫
A
π∗(a | s) log |A|da = log |A|. (H.20)

Therefore, by (H.20), we have

M3 ≤ (1− γ)−2 · log |A| ·K1/2, (H.21)

where we use β = K1/2. We see that (H.17), (H.19), and (H.21) upper bound M1, M2, and M3,
respectively. We conclude the proof of Lemma E.5.

H.7 PROOF OF LEMMA E.6

For M4, by changing the index of summation, we have

|M4| =
∣∣∣Eρ[ K∑

k=0

k∑
i=0

∞∑
j=0

(γPπ
∗
)k−i+jεci+1

]∣∣∣
=
∣∣∣Eρ[ K∑

k=0

k∑
i=0

∞∑
t=k−i

(γPπ
∗
)tεci+1

]∣∣∣
≤

K∑
k=0

k∑
i=0

∞∑
t=k−i

∣∣Eρ[(γPπ∗)tεci+1

]∣∣, (H.22)

where we expand (I − γPπ∗)−1 into an infinite sum in the first equality. Further, by changing the
measure of the expectation from ρ to ρ∗ on the RHS of (H.22), we have

K∑
k=0

k∑
i=0

∞∑
t=k−i

∣∣Eρ[(γPπ∗)tεci+1

]∣∣ ≤ K∑
k=0

k∑
i=0

∞∑
t=k−i

γtc(t) · Eρ∗ [|εci+1|], (H.23)
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where c(t) is defined in Assumption 4.1. Further, by changing the index of summation on the RHS
of (H.23), combining (H.22), we have

|M4| ≤
K∑
k=0

∞∑
t=0

k∑
i=max{0,k−t}

γtc(t) · εQ

≤
K∑
k=0

∞∑
t=0

2tγtc(t) · εQ

≤ γ
K∑
k=0

2Cρ,ρ∗ · εQ ≤ 3KCρ,ρ∗ · εQ, (H.24)

where εQ = maxi Eρ∗ [|εci+1|], and Cρ,ρ∗ is defined in Assumption 4.1.

Now, for M5, by a similar argument as in the derivation of (H.24), we have

M5 ≤
∞∑
i=0

K∑
k=0

∞∑
j=0

k∑
`=1

γi+j+k−`+1c(i+ j + k − `+ 1) · εQ

=

∞∑
i=0

K∑
k=0

∞∑
j=0

i+j+k∑
t=i+j+1

γtc(t) · εQ ≤
K∑
k=0

∞∑
t=1

t2γtc(t) · εQ ≤ KCρ,ρ∗ · εQ. (H.25)

We see that (H.24) and (H.25) upper bound M4 and M5, respectively. We conclude the proof of
Lemma E.6.

H.8 PROOF OF LEMMA E.7

Part 1. We first show that the first inequality holds. Note that

πθk(a | s) = exp(τ−1
k fθk(s, a))/Zθk(s), πθk+1

(a | s) = exp(τ−1
k+1fθk+1

(s, a))/Zθk+1
(s),

Here Zθk(s), Zθk+1
(s) ∈ R are normalization factors, which are defined as

Zθk(s) =
∑
a′∈A

exp(τ−1
k fθk(s, a′)), Zθk+1

(s) =
∑
a′∈A

exp(τ−1
k+1fθk+1

(s, a′)).

Thus, we have

〈log(πθk+1
(· | s)/πθk(· | s))− β−1Qωk(s, ·), π∗(· | s)− πθk+1

(· | s)〉
= 〈τ−1

k+1fθk+1
(s, ·)− (β−1Qωk(s, ·) + τ−1

k fθk(s, ·)), π∗(· | s)− πθk(· | s)〉, (H.26)

where we use the fact that

〈logZθk+1
(s)− logZθk(s), π∗(· | s)− πθk+1

(· | s)〉

= (logZθk+1
(s)− logZθk(s)) ·

∑
a′∈A

(π∗(a′ | s)− πθk+1
(a′ | s)) = 0.

Thus, it remains to upper bound the right-hand side of (H.26). We have

〈τ−1
k+1fθk+1

(s, ·)− (β−1
k Qωk(s, ·) + τ−1

k fθk(s, ·)), π∗(· | s)− πθk+1
(· | s)〉 (H.27)

=

〈
τ−1
k+1fθk+1

(s, ·)− (β−1
k Qωk(s, ·) + τ−1

k fθk(s, ·)), πθk(· | s)·
(
π∗(· | s)
πθk(· | s)

−
πθk+1

(· | s)
πθk(· | s)

)〉
.
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Taking expectation with respect to s ∼ ν∗ on the both sides of (H.27) and using the Cauchy-Schwarz
inequality, we obatin

Eν∗
[∣∣〈τ−1

k+1fθk+1
(s, ·)− (β−1

k Qωk(s, ·) + τ−1
k fθk(s, ·)), π∗(· | s)− πθk+1

(· | s)
〉∣∣]∣∣

=

∫
S

∣∣∣∣〈τ−1
k+1fθk+1

(s, ·)− (β−1
k Qωk(s, ·) + τ−1

k fθk(s, ·)),

πθk(· | s) · νk(s)·
(
π∗(· | s)
πθk(· | s)

−
πθk+1

(· | s)
πθk(· | s)

)〉∣∣∣∣ · ∣∣∣ν∗(s)νk(s)

∣∣∣ds
=

∫
S×A

∣∣τ−1
k+1fθk+1

(s, a)− (β−1
k Qωk(s, a) + τ−1

k fθk(s, a))
∣∣

·
∣∣∣∣ρ∗(a | s)ρk(a | s)

−
πθk+1

(a | s) · ν∗(s)
ρk(a | s)

∣∣∣∣dρk(s, a)

≤ Eρk
[(
τ−1
k+1fθk+1

(s, a)− (β−1
k Qωk(s, a) + τ−1

k fθk(s, a))
)2]1/2 · Eρk[∣∣∣∣dρ∗dρk

−
d(πθk+1

ν∗)

dρk

∣∣∣∣2]1/2

≤
√

2τ−1
k+1 · εk+1,f · (φ∗k + ψ∗k),

where in the last inequality we use the error bound in (E.20) and the definition of φ∗k and ψ∗k in
Assumption C.1. This finishes the proof of the first inequality.

Part 2. The proof of the second inequality follows from a similar argument as above. We have

〈log(πθk+1
(· | s)/πθk(· | s))− β−1Qωk(s, ·), πθk(· | s)− πθk+1

(· | s)〉
= 〈τ−1

k+1fθk+1
(s, ·)− (β−1Qωk(s, ·) + τ−1

k fθk(s, ·)), πθk(· | s)− πθk+1
(· | s)〉, (H.28)

where we use the fact that

〈logZθk+1
(s)− logZθk(s), πθk(· | s)− πθk+1

(· | s)〉

= (logZθk+1
(s)− logZθk(s)) ·

∑
a′∈A

(πθk(a′ | s)− πθk+1
(a′ | s)) = 0.

Thus, it remains to upper bound the right-hand side of (H.28). We have

〈τ−1
k+1fθk+1

(s, ·)− (β−1
k Qωk(s, ·) + τ−1

k fθk(s, ·)), πθk(· | s)− πθk+1
(· | s)〉 (H.29)

=

〈
τ−1
k+1fθk+1

(s, ·)− (β−1
k Qωk(s, ·) + τ−1

k fθk(s, ·)), πθk(· | s)·
(

1−
πθk+1

(· | s)
πθk(· | s)

)〉
.

Taking expectation with respect to s ∼ ν∗ on the both sides of (H.29) and using the Cauchy-Schwarz
inequality, we obatin

Eν∗
[∣∣〈τ−1

k+1fθk+1
(s, ·)− (β−1

k Qωk(s, ·) + τ−1
k fθk(s, ·)), πθk(· | s)− πθk+1

(· | s)
〉∣∣]

=

∫
S

∣∣∣∣〈τ−1
k+1fθk+1

(s, ·)− (β−1
k Qωk(s, ·) + τ−1

k fθk(s, ·)), πθk(· | s) · νk(s)·
(

1−
πθk+1

(· | s)
πθk(· | s)

)〉∣∣∣∣
·
∣∣∣ν∗(s)
νk(s)

∣∣∣ds
=

∫
S×A

∣∣τ−1
k+1fθk+1

(s, a)− (β−1
k Qωk(s, a) + τ−1

k fθk(s, a))
∣∣ · ∣∣∣∣1− πθk+1

(a | s) · ν∗(s)
ρk(a | s)

∣∣∣∣dρk(s, a)

≤ Eρk
[(
τ−1
k+1fθk+1

(s, a)− (β−1
k Qωk(s, a) + τ−1

k fθk(s, a))
)2]1/2 · Eρk[∣∣∣∣1− d(πθk+1

ν∗)

dρk

∣∣∣∣2]1/2

≤
√

2τ−1
k+1 · εk+1,f · (1 + ψ∗k),

where in the last inequality we use the error bound in (E.20) and the definition of ψ∗k in Assumption
C.1. This finishes the proof of the second inequality.
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