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Abstract—It has been a long-standing research goal to endow
robot hands with human-level dexterity. Bi-manual robot piano
playing constitutes a task that combines challenges from dynamic
tasks, such as generating fast while precise motions, with slower
but contact-rich manipulation problems. Although reinforcement
learning based approaches have shown promising results in single-
task performance, these methods struggle in a multi-song setting.
Our work aims to close this gap and, thereby, enable imitation
learning approaches for robot piano playing at scale. To this end,
we introduce the Robot Piano 1 Million (RP1M) dataset, containing
bi-manual robot piano playing motion data of more than one
million trajectories. We formulate finger placements as an optimal
transport problem, thus, enabling automatic annotation of vast
amounts of unlabeled songs.

I. INTRODUCTION

Empowering robots with human-level dexterity is notoriously
challenging. Current robotics research on hand and arm
motions focuses on manipulation and dynamic athletic tasks.
Manipulation, such as grasping or reorienting [36], requires
continuous application of acceptable forces at moderate speeds
to various objects with distinct shapes and weight distributions.
Environmental changes, like humidity or temperature, alter the
already complex contact dynamics, which adds to the complex-
ity of manipulation tasks. Dynamic tasks, like juggling [39]
and table tennis [6] involve making and breaking contact,
demanding high precision and tolerating less inaccuracy due
to rarer contacts. High speeds in these tasks necessitate greater
accelerations and introduce a precision-speed tradeoff.

Robot piano playing combines various aspects of dynamic
and manipulation tasks: the agent is required to coordinate
multiple fingers to precisely press keys for arbitrary songs,
which is a high-dimensional and rich control task. Also, the
finger motions have to be highly dynamic, especially for songs
with fast rhythms. Experienced pianists can play arbitrary
songs, but this level of generalization is extremely challenging
for robots. In this work, we build the foundation to develop
methods capable of achieving human-level bi-manual dexterity
at the intersection of manipulation and dynamic tasks, making
it possible to reach such generalization capabilities.

While reinforcement learning (RL) is a promising direction,
traditional RL approaches often struggle to achieve excellent
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performance in multi-task settings [61]. The advent of scalable
imitation learning techniques [12] enables representing complex
and multi-modal distributions. Such large models are most
effective when trained on massive datasets that combine the
state evolution with the corresponding action trajectories. So
far, creating large datasets for robot piano play is problematic
due to the time-consuming fingering annotations. Fingering
annotations map which finger is supposed to press a particular
piano key at each time step. With fingering information,
the reward is less sparse, making the training significantly
more effective. These labels usually require expert human
annotators [35], preventing the agent from leveraging the large
amounts of unlabeled music pieces on the internet [22]. Besides,
human-labeled fingering may be infeasible for robots with
morphologies different from human hands, such as different
numbers of fingers or distinct hand dimensions.

In this paper, we propose the Robot Piano 1 Million (RP1M)
dataset. This dataset comprises the motion data of high-quality
bi-manual robot piano play. In particular, we train RL agents
for each of the 2k songs and roll out each policy 500 times
with different random seeds. To enable the generation of RP1M,
we introduce a method to learn the fingering automatically
by formulating finger placement as an optimal transport (OT)
problem [55, 38]. Intuitively, the fingers are placed in a way
such that the correct keys are pressed while the overall moving
distance of the fingers is minimized. Agents trained using our
automatic fingering match the performance of agents trained
with human-annotated fingering labels. Besides, our method
is easy to implement with almost no extra training time. The
automatic fingering also allows learning piano playing with
different embodiments, such as robots with four fingers only.

II. BACKGROUND

Task Setup The simulated piano-playing environment is
built upon RoboPianist [61]. It includes a robot piano-playing
setup, an RL-based agent for playing piano with simulated
robot hands, and a multi-task learner. To avoid confusion, we
refer to these components as RoboPianist, RoboPianist-RL,
and RoboPianist-MT, respectively. The environment features a
full-size keyboard with 88 keys driven by linear springs, two
Shadow robot hands [49], and a pseudo sustain pedal.

Sheet music is represented by Musical Instrument Digital
Interface (MIDI) transcription. Each time step in the MIDI file
specifies which piano keys to press (active keys). The goal
of a piano-playing agent is to press active keys and avoid
inactive keys under space and time constraints. This requires
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Fig. 1. Overview of RP1M. (Left) RP1M is a large-scale motion dataset for piano playing with bi-manual dexterous robot hands. The dataset includes
∼1M expert trajectories collected by ∼2k RL specialist agents. (Right) To collect a diverse motion dataset of playing sheet music, we lift the requirement of
human-annotated fingering by formulating the finger placement as an optimal transport problem such that the robot hands play piano in an energy-efficient way.

the agent to coordinate its fingers and place them properly
in a highly dynamic scenario such that target keys can be
pressed accurately and timely at not only the current time
step but also the future time steps. The original RoboPianist
uses MIDI files from the PIG dataset [35] which includes
human fingering information annotated by experts. However,
as mentioned earlier, this limits the agent to only play human-
labeled music pieces, and the human annotation may not be
suitable for robots due to the different morphologies.

The observation includes the state of the two robot hands,
fingertip positions, piano sustain state, piano key states, and
a goal vector, resulting in an 1144-dimensional observation
space. The goal includes 10-step active keys and 10-step target
sustain states obtained from the MIDI file, represented by
a binary vector. RoboPianst further includes 10-step human-
labeled fingering in the observation space but we remove this
observation in our method since we do not need human-labeled
fingering. For the action space, we remove the DoFs that do not
exist in the human hand or are used in most songs, resulting in
a 39-dimensional action space, consisting of the joint positions
of the robot hands, the positions of forearms, and a sustain
pedal. We evaluate the performance of the trained agent with
an average F1 score calculated by F1 = 2 · precision·recall

precision+recall .
For piano playing, recall and precision measure the agent’s
performance on pressing the active keys and avoiding inactive
keys respectively [61].

Playing Piano with RL We use RL to train specialist
agents per song to control the bi-manual dexterous robot hands
to play the piano. We frame the piano playing task as a finite
Markov Decision Process (MDP). At time step t, the agent
πθ(at|st), parameterized by θ, receives state st and takes action
at to interact with the environment and receives new state st+1

and reward rt. The state and action spaces are described above
and the reward rt gives an immediate evaluation of the agent’s
behavior. We will introduce reward terms used for training
in Section III-A. The agent’s goal is to maximize the expected
cumulative rewards over an episode of length H , defined as
J = Eπθ

[∑H
t=0 γ

trt(st, at)
]
, where γ is a discount factor

ranging from 0 to 1.

III. LARGE-SCALE MOTION DATASET COLLECTION

In this section, we describe our RP1M dataset in detail. We
first introduce how to train a specialist piano-playing agent
without human fingering labels. Removing the requirement of
human fingering labels allows the agent to play any sheet music
available on the Internet. We then analyze the performance
of our specialist RL agent as well as the learned fingering.
Lastly, we introduce our collected large-scale motion dataset,
RP1M, which includes ∼1M expert trajectories for robot piano
playing, covering ∼2k pieces of music.

A. Piano Playing without Human Fingering Labels

To mitigate the hard exploration problem posed by the sparse
rewards, RoboPianist-RL adds dense reward signals by using
human fingering labels. Fingering informs the agent of the
“ground-truth” fingertip positions, and the agent minimizes the
Euclidean distance between the current fingertip positions and
the “ground-truth” positions. We now discuss our OT-based
method to lift the requirement of human fingering.

Although fingering is highly personalized, generally speak-
ing, it helps pianists to press keys timely and efficiently.
Motivated by this, apart from maximizing the key pressing
rewards, we also aim to minimize the moving distances of
fingers. Specifically, at time step t, for the i-th key ki to press,
we use the j-th finger f j to press this key such that the overall
moving cost is minimized. We define the minimized cumulative
moving distance as dOT

t ∈ R+, which is given by

dOT
t = min

wt

∑
(i,j)∈Kt×F

wt(k
i, f j) · ct(ki, f j),

s.t., i)
∑
j∈F

wt(k
i, f j) = 1, for i ∈ Kt,

ii)
∑
i∈Kt

wt(k
i, f j) ≤ 1, for j ∈ F,

iii) wt(k
i, f j) ∈ {0, 1}, for (i, j) ∈ Kt × F.

(1)

Kt represents the set of keys to press at time step t and F
represents the fingers of the robot hands. ct(ki, f j) represents
the cost of moving finger f j to piano key ki at time step t
calculated by their Euclidean distance. wt(k

i, f j) is a boolean
weight. In our case, it enforces that each key in Kt will be
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Fig. 2. Comparison of the RL performance with our OT fingering, human-annotated fingering, and no fingering. Our method matches the performance of
RoboPianist-RL, which is trained with human fingering. We also outperforms the baseline without any fingering information by a large margin. The plots show
the mean over 3 random seeds and the shaded areas represent the 95% confidence interval.

pressed by only one finger in F , and each finger presses
at most one key. The constrained optimization problem in
Eq. (1) is an optimal transport problem. Intuitively, it tries
to find the best ”transport” strategy such that the overall cost
of moving (a subset of) fingers F to keys Kt is minimized.
We solve this optimization problem with a modified Jonker-
Volgenant algorithm [13] from SciPy [56] and use the optimal
combinations (i∗, j∗) as the fingering for the agent.

We define a reward rOT
t based on dOT

t to encourage the agent
to move the fingers close to the keys Kt, which is defined as:

rOT
t =

{
exp(c · (dOT

t − 0.01)2) if dOT
t ≥ 0.01,

1.0 if dOT
t < 0.01.

(2)

c is a constant scale value and we use the same value as Tassa
et al. [53]. The overall reward function is defined as:

rt = rOT
t + rPress

t + rSustain
t + α1 · rCollision

t + α2 · rEnergy
t (3)

rPress and rSustain
t represent the reward for correctly pressing

the target keys and the sustain pedal. rCollision
t encourages the

agent to avoid collision between forearms and rEnergy
t prefers

energy-saving behaviors. α1 and α2 are coefficient terms, and
α1 = 0.5 and α2 = 5 · 10−3 are adopted. Our method is
compatible with any RL methods, and we use DroQ [18] here.

B. Analysis of Specialist RL Agents

The performance of specialist RL agents decides the quality
of our dataset. In this section, we investigate how our specialist
RL agents perform. We are interested in i) how the proposed
OT-based finger placement helps learning, ii) how the fingering
discovered by the agent itself compares to human fingering,
and iii) how our method transfers to other embodiments.

Results In Fig. 2, we compare our method with RoboPianist-
RL both with and without human fingering. We use the
same DroQ algorithm with the same hyperparameters for all
experiments. RoboPianist-RL includes human fingering in its
inputs, and the fingering information is also used in the reward
function to force the agent to follow this fingering. Our method,
marked as OT, removes the fingering from the observation
space and uses OT-based finger placement to guide the agent
to discover its own fingering. We also include a baseline, called
No Fingering, that removes the fingering entirely. The first
two columns of Fig. 2 show that our method without human-
annotated fingering matches RoboPianst-RL’s performance on
two different songs. Our method outperforms the baseline

without human fingering by a large margin, showing that the
proposed OT-based finger placement boosts agent learning. The
proposed method works well even on challenging songs. We
test our method on Flight of the Bumblebee and achieve 0.79
F1 score after 3M training steps.

Analysis of the Learned Fingering We now compare
the fingering discovered by the agent itself and the human
annotations. In Fig. 3, we visualize the sample trajectory of
playing French Suite No.5 Sarabande and the corresponding
fingering. We found that although the agent achieves strong
performance for this song (the second plot in Fig. 2), our
agent discovers different fingering compared to humans. For
example, for the right hand, humans mainly use the middle
and ring fingers, while our agent uses the thumb and first
finger. Furthermore, in some cases, human annotations are not
suitable for the robot hand due to different morphologies. For
example, in the second time step of Fig. 3, the human uses the
first finger and ring finger. However, due to the mechanical
limitation of the robot hand, it can not press keys that far apart
with these two fingers, thus mimicking human fingering will
miss one key. Instead, our agent discovered to use the thumb
and little finger, which satisfies the hardware limitation and
accurately presses the target keys.

Cross Emboidments Labs usually have different robot
platforms, thus having a method that works for different
embodiments is highly desirable. We test our method on a
different embodiment. To simplify the experiment, we disable
the little finger of the Shadow robot hand and obtain a
four-finger robot hand, which has a similar morphology to
Allegro [2] and LEAP Hand [50]. We evaluate the modified
robot hand on the song French Suite No.5 Sarabande, where our
method achieves a 0.95 F1 score, similar to the 0.96 achieved
with the original robot hands. In the bottom row of Fig. 3,
we visualize the learned fingering with four-finger hands. The
agent discovers different fingering compared to humans and the
original hands but still accurately presses active keys, meaning
our method is compatible with different embodiments.

C. RP1M Dataset

To facilitate the research on dexterous robot hands, we collect
and release a large-scale motion dataset for piano playing. Our
dataset includes ∼1M expert trajectories covering ∼2k musical
pieces. For each musical piece, we train an individual DroQ
agent with the method introduced in Section III-A for 8 million



OT
Human

OT
Human

Five-finger 
Hands

Thumb First Finger Middle Finger Ring Finger Little Finger

OT
Human

OT
Human

Four-finger 
Hands

Thumb First Finger Middle Finger Ring Finger Little Finger
Fig. 3. Comparison of fingering discovered by the agent itself and human annotations.

A0
A#0 B0 C1

C#1 D1
D#1 E1 F1

F#1 G1
G#1 A1

A#1 B1 C2
C#2 D2

D#2 E2 F2
F#2 G2

G#2 A2
A#2 B2 C3

C#3 D3
D#3 E3 F3

F#3 G3
G#3 A3

A#3 B3 C4
C#4 D4

D#4 E4 F4
F#4 G4

G#4 A4
A#4 B4 C5

C#5 D5
D#5 E5 F5

F#5 G5
G#5 A5

A#5 B5 C6
C#6 D6

D#6 E6 F6
F#6 G6

G#6 A6
A#6 B6 C7

C#7 D7
D#7 E7 F7

F#7 G7
G#7 A7

A#7 B7 C8

Key

0

25000

50000

75000

K
ey

 P
re

ss
 C

ou
nt

Histogram of Pressed Keys

Key Color
white
black

1000 2000 3000 4000 5000 6000 7000
Num of Keys

0

20

40

60

N
um

 o
f M

us
ic

al
 P

ie
ce

s Num. of Active Keys Per Musical Piece

0.5 0.6 0.7 0.8 0.9 1.0
F1 Score

0

25

50

75

N
um

 o
f M

us
ic

al
 P

ie
ce

s

0.00

0.25

0.50

0.75

1.00

C
D

F

Histogram of F1 Scores

Fig. 4. Statistics of our RP1M dataset. (Top) Histogram of pressed keys in our RP1M dataset. (Bottom Left) Distribution of the number of keys to press in
one musical piece. (Bottom Right) Distribution of F1 scores in our dataset.

environment steps and collect 500 expert trajectories with the
trained agent. We chunk each sheet music every 550 time
steps, corresponding to 27.5 seconds, so that each run has
the same episode length. The sheet music used for training is
from the PIG dataset [35] and a subset (1788 pieces) of the
GiantMIDI-Piano dataset [22].

In Fig. 4, we show the statistics of our collected motion
dataset. The top plot shows the histogram of the pressed keys.
We found that keys close to the center are more frequently
pressed than keys at the corner. Also, white keys, taking 65.7%,
are more likely to be pressed than black keys. In the bottom left
plot, we show the distribution of the number of keys to press in
each musical piece. It roughly follows a Gaussian distribution,
and 90.70% musical pieces in our dataset include 1000-4000
active keys. We also include the distribution of F1 scores of
trained agents used for collecting data. We found most agents
(79.00%) achieve F1 scores larger than 0.75, and 99.89% of
the agents’ F1 scores are larger than 0.5. The distribution
of F1 scores reflects the quality of the collected dataset. We

empirically found agents with F1 score ≥ 0.75 are capable of
playing sheet music reasonably well with only minor errors.
Agents with ≤ 0.5 F1 scores usually have notable errors due
to the difficulty of songs or the mechanical limitations of the
Shadow robot hand. We also include the F1 scores for each
piece in our dataset.

IV. CONCLUSION

In this paper, we propose a large-scale motion dataset named
RP1M for piano playing with bi-manual dexterous robot hands.
RP1M includes 1M expert trajectories for playing 2k musical
pieces. To collect such a diverse dataset for piano playing, we
lift the need for human-annotated fingering in the previous
method by introducing a novel automatic fingering annotation
approach based on optimal transport. On single songs, our
method matches the baselines with human-annotated fingering
and can be adopted across different embodiments. We believe
the RP1M dataset, with its scale and quality, forms a solid step
towards empowering robots with human-level dexterity.



APPENDIX

A. Related Work

Dexterous Robot Hands The research of dexterous robot
hands aims to replicate the dexterity of human hands with
robots. Many previous works [47, 5, 17, 4, 32, 14, 8, 23]
use planning to compute a trajectory followed by a controller,
thus require an accurate model of the robot hand. Closed-
loop approaches have been developed by incorporating sensor
feedback [26]. These methods also require an accurate model
of the robot hand, which can be difficult to obtain in practice,
especially considering the large number of active contacts
between the hand and objects.

Due to the difficulty of actually modeling the dynamics of
the dexterous robot hand, recent methods resort to learning-
based approaches, especially RL, which has achieved huge
success in both robotics [25, 1, 36] and computer graphics [37].
To ease the training of dexterous robot hands with a large
number of degrees of freedom (DoFs), demonstrations are
commonly used [24, 43, 42, 20]. Due to the advance of both
RL algorithms and simulation, recent work shows impressive
results on dexterous hand manipulation tasks without human
demonstrations. Furthermore, the policy trained in the simulator
can further be deployed on real dexterous robot hands via sim-
to-real transfer [9, 60, 10, 59, 3, 41].

Piano Playing with Robots Piano playing with robot
hands has been investigated for decades. It is a challenging
task since bi-manual robot hands should precisely press the
right keys at the right time, especially considering its high-
dimensional action space. Previous methods require specific
robot designs [21, 28, 54, 19, 7, 63] or trajectory pre-
programming [27, 62]. Recent methods enable piano playing
with dexterous hands through planning [48] or RL [58] but are
limited to simple music pieces. RoboPianist [61] introduces a
benchmark for robot piano playing and demonstrates strong RL
performance, but requires human fingering labels and performs
worse in multi-task learning.

Human fingering informs the agent of the correspondence
between fingers and pressed keys at each time step. These
labels require expert annotators and are, therefore, expensive
to acquire in practice. Several approaches learn fingering
from human-annotated data with different machine learning
methods [35, 45, 46]. Moryossef et al. [33] extract fingering
from videos to acquire fingering labels cheaply. Ramoneda
et al. [44] propose to treat piano fingering as a sequential
decision-making problem and use RL to calculate fingering but
without considering the model of robot hands. Shi et al. [51]
automatically acquires fingering via dynamic programming,
but the solution is limited to simple tasks. In our paper, we
do not introduce a separate fingering model, instead, similar
to human pianists, fingering is discovered automatically while
playing the piano.

Datasets for Dexterous Robot Hands Most large-scale
datasets of dexterous robot hands focus on grasping various
objects. To get suitable grasp positions, some methods utilize
planners [29, 57, 34], while others use learned grasping

policies [59], or track grasping motions of humans and imitate
these motions on a robot hand [30]. Compared to the abundance
of datasets for grasping, there exist relatively few datasets for
object manipulation with dexterous robot hands. The D4RL
benchmark [16] provides small sets of expert trajectories
for four such tasks, consisting of human demonstrations and
rollouts of trained policies. Zhao et al. [64] provide a small
object manipulation dataset that utilizes a low-cost bi-manual
platform with simple parallel grippers. Chen et al. [11] collect
offline datasets for two simulated bi-manual manipulation tasks
with dexterous hands. Table I summarizes the characteristics of
these existing datasets. To the best of our knowledge, our RP1M
dataset is the first large-scale dataset of dynamic, bi-manual
manipulation with dexterous robot hands.

B. Benchmarking

The analysis in the previous section highlighted the diversity
of highly dynamic piano-playing motions in the RP1M dataset.
In this section, we assess the multi-task imitation learning
performance of several widely used methods on our benchmark.
To be specific, the objective is to train a single multi-task policy
capable of playing various music pieces on the piano. We train
the policy on a portion of the RP1M dataset and evaluate its
in-distribution performance (F1 scores on songs included in
the training data) and its generalization ability (F1 scores on
songs not present in the training data).

Baselines We evaluated Behavior Cloning (BC) [40],
Implicit Behavioral Cloning (IBC) [15], BC with a Recur-
rent Neural Network policy (BC-RNN) [31], and Diffusion
Policy [12]. BC directly learns a policy by using supervised
learning on observation-action pairs from expert demonstrations.
IBC learns an implicit policy as an energy-based model
conditioned on observation and action. BC-RNN uses an RNN
as the policy network to encode a history of observations.
Diffusion Policy learns to model the action distribution by
inverting a process that gradually adds noise to a sampled
action sequence. We used a CNN-based Diffusion Policy
with DDIM [52] as the sampler. We use the same code and
hyperparameters as Chi et al. [12].

Experiment Setup We first train the policies with 3
different sizes of expert data: 50, 150, and 300 songs. We then
evaluate the trained policies on 3 different groups of music
pieces. (1) In-distribution songs: music pieces that overlap
with the training sets. It shows the multitasking performance of
the trained policies. (2) Easy out-of-distribution (OOD) songs:
simple music pieces that do not overlap with the training songs.
Those pieces are easy to play, with only slow motions and
short horizons. (3) Hard out-of-distribution songs: difficult
music pieces that do not overlap with the training songs. They
contain more diverse motions and longer horizons. The out-
of-distribution evaluation assesses the zero-shot generalization
ability of the trained policies. We report the average F1 scores
of each group of music pieces for policies trained with each
baseline method.

Discussion As shown in Table II, most baselines including
BC (256), IBC, and BC-RNN have worse performance. This



TABLE I
EXISTING DATASETS ON DEXTEROUS OR BI-MANUAL ROBOTIC MANIPULATION.

Dataset Task Dexterous
hands Bi-manual Dynamic

tasks
Demonstra-

tions

DexGraspNet [57] grasping � 1.3M

RealDex [30] grasping � 2.6K

UniDexGrasp [59] grasping � 1.1M

ALOHA [64] manipulation � 825

Bi-DexHands [11] manipulation � � partially ∼20K

D4RL [16] (Adroit) manipulation � 30K

RP1M (ours) piano � � � 1M

TABLE II
COMPARISON RESULTS OF MULTI-TASK IMITATION LEARNING.

BCTask #music
256 1024 4096

IBC BC-RNN Diffusion Policy

50 0.086 0.621 0.200 0.120 0.174 0.706
150 0.124 0.245 0.176 0.088 0.121 0.578In-Dist.
300 0.084 0.249 0.102 0.083 0.025 0.596
50 0.06 0.278 0.109 0.128 0.204 0.446
150 0.085 0.257 0.172 0.058 0.050 0.465Easy OOD
300 0.056 0.236 0.112 0.056 0.039 0.486
50 0.141 0.244 0.217 0.183 0.221 0.303
150 0.155 0.275 0.229 0.148 0.105 0.432Hard OOD
300 0.145 0.253 0.181 0.144 0.081 0.440

is because of the limited model capacity. We increase the
model capacity of the BC baseline by increasing the hidden
dimension of a 3-layer MLP from 256 to 1024 and we observe
clear improvement in both in-distribution evaluation and OOD
evaluation. However, when further increasing the model size to
a 6-layer MLP with 4096 hidden dimensions, a performance
drop is observed, meaning directly increasing the model
capacity of MLP causes issues for model training. Among
the baselines we have evaluated, Diffusion Policy performs the
best in all cases, demonstrating that it is a strong baseline for
the piano-playing task. Furthermore, when increasing the size
of the training set, the OOD performance gradually increases.
However, for in-distribution evaluation, Diffusion Policy still
has a lower F1 score than our RL specialist and we observed
a performance drop when increasing the dataset size, which
indicates the Diffusion Policy has issues fitting our dataset
well. This can be caused by multiple reasons, e.g., the limited
model capacity or improper hyperparameters but we leave it
as future work.

C. Limitations

Our paper has limitations in several aspects. Firstly, although
our method lifts the requirement of human-annotated fingering,
enabling RL training on diverse songs, our method still fails to
achieve strong performance on challenging songs due to fast
rhythms and mechanical limitations of the robot hands. This
could be solved by proposing a better RL method and improving

the hardware design of the robot hands. Secondly, our dataset
only includes proprioceptive observations. However, humans
play piano with multi-modal inputs, including vision, tactile
sensing, and auditory information. Enabling the agent to play
the piano from such rich input sources is an intriguing direction.
Lastly, although we demonstrate better zero-shot generalization
performance than RoboPianist-MT [61], there is still a gap
between our best multi-task agent and RL specialists, which
requires future investigation. We believe our RP1M dataset
is a fundamental step toward empowering robot hands with
human-level dexterity.

D. RP1M Dataset Collection Details

1) Reward formulation: In Equation (3) , we give the overall
reward function used in our paper. We now give details of
each term. rPress

t indicates whether the active keys are correctly
pressed and inactive keys are not pressed. We use the same
implementation as [61], given as: rPress

t = 0.5·( 1
K

∑K
t g(||kis−

1||2)) + 0.5 · (1− 1fp). K is the number of active keys, kit is
the normalized key states with range [0, 1], where 0 means
the i-th key is not pressed and 1 means the key is pressed. g
is tolerance from Tassa et al. [53], which is similar to the one
used in Equation (2). 1fp indicates whether the inactive keys
are pressed, which encourages the agent to avoid pressing keys
that should not be pressed. rSustain

t encourages the agent to press
the pseudo sustain pedal at the right time, given as rSustain

t =
g(st − starget

t ). st and starget
t are the state of current and target

sustain pedal respectively. rCollision
t penalizes the agent from

collision, defined as rCollision
t = 1− 1collision, where 1collision is 1

if collision happens and 0 otherwise. rEnergy
t prioritizes energy-

saving behavior. It is defined as rEnergy
t = |τjoints|⊺|vjoints|. τjoints

and vjoints are joint torques and joint velocities respectively.
2) Training details:

a) Observation Space: Our 1144-dimensional observation
space includes the proprioceptive state of dexterous robot hands
and the piano as well as L-step goal states obtained from the
MIDI file. In our case, we include the current goal and 10-step
future goals in the observation space (L=11). At each time step,
an 89-dimensional binary vector is used to represent the goal,
where 88 dimensions are for key states and the last dimension



is for the sustain pedal. The dimension of each component in
the observation space is given in Table III.

TABLE III
OBSERVATION SPACE.

Observations Dim
Piano goal state L · 88

Sustain goal state L · 1
Piano key joints 88

Piano sustain state 1
Fingertip position 30

Hand state 46

b) Training Algorithm & Hyperparameters: Although our
proposed method is compatible with any reinforcement learning
method, we choose the DroQ [18] as Zakka et al. [61] for
fair comparison. DroQ is a model-free RL method, which uses
Dropout and Layer normalization in the Q function to improve
sample efficiency. We list the main hyperparameters used in
our RL training in IV.

TABLE IV
HYPERPARAMETERS USED IN OUR RL AGENT.

Hyperparameter Value
Training steps 8M
Episode length 550
Action repeat 1
Warm-up steps 5k
Buffer size 1M
Batch size 256
Update interval 2
Piano environment

Lookahead steps 10
Gravity compensation True
Control timestep 0.05
Stretch factor 1.25
Trim slience True

Agent
MLPs [256, 256, 256]
Num. Q 2
Activation GeLU
Dropout Rate 0.01
EMA momentum 0.05
Discount factor 0.88
Learnable temperature True

Optimization
Optimizer Adam
Learning rate 3e-4
β1 0.9
β2 0.999
eps 1e-8

3) Computational resources: We train our RL agents on the
cluster equipped with AMD MI250X GPUs, 64 cores AMD
EPYC “Trento” CPUs, and 64 GBs DDR4 memory. Each agent

takes 21 hours to train. The overall data collection cost is
roughly 21 hours * 2089 agents = 43,869 GPU hours.

E. MuJoCo XLA Implementation

To speed up training, we re-implement the RoboPianist
environment with MuJoCo XLA (MJX), which supports
simulation in parallel with GPUs. MJX has a slow performance
with complex scenes with many contacts. To improve the
simulation performance, we made the following modifications:

• We disable most of the contacts but only keep the contacts
between fingers and piano keys as well as the contact
between forearms.

• Primitive contact types are used whenever possible.
• The dimensionality of the contact space is set to 3.
• The maximal contact points are set to 20.
• We use Newton solver with iterations=2 and

ls iterations=6.
After the above modifications, with 1024 parallel environments,
the total steps per second is 159,376.

We use PPO implementation implemented with Jax to
fully utilize the paralleled simulation. The PPO with MJX
implementation is much faster than the DroQ implementation,
which only takes 2 hours and 7 minutes for 40M environment
steps on the Twinkle Twinkle Little Star song while as a
comparison, DroQ needs roughly 21 hours for 8M environment
steps. However, the PPO implementation fails to achieve a
comparable F1 score as the DroQ implementation as shown
in Fig. 5. Therefore, we use the DroQ implement with the
CPU version of the RoboPianist environment.
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Fig. 5. Comparison of the RL performance between DroQ and PPO with
the MJX implementation of the RoboPianist environment. PPO+MJX is faster
to run but has a worse performance than DroQ. We use DroQ with the CPU-
version RoboPianist environment when training our RL agents.

F. Discussion on Real-world Applications

Since we can access all observations provided by the simu-
lator, in this paper, we assume full observation is accessible. In



real-world scenarios, full observation is typically unattainable,
hence, one needs to resort to sensor measurements such as
tactile sensing, hand states, and pixel inputs. Including these
sensor measurements in our dataset would be interesting,
which we plan to explore in future work. Even then, a
significant gap between simulation and real setup will remain
due to the unmatched dynamics of the keyboard and robot.
Potential approaches to address the sim-to-real gap include
data augmentations [36, 25] and teacher-student training, where
a policy derived from our dataset serves as the teacher. Our
dataset lays the groundwork for bridging the sim-to-real gap
by enabling high-performance multi-task agents in simulation.
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Intelligent Systems, Tübingen (Germany). We acknowledge
CSC – IT Center for Science, Finland, for awarding this project
access to the LUMI supercomputer, owned by the EuroHPC
Joint Undertaking, hosted by CSC (Finland) and the LUMI
consortium through CSC. Yi Zhao, Juho Kannala, and Joni
Pajarinen acknowledge funding by the Research Council of
Finland (345521 353138, 327911). Yi Zhao thanks Yuxin Hou
for inspiring this project and Wenyan Yang for the discussion
of Optimal Transport.

REFERENCES

[1] Ilge Akkaya, Marcin Andrychowicz, Maciek Chociej,
Mateusz Litwin, Bob McGrew, Arthur Petron, Alex Paino,
Matthias Plappert, Glenn Powell, Raphael Ribas, et al.
Solving Rubik’s cube with a robot hand. arXiv preprint
arXiv:1910.07113, 2019.

[2] Allegro. https://www.wonikrobotics.com/
research-robot-hand.

[3] Arthur Allshire, Mayank MittaI, Varun Lodaya, Vik-
tor Makoviychuk, Denys Makoviichuk, Felix Widmaier,
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