
TabImpute: Accurate and Fast Zero-Shot
Missing-Data Imputation with a Pre-Trained

Transformer

Jacob Feitelberg
Industrial Engineering & Operations Research

Columbia University
jef2182@columbia.edu

Dwaipayan Saha
Industrial Engineering & Operations Research

Columbia University
ds4386@columbia.edu

Kyuseong Choi
Statistics and Data Science

Cornell Tech
kc728@cornell.edu

Zaid Ahmad
Department of Statistics

Columbia University
za2364@columbia.edu

Anish Agarwal
Industrial Engineering & Operations Research

Columbia University
aa5194@columbia.edu

Raaz Dwivedi
Operations Research & Information Engineering

Cornell Tech
rd597@cornell.edu

Abstract

Missing data is a pervasive problem in tabular settings. Existing solutions range
from simple averaging to complex generative adversarial networks. However, due
to huge variance in performance across real-world domains and time-consuming
hyperparameter tuning, no default imputation method exists. Building on TabPFN,
a recent tabular foundation model for supervised learning, we propose TabImpute,
a pre-trained transformer that delivers accurate and fast zero-shot imputations
requiring no fitting or hyperparameter tuning at inference-time. To train and
evaluate TabImpute, we introduce (i) an entry-wise featurization for tabular settings,
which enables a 100× speedup over the previous TabPFN imputation method, (ii)
a synthetic training data generation pipeline incorporating realistic missingness
patterns, which boosts test-time performance, and (iii) MissBench, a comprehensive
benchmark for evaluation of imputation methods with 42 OpenML datasets and
13 missingness patterns. MissBench spans domains such as medicine, finance,
and engineering, showcasing TabImpute’s robust performance compared to 11
established imputation methods.

1 Introduction

Missing data is ubiquitous across tabular datasets, affecting statisticians, economists, health officials,
and businesses. For example, healthcare datasets may lack some recorded blood pressure measure-
ments, or datasets merged from multiple sources may only share partial features. Regardless of the

AI for Tabular Data workshop at EurIPS 2025.

source, missing data must be imputed to numerical values before employing statistical or machine
learning models.

0.0

0.2

0.4

0.6

0.8

1.0

1
- N

or
m

al
ize

d
RM

SE
 (0

1)

G
AI

N
M

IC
E

M
IW

AE
Ta

bP
FN

Co
l M

ea
n

So
ft

Im
pu

te
K-

N
ea

re
st

 N
ei

gh
bo

rs
IC

E
Ta

bI
m

pu
te

M
is

sF
or

es
t

O
T

H
yp

er
Im

pu
te

Ta
bI

m
pu

te
+

0.01

0.10

1.00

10.00

100.00

M
illi

se
co

nd
s p

er
 e

nt
ry

M
is

sF
or

es
t

M
IW

AE
So

ft
Im

pu
te

Ta
bP

FN
 (

G
PU

)

G
AI

N

H
yp

er
Im

pu
te

Ta
bI

m
pu

te
+

 (
CP

U
)

O
T

M
IC

E

Ta
bI

m
pu

te
 (

G
PU

)

Co
l M

ea
n

IC
E K-

N
ea

re
st

 N
ei

gh
bo

rs

Ta
bI

m
pu

te
+

 (
G

PU
)

(a) Imputation Accuracy (↑) (b) Runtime (↓)

Figure 1: Evaluation on real-world OpenML data: MissBench. We compare TabImpute and
TabImpute+ (ensembled method) with 11 other popular methods on MissBench. In panel (a), we plot
the imputation accuracy (defined as 1 - normalized RMSE), which is calculated for each method,
normalized within a dataset, and averaged across datasets and 13 missingness patterns. Error bars
indicate 95% confidence intervals. In panel (b), we compare the runtime per table entry. Any method
not labeled (GPU) is tested on a CPU because that method is not GPU-compatible. TabPFN on CPU
is significantly slower, so we do not include it. See Sec. 2 for our exact computing specifications and
Sec. 3 for accuracy score methodology.

Building on recent advances in tabular representation learning (Hollmann et al., 2023; Ye et al., 2025),
we propose a pre-trained transformer specifically designed for the tabular missing-data problem that
produces accurate and fast zero-shot imputations. TabPFN is a pre-trained transformer model for
supervised learning that performs well across a variety of domains without any fine-tuning (Hollmann
et al., 2025). The team behind TabPFN created an imputation method in their tabpfn-extensions
Python package by using the TabPFN model in iterative column-wise imputation (available here1).

MCAR Seq-MNAR Block-MNAR Polarization-MNAR Panel-MNAR

Figure 2: Selection of synthetic missingness patterns implemented in MissBench. Blue entries
indicate observed values, and gray entries are unobserved.

The main contributions of this work can be summarized as follows:

• We introduce a novel, comprehensive test bench, denoted MissBench, using 42 real-world
OpenML datasets and 13 missingness patterns (see Sec. 3 for details). Our benchmark builds
on previous work, namely HyperImpute (Jarrett et al., 2022) comprising of 13 UC Irvine
(UCI) datasets (Kelly et al., 2024), a subset of OpenML, with 3 missingness patterns, and
GAIN (Yoon et al., 2018) comprising of 6 UCI datasets with 1 missingness pattern.

• Next we introduce a state-of-the-art method in following steps:
– First, we propose a new entry-wise missing data featurization (see Sec. 2.1 for details).

Notably, this new featurization, when directly used with the pre-trained TabPFN model
of Hollmann et al. (2023), provides a significant improvement in speed and accuracy
over TabPFN. We call this method EWF-TabPFN.

1https://github.com/PriorLabs/tabpfn-extensions/blob/main/src/tabpfn_extensions/
unsupervised/unsupervised.py

2

https://github.com/PriorLabs/tabpfn-extensions/blob/main/src/tabpfn_extensions/unsupervised/unsupervised.py
https://github.com/PriorLabs/tabpfn-extensions/blob/main/src/tabpfn_extensions/unsupervised/unsupervised.py

– Next, we develop a synthetic data generation pipeline to create training datasets with
missing values covering a wide range of missingness patterns (see App. A.2, App. A.7,
and Tab. 6 for details). We pre-train a TabPFN architecture on this pipeline with our new
featurization—we call this method TabImpute. This model provides an improvement
over EWF-TabPFN across several missingness patterns.

– Finally, we introduce an adaptive ensembling imputation method, denoted TabImpute+,
to combine the power of TabImpute and EWF-TabPFN (see App. A.3 for details).
This allows us to leverage the underlying world-knowledge of EWF-TabPFN and
domain-knowledge for missing data from TabImpute to yield accurate imputations
across heterogeneous datasets.

Our code and implementation details for all our contributions above can be accessed on GitHub.2

42 OpenML

Imputer

TabPFN
Column-wise
Featurization

Pre-Trained
TabPFN Model

Adaptive
Ensemble

TabImpute+

Entry-wise
Featurization

TabImpute

Pre-training
Linear Factor

Model
3 Missingness

Patterns

Synthetic Training Data

+

Pre-Trained
TabPFN Model

+

Existing Approach

Proposed Approach

MissBench
42 OpenML

Real-World Datasets

13 Synthetic

Missingness Patterns

Block-MNAR

NN-MNAR

Seq-MNAR

Col-MAR

Panel-MNAR

Censoring-MNAR

Polarization-MNAR

Other

M
edicineCh

em
ist
ryEco

nom
ics

EngineeringEducation

⋮

EWF-TabPFN

Figure 3: Overview of our contributions. The first row demonstrates TabPFN’s imputation method,
which performs iterative column-by-column imputation. We build on this by introducing an entry-wise
featurization, as shown in the second row. We create a new synthetic data-generator for missingness
data to train our model, TabImpute, shown in green (App. A.2 and App. A.5, respectively). Lastly,
we ensemble TabImpute with TabPFN’s model using our features to create TabImpute+ (App. A.3).
We adaptively evaluate all the imputers on the comprehensive and rich set of OpenML datasets with
many missingness patterns applied (Sec. 3).

2 Training TabImpute on Synthetic Data

We develop a featurization for tabular missing data imputation that enables better utilization of
TabPFN’s architecture, create a synthetic data generation pipeline across diverse missingness patterns,
and employ an adaptive training algorithm to balance performance across all patterns. Training used
8 H200 GPUs and an Intel Xeon Platinum 8592+ CPU over approximately one week, processing
25 million synthetic tables. Our model matches TabPFN’s size and runs on CPU-only systems.
Evaluation used 1 H200 GPU. For details on our training and ensembling approaches, see App. A.5
in the Appendix.

2.1 Entry-wise Featurization and Architecture

We recast missing data imputation as supervised learning to leverage TabPFN’s architecture and
enable parallel GPU computation of missing entries. For each dataset (training point), let X∗ be the
complete matrix with m rows and n columns, Ω be the set of missing entry indices, and X be the
matrix with induced missingness:

Xij =

{
X∗

ij for (i, j) ∈ [m]× [n] \ Ω
⋆ otherwise.

where ⋆ denotes a missing entry. Let Ωobs = [m] × [n] \ Ω. Our feature matrix construction adds
(i⊕ j ⊕Xi,: ⊕X:,j) for each entry i, j ∈ [m]× [n], where Xi,: denotes the i-th row, X:,j the j-th

2https://anonymous.4open.science/r/tabular-6F65/README.md

3

https://anonymous.4open.science/r/tabular-6F65/README.md

column, and ⊕ concatenation. Each row’s target is yij = X∗
ij . During pre-training, we train the

model to predict target values for all (i, j) ∈ Ω. This procedure creates a feature matrix of size
nm× (n+m). This featurization captures all necessary information for each cell through its row
and column context while enabling parallel computation of missing entries on GPUs. Although the
input matrix size increases, parallelization gains outweigh this cost.

3 Results on OpenML Datasets: MissBench

To evaluate TabImpute against other methods, we introduce MissBench: a missing-data imputation
benchmark using 42 OpenML (Vanschoren et al., 2013) tabular datasets with 13 synthetic missingness
patterns. For every dataset and missingness pattern, we test each method’s ability to impute masked
values. The 42 OpenML datasets span domains such as medicine, engineering, and education. The
missingness patterns include 1 MCAR pattern, 1 MAR pattern, and 11 MNAR patterns. We provide details
for the MNAR patterns in App. A.7.

Imputation Accuracy. To ensure a fair comparison across datasets with different scales and
inherent difficulties, we report a normalized accuracy score. In particular, for each dataset and
missingness pattern, we first calculate the standard Root Mean Squared Error (RMSE) for every
imputation method as

(
1
|Ω|

∑
(i,j)∈Ω

(
X true

ij −X imputed
ij

)2)1/2
, where Ω denotes the set of missing

entries. We then perform a min-max normalization on these RMSE scores across all methods for that
specific task:

Normalized RMSE =
RMSEmethod −min(RMSEall methods)

max(RMSEall methods)−min(RMSEall methods)

This normalization maps the best-performing method to 0 and the worst to 1. Finally, we define our
Imputation Accuracy as 1− Normalized RMSE, where higher values indicate better performance.

Tab. 1 presents results for each missingness pattern as well as overall performance. TabImpute+
achieves the best overall performance and for nearly all individual patterns. For completeness, we
list the performance of methods not shown in the table in App. A.8 with non-normalized RMSE
examples in Tab. 8. TabImpute+ performs best under high missingness conditions (Fig. 4, App. A.6),
which is expected since it leverages generative pre-training rather than relying solely on available
dataset information like discriminative methods.

Table 1: Imputation Accuracy ± Standard Deviation by Missingness Pattern.
We train on the patterns above the dashed line.

Pattern TabImpute+ HyperImpute OT MissForest

MCAR 0.821 ± 0.157 0.804 ± 0.205 0.856 ± 0.114 0.867 ± 0.148
NN-MNAR 0.880 ± 0.126 0.762 ± 0.240 0.815 ± 0.139 0.819 ± 0.188
Self-Masking-MNAR 0.707 ± 0.279 0.717 ± 0.257 0.593 ± 0.246 0.666 ± 0.272

Col-MAR 0.860 ± 0.178 0.819 ± 0.263 0.756 ± 0.262 0.776 ± 0.251
Block-MNAR 0.908 ± 0.168 0.873 ± 0.178 0.857 ± 0.152 0.860 ± 0.153
Seq-MNAR 0.905 ± 0.094 0.862 ± 0.193 0.892 ± 0.094 0.829 ± 0.203
Panel-MNAR 0.791 ± 0.329 0.515 ± 0.368 0.540 ± 0.374 0.526 ± 0.371
Polarization-MNAR 0.885 ± 0.137 0.620 ± 0.263 0.804 ± 0.125 0.559 ± 0.231
Soft-Polarization-MNAR 0.864 ± 0.176 0.705 ± 0.223 0.755 ± 0.195 0.670 ± 0.269
Latent-Factor-MNAR 0.887 ± 0.121 0.778 ± 0.231 0.844 ± 0.167 0.836 ± 0.152
Cluster-MNAR 0.873 ± 0.135 0.841 ± 0.183 0.828 ± 0.137 0.833 ± 0.141
Two-Phase-MNAR 0.855 ± 0.186 0.871 ± 0.200 0.809 ± 0.183 0.878 ± 0.123
Censoring-MNAR 0.594 ± 0.302 0.797 ± 0.262 0.599 ± 0.239 0.682 ± 0.249

Overall 0.833 ± 0.213 0.766 ± 0.259 0.765 ± 0.227 0.754 ± 0.248

4

4 Conclusion & Future Work

In this paper, we introduce a comprehensive benchmark for tabular missing data, MissBench, and a
pre-trained transformer for the tabular missing data problem, TabImpute. We build on recent work
in tabular representation learning by adapting TabPFN’s architecture and training pipeline for the
missing data setting. While we train purely on synthetic data, we are able to impute entries accurately
on real-world OpenML data for a comprehensive set of missingness patterns, showcasing our model’s
ability to generalize to unseen domains. We open-source our model architecture, weights, and our
training and evaluation code (available here3).

Note that since TabImpute uses the same architecture as TabPFN, any improvements to TabPFN’s
architecture can be immediately ported to TabImpute. Finally, since we use a PFN architecture,
we output a distribution for each missing entry and can sample from this distribution for multiple
imputation (Rubin, 2018). In future work, we plan on (i) exploring further training on more complex
missingness patterns and data-generating processes, (ii) enhancing our method to support categorical
data, (iii) extending our evaluation set to causal inference settings, which can be modeled as missing-
data problems (Agarwal et al., 2023), (iv) improving the architecture to scale to larger datasets, and
(v) utilizing our method for multiple imputation.

3https://anonymous.4open.science/r/tabular-6F65/README.md

5

https://anonymous.4open.science/r/tabular-6F65/README.md

References
Anish Agarwal, Munther Dahleh, Devavrat Shah, and Dennis Shen. Causal matrix completion. In

The thirty sixth annual conference on learning theory, pp. 3821–3826. PMLR, 2023.

Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. Finite-time analysis of the multiarmed bandit
problem. Machine learning, 47(2):235–256, 2002.

Jushan Bai and Serena Ng. Determining the number of factors in approximate factor models.
Econometrica, 70(1):191–221, 2002. doi: https://doi.org/10.1111/1468-0262.00273. URL https:
//onlinelibrary.wiley.com/doi/abs/10.1111/1468-0262.00273.

Emmanuel Candes and Benjamin Recht. Exact matrix completion via convex optimization. Commu-
nications of the ACM, 55(6):111–119, 2012.

Evelyn Fix and J. L. Hodges. Discriminatory analysis. nonparametric discrimination: Consistency
properties. International Statistical Review / Revue Internationale de Statistique, 57(3):238–247,
1989. ISSN 03067734, 17515823. URL http://www.jstor.org/stable/1403797.

Susobhan Ghosh, Raphael Kim, Prasidh Chhabria, Raaz Dwivedi, Predrag Klasnja, Peng Liao,
Kelly Zhang, and Susan Murphy. Did we personalize? assessing personalization by an online
reinforcement learning algorithm using resampling. Machine learning, 113(7):3961–3997, 2024.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial networks. Communications of the
ACM, 63(11):139–144, 2020.

Trevor Hastie, Rahul Mazumder, Jason D Lee, and Reza Zadeh. Matrix completion and low-rank svd
via fast alternating least squares. The Journal of Machine Learning Research, 16(1):3367–3402,
2015.

Graeme Hawthorne and Peter Elliott. Imputing cross-sectional missing data: comparison of common
techniques. Australian & New Zealand Journal of Psychiatry, 39(7):583–590, 2005.

Jeff Heaton. Ian goodfellow, yoshua bengio, and aaron courville: Deep learning: The mit press, 2016,
800 pp, isbn: 0262035618. Genetic programming and evolvable machines, 19(1):305–307, 2018.

Noah Hollmann, Samuel Müller, Katharina Eggensperger, and Frank Hutter. TabPFN: A transformer
that solves small tabular classification problems in a second. In The Eleventh International
Conference on Learning Representations, 2023. URL https://openreview.net/forum?id=
cp5PvcI6w8_.

Noah Hollmann, Samuel Müller, Lennart Purucker, Arjun Krishnakumar, Max Körfer, Shi Bin Hoo,
Robin Tibor Schirrmeister, and Frank Hutter. Accurate predictions on small data with a tabular
foundation model. Nature, 637(8045):319–326, 2025.

Daniel Jarrett, Bogdan C Cebere, Tennison Liu, Alicia Curth, and Mihaela van der Schaar. Hyperim-
pute: Generalized iterative imputation with automatic model selection. In International Conference
on Machine Learning, pp. 9916–9937. PMLR, 2022.

Alexia Jolicoeur-Martineau, Kilian Fatras, and Tal Kachman. Generating and imputing tabular data
via diffusion and flow-based gradient-boosted trees. In International conference on artificial
intelligence and statistics, pp. 1288–1296. PMLR, 2024.

Markelle Kelly, Rachel Longjohn, and Kolby Nottingham. The uci machine learning repository.
https://archive.ics.uci.edu, 2024. Accessed: 2025-09-19.

Yehuda Koren, Robert Bell, and Chris Volinsky. Matrix factorization techniques for recommender
systems. Computer, 42(8):30–37, 2009. doi: 10.1109/MC.2009.263.

Tor Lattimore and Csaba Szepesvári. Bandit algorithms. Cambridge University Press, 2020.

Pierre-Alexandre Mattei and Jes Frellsen. Miwae: Deep generative modelling and imputation of
incomplete data sets. In International Conference on Machine Learning, pp. 4413–4423. PMLR,
2019.

6

https://onlinelibrary.wiley.com/doi/abs/10.1111/1468-0262.00273
https://onlinelibrary.wiley.com/doi/abs/10.1111/1468-0262.00273
http://www.jstor.org/stable/1403797
https://openreview.net/forum?id=cp5PvcI6w8_
https://openreview.net/forum?id=cp5PvcI6w8_
https://archive.ics.uci.edu

Michael McCloskey and Neal J Cohen. Catastrophic interference in connectionist networks: The
sequential learning problem. In Psychology of learning and motivation, volume 24, pp. 109–165.
Elsevier, 1989.

Samuel Müller, Noah Hollmann, Sebastian Pineda Arango, Josif Grabocka, and Frank Hutter.
Transformers can do bayesian inference. In International Conference on Learning Representations,
2022. URL https://openreview.net/forum?id=KSugKcbNf9.

Boris Muzellec, Julie Josse, Claire Boyer, and Marco Cuturi. Missing data imputation using optimal
transport. In International Conference on Machine Learning, pp. 7130–7140. PMLR, 2020.

Patrick Royston and Ian R White. Multiple imputation by chained equations (mice): implementation
in stata. Journal of statistical software, 45:1–20, 2011.

Donald B Rubin. Multiple imputation. In Flexible imputation of missing data, second edition, pp.
29–62. Chapman and Hall/CRC, 2018.

Daniel J. Stekhoven and Peter Bühlmann. Missforest—non-parametric missing value imputation for
mixed-type data. Bioinformatics, 28(1):112–118, 10 2011.

William R Thompson. On the likelihood that one unknown probability exceeds another in view of
the evidence of two samples. Biometrika, 25(3/4):285–294, 1933.

Stef Van Buuren. Flexible imputation of missing data, volume 10. CRC press Boca Raton, FL, 2012.

Stef van Buuren and Karin Groothuis-Oudshoorn. Mice: Multivariate imputation by chained equations
in r. Journal of Statistical Software, 45(3):1–67, 2011. doi: 10.18637/jss.v045.i03. URL
https://www.jstatsoft.org/index.php/jss/article/view/v045i03.

Joaquin Vanschoren, Jan N. van Rijn, Bernd Bischl, and Luis Torgo. Openml: Networked science in
machine learning. SIGKDD Explorations, 15(2):49–60, 2013. doi: 10.1145/2641190.2641198.
URL http://doi.acm.org/10.1145/2641190.2641198.

Han-Jia Ye, Si-Yang Liu, and Wei-Lun Chao. A closer look at tabpfn v2: Strength, limitation, and
extension. arXiv preprint arXiv:2502.17361, 2025.

Jinsung Yoon, James Jordon, and Mihaela van der Schaar. Gain: Missing data imputation using
generative adversarial nets. In International Conference on Machine Learning (ICML), 2018.

7

https://openreview.net/forum?id=KSugKcbNf9
https://www.jstatsoft.org/index.php/jss/article/view/v045i03
http://doi.acm.org/10.1145/2641190.2641198

A Appendix

Here we present the rest of the missingness patterns we tested on, tables with further results, the
methods we tested against, and the OpenML datasets we evaluated on.

A.1 Data Generation with Linear Factor Models

We generate data using a simple linear factor model (LFMs) (Bai & Ng, 2002). LFMs are com-
monly used in matrix completion literature to prove error bounds for matrix completion algo-
rithms (Koren et al., 2009; Candes & Recht, 2012). This family of models generates a data matrix
Y ∈ Rm×n by assuming the data lies on or near a low-dimensional subspace. The simplest case
generates the data matrix Y as the inner product of two lower-rank latent factor matrices, U ∈ Rm×k

and V ∈ Rn×k, where k ≪ n,m is the rank:

Y = UV T .

To generate diverse datasets, the latent vectors (rows of U and V) are sampled from a variety of
distributions, including Gaussian, Laplace, Student’s t, spike-and-slab (a mixture of a Dirac delta at
zero and a Gaussian), and Dirichlet.

When training, we experimented with several classes of data-generating processes, including matrices
from nonlinear factor models and structural causal models (SCM) similar to the ones used in TabPFN.
However, we found that the model trained on linear factor models performed the best. See Tab. 5 in
App. A.8 for results demonstrating this.

Architecture. We use TabPFN’s base architecture with one modification: removing the attention
mask to allow training points to attend to test points. Since our train/test set sizes vary randomly
with missingness patterns (unlike TabPFN’s controlled synthetic generation), we remove the mask
to enable parallel batch training. TabPFN’s mask prevents train points from seeing test feature
distributions, which is important in general supervised learning. However, our test set is created using
data already available to the observed points, thus alleviating any data-leakage concerns.

A.2 Synthetic Training Data Generation

We generate tens of millions of datasets with missing values to train our model through a two-step
process: first, generating underlying data, then introducing missingness patterns on top. See the
App. A.1 in the Appendix for details. For details on our training pipeline, see App. A.5 in the
Appendix.

A.3 Adaptive Ensembling

Our final method, TabImpute+, includes two layers of ensembling: (i) permutation-based pre-
processing techniques and (ii) adaptive weighted average of TabImpute and EWF-TabPFN. Note
that TabPFN’s regression class includes several ensembling techniques as well. The first level of
ensembling performs random permutations of the rows and columns before running these permuted
matrices through TabImpute, reversing the permutations, and then averaging the predictions across
the runs. We used 4 independent permutations for our final method.

Ensembling with EWF-TabPFN enables our model to accurately capture features common in linear
factor models while also using the nonlinear function approximation power of EWF-TabPFN. Both
TabImpute and EWF-TabPFN can predict outputs for the observed values as well, enabling us to
calculate an optimal weighting between them that minimizes the mean square error for their observed-
entry outputs. This is a one-dimensional quadratic minimization problem and a simple, closed-form
solution immediately follows: let x̂(1), x̂(2), x̂obs ∈ Rk where k is the number of observed entries,
x̂(1) is the prediction from our model, x̂(2) is the prediction using EWF-TabPFN, and x̂obs are the
observed values. Then, the optimal weight solves: minw ||x̂obs − (wx̂(1) + (1 − w)x̂(2))||22. This
has a unique solution: w∗ = (x̂obs − x̂(2))T (x̂(1) − x̂(2))/||x̂(1) − x̂(2)||2. Since this is calculated
based on the observed values, this weighting adapts at inference time and is very fast to calculate.

8

A.4 Missingness Patterns for Training and Evaluation

After generating a complete data matrix X∗ ∈ Rm×n, we introduce missingness by applying a
masking matrix M ∈ {0, 1}m×n, where the entry value Mij = 1 if and only if (i, j) ∈ Ωobs. To
ensure TabImpute is robust and generalizable to the variety of ways data can be missing in real-world
scenarios, we pre-train on a comprehensive stock of synthetic datasets with several missingness
patterns. For convenience, we define pij = P(Mij = 1), the propensity of each entry in X∗.

We include 13 different missingness patterns: 1 MCAR, 1 MAR pattern, and 11 MNAR patterns. For
examples of these, see Fig. 2. MNAR patterns often stump standard imputation methods and yet are
extremely common in the real world.

MCAR: MCAR missingness means the probability of an entry being missing, defined as its propensity,
is constant across entries and independent from any other randomness. The missingness indicators
Mij are drawn i.i.d. from a Bernoulli distribution Mij ∼ Bern(p) across all (i, j) ∈ [m]× [n] for
some constant p ∈ (0, 1). This is the simplest form of missingness, but is unrealistic (Van Buuren,
2012).

MAR: For MAR missingness, the probability of an entry being missing depends only on the observed
values X . In other words, the randomness in MAR can be explained by conditioning on observed
factors. Additionally, every entry has a positive probability of being observed (i.e., pij > 0). We
simulate MAR through column-wise MAR, denoted Col-MAR: we choose several columns as predictor
columns and use those values to mask entries in other columns. This is similar to the MAR approach
taken in Jarrett et al. (2022).

MNAR Patterns: For the most complex missingness class, MNAR, the probability of an entry being
missing can depend on unobserved factors. Note that MNAR patterns are significantly more difficult
to handle systematically, often requiring specialized methods for a specific kind of MNAR pattern
(Van Buuren, 2012). Due to the flexibility of our entry-wise featurization, TabImpute can produce
imputations for these highly complex scenarios, even when columns are completely missing, such as
in panel-data missingness patterns. HyperImpute was tested on two MNAR patterns in the Appendix
of Jarrett et al. (2022), one where values are further masked after an MAR pattern and another where
values outside a certain range are masked. We build on this work by testing on 11 MNAR patterns
(see App. A.7 and Tab. 6 for details). We implement a range of MNAR patterns to simulate plausible
real-world scenarios. For example, we utilize the expressiveness of neural networks to create random
propensity functions MNAR patterns, use bandit algorithms to induce column-adaptive missing patterns,
simulate panel data missingness where some features are removed later, censoring where sensor
readings fall outside a detectable range, and survey data artifacts like respondent polarization and
skip-logic.

A.5 Training on Multiple Missingness Patterns

We train our model to predict unobserved values under several missingness patterns simultaneously.
For the final TabImpute model, we trained only on MCAR, NN-MNAR, and Self-Masking-MNAR
because we found our model generalized to the other methods well without including them explicitly
in training. We use the prior-data fitted negative log likelihood (NLL) loss proposed in Müller et al.
(2022). Like other PFNs with continuous numerical output, we use the Riemann distribution output
also proposed in Müller et al. (2022). Since we can generate an unlimited amount of synthetic data,
we do not reuse any synthetic data and only do one gradient pass per batch of datasets. This allows
our model to learn the underlying data-generating process and missingness mechanisms without risk
of memorization. We use a learning rate of 0.0001, a batch size of 64, and train on around 25 million
synthetic datasets.

We use an adaptive algorithm to determine what proportion of missingness patterns we include in
each batch as we train: Every s gradient steps, we recalculate the proportion of each missingness
pattern by: (i) create new batches of each missingness pattern, (ii) calculate the model’s loss value for
each missingness pattern’s batch, and (iii) recalculate proportions by running softmax (Heaton, 2018,
Pgs. 180-184) over the loss values. This procedure adaptively down-weights any missingness type
our model performs well on and up-weights any missingness type our model performs poorly on. For
our pre-trained TabImpute model, we set s = 50 steps.

9

0.2 0.3 0.4 0.5 0.6 0.7 0.8
Fraction of Missing Values

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1
- N

or
m

al
ize

d
RM

SE
 (0

1)

TabImpute++
HyperImpute
Col Mean
MissForest

Figure 4: Imputation accuracy versus fraction of missingness for MCAR. TabImpute+ performs the
best when missingness is higher because it is a generative model that fits to the data in context.

Remark: We had initially attempted to train the model sequentially on one missingness pattern at a
time, but found that the network always experienced catastrophic forgetting (McCloskey & Cohen,
1989) irrespective of learning rate (i.e., it forgot how to handle the previous missingness patterns).

A.6 Additional tests

Next, we discuss when TabImpute+ does well and when HyperImpute and other methods do well.
We found that an important factor in determining performance was the level of missingness. The
probability of missingness can only be controlled precisely for MCAR. Thus, we show in Fig. 4 the
performance of the top methods as we increase the missingness level.

Building on TabPFN. The TabPFN team’s imputation extension predicts missing entries column-
by-column using their pre-trained model. However, as shown in Fig. 1, this method has poor
accuracy and slow runtime even on H200 GPUs. This motivated us to introduce a new entry-wise
featurization that achieves improved performance using TabPFN’s model, which we denote as
EWF-TabPFN. We initially attempted fine-tuning TabPFN with our synthetic data but consistently
encountered catastrophic forgetting, with performance degrading to match TabImpute, the model
trained from scratch. Without access to TabPFN’s original training data, proper data augmentation
proved immensely challenging. Instead, we elected to ensemble TabImpute and EWF-TabPFN
as TabImpute+, leveraging their complementary performance across benchmark patterns (Tab. 2).
Crucially, the performance scores in this table are re-normalized using only the results of these
three methods. This means the minimum and maximum RMSE values used for normalization
are determined from this smaller set, leading to different numerical scores than in Tab. 1, which
was normalized across all 12 competing methods. This approach offers a clearer view of the
relative performance and complementarity within our proposed family of models, highlighting which
components excel at different missingness patterns. (See App. A.8 for other test results.)

A.7 Details for MNAR Missingness Patterns

This section provides the mathematical and implementation details for each of the simulated MNAR
missingness mechanisms that we implement and test. For each pattern, we define the mechanism
by which the missingness mask M is generated, where Mij = 1 if the value Xij is observed and
Mij = 0 otherwise.

10

Table 2: Imputation Accuracy ± Standard Deviation for Zero-Shot Methods.
Pattern TabImpute+ EWF-TabPFN TabImpute

MCAR 0.349 ± 0.468 0.324 ± 0.465 0.667 ± 0.477
NN-MNAR 0.551 ± 0.480 0.458 ± 0.488 0.487 ± 0.488
Self-Masking-MNAR 0.945 ± 0.214 0.952 ± 0.211 0.048 ± 0.216

Col-MAR 0.799 ± 0.391 0.773 ± 0.414 0.220 ± 0.419
Block-MNAR 0.498 ± 0.474 0.437 ± 0.494 0.559 ± 0.501
Seq-MNAR 0.394 ± 0.482 0.363 ± 0.447 0.619 ± 0.492
Panel-MNAR 0.565 ± 0.476 0.568 ± 0.476 0.415 ± 0.499
Polarization-MNAR 0.775 ± 0.407 0.788 ± 0.411 0.214 ± 0.415
Soft-Polarization-MNAR 0.698 ± 0.422 0.791 ± 0.383 0.258 ± 0.439
Latent-Factor-MNAR 0.505 ± 0.490 0.467 ± 0.480 0.524 ± 0.505
Cluster-MNAR 0.428 ± 0.474 0.420 ± 0.487 0.571 ± 0.501
Two-Phase-MNAR 0.591 ± 0.475 0.560 ± 0.494 0.429 ± 0.501
Censoring-MNAR 0.891 ± 0.304 0.902 ± 0.282 0.098 ± 0.300

Overall 0.614 ± 0.468 0.600 ± 0.476 0.393 ± 0.487

A.7.1 Details for NN-MNAR

Description The pattern simulates a scenario where the propensity pij depends on the underlying
matrix values X∗ in an arbitrary manner. We achieve a comprehensive coverage of MNAR patterns by
leveraging the expressiveness of neural networks.

Methodology One general form of MNAR can be described as follows: for all i and j, there exists
some function fij on the true (hence unobserved) matrix X∗ such that the propensity depends on
X∗ as follows: pij(X

∗) = P(Mij = 1|X∗) = fij(X
∗). By leveraging the expressiveness of

neural networks, we propose a neural-net-based MAR pattern generator (NN-MNAR) that is designed to
approximate arbitrary propensities characterized by functions fij .

Implementation Details For fixed indices i and j, NN-MNARconstructs the propensity pij in a
two-step procedure. First, we randomly collect a subset of values from the matrix X∗ and flatten them
as a vector, say X∗(i, j); we do this by first randomly generating a neighborhood Nij ⊂ [m]× [n],
then the entries in the neighborhood X∗

st, (s, t) ∈ Nij constitute the entries of the vector X∗(i, j).
Second, a neural-net function gij : R|Nij | → [0, 1] is constructed by randomly initializing the number
of layers, depth, weight, and bias. At each training step, the random neighborhood Nij and the
random neural-net gij collectively defines the propensity pij = gij(X

∗(i, j)) from which MNAR
missingness patterns are generated Mij ∼ Bern(pij).

A.7.2 Details on Seq-MNAR

Description This pattern simulates a scenario where masking matrix values Mij ∈ {0, 1} for
each column j are adaptively chosen depending on the information up to column j − 1 (i.e., regard
columns as time). Specifically, we employ variants of bandit algorithms Lattimore & Szepesvári
(2020) while regarding the binary masking matrix values as the two arms. Such patterns commonly
arise in sequential experiments Ghosh et al. (2024).

Methodology The true matrix X∗ is transformed to constitute the reward. For each designated
column j, one of the following bandit algorithm utilizes the all the information of X∗ and M up to
column j − 1 and chooses one of the two arms {0, 1} via one of the following algorithms: ε-greedy,
upper-confidence bound (UCB), Thompson-sampling (Thompson, 1933) or gradient bandit.

Implementation Details We generate exogenous Gaussian noise and add it to the true matrix
X∗ and regard X∗ as the reward for arm 0 and its noisy version as the reward for arm 1. Then,
starting from the first column with multiple rows as multiple agents, we randomly initiate (with
random configurations) one of the four algorithms Lattimore & Szepesvári (2020): ε-greedy, Upper
Confidence Bound (UCB) (Auer et al., 2002), Thompson sampling with random configurations

11

(Thompson, 1933). Further, we have the option to randomly mix pooling techniques Ghosh et al.
(2024) on top of any of the four algorithms.

A.7.3 Self-Masking-MNAR

Description: This pattern simulates a scenario where the probability of a value being missing is
a direct function of the value itself. This pattern can be regarded as a special case of NN-MNAR. A
common real-world example includes individuals with very high incomes being less likely to report
their salary on a survey.

Methodology: For each designated target column j, the probability of an entry (i, j) being missing
is determined by a logistic function of its value. The relationship is defined as P(Mij = 0|X∗

ij) =

σ(α ·X∗
ij + β0) where σ(z) = (1 + e−z)−1 is the sigmoid function.

Implementation Details: A random coefficient α is chosen from the set {−2,−1, 1, 2} to introduce
variability in the direction and magnitude of the value’s effect on its missingness probability. The
bias term β0 is calibrated to achieve a target missingness proportion, p.

A.7.4 Censoring-MNAR

Description: This pattern models missingness that arises from the practical/physical limits of
measurement equipment, where values below a lower detection limit (left-censoring) or above an
upper detection limit (right-censoring) are not recorded. We would expect to see such missingness in
sensor or biological assay datasets where test equipment can only detect biomarker levels above/below
certain thresholds.

Methodology: For each column j, a censoring direction (left or right) is chosen with equal
probability. A cutoff value is determined based on a specified quantile, qcensor, of the set of currently
observed (non-missing) values in that column. Let X∗

:,j denote the set of observed values in column
j, i.e., X∗

:,j = {Xij | Mij = 1}.

• Left-Censoring: All values in column j that are less than the qcensor-th quantile of the
observed values in that same column are set to missing. The threshold is a single scalar
value calculated from the column’s observed data.

Mij = 0 if Xij < quantile(X∗
:,j , qcensor)

• Right-Censoring: All values in column j that are greater than the (1− qcensor)-th quantile
of the observed values in that column are set to missing. The threshold is a single scalar
value.

Mij = 0 if Xij > quantile(X∗
:,j , 1− qcensor)

Implementation Details: The choice between left- and right-censoring is made randomly for each
column with a probability of 0.5 for each. We introduce a hyperparameter qcensor for the censoring
quantile that controls the fraction of data to be censored from either tail of the distribution. For our
evaluation, we use qcensor = 0.25.

A.7.5 Panel-MNAR

Description: This pattern simulates participant dropout in longitudinal or panel data studies, where
once a subject (row) drops out at a specific time point, all their subsequent data is missing. This is a
common occurrence in clinical trials or long-term studies/surveys.

Methodology: The columns of the data matrix X∗ are assumed to represent ordered time points
t = 0, 1, ..., T − 1. For each subject (row) i, a random dropout time t0,i is sampled. All observations
for that subject from time t0,i onwards are masked as missing.

Mij = 0 ∀j ≥ t0,i

Implementation Details: For each row i, the dropout time t0,i is sampled uniformly from the range
of possible time steps, i.e., t0,i ∼ Unif{1, ..., T − 1}.

12

A.7.6 Polarization-MNAR

Description: Values falling in the middle of a feature’s distribution are preferentially removed,
simulating survey non-response from individuals with moderate opinions. This is implemented by
setting values between the q-th and (1 − q)-th quantiles to missing. A "soft" version makes the
observation probability proportional to the value’s distance from the median. Such patterns are most
commonly seen in political polls, where moderate voters are less likely to respond while those with
extreme views are more likely to respond, or in product reviews, where only very satisfied or very
dissatisfied customers leave ratings.

Hard Polarization Methodology: For each column j, values falling between two quantiles are
deterministically masked. The quantiles are calculated using only the set of currently observed
(non-’NaN’) values in that column. Let X∗

:,j denote this set of observed values, i.e., X∗
:,j = {Xij |

Mij = 1}. The lower and upper thresholds, Lj and Hj , are defined as:

Lj = quantile(X∗
:,j , qthresh)

Hj = quantile(X∗
:,j , 1− qthresh)

An entry Xij is then masked if its value falls between these two scalar thresholds:

Mij = 0 if Lj < Xij < Hj

Soft Polarization Methodology: The probability of a value being observed is made proportional to
its normalized absolute distance from the column’s median, µj . This creates a softer, probabilistic
version of the polarization effect. The missing probability is given by:

P(Mij = 0) = ϵ+ (1− 2ϵ)
|X∗

ij − µj |α

maxk(|X∗
kj − µj |α)

Implementation Details: For the hard polarization pattern, we introduce a hyperparameter qthresh
for the threshold quantile that defines the central portion of the distribution to be masked. For the soft
polarization pattern, we have an exponent parameter α that controls the intensity of the polarization
effect. Higher values of α make the observation probability more sensitive to deviations from the
median. In the soft version, we also have a baseline probability ϵ that ensures even values at the
median have a non-zero chance of being observed.

A.7.7 Latent-Factor-MNAR

Description: This pattern generates a complex missingness structure where the probability of an
entry being missing depends on unobserved (latent) characteristics of both its row and its column. This
is common in recommender systems, where a user’s decision to rate an item depends on latent user
preferences and item attributes. Other real-world examples include job application screenings where
certain combinations of demographic factors influence whether candidates complete applications,
independent of their qualifications, or online dating profiles where cultural background affects
disclosure of personal information.

Methodology: The probability of an entry (i, j) being observed is modeled using a low-rank
bilinear model. The observation probability is given by the sigmoid of a dot product of latent factors
plus bias terms:

P(Mij = 1) = σ(uT
i vj + bi + cj)

where ui ∈ Rk and vj ∈ Rk are k-dimensional latent vectors for row i and column j, and bi and cj
are scalar biases for the row and column, respectively.

Implementation Details: We specify the rank k that defines the dimensionality of the latent space,
sampled as an integer. The elements of the latent factor matrices U ∈ RN×k and V ∈ RD×k, and the
bias vectors b ∈ RN and c ∈ RD, are sampled independently from a standard normal distributions.

13

A.7.8 Cluster-MNAR

Description: This pattern induces missingness based on latent group-level characteristics. Rows
and columns are first assigned to discrete clusters, and each cluster has a random effect that uniformly
influences the observation probability of all its members. This is useful for modeling data from
grouped experiments, such as a clinical trial where patients (rows) from a specific hospital (a given
row cluster) and certain lab tests (a column cluster) might have systematically different rates of
missingness due to local care protocols or equipment availability.

Methodology: The probability of an entry (i, j) being observed is determined by an additive model
of random effects corresponding to the cluster assignments of its row i and column j. Denoting
the row assignments by CR(i) and column assignments by CC(j), the observation probability is
modeled as:

P(Mij = 1) = σ(gCR(i) + hCC(j) + ϵij)

where:

• σ(z) = (1 + e−z)−1 is the sigmoid function.
• gk ∼ N (0, τ2r) is the random effect for row cluster k.
• hl ∼ N (0, τ2c) is the random effect for column cluster l.
• ϵij ∼ N (0, ϵ2std) is an entry-specific noise term.

Implementation Details: For a matrix with N and D columns, row assignments CR(i) are
draw uniformly from {0, ...,KR − 1} and column assignments CC(j) are drawn uniformly from
{0, ...,KC − 1}, where KR and KC are the total number of row and column clusters, respectively.
The number of row clusters KR, the number of column clusters KC , and the standard deviation of
the random effects (τr, τc, ϵstd) are hyperparameters specified for the data generation process.

A.7.9 Two-Phase-MNAR

Description: This mechanism mimics multi-stage data collection where a subset of participants
from an initial survey (with “cheap" features) are selected for a more detailed follow-up survey
(with “expensive" features). The selection for the second phase is dependent on the data collected in
the first, making this an MNAR pattern. A specific example includes market research where basic
demographics are collected from all participants, but detailed purchasing behavior is only gathered
from a subset, with missingness related to income level.

Methodology: Let F = {0, 1, ..., D − 1} be the set of all column indices in the data matrix X .
This set is randomly partitioned into a "cheap" subset C ⊂ F and an "expensive" subset E ⊂ F , such
that C ∪ E = F and C ∩ E = ∅. By design, features in the cheap set C are always observed.

The decision to collect the expensive features for a given row i is based on a logistic model applied to
its cheap features. Let Xi,C denote the vector of values {Xij | j ∈ C} for row i. A score is calculated
for each row:

si = normalize(XT
i,Cw)

where w is a vector of random weights and the ‘normalize‘ function applies z-score normalization to
the resulting scores across all rows.

The probability that all expensive features are observed for row i is then given by:

P(Mij = 1 for all j ∈ E) = σ(α+ β · si)
If the expensive features for row i are not observed (based on the probability above), then all of its
values in the expensive columns are masked as missing, i.e., Mij = 0 for all j ∈ E .

Implementation Details: A fraction of columns, e.g., 50%, are randomly assigned to be "cheap".
The weight vector for the scoring model is sampled from a standard normal distribution, w ∼ N (0, 1).
Parameters α, β control the base rate and score-dependency of the observation probability. In our
implementation, they are set to default values of α = 0 and β = 2.0.

A.8 Additional tables

14

Table 3: Other imputation methods
Name Description

Column-wise mean (Hawthorne & Elliott, 2005) Mean of columns
SoftImpute (Hastie et al., 2015) Iterative soft thresholding singular value decomposition

based on a low-rank assumption on the data
k-Nearest Neighbors (Fix & Hodges, 1989) Row-wise nearest neighbors mean
HyperImpute (Jarrett et al., 2022) Iterative imputation method optimizing over a suite of

imputation methods
Optimal transport method (Muzellec et al., 2020) Uses optimal transport distances as a loss to impute miss-

ing values based on the principle that two randomly drawn
batches from the same dataset should share similar data
distributions

MissForest (Stekhoven & Bühlmann, 2011) Repeatedly trains a random forest model for each variable
on the observed values to predict and fill in missing entries
until convergence

ICE (van Buuren & Groothuis-Oudshoorn, 2011) Imputation with iterative and chained equations of lin-
ear/logistic models for conditional expectations

MICE (Royston & White, 2011) Handles missing data by iteratively imputing each incom-
plete variable using regression models that condition on
all other variables

GAIN (Yoon et al., 2018) Adapts generative adversarial networks (Goodfellow et al.,
2020) where the generator imputes missing values and the
discriminator identifies which components are observed
versus imputed

MIWAE (Mattei & Frellsen, 2019) Learns a deep latent variable model and then performs
importance sampling for imputation

ForestDiffusion (Jolicoeur-Martineau et al., 2024) Trains a diffusion model using XGBoost directly on in-
complete tabular data and then fills in missing values with
an adapted inpainting algorithm

Table 4: Imputation Accuracy ± Standard Deviation by Missingness Pattern (Remaining Methods)
Pattern K-Nearest Neighbors ICE Col Mean TabPFN

MCAR 0.762 ± 0.158 0.658 ± 0.273 0.473 ± 0.263 0.410 ± 0.257
Col-MAR 0.846 ± 0.183 0.832 ± 0.248 0.627 ± 0.299 0.553 ± 0.330
NN-MNAR 0.757 ± 0.168 0.643 ± 0.254 0.507 ± 0.266 0.437 ± 0.266
Block-MNAR 0.857 ± 0.184 0.813 ± 0.239 0.774 ± 0.241 0.572 ± 0.335
Seq-MNAR 0.889 ± 0.114 0.819 ± 0.240 0.778 ± 0.214 0.641 ± 0.290
Self-Masking-MNAR 0.623 ± 0.268 0.681 ± 0.328 0.292 ± 0.258 0.268 ± 0.248
Panel-MNAR 0.614 ± 0.400 0.584 ± 0.407 0.502 ± 0.389 0.442 ± 0.384
Polarization-MNAR 0.631 ± 0.199 0.547 ± 0.279 0.972 ± 0.059 0.914 ± 0.187
Soft-Polarization-MNAR 0.575 ± 0.266 0.723 ± 0.217 0.754 ± 0.207 0.598 ± 0.327
Latent-Factor-MNAR 0.776 ± 0.186 0.716 ± 0.268 0.601 ± 0.297 0.508 ± 0.316
Cluster-MNAR 0.784 ± 0.150 0.758 ± 0.279 0.559 ± 0.278 0.500 ± 0.297
Two-Phase-MNAR 0.904 ± 0.124 0.881 ± 0.208 0.666 ± 0.273 0.466 ± 0.329

Overall 0.751 ± 0.238 0.721 ± 0.289 0.625 ± 0.313 0.526 ± 0.334

Pattern MIWAE MICE GAIN

MCAR 0.236 ± 0.274 0.316 ± 0.283 0.543 ± 0.256
Col-MAR 0.491 ± 0.315 0.521 ± 0.354 0.276 ± 0.354
NN-MNAR 0.234 ± 0.280 0.310 ± 0.325 0.400 ± 0.324
Block-MNAR 0.594 ± 0.267 0.491 ± 0.311 0.184 ± 0.317
Seq-MNAR 0.586 ± 0.289 0.478 ± 0.329 0.204 ± 0.311
Self-Masking-MNAR 0.209 ± 0.269 0.631 ± 0.348 0.456 ± 0.380
Panel-MNAR 0.374 ± 0.363 0.251 ± 0.325 0.279 ± 0.360
Polarization-MNAR 0.535 ± 0.193 0.143 ± 0.230 0.264 ± 0.283
Soft-Polarization-MNAR 0.546 ± 0.239 0.187 ± 0.245 0.432 ± 0.409
Latent-Factor-MNAR 0.358 ± 0.296 0.331 ± 0.312 0.301 ± 0.305
Cluster-MNAR 0.321 ± 0.277 0.317 ± 0.287 0.356 ± 0.311
Two-Phase-MNAR 0.521 ± 0.321 0.557 ± 0.313 0.218 ± 0.320

Overall 0.417 ± 0.314 0.378 ± 0.338 0.326 ± 0.343

15

Table 5: Imputation Accuracy ± Standard Deviation by Method (Zero-shot models)
Note that the normalized numbers are slightly different from Tab. 1 because we did not include every
other zero-shot method in the normalization in Tab. 1.

Method MCAR NN-MNAR Self-Masking-MNAR Col-MAR

TabImpute+ 0.749 ± 0.246 0.847 ± 0.200 0.929 ± 0.178 0.883 ± 0.255
EWF-TabPFN 0.746 ± 0.247 0.841 ± 0.201 0.935 ± 0.179 0.882 ± 0.254
TabImpute 0.860 ± 0.222 0.828 ± 0.230 0.246 ± 0.254 0.551 ± 0.350
TabImpute (MCAR then MAR) 0.751 ± 0.284 0.666 ± 0.355 0.208 ± 0.243 0.499 ± 0.354
TabImpute (More Heads) 0.690 ± 0.261 0.700 ± 0.233 0.227 ± 0.255 0.523 ± 0.321
EWF-TabPFN Fine-Tuned 0.306 ± 0.189 0.279 ± 0.220 0.406 ± 0.313 0.339 ± 0.338
TabPFN 0.066 ± 0.193 0.067 ± 0.194 0.162 ± 0.224 0.160 ± 0.254

Method Block-MNAR Seq-MNAR Overall

TabImpute+ 0.804 ± 0.272 0.672 ± 0.361 0.814 ± 0.270
EWF-TabPFN 0.795 ± 0.279 0.670 ± 0.358 0.811 ± 0.271
TabImpute 0.778 ± 0.288 0.834 ± 0.214 0.683 ± 0.342
TabImpute (MCAR then MAR) 0.722 ± 0.287 0.805 ± 0.277 0.608 ± 0.362
TabImpute (More Heads) 0.668 ± 0.258 0.729 ± 0.260 0.589 ± 0.317
EWF-TabPFN Fine-Tuned 0.385 ± 0.305 0.347 ± 0.326 0.344 ± 0.288
TabPFN 0.048 ± 0.138 0.126 ± 0.262 0.105 ± 0.218

Table 6: Synthetic Data Generation Parameters
Missingness Pattern Parameter Name Symbol Value
MCAR Missing probability p 0.4
Col-MAR Missing probability p 0.4

NN-MNAR

Neighborhood size |Nij | Variable
Network layers L Random
Network depth d Random
Weight initialization W Random
Bias initialization b Random

Self-Masking-MNAR Coefficient set α {−2,−1, 1, 2}
Target missing proportion pmissing Variable

Block-MNAR

Missing probability p 0.4
Matrix size N N 100
Matrix size T T 50
Row blocks Br 10
Column blocks Bc 10
Convolution type - mean

Seq-MNAR

Missing probability p 0.4
Algorithm - epsilon_greedy
Pooling - False
Epsilon ϵ 0.4
Epsilon decay γ 0.99
Random seed s 42

Panel-MNAR No explicit hyperparameters (dropout time sampled uniformly)
Polarization-MNAR Threshold quantile qthresh 0.25

Soft-Polarization-MNAR Polarization alpha α 2.5
Polarization epsilon ϵ 0.05

Latent-Factor-MNAR Latent rank (low) klow 1
Latent rank (high) khigh 5

Cluster-MNAR Number of row clusters KR 5
Number of column clusters KC 4

Two-Phase-MNAR Cheap feature fraction fcheap 0.4
Censoring-MNAR Censoring quantile qcensor 0.25

16

Table 7: OpenML datasets
Dataset Size Domain Description
EgyptianSkulls 150× 5 Anthropology Cranial measurements over time in Egypt
humans_numeric 75× 15 Biology Human body measurements
FacultySalaries 50× 5 Education/Economics University faculty salary data
SMSA 59× 16 Demographics/Economics U.S. metropolitan statistical area data
Student-Scores 56× 13 Education Student exam scores
analcatdata_election2000 67× 15 Political science 2000 U.S. presidential election results
analcatdata_gviolence 74× 9 Criminology Gun violence statistics
analcatdata_olympic2000 66× 12 Sports/Economics Olympic results and country stats
baskball 96× 5 Sports analytics Basketball performance data
visualizing_hamster 73× 6 Education/Toy Example dataset for teaching
witmer_census_1980 50× 5 Demographics U.S. census microdata (1980)
MercuryinBass 53× 10 Environmental chemistry Mercury concentrations in fish
SolarPower 204× 5 Energy/Engineering Solar power output records
WineDataset 178× 14 Chemistry/Oenology Wine physicochemical properties
alcohol-qcm-sensor 125× 15 Analytical chemistry Alcohol detection sensor readings
benzo32 195× 33 Chemistry/Toxicology Benzodiazepine compound data
machine_cpu 209× 7 Computer systems Predicting CPU performance
pwLinear 200× 11 Mathematics/Engineering Piecewise linear regression benchmark
pyrim 74× 28 Chemistry/Pharmacology Pyrimethamine bioassay compounds
slump 103× 10 Civil engineering Concrete slump test properties
ICU 200× 20 Medicine Intensive care patient data
appendicitis_test 106× 8 Medicine Appendicitis diagnosis
appendicitis_test_edsa 106× 8 Medicine Educational appendicitis dataset
breast-cancer-coimbra 116× 10 Medicine Breast cancer diagnosis data
Rainfall-in-Kerala-1901-
2017

117× 18 Climate science Rainfall time series in Kerala

pollution 60× 16 Environmental science Air pollution measurements
treepipit 86× 10 Ecology Bird habitat distribution
autoPrice 159× 16 Business/Economics Automobile pricing dataset
dataset_analcatdata_creditscore 100× 7 Finance Credit scoring dataset
Swiss-banknote-conterfeit-
detection

200× 7 Finance/Fraud Banknote authenticity classification

Glass-Classification 214× 10 Forensics/Materials Glass chemical composition (forensics)
chatfield_4 235× 13 Statistics/Time series Textbook time series data (Chatfield)
chscase_vine1 52× 10 Agriculture/Statistics Vine growth study
edm 154× 18 Education Student learning performance
metafeatures 75× 32 Meta-learning Dataset-level features
rabe_131 50× 6 Chemistry/Benchmark Spectroscopy regression dataset
rabe_148 66× 6 Chemistry/Benchmark Spectroscopy regression dataset
rabe_265 51× 7 Chemistry/Benchmark Spectroscopy regression dataset
sleuth_case1201 50× 7 Statistics/Education Applied regression textbook data
sleuth_ex1605 62× 6 Statistics/Education Applied regression textbook data
wisconsin 194× 33 Medicine Wisconsin breast cancer dataset

17

Table 8: Non-normalized RMSE values for MCAR pattern by dataset. Dataset columns are standard-
ized based on observed values (mean 0, variance 1).

Dataset TabImpute+ HyperImpute MissForest OT

EgyptianSkulls 0.917 0.961 0.946 0.966
FacultySalaries 0.693 0.811 0.567 0.572
Glass-Classification 0.937 0.810 0.886 0.902
ICU 1.045 1.137 1.112 1.045
MercuryinBass 1.373 1.377 1.343 1.359
Rainfall-in-Kerala-1901-2017 0.942 0.902 0.950 0.958
SMSA 0.813 0.939 0.786 0.807
SolarPower 0.801 0.873 0.888 0.914
Student-Scores 0.391 0.441 0.435 0.477
Swiss-banknote-conterfeit-detection 0.976 0.856 0.730 0.786
WineDataset 0.928 0.803 0.797 0.789
alcohol-qcm-sensor 0.590 0.580 0.517 0.560
analcatdata_election2000 0.544 0.662 0.615 0.722
analcatdata_gviolence 0.795 0.801 0.877 0.794
analcatdata_olympic2000 1.867 1.922 1.895 1.945
appendicitis_test 0.860 0.650 0.792 0.753
appendicitis_test_edsa 0.668 0.532 0.569 0.586
autoPrice 0.834 0.762 0.702 0.734
baskball 1.027 1.100 1.109 1.017
benzo32 1.055 1.055 1.053 0.950
breast-cancer-coimbra 1.058 1.183 1.098 1.104
chatfield_4 0.475 0.531 0.492 0.522
chscase_vine1 0.808 0.996 0.833 0.945
dataset_analcatdata_creditscore 1.063 1.131 1.122 1.065
divorce_prediction 0.525 0.528 0.467 0.493
edm 0.763 0.553 0.566 0.570
humans_numeric 0.948 0.970 0.991 1.011
machine_cpu 1.037 0.956 0.858 0.962
metafeatures 2.263 2.090 2.225 2.263
pollution 1.967 2.065 1.837 1.945
pwLinear 1.075 1.356 1.356 1.092
pyrim 0.877 0.863 0.859 0.842
rabe_131 0.790 1.003 1.031 0.997
rabe_148 0.984 1.017 0.958 1.045
rabe_265 1.131 1.298 1.090 1.106
sleuth_case1201 1.054 0.939 0.963 0.998
sleuth_ex1605 1.087 1.257 1.071 0.969
slump 0.871 0.650 0.805 0.787
treepipit 1.264 1.169 1.172 1.167
visualizing_hamster 0.872 0.905 0.750 0.774
wisconsin 0.777 0.685 0.783 0.817
witmer_census_1980 0.704 0.616 0.637 0.653

18

	Introduction
	Training TabImpute on Synthetic Data
	Entry-wise Featurization and Architecture

	Results on OpenML Datasets: MissBench
	Conclusion & Future Work
	Appendix
	Data Generation with Linear Factor Models
	Synthetic Training Data Generation
	Adaptive Ensembling
	Missingness Patterns for Training and Evaluation
	Training on Multiple Missingness Patterns
	Additional tests
	Details for MNAR Missingness Patterns
	Details for NN-MNAR
	Details on Seq-MNAR
	Self-Masking-MNAR
	Censoring-MNAR
	Panel-MNAR
	Polarization-MNAR
	Latent-Factor-MNAR
	Cluster-MNAR
	Two-Phase-MNAR

	Additional tables

