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Abstract

Recent advances in pretrained 2D diffusion models have significantly improved
visual prior guidance for 3D content generation. However, this process often lacks
geometric constraints, leading to spatial perception hallucinations and multi-view
inconsistencies. To address this, we introduce Hallo3D, a tuning-free method for
3D content generation that leverages the geometric perception capabilities of large
multi-modal models to detect and mitigate these hallucinations. Our approach
follows a generation-detection-correction paradigm, using multi-modal inconsis-
tencies as query information to guide the detection of hallucinations and formulate
enhanced negative prompts that ensure consistent renderings. Additionally, we
propose a denoising strategy that employs attention mechanisms to maintain con-
sistency in color and texture across multiple views during visual guidance. Our
method is data-independent, easily integrates with existing 3D content generation
frameworks, and supports both text-driven and image-driven approaches. Extensive
experiments demonstrate that our method significantly improves the consistency
and quality of generated 3D content, particularly in mitigating hallucinations
common with 2D pretrained models.

1 Introduction

Recent studies on 3D content generation have made significant progress, emerging as a central
research focus in computer vision and computer graphics. The approaches for 3D content generation
can be categorized into two primary categories: those based on 2D priors and those based on 3D priors.
The strategies utilizing 2D priors typically learn 3D representations by approximating the probability
distribution of 2D rendered images relative to a pre-trained diffusion model. This approximation is
achieved during the visual guidance phase through a sophisticated optimization technique known as
Score Distillation Sampling (SDS) [40].

However, methods based on 2D priors often suffer from overfitting to specific viewpoints of rendered
images, resulting in generated 3D content that deviates from the expected distribution [2]. This over-
fitting leads to spatial perception inaccuracies, such as the Janus problem, where the generated objects
display implausible duplications of features like faces or limbs, as depicted in Fig.1. An intuitive
would be to learn priors from high-quality 3D data [19, 36, 50, 65, 62, 29, 18]. However, the limited
availability and the often sparse supervision of 3D data pose significant challenges to maintaining view
consistency and enhancing the generalizability of the generated content [23, 21]. Moreover, due to 3D
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prompt: A spiderman model with his arms open.

prompt: A ballerina in a tutu is practicing dancing.

Hallo3DBaselines Hallo3DBaselines

prompt: A graceful gazelle is sprinting.

prompt: A standing knight in full armor.

Figure 1: 3D Content Generation Results between Hallo3D (ours) and Baseline Model. Hallo3D can
effectively solve the "Janus" problem and improve the multi-view consistency of the 3D generation.

generation tasks spanning a diverse array of domains, the scalability of data-driven models remains
markedly constrained, limiting their applicability across a comprehensive spectrum of potential uses.

0º 360º

Hallo3D (ours)

Baselines

Figure 2: Illustration of the Janus problem.
The first two rows show overfitting with repeated
frontal views, while the third row, using Hallo3D,
achieves more consistent results. This highlights
the issue and clarifies the expected outcome.

To mitigate the hallucination problem and en-
sure view-consistent generation, we leverage the
large multi-modal models to infer and adjust
the geometric structures of the generated con-
tent. These models can recognize spatial rela-
tionships and evaluate the structural consistency
of visual contexts by interpreting 3D elements
such as lighting and proportion from 2D render-
ings. Building on this observation, we propose a
novel generation-detection-correction paradigm.
In this paradigm, we utilize multi-modal models
to refine rendered images, ensuring visually co-
herent results. Our strategy improves cross-view
consistency without relying on the prompt pro-
vided for diffusion guidance, thereby bridging
text-driven and image-driven methods.

In light of the findings above, we present
Hallo3D, a novel, tuning-free approach that significantly enhances the multi-view consistency
of 3D generation and is applicable across various generation methods. Our approach comprises
three core techniques. Multi-Modal Hallucination Detection: This technique detects concrete hal-
lucinations in renderings by leveraging large multi-modal models to represent inconsistency query
information. Prompt-Enhanced Reconsistency: Utilizing the detection results from Multi-Modal
Hallucination Detection as an enhanced negative prompt to precisely eliminate inconsistent artifacts
in the renderings. Multi-view Appearance Alignment: This technique ensures uniform color and
texture in renderings from different viewpoints by controlling attention in the diffusion de-noising
process. By integrating these techniques, Hallo3D effectively addresses the challenges of maintaining
consistency in 3D generation, providing a robust solution applicable to various generative methods.
Experimental results demonstrate that our method exhibits a significant advantage in multi-view
consistency compared to baseline models and can be robustly applied to various 3D generation tasks.

Our contributions can be summarized as follows:

• We propose Hallo3D, a novel tuning-free method that significantly enhances the multi-view
consistency of 3D content generation and can be widely applied across various 3D generation
paradigms, achieving outstanding experimental results.

• We demonstrate that large multi-modal models, unconstrained by geometry, can infer
geometric structures and be utilized to detect and mitigate hallucinations in 3D generation.

• We introduce an optimization strategy that aligns the structures and surfaces of 3D content
across views and addresses artifacts and hallucination through enhanced prompts.
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2 Related Work

Text-to-3D Generation. The evolution of diffusion models has markedly enhanced text-to-3D
generation. DreamFusion [40] initiated text-guided 3D modeling by using visual priors from 2D
diffusion models to train 3D architectures, incorporating MipNeRF 360 [3] and Imagen [47]. While
NeRF-based methods [33, 32, 48, 66, 59, 22, 12, 24, 10] handle complex lighting well, they are
slower due to continuous parameter updates. In contrast, 3D Gaussian Splatting (3DGS) methods
[20, 56, 5, 63, 39] have improved rendering speeds, showing their efficacy in complex scenarios.

Image-to-3D Generation. Images from specific views of a 3D model demonstrate improved visual
consistency for 3D generation tasks. Image-based methods [53, 11, 30, 54, 1, 41] typically surpass
text-based approaches by leveraging viewpoint-specific ground truth. 3D-aware image generation
techniques [61, 7] utilize neural networks to enhance rendering beyond the primary viewpoint,
although training data scarcity [23, 21] remains a challenge. Recent strides in integrating 3D visual
data into 2D diffusion models [19, 36] have notably enhanced image-based 3D generation, reducing
perceptual errors and improving generative quality.

Methods for Enhancing Multi-view Consistency. The primary challenge in enhancing 3D gen-
eration consistency is addressing hallucinations from 2D pre-trained diffusion models. A common
strategy involves integrating additional 3D information into the diffusion process via fine-tuning
[50, 65, 62, 29, 18]. This includes training models to handle consistent 3D subjects [46, 44], transpar-
ent backgrounds [64], and diverse viewpoints [49]. Recent advancements have also adjusted prompt
embeddings to enhance viewpoint accuracy [17, 2], although this remains limited for non-orthogonal
views. Alternatives include using geometric methods [25] or treating 3D generation analogously to
video generation [57], though these tend to be framework-specific. In contrast, our method effectively
optimizes arbitrary viewpoints, making it versatile across different 3D frameworks.

3 Methodology

3.1 Preliminaries

Diffusion Models. The diffusion model [15] has a fozrward diffusion process with diffusion steps
from 0 to T , which degrades the original sample x0 into pure noise xT ,

xt =
√
αtx0 +

√
1− αtϵ, ϵ ∼ N (0, I), (1)

where t is the noise injection level, and α := (α1, . . . , αT ) ∈ RT≥0 are hyper-parameters to determine
noise scales at T diffusion steps, and the reverse diffusion process is used during inference to generate
x0 from xt. In text-guided diffusion models [52], the model is conditioned on text prompts P , which
are converted into text embeddings via a text encoder such as CLIP [43]. The diffusion model ϵϕ is
trained using the MSE loss between the predicted noise ϵ̂ϕ and the actual noise ϵ,

L(ϕ) = Et∼U(1,T ),ϵ∼N (0,I)∥ϵ− ϵϕ(xt, t, P )∥22,
where U(1, T ) represents a uniform distribution over the set {1, · · · , T}, and N (µ,Σ) represents a
multivariate Gaussian distribution with mean µ and covariance Σ. To enhance the alignment between
text and images, Classifier-free guidance (CFG) [16] guides the generation of samples using

ϵ̂ϕ(xt, t, P, ∅) = ϵϕ(xt, t, ∅) + s (ϵϕ(xt, t, P )− ϵϕ(xt, t, ∅)) , (2)

where ∅ is a special null text prompt representing the unconditional case, and s > 0 is the guidance
scale. Increasing the guidance scale improves text-image alignment but reduces diversity. In practice,
the ∅ text prompt is replaced with a negative prompt P− consisting of negative descriptions [9] to
avoid undesired content in the generated samples.

Score Distillation Sampling. Score Distillation Sampling (SDS) employs vision priors from
pre-trained 2D diffusion models to supervise 3D models, establishing it as a foundational learning
method in the domain of 3D generation, initially proposed by DreamFusion [40]. A 3D representation
model, parameterized by θ, and the pre-trained diffusion model ϵϕ, together enable the rendering of
an image x = g(θ, c) from the 3D content, where g(·) is a differentiable generator to render x and c
is the camera pose. To ensure that x consistently exhibits high quality from any view and to align the
probability of x with p(ϕ), SDS introduces a score estimation function ϵ̂ϕ(xt; t, P ). This function
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Figure 3: Illustration of our pipeline. We jointly optimize our model using LSDS and LCG. For
LSDS, we identify a focal view from multi-view renderings based on the camera pose, utilizing it as
the keys (K) and values (V) to align all the four images using attention. This process harmonizes
the appearance and feeds the output into the 2D Diffusion on the left, which plays a crucial role in
refining the noise prediction. For LCG, we query hallucinations and inconsistencies in the rendering
using an LMM and apply the results, outputted as enhanced negative prompt, to the following image
optimization process to re-consistent a high-quality image. We calculate the LCG based on the
differences between the two images, thereby enhancing the consistency of the 3D content.

predicts the noise ϵ̂ϕ based on the text condition P and the noisy image xt, into which Gaussian
noise ϵ has been injected. Furthermore, by calculating the discrepancy between ϵ̂ϕ and ϵ, the score
function identifies the gradient direction for updating parameter θ, thereby enhancing the training of
the 3D model. The specific computation of the gradient is as follows:

∇θLSDS(ϕ,x = g(θ)) ≜ Et,ϵ
[
w(t) (ϵ̂ϕ(xt;P, t)− ϵ)

∂x

∂θ

]
, (3)

where w(t) is a weighting function.

3.2 Multi-view Appearance Alignment

Building upon our understanding of the SDS as discussed in Sec. 3.1, we further explored the
impact of SDS on the consistency of appearances in 3D generation. We observed that SDS processes
images from only one view at a time, which contradicts our intuition that enhancing 3D multi-view
consistency should involve the simultaneous processing of multiple viewpoint images. Experimental
results demonstrate that this approach led to a lack of interaction between images from different
views during the training process, resulting in the loss of some surface information during the noise
prediction process, as shown in Fig. 7 in the ablation study.

To circumvent the limitations of SDS, which typically favors image generation from a single view,
we propose a "Multi-view Appearance Alignment" strategy. This approach introduces a consistent
denoising method ϵ̃ϕ(·) that incorporates an attention mechanism AAttn(·), enabling the rendering of
multiple images from random views and providing a broader perspective compared to techniques
focused primarily on single-view image generation [40, 58].

Specifically, inspired by recent advancements in diffusion models [27, 14, 4, 55, 35], which suggest
that query features within attention spaces primarily shape image structure and layout, while key
and value features influence texture, our method leverages this insight. As illustrated in the top
right corner of Fig. 3, we select a focal view i based on the camera pose, using the image from this
viewpoint to provide the key and value features in the attention module. These are used to compute
query features across all views, ensuring alignment of appearances. The attention is defined by the
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GPT-4V

LLaVA

Demonstration of the Spatial Structure Inference Capabilities Large Multi-modal Models

The extent of the blur on the background dancers appear slightly exaggerated and multiple subjects 
appear in the image, suspected to be ghostly figures.

This image was rendered from the 3D generated by AI, and you can look at the spatial structure of the 
object in the picture to see if there are any inconsistencies with body shape, perspective, surface texture, 
color, and so on.

You are a master of graphic restoration. Based on your analysis above, summarize the 3D inconsistency problems as 
negative prompts for restoring the image I provided. Three references are as bellow:
Negative Prompt: "multi-head, unnatural lighting, smooth appearance, distorted color, long neck"

The whole photo, especially the dancer's face, is blurry. Subjects in the picture are confusing and there 
may be structural inconsistencies.

Negative Prompt: ”ghost image, incongruous perspective, obscured body positioning, indistinct fingers and feet due to 
excessive blur, imprecise shadowing, lack of texture detail, absence of volumetric depth in clothing"

Negative Prompt: ”blurry background, duplicated feature, unsharp edges, lack of detail clarity, artificial object"

Figure 4: A multi-modal case study for evaluating the capabilities of LMMs in 3D generation
tasks. The first round of dialogue demonstrates that LMMs can infer structural consistency from 3D
rendered images, while the second round shows that LMMs can respond in specific formats, allowing
us to subsequently identify the negative prompts output using regular expressions.

following formula:

AAttn(Q,Ki, Vi) = Softmax
(
QKT

i√
d

)
· Vi, (4)

where AAttn(·) is the appearance attention, with Ki and Vi as the key and value features correspond-
ing to the image rendered from the focal view i, and Q as the query feature from all views. The key
and value are derived from the focal view, while each of the four views calculates a distinct query. In
the denoising strategy ϵ̃ϕ(·), this attention mechanism functions as cross-attention, aligning features
from all views with the focal view to ensure consistent appearances. This process occurs within the
U-Net network [45] in ϵ̃ϕ(·), prior to the cross attention with the prompt.

3.3 Multi-modal Hallucination Detection

As shown in Fig. 4, the rendering image in the top right corner of the figure exhibits significant
inconsistencies, due to the limitations of 2D pre-trained models in comprehending spatial concepts.
This often leads to hallucinations and overfitting to specific viewpoints. However, we believe
that Large Multi-modal Models (LMMs) have the capability to reason about and mitigate these
hallucinations. To demonstrate this, we designed a two-phase inquiry involving LMMs, specifically
using high-performing GPT-4V [38] and LLaVA [26] as examples. The dialogue depicted in the
figure indicates that although LMMs were not explicitly trained with geometric constraints, they could
identify inconsistencies in the 3D renderings and categorize them as negative prompts. Additionally,
LMMs can standardize their output format based on a one-shot reference, making it easier for us to
extract negative prompts.

Specifically, in our model, we input one 2D rendered image alongside 3D-aware inquiry prompts,
denoted as PI , into the multi-modal large modal to assist in automatically identifying inconsistencies
present during the 3D generation process. To further mitigate hallucinations and correct inconsisten-
cies, we have standardized the output format of the LMM, enabling it to accurately generate negative
prompts based on the provided shots. These negative prompts can then be used to rectify distorted
images in subsequent steps. Given their effectiveness in purposefully addressing inconsistencies, we
refer to them as "Enhanced Negative Prompts". We formalize this process as follows:

P−
E = Dψ(x, PI), (5)

where Dψ is the LMM parameterized by ψ, and P−
E is the enhanced negative prompt.

3.4 Prompt-Enhanced Re-consistency

With the enhanced negative prompt P−
E introduced in Sec. 3.3, a straightforward method to refine

2D renderings involves employing image editing algorithms to address inconsistencies. However,
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existing approaches predominantly focus on adjustments to the null prompt [34] or the modification
of positive prompts [14], which are generally ineffectual for altering the geometric structures in 2D
images derived from 3D models. To address this limitation, we introduce a novel module for achieving
re-consistency in 2D renderings, termed “Prompt-Enhanced Re-consistency,” which leverages P−

E to
effectively refine the geometric fidelity of the rendered images.

We regenerate the 2D rendered image x0 under the guidance of P−
E . Specifically, to preserve the

original semantic information of x0, we employ Denoising Diffusion Implicit Models (DDIM) [51]
to invert theimage x0 to its noisy representation xT . Subsequently, we apply DDIM sampling to
generate the consistent versions of the image, denoted as x̂0, from xT as follows:

x̂t−1 =

√
αt−1

αt
x̂t + (

√
1− αt−1 −

√
αt−1(1− αt)

αt
)ϵ̃ϕ(x̂t, t, P

+, P−
E ) (6)

where ϵ̃ϕ(x̂t, t, P
+, P−

E ) is the denoising strategy incorporated the attention mechanism Attn(·) in
Sec. 3.2, and is adjusted by Classifier-Free Guidance (CFG) [16], with the null text prompt replaced
by the enhanced negative prompt P−

E . This approach ensures that the regenerated image retains its
core semantic integrity while improving its multi-view consistency. After completing T iterations as
delineated by Eq. 1, we successfully achieve the re-consistent image x̂0, effectively reconciling the
image consistency with its original semantic information.

Finally, we train the 3D model θ using the MSE loss LCG between x0 and x̂0 in the image space:

LCG ≜ E [(x̂0 − x0)] , (7)

It is worth noting that we apply Prompt-Enhanced Reconsistency only when the rendered image
exhibit complete semantic structure. Our detector, Dψ, assesses the semantic completeness of the
image. If the semantic structure is deemed incomplete or unclear, Dψ returns None, precluding
further processing. This ensures that enhancements are only applied to images that are adequately
prepared. The dependency of our enhancement process on the state of semantic completeness directly
influences the formulation of the final training loss for the 3D model, as detailed below:

L(θ) =
{LSDS + wLCG, if Dψ(x, PI) is not None,
LSDS, otherwise.

(8)

where w is set to balance the magnitude of LSDS and LCG. By incorporating LCG, which is only
applied when Dψ confirms the semantic readiness of the image, we ensure that our model focuses
on enhancing well-formed images. This selective application of LCG prevents further exacerbating
the quality of images already of poor quality. Simultaneously, it avoids misallocating resources to
images that do not benefit from the intended enhancements, thereby improving the efficiency and
effectiveness of our training process. For more implementation details, see the Appendix.A.

4 Expremients

In this section, we comprehensively evaluate Hallo3D’s performance within two categories of 3D
generation frameworks: text-to-3D and image-to-3D. We present comparative results with other
baseline models to highlight its capabilities. Additionally, to further substantiate the effectiveness of
Hallo3D in enhancing multi-view consistency in 3D generation, we have conducted an extensive user
study. Finally, we designed ablation experiments to validate the necessity of the framework’s design.

4.1 Experiment Setup

Baselines. We evaluated our method against several established baselines, demonstrating strong
performance across diverse frameworks. These include text-to-3D models like GaussianDreamer
[63], Score Jacobian Chain (SJC) [58], DreamFusion-IF [40], and Magic3D [24], as well as image-
to-3D models such as DreamGaussian [53] and Zero-1-to-3 [28], an extension of DreamFusion.
We also included methods based on NeRF [33] and 3DGS [20] for a comprehensive comparison.
Identical parameter configurations and seed values were maintained for fair comparison, using default
hyperparameters from the baselines’ open-source implementations. We employed the Threestudio
library [13] for SJC and Magic3D, and the official codebases for the other methods. Additionally, we
conducted experiments to evaluate the time consumption of Hallo3D, detailed in the Appendix.B.
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prompt: An elegant flamingo standing tall with long legs and pinkish-white feathers.

prompt: A sculpture of a dog in medieval style, sitting upright under a spotlight.

prompt: An electric sports car with aerodynamic curves and glossy blue appearance. 
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Figure 5: Qualitative comparison in text-driven 3D generation of HalloD and baseline models. To
provide a more straightforward comparison, we rendered both Hallo3D and the baseline models from
two identical and complementary angles.

Table 1: Quantitative comparisons in text-driven 3D generation
Metrics GaussianDreamer Hallo3D SJC Hallo3D DreamFusion-IF Hallo3D Magic3D Hallo3D
CLIP-Score B/32 ↑ 21.31 24.53 20.13 24.34 14.09 22.15 14.93 22.05
CLIP-Score B/16 ↑ 22.67 27.00 21.36 26.36 15.98 23.79 16.41 24.29
CLIP-Score L/14 ↑ 23.70 30.12 23.95 28.04 18.19 26.72 17.99 27.72

Table 2: User study in text-driven 3D generation
Metrics GaussianDreamer Hallo3D SJC Hallo3D DreamFusion-IF Hallo3D Magic3D Hallo3D
Multi-view Consistency ↑ 6.00 8.87 4.53 7.63 4.63 6.33 5.13 7.53
Overall Quality ↑ 5.53 8.67 4.77 7.80 4.17 7.37 4.60 8.03
Alignment with Prompt ↑ 5.57 8.87 5.63 7.40 4.70 7.03 5.17 7.37

Metrics. The field of 3D generation struggles with the absence of ground truth, complicating the
development of a unified evaluation metric. To address multi-view consistency, we reviewed existing
evaluation methods and identified 3D inconsistencies using CLIP-Score [43]. We generated 80 unique
3D prompts using ChatGPT [37] and arranged 16 cameras in a 360-degree configuration around the
z-axis. The average CLIP-Score across all views measured consistency.
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DreamGaussian Hallo3D Zero-1-to-3 Hallo3D

DreamGaussian Hallo3D Zero-1-to-3 Hallo3D

Figure 6: Qualitative comparison in image-driven 3D generation of Hallo3D and baseline models.
To facilitate a more direct comparison, we rendered both Hallo3D and the baseline models from two
complementary angles and magnified specific details.

Table 3: User study in image-driven 3D generation
Metrics DreamGaussian Hallo3D Zero-1-to-3 Hallo3D
Multi-view Consistency ↑ 8.40 9.15 7.25 7.81
Overall Quality ↑ 9.23 9.52 6.10 7.20
Alignment with Prompt ↑ 8.55 8.00 8.30 8.95

4.2 Quantitative Comparison with Baselines

In our qualitative evaluation for text-driven 3D content generation, we randomly selected three
prompts from a dataset of 80 and used two high-definition images from Google Images for image-
driven 3D generation. The results, shown in Fig. 5 and Fig. 6, reveal significant enhancements in
multi-view consistency. Baseline models often produced flawed figures, such as headless "flamingos"
or "dogs" with multiple heads and ears. In contrast, our models achieved more realistic and consistent
outputs, confirming the effectiveness of our approach. The 360-degree visualization is shown in
Appendix.C.

4.3 Qualitative Comparison with Baselines

Computational results. Following [63, 42, 53], we evaluated the CLIP-Score to assess the quality
and consistency of 3D generated contents, as presented in Tab.1. The results indicate that our approach
outperforms all baseline models, confirming the effectiveness of our method. It should be noted
that the existence of a ground truth corresponding to the front view in image-driven 3D generation
generally leads to higher generation quality.

Consequently, for image-3D tasks, we adhered to the experimental setup outlined in [31, 60]. Specifi-
cally, we selected 60 objects from the GSO [8] and Objaverse [6] datasets, replacing overly simple
objects to ensure a more robust evaluation. These objects were rendered in frontal views at a res-
olution of 256x256. To comprehensively assess performance, we utilized Chamfer Distance (CD)
and Volume IoU (Vol. IoU) for evaluating geometric accuracy, along with PSNR, SSIM, and LPIPS
for measuring visual quality. As presented in Tab.4, the experimental results clearly indicate that
our method surpasses the baseline across all metrics, achieving significant improvements in both
geometry and texture quality. This further substantiates the broad applicability of our approach,
demonstrating its capacity to enhance both text-to-3D and image-to-3D tasks.
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Hallo3D

w/o A

w/o B

w/o C

prompt: A majestic lion standing on a rock. prompt: A deer grazing on a grassy plain.

Hallo3D

w/o A

w/o B

w/o C

dark bright halo supersaturation

Figure 7: Ablation study of our method. In the figure, module A represents Multi-view Appearance
Alignment in Sec. 3.2, module B stands for Multi-modal Hallucination Detection in Sec. 3.3, and
module C denotes Prompt-Enhanced Re-Consistency in Sec. 3.4. We conducted ablation studies on
each of these three modules respectively.

Table 4: Quantitative comparisons in image-driven 3D generation
Metrics DreamGaussian Hallo3D Zero-1-to-3 Hallo3D
CD↓ 0.0185 0.0171 0.0370 0.0283
Vol. IoU↑ 0.5861 0.6099 0.4824 0.5602
PSNR↑ 16.502 16.518 13.433 14.930
SSIM↑ 0.8543 0.8793 0.7210 0.7527
LPIPS↓ 0.2025 0.1726 0.3926 0.3328

User study. In our user study, we recruited 58 volunteers with expertise in artificial intelligence to
participate in our experiment. To comprehensively assess the quality discrepancies among various
generated 3D models, we developed an extensive scale for the volunteers to fill out. Specifically, we
generated 120-frame videos for each 3D model, totaling 32 video sets. Our comparative approach
involved evaluating each model independently on three criteria: "Multi-view Consistency," "Overall
Quality," and "Alignment with Prompt," with ratings on a scale from 1 to 10. The findings were
summarized by compiling the average scores, and can be seen in Tab.2 and Tab.3.

4.4 Ablation Study

We conducted ablation experiments on the three Hallo3D modules, as shown in Fig. 7. Starting from
the complete model, we independently removed each module and assessed their effects. Notably,
in the "w/o C" setting, the output of LMM, P−

E is applied to LSDS calculations to demonstrate the
necessity of LCG. Additionally, we conducted an ablation on "w/o C & P−

E ", where P−
E is not

applied anywhere in the "w/o C" setting, to further highlight the effectiveness of the module.

In Fig.7, we focus on how module A primarily affects color and texture, while module B and module
C enhance cross-view consistency. Specifically,

• In Row 2, w/o A: The lion appears significantly darker than in Row 1, and the deer exhibits
a blurry halo accompanied by an unnatural color shift.

• In Row 3, w/o B: The lion’s head is noticeably deformed in both the first and third columns,
while the deer entirely loses its head.

• Row 4, w/o C: The "second face" appears on the lion’s back in the third column, and the
right deer’s image shows a clear Janus Problem, with multiple legs and a distorted body
visible in the second and fourth columns.
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Figure 1: The 360-degree visualization results from Figure 5 in the paper. 

 
Figure 2: Experiments using ProlificDreamer as the baseline. 

 

Figure 3: Comparison experiments with Perp-Neg and Debias. 

 

 
Figure 5: Illustration of LMM's inference results on images of varying quality. 
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Figure 4: Loss curves for LCG and LSDS, along with the CLIP-Score curves with and without LCG.

3

Figure 8: Loss curves for LCG and LSDS, along with the CLIP-Score curves with and without LCG.

Table 5: Quantitative Ablation Results

Metrics Hallo3D w/o A w/o B w/o C w/o C & P−
E Baseline

CLIP-Score B/32↑ 24.25 23.98 23.65 22.46 22.23 21.27
CLIP-Score B/16↑ 26.83 25.88 25.10 23.59 23.23 22.67
CLIP-Score L/14↑ 30.00 29.36 28.71 26.92 25.58 23.71

Additionally, we conducted quantifiable ablation experiments, as shown in Tab.4.4, further demon-
strating the effectiveness and necessity of each module in Hallo3D. Moreover, the better performance
of "w/o C" compared to "w/o C & P−

E " also supports the necessity of introducing LCG.

4.5 Balance between LCG and LSDS.

In our experiments, we observed that the loss function LCG, which is computed on a per-pixel
basis, typically exhibits a larger magnitude in comparison to LSDS. To achieve a balanced scale
between these losses, we assigned a weight of w = 0.1 to LCG in Eq.8. It is important to note that
this adjustment in weight does not diminish the importance of LCG in any way. Specifically, as
shown in Fig.8, even after scaling LCG by the factor w, it maintains a larger magnitude compared to
LSDS. This demonstrates that LCG provides ample guidance for 3D generation, ensuring effective
optimization throughout the process.

5 Conclusion

In this paper, we introduce Hallo3D, a novel approach designed to enhance 3D content generation
through both text-driven and image-driven methods. We demonstrate the capability of large multi-
modal models to infer geometric structures and detect hallucination arising from 2D diffusion models.
By combining LMM with diffusion models, we achieve re-consistent 2D images applicable in the
3D domain. Extensive experimental evidence substantiates that our method significantly improves
consistency and mitigates hallucinations in 3D content generation. Additionally, we thank Haoyang
Tong from the University of Chinese Academy of Sciences for his contributions to this work.
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A Implementation details

Selection of focal view. We use Fovy, the camera’s vertical view, as our selection standard. The
first view with Fovy exceeding 120% of each baseline’s default becomes our focal view, enabling a
broader shot capturing more object details.

Details of LMM setup. We used different PI than in Fig.4. The primary purpose of Fig.4 is to use a
case study to demonstrate how LMMs can infer structural consistency and respond in specific formats.
To highlight this capability, we employed two dialogues. In practice, we used a single interaction to
query the LMM to achieve faster runtime. The specific setting is as follows.

"You are a master of 3D generation, and please refer to the ’Prompt’ and ’Negative
Prompt’ below to identify the inconsistency in the image I provided you with, with
body shape, perspective, texture, and so on.
Reference:
’Prompt’: ’3d render of xx, front view, standing, high quality, 4K’,
’Negative Prompt’: ’multi-head, unnatural lighting, smooth appearance, distorted
color, long neck, two-nosed, extra limbs’ ".

For LMM, we chose the locally deployed LLaVA [26], using the version llava-v1.6-34b.

General prompt. Our method acts as a universal enhancement for 3D generation, considering the
common use of general negative prompts in baseline methods [63, 58, 40, 53, 24, 28]. The specific
setting is as follows.

"unnatural colors, poor lighting, low quality, artifacts, smooth texture".

B Time Consumption

We recorded the runtime using two baselines: GaussianDreamer [63] based on 3DGS with fewer
iterations and faster speed, and DreamFusion [40] based on NeRF with more iterations and slower
speed, on NVIDIA V100.

To optimize the process, we begin calculating LCG later in the training and only every 4 iterations in
our experiments. This approach is consistent with the statement in Sec.3.4 that "this module only
works when the rendered images exhibit complete semantic structures." The rationale is twofold:
first, during the early stages of training, the 3D assets are relatively disorganized and lack clear
semantic structures, making it challenging for LMMs to reason accurately. Therefore, we delay the
introduction of LCG. Second, we empirically found that calculating LCG every 4 iterations does not
affect performance, allowing us to reduce training time. The results are presented in the Tab.6.

Notably, since our method includes the "Multi-View Appearance Alignment" module, which requires
attention calculations across four differently angled rendered images, we set the batch size to 4 for all
baselines. To ensure a fair comparison, we reduced the number of iterations to 1/4 of the original.
For example, DreamFusion originally trained for 10,000 iterations, and we adjusted it to 2,500 for
optimization. GaussianDreamer(iteration=1200) already uses batch=4, so we matched its iteration
count at 1,200.

The experimental results indicate that while our method introduces some additional time overhead, this
is fully justified by the significant improvements in performance and quality, especially considering
the challenging nature of addressing the Janus Problem.

C Additional Experiments

C.1 The Effectiveness and Necessity of LCG

To further underscore the necessity of incorporating LCG, we plotted the curve of LCG over the
course of iterations. In conjunction with this, we also plotted the CLIP-Score for both the complete
model and an ablated version that omits LCG. As illustrated in Fig.8, it is evident that LCG steadily
decreases with increasing iterations, contributing to a marked improvement in the CLIP-Score. In
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Baseline

+Perp-Neg

+Debias

+Hallo3D

CLIP-Score: 0.3426

CLIP-Score: 0.3435

CLIP-Score: 0.3440

CLIP-Score: 0.3362

prompt: A 3D model of an adorable cottage with a thatched roof.

(a) (b)Figure 9: Comparison experiments with Perp-Neg and Debias.

Table 6: The time consumption introduced by Hallo3D.
Baseline Iteration LCG Start Rounds Original Time Extra Time Total Time
GaussianDreamer 1200 1000 ∼28 min ∼10 min ∼38 min
DreamFusion 2500 2200 ∼51 min ∼15 min ∼66 min

contrast, the CLIP-Score for the model without LCG exhibits only a marginal improvement. These
findings clearly highlight both the necessity and effectiveness of incorporating LCG into the model.

C.2 Comparison Experiments with Other 3D Consistency Enhancement Methods.

To further demonstrate the advantages of our method, we compared it with other approaches[2, 17]
aimed at improving 3D consistency. As shown in Fig.9, Hallo3D more effectively addresses the Janus
problem and achieves a greater improvement in CLIP-Score.

C.3 360-degree Visualization Results

Due to space constraints, Fig.5 in the main text only presents 3D generation results from selected
viewpoints. The full 360-degree visualizations can be found in Fig.10 and Fig.11.

D Limitation

Our method has shown improvements in 3D generation consistency across various baselines, including
both text-based and image-based approaches. However, as a method focused on enhancing view
consistency, the quality of our experimental results is inherently tied to the performance of the
baseline models. Moreover, the potential misuse of advanced 3D generation technologies poses risks
to social trust and information integrity. Looking ahead, we will prioritize the Janus Problem as a key
research direction and are committed to contributing further to the field of 3D generation alongside
our fellow researchers.
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Figure 10: 360-degree visualization results in Fig.5 (1).
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Figure 11: 360-degree visualization results in Fig.5 (2).
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .
• [NA] means either that the question is Not Applicable for that particular paper or the

relevant information is Not Available.
• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS paper checklist",
• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We describe it in Section 1.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We describe it in Section D.
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Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: Without theory assumptions and proofs.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We describe it in Section 4.

Guidelines:

• The answer NA means that the paper does not include experiments.
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• If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No]

Justification: We are currently organizing the code and plan to release it as open-source in
the future.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

20

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We describe it in Section 4.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: Our main results are based on user study.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We describe it in Section A.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
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• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We conducted in the paper conform, in every respect, with the NeurIPS Code
of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We describe it in Section D.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: None.
Guidelines:
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• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All existing assets such as code, data, and models used in our research are
properly credited to their respective creators or owners. We have explicitly mentioned the
licenses and terms of use for each asset in our documentation. Additionally, we have ensured
that all terms of use are strictly adhered to, including obtaining necessary permissions for
assets with restrictive licenses. This practice supports ethical research standards and ensures
legal compliance in the use and distribution of third-party resources.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [No]

Justification: We are currently organizing the code and plan to release it as open-source in
the future.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
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14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [Yes]
Justification: We have included all data collected from the survey in the supplementary
materials.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: None.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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