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ABSTRACT

We introduce a novel, general purpose audio generation framework specifically
designed for Audio Anomaly Detection (AAD) and Localization. Unlike existing
datasets that predominantly focus on industrial and machine-related sounds, our
framework focuses a broader range of environments, particularly useful in real-
world scenarios where only audio data are available, such as in video-derived
or telephonic audio. To generate such data, we propose a new method, Audio
Anomaly Data Generation (AADG), inspired by the LLM-Modulo [Kambhampati
et al.| (2024) framework, which leverages Large Language Models (LLM) as world
models to simulate such real-world scenarios. This tool is modular, allowing for
a plug-and-play approach. It works by first using LLMs to predict plausible real-
world scenarios. An LLM further extracts the constituent sounds, the order and
the way in which these should be merged to create coherent wholes. We include a
rigorous verification of each output stage, ensuring the reliability of the generated
data. The data produced using the framework serves as a benchmark for anomaly
detection applications, potentially enhancing the performance of models trained
on audio data, particularly in handling out-of-distribution cases. Our contributions
thus fill a critical void in audio anomaly detection resources and provide a scalable
tool for generating diverse, realistic audio data.

1 INTRODUCTION

Detecting anomalies is crucial for various reasons, such as preventing harm Saligrama et al.|(2010),
early detection of unexpected events |Patcha & Park (2007 |Akoglu et al.[(2015), and ensuring safety
in critical systems |Chandola et al.| (2009) as well as data integrity. Audio is often the only usable
modality in scenarios like extortion cases via phone calls Bidgoli & Grossklags| (2017, where ac-
tionable information can help solve crimes. Similarly, protest videos with unclear visuals but clear
audio and audio from surveillance/CCTV cameras capturing events outside the camera’s field of
view highlight the need for audio-specific anomaly detection. Detecting out-of-distribution cases in
such contexts is essential. In this paper, we take inspiration from the computer vision community
to define anomalies Ramachandra et al.| (2020) Saligrama et al.| (2010), this paper considers only
single-scene anomalies.

Definition 1 Audio Anomalies are audio events that stand out within a scene due to their unusual
nature relative to the surrounding sounds. This anomaly can arise from the event’s position within
the audio timeline, its incongruity with the expected auditory context, or the inherent rarity of the
sound itself.

There are several benchmark datasets for video-based anomaly detection, such as Street Scene Ra-
machandra & Jones| (2020), CUHK Avenue Lu et al.| (2013), ShanghaiTech Liu et al.| (2018), and
UCSD Ped1 and Ped2 Mahadevan et al.| (2010)) [Li et al. (2013). However, there is a lack of dedi-
cated datasets for audio-only anomaly detection, despite their importance. Existing audio anomaly
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Figure 1: Audio Anomaly Data Generation (AADG), a framework that synthetically generates real
life Audio Data with Anomalies by leveraging LLMs as a world model

datasets are primarily focused on industrial and machine data|Dohi et al.[(2022b))|Dohi et al.|(2022al)
Harada et al.|(2021)). Collecting anomalous data is inherently challenging, as it is out-of-distribution
by nature and occurs significantly less frequently than general data.

Current datasets used to train Audio Language Models (ALMs) and text-to-audio models lack di-
versity and do not include complex scenarios, resulting in poor performance for these models when
handling complex or anomalous audio (Ghosh et al|(2024) Agre & Chapman| (1987). State-of-the-
art (SOTA) text-to-audio models|Vyas et al.| (2023) |[Evans et al.| (2024) also struggle with descriptive
prompts, unlike text-to-image |[Podell et al.| (2023) |Yu et al.|(2022) and video models |Brooks et al.
(2024), which are trained on broader and more diverse datasets. Collecting real-life audio samples
with anomalies is challenging and time consuming. Given the importance of audio anomaly detec-
tion, training and benchmark data are crucial. To address this, synthetic data generation can augment
existing datasets, as real-world training data often lacks such scenarios, necessitating alternative ap-
proaches. This paper addresses the lack of diverse audio anomaly datasets utilizing Large Language
Models (LLMs) (Guan et al.| (2023), such as GPT-4 |Achiam et al.|(2023)) and LLama Touvron et al.
(2023), which are trained on vast datasets and capable of generating plausible anomalous and out-
of-distribution scenarios. These scenarios can be converted into audio using SOTA text-to-audio
models|Evans et al.| (2024) |Vyas et al.| (2023), which, while effective for simple cases, struggle with
more complex scenarios. Recent advances in LLMs and text-to-audio models provide an opportu-
nity to synthesize realistic and diverse audio data for training and benchmarking anomaly detection
models. Building on Kambhampati et al.| (2024)), which shows that LLMs excel at generating and
verifying plans, we leverage their ability to create plausible anomalous scenarios. These scenarios
are processed to generate component sounds and their order, which are merged using predefined
methods. The final audio outperforms SOTA text-to-audio models in handling complex and out-of-
distribution (OOD) cases. Our modular plug-and-play framework, independent of specific language
or text-to-audio models, generates synthetic data (with text descriptions, component audios, and
timestamps) for training and benchmarking audio anomaly detection models. This creates the first
general-purpose audio anomaly dataset for improved audio perception and localization. Our key
contributions are as follows.

Novel Framework for Audio Anomaly Data Generation: AADG (Audio Anomaly Data Gen-
eration) uses LLMs as world models to synthetically generate realistic audio data with anomalies,
addressing the scarcity of diverse datasets beyond industrial settings.

Modular and Extensible Approach: The framework’s modular design enables a plug-and-play
approach, independent of the specific language or text-to-audio model, and can adapt to future ad-
vancements in both LLMs and audio generation.

Creation of the First General-Purpose Audio Anomaly Dataset: The synthetic data will form the
first general-purpose audio anomaly dataset—with text descriptions, component audios, and times-
tamps—crucial for training and benchmarking anomaly detection models.
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Figure 2: Illustration of the pipeline. The process begins with scene generation, followed by infor-
mation extraction using a Large Language Model (LLM). Individual audio components are synthe-
sized from text descriptions and meticulously verified for accuracy and merged according to LLM
instructions, culminating in a dataset of realistic anomalous audio.

2 METHOD

We use Large Language Models (LLMs) as a world model to generate a scenario. Then another
LLM call extracts the summary of the scene, the anomaly, the sound components, and their merging
sequence. Next, we employ a text-to-audio model to create each audio component and merge them
according to the LLM’s instructions. At each stage, we verify the output to ensure that the final
audio makes sense. We go through the entire pipeline in detail which is also shown in Fig2]

2.1 SCENARIO GENERATION

LLMs, trained on internet-scale data, excel at generating realistic scenarios and candidate plans
Kambhampati et al.| (2024). We prompt LLMs to create plausible scenarios with sufficient detail to
generate scenes with component sounds and anomalies. By conditioning the prompt, we can adjust
the number of anomalies and tailor the scene, enabling adaptation to different audio types. Using
GPT-3.5 and GPT-40 in our experiments, we observe that larger models produce more descriptive
and creative outputs, aligning scenes with realistic audio characteristics. The prompt ensures scenar-
ios are distinct enough to generate identifiable sounds, typically limited to one anomaly, which suf-
fices for benchmarking current ALMs. Temperature settings significantly impact the results. Higher
temperatures enhance creativity but occasionally cause models like GPT-40 to generate nonsensical
outputs, likely due to prompt complexity and high temperature amplifying anomalies.

2.2 INFORMATION EXTRACTION

After initial scenario generation, a second call to the LLM extracts and formats useful information.
This step summarizes the scenario, identifies the anomaly, and provides instructions for audio gener-
ation, including component sounds, their order, and merge types. This structured output, facilitated
by the pydantic library Colvin et al.| (2024)), ensures data consistency as dictionaries for subsequent
processing. The LLM’s creative capabilities allow it to understand the context, identify suitable
sounds for the scene, and determine how to merge them for coherence. It also specifies the anomaly,
explains its role, and integrates it with the audio to create a realistic and informative dataset.
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2.3  VERIFICATION - LANGUAGE MODEL

Large Language Models though creative suffer from issues such as hallucination|Huang et al.|(2023)
Li et al.| (2024)) [Liu et al.| (2024a)), [Valmeekam et al.| (2022) |[Kambhampati| (2024} lack of reason-
ing, redundant outputs Tirumala et al.| (2024) |Chiang & Lee|(2024) etc. Inspired by LLM Modulo
Kambhampati et al.|(2024) we use LLM’s impressive creative capabilities but also verify its outputs
to check for issues which might creep in. We check for logical flaws, alignment with the required
output and coherency of the output

2.3.1 LOGICAL VERIFICATION OF OUTPUT

Since the extraction creates outputs that we use in downstream tasks we have to check if they logi-
cally make sense. We find that language model fails in number of different ways and thus we try to
verify each part. One of the ways it fails is by creating merge types that do not exist in our desig-
nated methods, hence we check if the generated merge types lie within what we use. Another way
the language model fails and we have to check for is with the number of component sounds, the or-
der and the merge types not being equal. We also find cases where the scenario doesn’t make sense
and contains nonsensical text. There are also cases where the component audios contain audios that
do not make sense with words such as silence, confusion, nervousness etc. These are sounds that
need to be checked.

2.3.2 LLM AS A JUDGE

We utilize Llama [Touvron et al.| (2023) as an evaluative tool to verify the responses generated by
GPT |Achiam et al.| (2023), by setting up Llama [Touvron et al.| (2023)) as an independent impartial
judge. The evaluation uses a Single Answer Grading Framework [Zheng et al.| (2024) to directly
assign a score to the GPT responses. This setup introduces a layer of quality control, ensuring that
the responses generated by GPT align with the prompts that AudioCraft Meta Al| (2024) can use
for component audio generation, while eliminating the need of human intervention. In this study,
we leverage Llama as an impartial evaluation tool to assess the quality of the responses generated
by GPT-4 . By employing a Single Answer Grading Framework , Llama directly assigns scores
to GPT-4’s outputs, introducing a layer of quality control. This approach ensures that the gener-
ated responses align with prompts suitable for component audio generation in AudioCraft , while
eliminating the need for human intervention.

2.4 COMPONENT AUDIO GENERATION

Once we have access to the audio components from the extraction, we pass them to a text-to-audio
model which creates the audio components. The advantage of our method is that the text-to-audio
models can be replaced as we find better ones, or we could also use multiple text-to-audio models.
In practice, we use Audiogen Kreuk et al.| (2022). Audiogen is a textually guided model part of
AudioCraft Meta Al (2024)). We find it to be the best for our case because it is open-source, although
there are better models such as Audiobox|Vyas et al.[(2023)) but are not available for use. The text-to-
audio model can create good audios as long as the prompt isn’t complex, in our case, the extraction
helps keep the prompts small. However, we could also make the component sound descriptions more
informative by conditioning the prompt of the LLM call for extraction. Based on the model that we
are currently utilizing, we have determined that utilizing less detailed texts yields better results in
practice.

2.5 VERIFICATION - AUDIO GENERATION

Like LLMs, the text-to-audio model is imperfect and often misaligns with its text prompt. The
training dataset may not cover all possible sounds, resulting in OOD cases. For instance, it per-
forms better on “cat meowing” than “lion roaring,” likely due to more examples of the former in its
trainidata. Prompts involving timing specifications (e.g., ’periodic announcement prompts”) con-
fuse the model. It also struggles to accurately render conversations unless they are in the background.
To ensure that the final audio semantically aligns with the text, we propose using a multimodal model
trained to align embeddings representing the same scenario across different modalities. We utilize
ImageBind Girdhar et al.|(2023)), though other models such as Audio CLIP could also be considered.
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Since ImageBind has been trained contrastively to align the embeddings of the same label across dif-
ferent modalities, the output embeddings of ImageBind for the generated audio and the text prompt
should be close according to a chosen distance metric. We assess the alignment between the text
embeddings(E.y;) and audio embeddings(E,gi,) using cosine similarity. Their cosine similarity is

computed as:
Etext . Eaudio

||EtextH ||Eaudio||'

This metric quantifies the alignment between the embeddings, with higher values indicating greater
similarity. For each generated audio, if the cosine similarity is above a predefined threshold, we
accept the audio as semantically aligned. However, in practice, we found that ImageBind did not
perform well with the generated audio even when the audio sounded accurate. Despite this, the
similarity score was significantly lower (by an order of magnitude) for semantically dissimilar audios
compared to semantically similar ones. To enhance the verification process, we apply a sigmoid
regularizer to make the differences more pronounced:

COS—Sim(Etexta Eaudin) =

Eex * Eaudi
RegSim(Elexh Eaudio) =0 (a . text audio B)

||Etext|| ||EaudioH a

Where o(z) = H% is the sigmoid function and o and /3 are tunable parameters that control the
scaling and shift. We only accept audios whose regularized similarity is above a certain threshold,
improving the verification.

2.6 AUDIO MERGING

After verifying the component audios, we merge them based on the language model’s instructions,
using methods like cross-fade, overlay, fade-in, or fade-out. We merge audios in the order specified
by the language model, ensuring each is normalized to maintain consistent audio levels. These
merge types can be expanded, although we have found these to be sufficient in practice. As we
merge audios sequentially, each new audio is appended to the last. For example, with a fade-in,
the new audio begins fading in at the previous audio’s end. For a fade-out, it is added to the end,
fading out as it concludes. In a cross-fade, the previous audio cross-fades into the new one. With an
overlay, the new audio’s alignment depends on its length compared to the previous merged audio.
We store the timestamps of each audio in the final merged audio which can be used for evaluation,
training anomaly detection models, or event detection. It should be noted that the merging methods
can be altered by adding new methods or utilizing a new learned model.

2.7 FINAL DATA

The final data contains the audio components, the merged audio itself and metadata which contains
the scenario, the summary of the scenario, the anomaly, a description of why it is anomalous, the text
description of the audio components, the order in which the audios have been merged, the method
with which they have been merged and the time stamps of the component audios in the final audio.

3 EVALUATION

To demonstrate the usefulness of our model, we illustrate how existing models using audio could be
improved by accounting for anomalous scenarios and using synthetic data during training.

3.1 COMPARISON AGAINST STATE-OF-THE-ART TEXT-TO-TUDIO GENERATION MODELS

We demonstrate that our framework produces better data than SOTA text-to-audio models, partic-
ularly with complex or anomalous prompts. We compare against Stable Open Audio |[Evans et al.
(2024), the current SOTA in table[Ta] The vocabulary set used by models like Audiobox Vyas et al.
(2023) an Stable Open Audio is limited because they are trained on datasets like AudioSet, which
only cover a specific range of sounds and scenarios. These models generate audio based on a fixed
set of well-represented categories—common environmental noises, simple musical notes, or speech.
However, when prompts involve complex or uncommon scenarios, they fail to produce accurate out-
puts due to a limited sound vocabulary and understanding beyond their training data. Their restricted
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Model PREF Model MOS
Stable Audio Open | 0.12 GAMA against simple audios 4.00
Ours AADG 0.88 GAMA against complex audios | 3.21
(a) Adherence to text prompts in text-to-audio (b) Mean Opinion Score (MOS) to evaluate SOTA
models with complex anomaly-inducing prompts. ALM audio understanding. Higher is better.

Table 1: Comparison of text-to-audio models on different evaluation metrics.

Prompt Complexity | FAD
Lower Complexity 5.5015
Higher Complexity 6.775

Table 2: Comparing the audio separation capabilities for different levels of prompt complexity. The
lower the FAD score the better the match

sound vocabulary produces repetitive or irrelevant outputs when prompts require a broader, special-
ized range, reducing effectiveness in tasks like anomaly detection that rely on nuanced sounds. This
highlights the need for a framework that can simulate a wide variety of audio events.

3.2 BENCHMARKING AUDIO LANGUAGE MODELS

Current ALMs are trained on anomaly-free datasets, such as clean speech with minimal background
noise, which raises concerns about their robustness to real-world audio complexities. To assess the
true capabilities of SOTA ALMs, we tested using the current SOTA |Ghosh et al.| (2024) asking it
to predict complex audios. We randomly sample audio and ask participants to choose how accurate
the description is for the audio. We ask them to score the model from 1 to 5, 5 being extremely
accurate and 1 being inaccurate. We report the MOS of the participants. The results are shown in
[Ib] We find that the Audio Language Model (ALM) can understand the easier audios but does not
fully comprehend the complex audios. This is likely because the model wasn’t trained on such data.
Models like GAMA, |Ghosh et al.| (2024)) are impressive, but will become much better once trained
on datasets augmented with complex data.

3.3 COMPARING AGAINST AUDIO SEPARATION MODELS

Audio separation models |Liu et al.[ (2022) |Liu et al.| (2023b)) extract a specific component audio,
guided by a descriptive prompt, from a test audio containing multiple simultaneous sounds. Au-
dio separator models struggle with complex or anomalous audio because they haven’t encountered
such components during training, limiting their ability to distinguish individual parts. We show that
complex audios and their corresponding prompts break such models. Through our dataset, we have
access to the component audio description along with the prompt and the component audios. Au-
dio separator models as described in |Liu et al.| (2022)Liu et al.[| (2023b) should, ideally, be able to
separate our audio into it’s components. The separated audios, extracted using our text descriptions,
should match the original audio generated from the same prompt. However, we find that separation
performance deteriorates when the audio contains anomalies, is complex, or includes OOD sounds,
compared to simpler audio scenarios. To test this, we generate audio samples which are gener-
ated using simple and complex prompts, we find that the ones generated with complex prompts are
harder to separate We use Frechet Audio Distance (FAD) similar to|Vyas et al.[(2023)Kreuk et al.
(2022) to measure the closeness of separated and original audios, we find that the FAD increases for
complex audios.

4 CONCLUSION

The proposed framework, AADG, improves data generation of anomalous audio with greater versa-
tility and scalability compared to current methods. Unlike traditional datasets that focus on industrial
or machine sounds, it leverages LLMs to simulate a broader range of real-world scenarios, making it
particularly valuable for audio-only applications such as surveillance and telephonic recordings. The
modular design enables integration of various LLMs and text-to-audio models, allowing the gener-
ation of complex, anomalous scenarios that are hard to capture in real-world data. While current
text-to-audio models still face challenges with generating realistic audio for complex prompts and
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anomalies, the framework introduces multi-stage verification processes to minimize logical flaws,
misalignment, and inconsistent outputs. Additionally, by using multimodal models like ImageBind
for verification, the framework improves the reliability of the generated data, although this process
still has limitations in handling certain out-of-distribution cases. Overall, this approach fills a crit-
ical gap in the field by providing a scalable tool for creating diverse and realistic audio datasets,
which are essential for advancing audio anomaly detection technologies as well as complex audio
generation
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A APPENDIX

A.1 RELATED WORK
A.1.1 ANOMALY DETECTION IN VIDEO

Detecting anomalies in videos is quite a common problem Ramachandra et al.| (2020) Lu et al.
(2013) [Liu et al|(2018) Mahadevan et al.|(2010) |Li et al.| (2013) with multiple datasets for bench-
marking. Ramachandra et al.| (2020)) talks about single-scene anomaly detection, and the need for
benchmarking data for development of new algorithms. There are multiple such datasets for video.
Mahadevan et al.| (2010), Li et al|(2013) are the most widely usedRamachandra et al.| (2020) and
contain videos from different static cameras. [Lu et al.|(2013)) Ramachandra & Jones|(2020) and [Liu
et al.| (2018) are some other common ones, all focusing on single-scene anomalies. Our work aims
to introduce similar progress in audios for anomaly detection. There have been multiple works in
detecting audio anomaly data and can roughly be divided into two parts representation learning and
detection methods Singh et al.| (2023)).
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A.1.2 TEXT TO AUDIO GENERATION

The field of text-to-audio generation has progressed significantly due to innovations in diffusion-
based techniques like AUDIT|Wang et al.|(2023), AudioGen Kreuk et al.|(2022)), and AudioLDM Liu
et al.| (2023a) Liu et al.| (2024b). Additionally, there have been improvements with auto-regressive
models exemplified by AudioGen Kreuk et al.| (2022)). AudioGen [Kreuk et al.| (2022) learns repre-
sentations from the raw waveform and utilizes a transformer model conditioned on text to produce
audio outputs. Moreover, advancements in flow matching have further enhanced text-to-audio gen-
eration capabilities, as demonstrated in [Vyas et al.[(2023)). Recently, Evans et al.| (2024) introduced
a diffusion transformer.

A.1.3 LLMS FOR SYNTHETIC DATA GENERATION

Recent works have shown significant progress in synthetic data generation in the image space in
Liang et al.|(2024) Ramesh et al.| (2021) [Sun et al.| (2024) Bae et al.| (2023) etc. However, similar
progress has not been seen in the audio space. Zero-shot text-to-image generation approaches have
expanded the scope of synthetic data applications by enabling the generation of novel image data
from unseen textual prompts, highlighting the model’s ability to generalize from limited examples
Ramesh et al.| (2021). Digiface-1m Bae et al.|(2023) dataset exemplifies the practical applications
of these technologies, providing a robust framework for testing and improving face recognition al-
gorithms through access to one million digital face images. |Ye et al.|(2022) outlines a method to
leverage LLMs to create synthetic datasets produced entirely using pre-trained language models
(PLMs) without human interference while emphasizing the efficiency and flexibility of using syn-
thetic datasets to train task-specific models. [Yu et al|(2024)) explores generation of training data that
not only focuses on diversity, but also addresses inherent biases within the data generated by LLMs.
It highlights the critical role of using diversely attributed prompts that enhance quality and utility
of synthetic datasets improving model performance across NLP tasks. |Patel et al.|(2024) presents a
tool designed to streamline synthetic data generation using LLMs providing a platform to generate,
train and share datasets and models.

Training on synthetic data can improve the model performance Nvidia et al.|(2024) . In|[Dubey et al.
(2024) it has been used to generate training data for text-qualilty classifiers.

A.1.4 LLMsS FOR PLANNING

Chain-of-thought (CoT) prompting has emerged as a powerful technique to enhance the reasoning
capabilities of LLMs by generating intermediate reasoning steps, thereby improving performance
on complex tasks such as arithmetic and commonsense reasoning. Additionally, the LLM Modulo
framework has shown promise in iterative planning and reasoning tasks by establishing a robust
interaction between generative models and verifiers, leading to significant improvements in domains
like travel planning. These methodologies and frameworks underscore the potential of LLMs to
revolutionize automated planning and other complex domains, making them a focal point for future
research and development.

A.1.5 LLM VERIFICATION

Zheng et al.| (2024) investigates the use of GPT-4 as an evaluator of other LLMs, demonstrating
the model’s capability to assess responses scalably reducing human involvement and enabling faster
iterations.

A.2 LIMITATIONS

Anomaly detection in audio presents a major challenge due to the limited vocabulary set used by
current SOTA text-to-audio models such as Audiobox and Stable Open Audio. These models are
trained on datasets like AudioSet, which only encompass a specific range of sounds and scenarios.
Consequently, they struggle to produce accurate audio when presented with complex or uncommon
audio scenarios that fall outside their training data. This restricted sound vocabulary results in repet-
itive or irrelevant outputs for anomalous audio prompts. Our approach, AADG, aims to address this
limitation by generating out-of-vocabulary sounds with complex real-life descriptions. However, the
generated audio may sometimes sound unnatural, which can be computationally intensive to detect.
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The inherent limitation of the current audio generation models start to degrade in audio quality for
very long duration audio generation, which limits the audio duration the AADG framework will be
able to generate for complex anomaly description in a given acoustic scene.
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