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ABSTRACT

Imitation learning (IL) from a single expert’s demonstration has reached expert-
level performance in many Mujoco environments. However, real-world environ-
ments often involve demonstrations from multiple experts, resulting in diverse
policies due to varying preferences among demonstrators. We propose a multi-
objective inverse reinforcement learning (MOIRL) approach that utilizes demon-
strations from multiple experts. This approach shows transferability to different
preferences due to the assumption of a common reward among demonstrators.
We conducts experimental testing in a discrete environment Deep Sea Treasure
(DST) and achieved a promising preliminary result. Unlike IRL algorithms, we
demonstrate that this approach is competitive across various preferences in both
continuous DST and Mujoco environments, using merely a single model within
the SAC framework instead of n models for each distinct preference.

1 INTRODUCTION

Multi-objective inverse reinforcement learning (MOIRL) is crucial in the field of robot control. In
certain real-world scenarios, demonstrations are gathered from various experts due to the lack of
data. For example, the intelligent control systems for military drones or robotic arms stepping in for
doctors to perform rare surgeries. In such contexts, demonstrations are not only scarce but also hard
to obtain and therefore involving multiple experts. It’s inevitable to see two or more individuals
can have totally distinct preferences while engaging in the same task. Agents operating military
drones may need to strike a balance between aggressiveness and the risk of being destroyed, whereas
doctors performing surgeries may consider both precision and time efficiency.

Learning from multi-expert demonstrations can be essentially achieved by repeatedly running in-
verse reinforcement learning (IRL) multiple times. However, this approach can be inefficient and
may compromise performance because of the scarcity of demonstrations from a single expert. Most
importantly, it lacks cooperation among experts. As previously mentioned, while in the same task,
as the main motivation of this work, we believe the concept of shared knowledge instead of running
multiple independent IRL algorithms will improve the results. Within the framework of MOIRL, we
assume there’s one common vectorized reward among experts. Preference can influence the scalar
reward, which means different policies only come from different preferences.

Traditional IRL typically learns policy by first learning a reward function, introducing a challenging
max-min optimization problem. In contrast, MOIRL can benefit from shared knowledge, which
is the common vectorized reward in our case. It can be considered as an additional constraint in
optimization problem. In discrete case, we repeatedly solve the common reward with consensus
alternating direction method of multipliers (ADMM), incorporating both demonstrations and the
current policies of agents to iteratively refine policies and reward through RL and IRL. To enforce
the common reward constraint in continuous environments, we import the settings of multi-objective
into the framework of IQ-Learn, transforming the reward consensus constraint into the objective,
acting as a penalty term. Our proposed MOIRL framework brings several advantages. It can enhance
the availability of collected data. Furthermore, by the means of common reward, our model has
ability to generalize to other preferences absent from demonstrations.

We summarizes our contributions as follows:
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• We utilize consensus ADMM to satisfy the common reward constraint, resulting in a
promising experimental foundation on discrete deep sea treasure (DST) environment.

• We extend the IQ-learn framework to the field of MOIRL, building connections among
heterogeneous agents during training, thereby allowing a more flexible policy for collecting
demonstrations from various experts.

• We show the transferability of our model by twisting the SAC networks with additional
preference input.

2 RELATED WORK

IL/IRL with single-expert: It’s obvious that naively solving a max-min optimization problem
through nested loops of RL and IRL is impractical as it costs a lot of computational resources.
As the very first work taking a great step, Ho & Ermon (2016) proposed a more general and practi-
cal framework base on the insight that IRL is essentially a dual of an occupancy measure matching
problem, which learns a policy as the generator trying to fool the discriminator, drawing an analogy
with generative adversarial networks (Goodfellow et al., 2014). However, the adversarial learning
can still be inefficient. Recently, Garg et al. (2022) has proposed a Q-learning approach that get
away with adversarial optimization process. They utilized the energy-based policy and inverse soft
Bellman operator to replace the original objective into a single maximization problem over Q space.
This approach learns policy and retrieves reward function in a direct manner.

IL/IRL with multi-expert: In recent years, more and more works start focusing on IL and IRL
with multi-expert demonstrations due to several reasons. As an extension of GAIL, Li et al. (2017),
and Hausman et al. (2017) introduce a latent variable to disentangle trajectories that may arise from
a mixture of experts. However, these approaches are constrained by the limitations of IL, such as
the inability to adapt to environmental changes and excessive reliance on the quantity and quality
of experts. As traditional IRL treats demonstrations homogeneously, Beliaev et al. (2022) has taken
the expertise of demonstrators into account. They estimate the expertise of demonstrators and learn
the optimal policy by fitting policies of demonstrators with negative log-likelihood loss. There are
handful related works that also take multi-objective into consideration. Kishikawa & Arai (2021)
introduced Non-Negative Matrix Factorization (Lee & Seung, 2000) into MOIRL by treating com-
mon reward vector as the basis matrix to solve the common reward vector and weights together.
The method is still an indirect and restricted approach as it needs to run single-objective IRL first
and is only applicable on discrete environment. Kishikawa & Arai (2022) has further proposed
a framework to estimate the common reward vector and weight via neural networks base on the
reward-seeker principle. Furthermore, Chen et al. (2020) utilized network distillation to distill com-
mon knowledge from individual strategy preferences to the task reward. However, MSRD requires
training in an all-at-once manner and lacks the capability to accommodate lifelong learning. In re-
sponse to this limitation, Chen et al. (2022) adeptly models new demonstrations by treating them as
combinations of previously acquired prototypes. This solves the challenge of effectively represent-
ing a large number of demonstrations. However, the biggest problem of their works is it completely
ignores the computational cost because it still needs to run IRL n times. In contrast, Our work
adopts a single model architecture. The core idea of our work is sharing knowledge within a single
model. The reason behind this is that these heterogeneous experts are engaging in the same task,
with their only differences lying at the preference level.

3 PRELIMINARIES

Notations In this paper, Π, R represent the policy space and reward space, we use πEi
and πi to

denote the policy of ith expert and the learned policy respectively. For a policy π ∈ Π, occupancy
measure ρπ : S × A → R is defined as ρπ = (1− γ)π(a|s)

∑∞
t=0 γ

tP (st = s|π). For brevity, we
refer to ρπi as ρi.

Multi-Objective Markov Decision Process (MOMDP). We consider the environment formu-
lated by the tuple (S, A, p0, P , r, γ), where S , A denote state and action spaces. p0 is the distribu-
tion of initial state s0, P : S × A × S → [0, 1] is the transition function of the environment, r : S
× A → Rd is reward function in vector form where d represents the number of objectives, γ ∈ (0,
1) is the discount factor.
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The vectorized reward can be scalarized by a scalarization function fω : Rd → R (Abels et al.,
2019). In this paper, we focus on the linear scalarization function, that is ,

fω(r(s, a)) = ωT · r(s, a) = rs(s, a) (1)

where rs is the scalarized reward function, ω is a vector with d non-negative entries that adds up to
1, representing the preference of the expert.

Alternating Direction Method of Multipliers (ADMM). ADMM is an iterative algorithm used
to solve distributed optimization problems. Its fundamental concept involves transforming the orig-
inal optimization problem into multiple decomposed sub-problem. By alternately updating these
sub-problem, ADMM approaches the optimal solution and eventually achieves a global solution.

The ADMM method can address global variable consensus optimization problem through dis-
tributed optimization. Consider the scenario where there is a single global variable, and the ob-
jective and constraint terms are divided into N parts: minimize

∑N
i=1 fi(x). This problem can be

reformulated by introducing local variables xi and a shared global variable z as follows:

minimize
N∑
i=1

fi(xi)

subject to xi − z = 0, i = 1, . . . , n.

(2)

Each iteration of ADMM can be simplified to the following updates:

xk+1
i := argmin

xi

(fi(xi) + (ρ/2)||xi − x̄k + uki ||22)

uk+1
i := uki + xk+1

i − x̄k+1.
(3)

where x̄k = (1/N)
∑N
i=1 x

k
i . It’s evident that the updates of x and u can both be implemented using

distributed computing.

Inverse Reinforcement Learning (IRL). The goal of IRL is to find the reward function max-
imizing the difference between expected cumulative rewards under occupancy measures of expert
and agent in the outer loop while seeking for a policy that minimizes negative expected cumulative
reward of the agent in the inner loop.

max
r∈R

min
π∈Π

EρE [r(s, a)]− Eρ[r(s, a)] (4)

While it can easily have multiple optimal policies satisfying the formulation for a given reward
function, maximum-entropy IRL (Ziebart et al., 2008) is proposed to tackle down the ambiguity,
along with a reward regularizer ψ to prevent overfitting:

max
r∈R

min
π∈Π

EρE [r(s, a)]− Eρ[r(s, a)]−H(π)− ψ(r) (5)

Inverse soft Bellman operator. Garg et al. (2022) proposed inverse soft Bellman operator T π to
further characterize the relation between reward and Q space. It’s defined as:

(T πQ)(s, a) = Q(s, a)− γEs′∼P(·|s,a)[V
π(s′)]

where V π(s) = Ea∼π(·|s)[Q(s, a) − log π(a|s)] is soft value function. r and Q have one-to-one
correspondence under the definition of T π .

By leveraging inverse soft Bellman operator and an appropriate definition of reward regularizer ψ,
equation 5 can be further simplified as (Garg et al., 2022):

J (π,Q) = EρE [ϕ(Q(s, a)− γEs′∼P(·|s,a)V
π(s′))]− (1− γ)Ep0 [V π(s0)]︸ ︷︷ ︸

V0 loss

(6)

where ϕ is a concave function and p0 is the initial state distribution. The second term can be fur-
ther replaced by E(s,a)∼µ

[
V π(s) − γEs′∼P(·|s,a)V

π(s′)
]
, where µ represents any valid occupancy

measure.
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4 METHOD

4.1 MOIRL WITH CONSENSUS ADMM (DISCRETE CASE)

In the subsequent section, we integrate the ADMM concept and the occupancy measure to reach the
global reward function of MOIRL algorithm:

Initially, we extend equation 4 to accommodate n experts with multi-objective reward:

J (π1, r1, ω1, ..., πn, rn, ωn) = max
r1,...,rn∈R

min
π1,...,πn∈Π

n∑
i=1

ωTi (EρEi
[ri(s, a))]− Eρi [ri(s, a)])

where ωi is the preference of expert i. Note that reward functions here are optimized separately.
With the goal of deriving a common reward function, we incorporate the consensus ADMM, treating
reward function as consensus:

J (π1, r1, ω1, ..., πn, rn, ωn) = max
r1,...,rn∈R

min
π1,...,πn∈Π

n∑
i=1

ωTi (EρEi
[ri(s, a)]− Eρi [ri(s, a)])

subject to ri = r

Given initial π0
1 , ..., π0

n, this reward consensus can be iteratively solved by:

rk+1
i = argmax

ri

ωTi
(
EρEi

[ri(s, a)]− Eρi [ri(s, a)]
)
− (ρ/2)||ri − r̄k + uki ||22

uk+1
i = uki + rk+1

i − r̄k+1
(7)

where r̄k = 1
n

∑n
i=1 r

k
i . With the common reward solved, we train n agents by running RL algo-

rithm, looking for solving πj1, ..., πjn accordingly. By repeating this procedure for enough j rounds
(Note that j rounds here is different from k iterations in ADMM) , it’s expected that this solved
reward is getting closer and closer to the true reward.

4.1.1 LEARNING REWARD OF ABSORBING STATES

While this form of adversarial imitation learning may seem quite simple and intuitive, it can suf-
fer from the issue of reward bias, which can significantly impact performance (Kostrikov et al.,
2018). The problem lies in reward function, as it implicitly provides a survival bonus, leading to an
non-ending loop in the agent’s trajectory until it reaches maximum timesteps of the environment.
The survival bonus encourages lasting longer in an episode, which is basically contradicting to the
environments with step cost, or the environments with variable-length episodes. To address this,
we simply learn a reward for absorbing states. Whenever the agent reaches a terminal state, it will
transit to the corresponding absorbing state and stay until reaching maximum timesteps, ensuring a
fixed-length episode.

4.1.2 EXPERIMENTAL TEST

We evaluate our algorithm on a simple task: Discrete Deep Sea Treasure(DST). In the case of a 6×6
mini-map, we conduct tests by learning from two experts with preferences [0.1, 0.9] and [0.9, 0.1]
respectively. For the default 11 × 12 map, we learn from three experts with preferences [0.1, 0.9],
[0.5, 0.5], and [0.9, 0.1].

As depicted in Figure 1, all agents reach near-optimal reward within 10 rounds in both configurations
of the maps. This demonstrates the promising performance of our algorithm in the DST environ-
ment, indicating the idea of learning a common reward function among agents actually helps.
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Figure 1: Comparison of our algorithm and the optimal policy. We present our results in terms
of return and length, with averaging across 5 different seeds. A Round is defined as the completion
of one iteration incorporating the MOIRL algorithm with consensus ADMM and the RL algorithm,
specifically PPO.

4.2 MULTI-OBJECTIVE INVERSE SOFT-Q LEARNING (CONTINUOUS CASE)

4.2.1 MULTI-EXPERT OBJECTIVE

By considering optimizing n experts together with common reward constraint, we have our opti-
mization problem to be (from equation 5):

J (π0, r0, ω0, ..., πn, Qn, ωn) = max
r0,...,rn∈R

min
π0,...,πn∈Π

n∑
i=0

[
EρEi

[ωTi · ri(s, a)]− Eρi [ωTi · ri(s, a)]

−H(πi)− ψ(ωTi · ri)
]

subject to ri = r.

Because ri involves both πi and Qi for every expert i, the analysis can become too complicated.
We ease the difficulty by translating explicit constraint to implicit penalty term, which is l2 norm
between the difference of each individual reward vector ri, we have:

J (π0, r0, ω0, ..., πn, Qn, ωn) = max
r0,...,rn∈R

min
π0,...,πn∈Π

n∑
i=0

[
EρEi

[ωTi · ri(s, a)]− Eρi [ωTi · ri(s, a)]

−H(πi)− ψ(ωTi · ri)
]
−
n−1∑
i=0

||ri − ri+1||2

It can be further split into n separate optimization objectives, we can optimize agent iwith objective:

J (πi, ri, ωi) = max
ri∈R

min
πi∈Π

Same as equation 5︷ ︸︸ ︷
EρEi

[ωTi · ri(s, a)]− Eρi [ωTi · ri(s, a)]−H(πi)− ψ(ωTi · ri)

− β
i∑

j=i−1

||rj − rj+1||2

where β is the constraint coefficient controlling the importance of the common reward constraint.

By replacing ωTi · ri(s, a) with scalar reward rs (from equation 1), it can be simplified as:

J (πi, Qi, ωi) = EρEi

[
ϕ
(
ωTi · (Qi(s, a)− γEs′∼P(·|s,a)V

πi(s′))
)]

− (1− γ)Ep0 [ωTi · V πi(s0)]− β
i∑

j=i−1

||rj − rj+1||2
(8)

4.2.2 UPDATE STRATEGY AND PRACTICAL ALGORITHM

Critic network update: We use Q(s, a, ωi) ≈ Qi(s, a), which allows us to learn and estimate Q
value among various preferences. To update Q for ith agent, we fix π, critic network is updated by
the objective:
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max
Q
J (Q, i) = EρEi

[
ϕ
(
ωTi · (Q(s, a, ωi)− γEs′∼P(·|s,a)V

πi(s′, ωi))
)]

− (1− γ)Ep0 [ωTi · V πi(s0)]− β
i∑

j=i−1

||rj − rj+1||2
(9)

where ri = T πQi is the estimated vector reward of ith agent.

Actor network update: We use π(s, a, ωi) ≈ πi(s, a). For a fixed Q and ωi, we update π for ith
agent by minimizing the expected KL-divergence (Haarnoja et al., 2018):

min
π
J (π, i) = Es∼Di,a∼π(·|s,ωi)

[
log π(a|s, ωi)− ωTi ·Q(s, a, ωi)

]
(10)

where Di is the distribution of previously sampled states or a replay buffer of ith expert and agent.

Algorithm 1 Multi-Objective Inverse soft-Q Learning (MOIQ)

Initialize networks Qϕ and πψ
while environment step t ≤ N do

for each expert i do
for each episode step in [1, T] do

at ∼ π(·|st, ωi)
st+1 ∼ P(·|st, at)
Di ← Di ∪ {(st, at, st+1)}
Update Qϕ according to equation 9
ϕt+1 ← ϕt + λQ∇ϕJ (Q, i)
Update πψ according to equation 10
ψt+1 ← ψt − λπ∇ψJ (π, i)

end for
t← t+ T

end for
end while

5 EXPERIMENTS

5.1 EXPERTS

For discrete DST, an optimal stochastic policy is adopted to collect demonstrations. Specifically, let
dbx, dby be the distances to the border of the current grid along x and y axis, dtx, dty be the distances
to the target treasure of the current grid along x and y axis. The probability of going right or down
is proportional to the min(dbx, d

t
x) and min(dby, d

t
y) of the current grid. For continuous DST and

Mujoco environments, the experts are trained from scratch with SAC for each distinct preference for
0.5M steps.

Experts’ preferences: We prepare these experts with various preferences for each environment.

• Discrete DST MiniMap: [0.9, 0.1], [0.1, 0.9]

• Discrete DST DefaultMap: [0.9, 0.1], [0.5, 0.5], [0.1, 0.9]

• Continuous DST: [0.9, 0.1], [0.5, 0.5], [0.1, 0.9]

• Mo-Hopper: [0.8, 0.1, 0.1], [0.1, 0.8, 0.1], [0.1, 0.1, 0.8]

• Mo-Walker: [0.9, 0.1], [0.5, 0.5], [0.1, 0.9]

• Mo-HalfCheetah: [0.9, 0.1], [0.5, 0.5], [0.1, 0.9]

• Mo-Ant: [0.9, 0.1], [0.5, 0.5], [0.1, 0.9]
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5.2 ENVIRONMENTS

For discrete DST, Mo-HalfCheetah, Mo-Hopper, we directly use Alegre et al. (2022), which is a
multi-objective gymnasium environment. For continuous DST, we modify both state and action
space of discrete DST to 2-dimensional continuous space, indicating position and velocity respec-
tively. For Mo-Walker and Mo-Ant, we inherit the classes of Walker2d and Ant from Towers et al.
(2023) and extend the reward space to two dimension. Information of each dimension of reward and
further details are listed below.

DST: 2-dimensional reward space in the form (treasure value, step cost), where treasure value is
designed by Yang et al. (2019) and step cost is −1 for each step.

Mo-Hopper: 3-dimensional reward space in the form (velocity in x-axis, height, control cost) with
the healthy reward +1 is directly added to every dimension of reward if the agent is healthy at
timestep t.

Mo-Walker: 2-dimensional reward space in the form (velocity in x-axis, control cost) with the
healthy reward +1 is directly added to every dimension of reward if the agent is healthy at timestep
t.

Mo-HalfCheetah: 2-dimensional reward space in the form (velocity in x-axis, control cost).

Mo-Ant: 2-dimensional reward space in the form (velocity in x-axis, control cost) with the healthy
reward +1 is directly added to every dimension of reward if the agent is healthy at timestep t.

5.3 RESULTS

Since there are few IRL algorithms with multi-expert setting, we compare our results with GAIL (Ho
& Ermon, 2016). In GAIL, we separately train 3 models for different preferences in one environment
with 10 expert demos from each preference. In MOIQ, we train a single model with constraint
coefficient β = 5 for different preferences in an environment with 10 expert demos from each
preference, 30 expert demos is used totally.

As shown in Figure 2, MOIQ is competitive with GAIL in all 5 environments. Besides, In contrast
to GAIL, MOIQ enjoys a faster learning rate and more sample-efficient. Take DST environment
for instance, GAIL isn’t competitive here. It’s probably because the lack of demonstrations. Unlike
experts in Mujoco environment where an near-optimal policy would have an average steps around
one thousand in one episode, the expert at DST - [0.1, 0.9] take only 2 steps to the terminal state,
resulting in 20 state-action pairs for 10 expert demos. However, MOIQ can reach expert-level per-
formance within 100K environment steps with the same amount of demonstrations given to each
preference.

Expert-like performance: We save our model as checkpoint every 5000 environment steps and pick
the best model in terms of average return of the evaluation. As demonstrated in table 1, our model
almost achieves expert-level performance in every preference of different environment. 4 out of 15
settings can even beat the experts.

5.4 TRANSFERABILITY

As shown in Figure 3, we demonstrate the transferability of our model by visualizing return in two
dimensions for environments with 2-dimensional reward space. In DST and Mo-Ant, even with only
demonstrations in 3 different preference, our model can still act correctly according to the preference
given. It doesn’t solely rely on the powerful approximation capability of neural networks but also
significantly contributes to the precision of the learned reward.

In Mo-Walker and Mo-HalfCheetah, although it also achieves a descent scalar return, the visualiza-
tion results show that the preference doesn’t match the vectorized return quite well. This misalign-
ment likely comes from the fact that the trained experts do not exhibit sufficient distinction in terms
of the two-dimensional return according to their preferences.
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Figure 2: Evaluation results while training. Results are averaged from 5 different seeds and
smoothed by taking ewma return with alpha=0.1

6 DISCUSSION

Limitations: The major limitation of our model lies in the quality of demonstrations. While these
demonstrations need not be optimal, they must show sufficient distinctiveness in order to illustrate
their differences in certain dimensions of the reward from others. Another limitation lies in its
reliance on experts’ preferences, making it a bit harder to collect datasets with labeled preferences.

Future work: One of our top priority must be learning preferences of experts, allowing our method
to truly move away from hand-crafted components, including rewards and preferences. We find
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Env Preference MOIQ (Ours) Expert

Continuous DST [0.9, 0.1] 20.03 ± 0 20.03 ± 0
[0.5, 0.5] 5.05 ± 0 5.05 ± 0
[0.1, 0.9] -1.73 ± 0 -1.73 ± 0

Mo-HalfCheetah [0.9, 0.1] 4377 ± 41 3611 ± 75
[0.5, 0.5] 2261 ± 36 2223 ± 18
[0.1, 0.9] 315 ± 15 325 ± 8

Mo-Hopper [0.8, 0.1, 0.1] 2055 ± 212 2155 ± 99
[0.1, 0.8, 0.1] 2283 ± 201 1686 ± 157
[0.1, 0.1, 0.8] 896 ± 9 958 ± 8

Mo-Walker [0.9, 0.1] 3577 ± 225 3706 ± 64
[0.5, 0.5] 1735 ± 353 2442 ± 55
[0.1, 0.9] 879 ± 133 1110 ± 36

Mo-Ant [0.9, 0.1] 2475 ± 68 2629 ± 26
[0.5, 0.5] 1039 ± 134 1269 ± 12
[0.1, 0.9] 463 ± 117 431 ± 12

Table 1: Testing return of the best-performance model. Evaluations of return of MOIQ are con-
ducted over 100 episodes, and the results are averaged across 5 different seeds. Experts’ result are
averaged from 10 demonstrations given.

(a) Testing return.

(b) Testing return compares to the experts

Figure 3: Transferability of the best-performance model. Each point is obtained by feeding in a
specific preference value from [1 − 0.05 × i, 0.05 × i] for i ∈ [1, 19]. Evaluations are conducted
over 100 episodes, and the results are averaged across 5 different seeds.

this task particularly challenging because it’s not an easy optimization problem. Preference is a
relative concept that requires comparing with others, which might have profound connections with
this work. We’re looking forward to working on this topic in the future.

7 CONCLUSION

We have seen the needs of considering multiple heterogeneous experts in IRL. Enlightened by this,
we assume common reward is the bridge that connects every agent together. We first conduct a
simple and meaningful experiment on discrete environment in order to demonstrate that the idea of
common reward does work. We then propose MOIQ − an approach integrating the common reward
constraint into the critic objective. By turning the weakness of heterogeneous demonstrations into
strength, it can compete with GAIL in terms of sample efficiency and average return in continuous
DST and Mujoco environment.
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A APPENDIX

A.1 ADDITIONAL RESULTS

Ablation on constraint coefficient: As shown in table 2, we present our ablation studies on con-
straint coefficient by comparing the results of β = 0 and β = 5. 10 out of 15 settings show
improvements with β = 5.

Env Preference β = 0 β = 5 Percentage change

Continuous DST [0.9, 0.1] 19.96 19.927 -0.17%
[0.5, 0.5] 5.044 5.044 0.00%
[0.1, 0.9] -1.736 -1.736 0.00%

Mo-HalfCheetah [0.9, 0.1] 3578 3654 2.12%
[0.5, 0.5] 2152 2160 0.37%
[0.1, 0.9] 341 347 1.76%

Mo-Hopper [0.8, 0.1, 0.1] 1118 1268 13.42%
[0.1, 0.8, 0.1] 1081 1189 9.99%
[0.1, 0.1, 0.8] 638 707 10.82%

Mo-Walker [0.9, 0.1] 2386 2636 10.48%
[0.5, 0.5] 1560 1326 -15.00%
[0.1, 0.9] 714 738 3.36%

Mo-Ant [0.9, 0.1] 2265 2249 -0.71%
[0.5, 0.5] 926 911 -1.62%
[0.1, 0.9] 295 281 -4.75%

Table 2: Comparison between β = 0 and β = 5. The numerical results are ewma returns with
alpha=0.1 and averaged across 5 different seeds. In DST, we show the results at 100K environment
steps. In Multi-objective Mujoco environments, we show the results at 500K environment steps.

Reward correlations: We show the Pearson correlation between the true reward and the learned
reward in table 3.

Env Preference Correlation

Mo-HalfCheetah [0.9, 0.1] 0.63
[0.5, 0.5] 0.52
[0.1, 0.9] 0.19

Mo-Hopper [0.8, 0.1, 0.1] 0.91
[0.1, 0.8, 0.1] 0.1
[0.1, 0.1, 0.8] 0.93

Mo-Walker [0.9, 0.1] 0.96
[0.5, 0.5] 0.96
[0.1, 0.9] 0.98

Mo-Ant [0.9, 0.1] 0.92
[0.5, 0.5] 0.95
[0.1, 0.9] 0.86

Table 3: Pearson correlation coefficient: It measures linear correlation between two sets of data.

Does MOIQ really improve? We show the learning curve comparing to IQ-Learn(Garg et al.,
2022). In IQ-Learn, we separately train 3 models for different preferences in one environment with
1 expert demos from each preference. In MOIQ, we train a single model with constraint coefficient
β = 5 for different preferences in an environment with 1 expert demos from each preference, 3
expert demos is used totally.

As shown in Figure 4. In Mo-Ant, IQ-Learn suffers from a serious instability issue while MOIQ
is growing steadily. It clearly shows the benefits from connecting multiple expert with common
reward functions. Another thing to highlight is that IQ-Learn or other traditional IRL methods takes
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n times more environment steps than MOIQ in an environment, where n is the number of experts.
Despite this, MOIQ can always achieve almost the same or superior performance compared to IQ-
Learn. It can be contributed to the fact that they are trained with a single network in MOIQ. A single
model works because these experts are involved in the same task, with the only differences being at
preference level. There’s no need to train n independent models for each expert.

Figure 4: Evaluation results while training. Results are averaged from 3 different seeds and
smoothed by taking ewma return with alpha=0.1. Note that the experts used here are not exactly
same as in Figure 2. Specifically, experts of Mo-Walker are trained from scratch for 1.5M steps
using the SAC algorithm implemented in Spinning Up (Achiam, 2018).
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A.2 IMPLEMENTATION DETAILS

GAIL: We implement GAIL using imitation (Gleave et al., 2022), with SAC as the generator.

Parameter Value

Policy MlpPolicy
Learning rate 3e-4
Buffer size 1e6
Batch size 256
Tau 0.05
Gamma 0.99
Train frequency 1

Table 4: Hyperparameters of GAIL

MOIQ and Experts: We implement our algorithm based on the open-source code of IQ-Learn
(Garg et al., 2022). Its implementation is built on SAC, the hyperparameters used are listed in table
5.

Parameter Value

Policy MlpPolicy
Hidden dim [255, 255]
Critic lr 3e-4
Actor lr 3e-5
Buffer size 1e6
Batch size 256
Critic update frequency 1
Actor update frequency 1
Critic tau 0.005

Table 5: Hyperparameters of MOIQ
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