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Abstract
Large Language Models (LLMs) like GPT-4 have
revolutionized natural language processing, show-
ing remarkable linguistic proficiency and reason-
ing capabilities. However, their application in
strategic multi-agent decision-making environ-
ments is hampered by significant limitations in-
cluding poor mathematical reasoning, difficulty in
following instructions, and a tendency to generate
incorrect information. These deficiencies hinder
their performance in strategic and interactive tasks
that demand adherence to nuanced game rules,
long-term planning, exploration in unknown envi-
ronments, and anticipation of opponents’ moves.
To overcome these obstacles, this paper presents a
novel LLM agent framework equipped with mem-
ory and specialized tools to enhance their strate-
gic decision-making capabilities. We deploy the
tools in a number of economically important en-
vironments, in particular bilateral bargaining and
multi-agent and dynamic mechanism design. We
employ quantitative metrics to assess the frame-
work’s performance in various strategic decision-
making problems. Our findings show that our
enhanced framework significantly improves strate-
gic decision-making capability of LLMs. While
we highlight the inherent limitations of current
LLMs, we demonstrate the improvements through
targeted enhancements, suggesting a promising
direction for future developments in LLM appli-
cations for interactive environments.

1. Introduction
Large language models (LLMs) such as GPT-4 have demon-
strated exceptional proficiency in generating coherent natu-
ral language from textual inputs (Bubeck et al., 2023). They
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display human-like strategic thinking and excel at flexible
reasoning with nuanced, context-specific information (Aher
et al., 2022; Kwon et al., 2023; Suzgun et al., 2022). These
achievements have sparked significant interest in their po-
tential for decision-making in complex environments (Yao
et al., 2022; Shen et al., 2024; Wang et al., 2023).

To further integrate LLMs into our society, such as deploy-
ing them as fiduciary agents on behalf of individuals or
organizations in a competitive environment where human
and AI agents coexist, the ability to reason strategically is
of vital importance. However, due to their inherent limita-
tions in basic mathematics (Bubeck et al., 2023), instruction
following (Jang et al., 2022), and susceptibility to hallucina-
tions (Chen et al., 2023), the following challenges exist: (i)
LLMs may fail to accurately interpret game rules and objec-
tives expressed in natural language, e.g., form a well-defined
utility function that reflects their preference over possible
outcomes (Guo et al., 2023); (ii) LLMs are generally inept
at long-horizon planning to maximize their utility, which is
essential in scenarios where decisions have extended con-
sequences (Huang et al., 2024); (iii) They exhibit poor ca-
pabilities in strategic exploration of unknown environments
(Krishnamurthy et al., 2024), which hampers their ability
to optimize decisions on unforeseen conditions; (iv) LLMs
have limited capacity in anticipating opponents’ moves and
adapting their strategies accordingly (Park et al., 2024),
which is crucial for any competitive interaction. These limi-
tations collectively underscore the challenges in deploying
LLMs for nuanced and dynamic strategic reasoning tasks.

In light of these challenges, this paper proposes a LLM
agent framework designed to enhance their STRategic and
Interactive DEcision making capability, named STRIDE,
as illustrated in Figure 1. Compared to simply prompt-
ing the LLM with a description of the problem setup and
potentially some chain-of-thought examples (Brookins &
DeBacker, 2023; Gandhi et al., 2023), STRIDE can effec-
tively address the aforementioned challenges and enhance
the LLM’s reasoning capability in strategic settings. Specif-
ically, the LLM, which serves as the controller of the whole
framework, orchestrates the reasoning process through a
structured Thought sequence, as shown at the top of Figure 1.
Compared with popular frameworks like ReAct (Yao et al.,
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Figure 1. Illustration of STRIDE framework, which consists of a reasoning module powered by LLMs, a working memory that stores
important parameters of the problem instance and intermediate results of the reasoning process, as well as tools that facilitate reasoning
(taking care of low-level computation and managing the working memory) and acting (converting reasoning texts into executable actions).

2022) and Reflexion (Shinn et al., 2024), whose Thought
step typically involves a single step of textual reasoning
before interacting with the environment, which is depicted
as the green region of Figure 1, our design is tailored to
multi-step reasoning assisted with tools and memory, as
shown in the blue part of Figure 1. Each Thought unit out-
lines a sequence of operations to be executed, which consist
of tools specifically engineered to manage the low-level
calculations needed in various decision-making scenarios.
Additionally, an external working memory is integrated to
preserve crucial parameters. Therefore, Challenge (i) can
be addressed by executing an operation that evaluates the
agent’s utility in the Thought unit. Challenge (ii), which is
mainly caused by the information loss in long-context (Liu
et al., 2024), can be addressed by storing important problem
parameters and intermediate results in the working memory.
Challenges (iii) and (iv) can be addressed via a combination
of demonstrations and dedicated operations that emuate the
behavior of strategic exploration or belief update.

To evaluate our framework, we carefully choose a collection
of decision-making problems that highlight the aforemen-
tioned challenges in significant and economically relevant
real-world strategic settings. First, we evaluate our frame-
work in a general single-agent Markov Decision Process
(MDP), which exemplifies Challenges (ii) and (iii). Here
the agent needs to strategically explore the unknown en-
vironment to improve their estimate of the transition and
reward function, as well as planning over a long horizon to
compute the optimal policy (Sutton & Barto, 2018). Sec-
ond, we consider a dynamic mechanism design environment,
which offers a multi-agent generalization of MDP where
the mechanism designer seeks to maximize the cumulative
sum of rewards over multiple agents based on agents’ re-
ported reward functions (Bergemann & Välimäki, 2010;
2019). In the multi-agent mechanism design environment,
each agent has private information which evolves over time.

This problem covers Challenges (i)-(iv). The mechanism de-
signer needs to anticipate the agents’ strategic behavior and
makes decisions, i.e., allocation and pricing rules, to ensure
that truthfully reporting the reward function is unilaterally
optimal for each agent. This setting encompasses many
important allocation problems such as auctions for spon-
sored search and display advertising. Third, we consider
an important class of bilateral bargaining games, where a
seller and a buyer negotiate on the price of a good over a
finite number of time steps under complete or incomplete
information (Rubinstein, 1982; Fudenberg & Tirole, 1991).
This covers Challenges (i), (ii) and (iv), as the agent needs
to assess its utility for reaching a deal at different prices and
time steps, inferring the opponent’s private value based on
his/her past responses, as well as predicting the opponent’s
future behaviors. The bargaining environment has many
important applications in procurement and supply-chain
sourcing decisions. For each strategic environment, we of-
fer quantitative metrics that allow us to conclude whether
the agent succeeded in making the optimal decisions based
on the available information.

Through extensive empirical evaluation on these selected
decision-making problems, we show that, with few demon-
strations, the proposed framework can make strategic deci-
sions on new problem instances with high success rate. This
highlights the transformative potential of integrating LLMs
with specialized tools, memory, and control structures to
enhance strategic decision-making capabilities.

2. STRIDE LLM Agent Framework
In this section, we first present the building components
of the STRIDE framework, explain how these components
interact to support strategic decision-making, and then pro-
vide a detailed example by applying it to an autonomous
driving scenario, which is modeled as a MDP.
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Figure 2. In STRIDE framework, the LLM controls the execution of operations and access to working memory via a sequence of Thought
units. Each Thought unit is a structured data containing three fields: (i) text, which suggests the next step of strategic reasoning and
summarize important information; (ii) operations: a list of operations to execute, in order to compute or retrieve information necessary
for reasoning; (iii) exit: a boolean value indicating whether the reasoning process is completed. With proper demonstration and tools,
STRIDE can emuate various algorithmic behaviors (value iteration algorithm here is one example) to facilitate strategic decision making.

2.1. Main Components of the STRIDE Framework

Our primary strategy to address the four challenges in Sec-
tion 1 is to provide the LLM with tools taking care of low-
level computation and a working memory retaining impor-
tant parameters. Most importantly, we introduce a reasoning
module that acts as the central executive, orchestrating the
information flow among components and synthesizing struc-
tured Thought sequences to solve complex problems. Figure
2 provides a flowchart that illustrates how these components
collaboratively facilitate strategic decision-making in an
MDP. These components of STRIDE are introduced below.

Tool Set. As shown in Figure 1, the tools utilized by
STRIDE are categorized into two distinct groups: oper-
ational tools, which are tailored to support sophisticated
reasoning processes, and interaction tools, designed to en-
able STRIDE to interact effectively with its environment.
What sets our work apart from previous LLM agents, such as
ReAct (Yao et al., 2022) and Reflexion (Shinn et al., 2024),
is the sophisticated integration of these operational tools by
the Thought sequence to execute complex calculations that
traditionally pose challenges for LLMs. For instance, these
operations can calculate the utility of the agent based on the
outcomes of a game or update the belief about uncertainty
on the environment or the other agents. A combination
of such operations allows STRIDE to implement various
algorithmic behaviors such as dynamic programming to
solve MDPs and Bargaining Games, facilitating a deeper
and more precise decision-making process. They also let
STRIDE scale to complex problems by abstracting detailed
computations. This scalability is crucial in handling larger
and more challenging scenarios that are beyond the capac-

ity of typical LLM agents. For instance, in the concrete
example to be discussed later, STRIDE can easily handle
a state space of size 120. After completing the reasoning
process, the resulting textual description of the LLM’s deci-
sion is translated by the interaction tools into a structured
format that is actionable within the specific environment,
such as selecting an action in an MDP or offering a price in
a sequential bargaining game.

Reasoning Module. To effectively leverage the operational
tools for solving complex problems, we propose a unique
design for the reasoning module, which is empowered by a
pretrained LLM like GPT-4 (Achiam et al., 2023) or Claude
(Anthropic, 2024), in the STRIDE framework. Using the
MDP example in Figure 2, the reasoning process starts when
the agent is prompted to answer the question about which
action to take at the current time step, as shown on the
top right corner. As the first step to answer this question,
the LLM generates a Thought unit 1, whose text field de-
scribes a general plan about what needs to be done for the
current reasoning step in order to answer the question and
the operations field comprises an ordered list of operation
names that the LLM deems necessary for completing the
current step. For the MDP example in Figure 2, the LLM
decides to use value iteration to compute the optimal policy,
and thus the first step of its reasoning is to compute the Q
values associated with the last time step H (see Appendix
B for details about value iteration). To do so, operations
named UpdateQbyR and UpdateVbyQ are suggested by
the LLM, as shown at the bottom of the figure. Note that

1This is done via the function calling feature of LLMs, which
is commonly supported by models like GPT, Claude, and Gemini.
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here the Thought unit only needs to specify which opera-
tions are necessary, that is, only the names are needed. The
arguments for each selected operation are decided by the
LLM on separate API calls based on the context history,
as shown on the left of the figure. This particular design
choice is motivated by our empirical observation that, let-
ting the LLM simultaneously decide arguments for multiple
operations is more prone to error.

Before the execution of the selected operations, the gen-
erated Thought unit undergoes a validation process based
on predefined rules to ensure its integrity. For example,
a common rule applied in our experiments is the mutual
exclusivity of the exit condition and the presence of oper-
ations: the Thought unit must not simultaneously specify
an exit as true while containing non-empty operations, as
this often indicates a premature termination of the reasoning
process. If this conflict occurs, the system will generate
an appropriate error message, append it to the prompt, and
prompt the LLM to revise and resubmit the Thought unit
for re-evaluation. This mechanism ensures that operations
proceed only with validated and logically consistent instruc-
tions. Enhanced applications of this functionality involve
utilizing an additional LLM to verify whether the newly
generated Thought unit adheres to the reasoning logic and
language style presented in the demonstration. This step can
improve consistency and prevent hallucinations. Employing
a secondary LLM for cross-verification not only reinforces
the accuracy of the Thought unit but also contributes to the
ongoing research in maintaining coherence and reliability
in LLM outputs, which is of independent interest. With
the Thought unit validated, the selected operations will be
executed in the specified order. The outcomes of these oper-
ations are then utilized to generate the subsequent Thought
unit. This process continues until Exit is set to be true,
signaling the completion of the reasoning process.

Working Memory. As mentioned in Section 1, for long-
horizon planning, LLMs may forget or neglect important
information mentioned early in the context history. More-
over, an accurate description of the problem instance some-
times require parameters of high dimensions, e.g., transition
matrices of MDP. In this case, storing these parameters in
the context history is costly and prone to error. Therefore,
STRIDE is equipped with a working memory that stores
these parameters, as well as intermediate results computed
by the operational tools during the reasoning process. Infor-
mation contains in the working memory is retrieved by the
reasoning module for decision making.

2.2. Example: STRIDE Agent in Highway Environment

To illustrate the functionality of STRIDE, we apply it to the
Highway Environment (Leurent, 2018) to optimally control
a vehicle as depicted in Figure 3. We provide descriptions

of the operational tools constructed for the LLM and how
the Thought sequence uses them for strategic reasoning.

Tabular MDP Formulation. This decision-making prob-
lem can be formulated as a tabular MDP with known tran-
sition function P : S × A → ∆(S) and reward function
R : S×A → R (S andA denote the state and action spaces,
respectively), where each state s ∈ S indexes a unique three-
way tensor representing the time to collision with other vehi-
cles2, and the action setA includes changing to left
lane, idle, changing to right lane, faster,
and slower. Here we focus on a finite-horizon setting, i.e.,
the agent interacts with the environment for some fixed H
steps. At each step h = 1, 2, . . . ,H , the agent observes the
current state sh ∈ S , and then chooses action ah ∈ A. The
environment then produces a reward feedback R(sh, ah) to
the agent, with positive reward for staying in the right lane
or maintaining a high speed, and negative reward for any
collision, and then the state transits to sh+1 ∼ P (· | sh, ah).
It is known that the optimal policy, in this case, the fastest
way to navigate through the traffic, can be computed using
value iteration, which we will refer to as a reference algo-
rithm for STRIDE. In the next paragraph, we show how
to implement this algorithmic behavior in the reasoning of
STRIDE with specialized operations and demonstration.

Tools and Thought Sequence that Implement Value It-
eration. Value iteration starts from the end of the hori-
zon H and works backwards to the beginning, such that
at each step h ∈ [H], it updates the Qh(s, a) = R(s, a) +∑

s′∈S P (s′|s, a)Vh+1(s
′) and Vh(s) = maxa∈A Qh(s, a),

with VH+1(s) = 0,∀s. During interaction, the agent can
simply choose ah = argmaxa∈A Qh(sh) for state sh at
each step h. Therefore, to enable the LLM to compute
the optimal policy for any MDP instance in this principled
manner, we equip it with the following operations, i.e., a
set of primitives that handle low-level calculations, thereby
freeing the LLM to focus on higher-order reasoning.

• UpdateQbyR: add reward R(s, a) to Qh(s, a) for all
(s, a) pairs at the specified time step h,

• UpdateQbyPV: add one-step look-ahead value∑
s′∈S P (s′|s, a)Vh+1(s

′) to Qh(s, a) for all (s, a) pairs
at the specified time step h,

• UpdateV: take maximum Vh(s) = maxa∈A Qh(s, a)
for the specified time step h,

• GetQ: retrieve the values of Qh(s, a) for all action a ∈ A
at the specified time step h and state s.

• GetArgMax: return the indices corresponding to the
maximal value in the given list of numbers

To make the LLM generate Thought sequences that cor-
rectly utilize these operations to emulate value iteration, we

2for more details, see https://highway-env.farama.
org/observations
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Figure 3. Agent’s objective in Highway Environment is to control the ego-
vehicle, i.e., the green box, to reach a high speed while avoiding collision
with the other vehicles, i.e., the blue boxes.

employ a structured demonstration generation approach:

• Implement value iteration algorithm using the provided
operations to handle the computational intricacies;

• Augment the algorithm with annotated code that generates
explanatory comments—the Thought text—at key steps
to illustrate the logic and progression of the algorithm;

• Sample an instance of MDP, execute the augmented value
iteration algorithm on this instance, and capture the result-
ing sequence of operation calls and textual comments.

With the generated demonstration, STRIDE not only per-
forms calculations correctly but also maintains a logi-
cally coherent order when handling various MDP instances.
Moreover, the flexible design of STRIDE as detailed in Fig-
ure 2 allows for emulating a broad spectrum of algorithms
beyond value iteration. Therefore, STRIDE offers a flexible
framework that can be extended to a diverse array of prob-
lem domains involving strategic decision-making, where
algorithmic behavior of LLMs is critical. In particular, to
tailor STRIDE to other domains, it suffices to construct
domain-specific tool sets and provide demonstration to em-
ulate other algorithms using these tools. As we will see in
the sequel, STRIDE can be applied to dynamic mechanism
design, two-player bargaining games, and zero-sum games
such as Tic-Tac-Toe, where various tool sets and demonstra-
tion are constructed under the STRIDE framework.

3. Experiments
For each decision-making problem mentioned in Section
1, we first construct the operational tools and generate the
corresponding demonstrations following the procedure de-
scribed in Section 2.2, so that STRIDE is able to mimic
the reference algorithm when solving each problem. De-
scriptions of the selected reference algorithms and the con-
structed operations can be found in Appendix B. Then to
evaluate whether STRIDE can reliably solve new problem
instances given provided demonstrations, we repeat exper-
iments on randomly sampled instances and report the av-
eraged results. For comparison, we include the following
baseline agents: (i) zero-shot Chain-of-Thought (CoT), (ii)
zero-shot CoT with code interpreter, and (iii) few-shot CoT
with code interpreter, where the latter two can utilize the
coding capability of LLMs (through OpenAI Assistants API)
to write and execute programs to solve the decision-making
problems. Compared with (ii), (iii) is additionally provided
with example implementation of the reference algorithm for
each problem. Prompts used in all the experiments are given

in Appendix C. We also conducted additional experiments
on other problem setups like Tic-Tac-Toe and Connect-N
games to further demonstrate the generality of STRIDE.
Details about these experiments are given in Appendix D.

3.1. Markov Decision Processes

We first evaluate STRIDE and the baselines (GPT-3.5-Turbo-
0125 with temperature set to 0 is used for all agents) on
MDP under both known model, where the transition func-
tion P and reward function R are given to the agent in the
beginning, and unknown model, where the agent needs to
estimate P and R during online interactions. In the follow-
ing paragraphs, we first provide a formal definition of the
objective of the agent under each setting, and then discuss
the experiment setup and results.

Agent’s Objective in MDP with Known Model. When the
transition and reward functions are known to the agent, the
objective is to find a policy, denoted as π = {πh}Hh=1 with
πh : S → ∆(A) for h ∈ [H], that maximizes the expected
cumulative rewards over H time steps:

maxπ Eπ,P

[∑H
h=1 R(sh, ah)

]
:= V π

1 , (1)

where the expectation is with respect to the randomness in
state transitions and the stochasticity of π. Let’s denote the
optimal Q value function as Q⋆

h(s, a) for h ∈ [H]. Then
for any state sh encountered by the agent at step h ∈ [H],
we check whether the action ah taken by the agent satisfies
ah = argmaxa∈A Q⋆

h(s, a), and report the average success
rate in the following experiment.

Experiment Setup and Results. We evaluate on MDPs
with horizon length H ∈ {5, 10, 15}, number of states |S| ∈
{3, 10}, and number of actions |A| ∈ {3, 10}. For each
configuration, we repeat the experiment for 20 times on
randomly generated instances, by sampling dense tensors
of size RS×A×S and RS×A as the transition function and
reward function, respectively. The average success rates
are reported in Table 1. For STRIDE, we only provide it
with a single demonstration that solves a MDP instance
with H = 5, S = 5, A = 5. We can see that STRIDE
outperforms the baselines in terms of finding the optimal
policy for the given MDP instances.

Agent’s Objective in MDP with Unknown Model. In this
setting, P and R are unknown to the agent, but the agent is
allowed to repetitively interact with the same MDP instance
for a total number of K episodes to explore and update its
belief about P and R using the observed feedback. The

5
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Table 1. Success rate in taking the optimal action (20 runs).

H S A zero-shot CoT zero-shot CoT w/ code few-shot CoT w/ code STRIDE
5 3 3 0.58 0.74 0.70 0.98

10 3 3 0.62 0.75 0.69 0.87
5 10 10 0.24 0.48 0.60 0.96

10 10 10 0.21 0.50 0.68 0.82
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Figure 4. Comparison of cumulative rewards over episode. We observe that both STRIDE and UCB-VI exhibit rapid increases in their
cumulative rewards, converging by approximately the 10-th episode. This indicates that STRIDE can effectively explore the environment,
by emulating UCB-VI in its reasoning process. In contrast, the cumulative rewards of other baseline methods display ongoing fluctuations
throughout the episodes, showing poor exploration ability in uncertain environments.

objective of the agent is to choose a sequence of policies
π1, π2, . . . , πK , that minimizes the cumulative regret:

minπ1,π2,...,πK

∑K
k=1

(
V π⋆

1 − V πk

1

)
. (2)

In addition to the challenge of long-horizon planning ex-
emplified by Eq (1), Eq (2) also requires addressing the
exploration-exploitation dilemma. Specifically, the agent
needs to strategically balance between exploring unfamil-
iar state-action pairs to learn P and R, and exploiting the
current knowledge about P and R to obtain more rewards.
A classic solution to this problem is UCB-VI (Azar et al.,
2017), which is used as the reference algorithm for STRIDE.
To help the baselines work with long context history (K×H
interactions in total), an external summarization of the past
episodes is added in their prompts at the beginning of each
new episode, similar to Krishnamurthy et al. (2024).

Experiment Setup and Results. In addition to STRIDE
and the aforementioned baselines, we also include UCB-VI
algorithm in the experiments, which serves as a reference.
We evaluate on 10 randomly generated MDP instances with
H = 5, |S| = 3, and |A| = 3, with the agents repeti-
tively playing each instance for a total number of K = 40
episodes, and average the results over the 10 instances. In
Figure 4, we report how the cumulative rewards collected in
each episode change as the number of episodes experienced
by the agent increases. STRIDE reliably implements the
behavior of UCB-VI algorithm using the provided opera-

tions, and thus converges to the optimal policy at a similar
rate as UCB-VI. In comparison, the baselines, though given
additional summarization of history, fail to find the optimal
policy as they cannot efficiently explore the environment.

3.2. Dynamic Mechanism Design

Section 3.1 presents the challenges of long-horizon plan-
ning and strategic exploration in MDP, which only involves
a single agent. Here we further evaluate STRIDE (GPT-4o-
2024-05-13 with temperature set to 0) on dynamic Vickrey-
Clarke-Groves (VCG) mechanism design problem (Berge-
mann & Välimäki, 2019), a multi-agent generalization of
MDP, which further necessitates the agent’s ability to antici-
pate other agents’ behaviors and plan accordingly.

Agent’s Objective in Dynamic Mechanism Design. Con-
sider a mechanism designer and a set of N agents. The
mechanism designer needs to elicit the reward functions
{R̃i}Ni=1 from the N agents, with each R̃i : S × A → R,
and the agents can be untruthful. Based on reported reward
functions, the designer chooses a policy π : S → ∆(A). At
each step h ∈ [H], the designer takes action ah ∼ π(sh),
e,g., the allocation of some scarce resource among I agents,
and each agent i ∈ [N ] receives reward Ri(sh, ah), i.e.,
agent i’s valuation for ah at state sh. After H steps of in-
teractions, the designer needs to charge each agent i some
price pi ∈ R. The objective of each agent i is to maximize
its utility ui(R̃i) = V π(P,Ri)− pi by strategically report-

6
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Table 2. Success rate in computing the VCG mechanism (10 runs).

N zero-shot CoT zero-shot CoT w/ code few-shot CoT w/ code STRIDE
2 0.69 0.63 0.70 0.89
4 0.57 0.63 0.54 0.90
6 0.49 0.45 0.44 0.86

ing the reward function R̃i. The objective of the designer
is to maximize the expected cumulative sum of rewards, by
strategically choosing the policy and pricing rule. This can
be formulated as the following optimization problem

π⋆, {p⋆i }i∈[N ] := maxπ,{pi}i∈[N]
V π(P,

∑n
i=1 R̃i)

s.t. ui(Ri) ≥ ui(R
′
i),∀R′

i, i
(3)

where the constraint guarantees the incentive compatibility
of all agents. The success rate for the experiments on this
problem is computed by considering: (i) whether the cho-
sen action ah satisfies ah = π⋆

h(sh) for h ∈ [H]; and (ii)
whether the charged price pi satisfies |pi − p⋆i | ≤ 0.01.

Experiment Setup and Results. We evaluate on prob-
lem instances with horizon H = 5, number of states
|S| = 3, number of actions |A| = 3, and number of agents
N ∈ {2, 4, 6}. For each configuration, we repeat the ex-
periment 10 times on randomly generated instances, by
sampling dense tensors of size RS×A×S and RN×S×A as
the transition function and reward functions for N agents,
respectively. The average success rate are reported in Table
2. We observe that the baselines, despite being capable of
computing the optimal action most of the times, cannot gen-
eralize the same value iteration procedure to compute the
VCG price correctly. In comparison, STRIDE can reliably
compute the VCG price on most problem instances, which
leads to its higher success rate.

3.3. Bargaining Games

We further evaluate STRIDE and the baselines (GPT-4o-
2024-05-13 with the temperature set to 0) on bargaining
games, in which a buyer and a seller engage in repeated ne-
gotiation for a finite number of steps. In order to maximize
their utility, both the buyer and the seller need to predict the
response of their opponent over long-horizon, based on the
potentially incomplete information they have.

Alternating Offer Bargaining under Complete Informa-
tion. We first consider the elementary yet seminal setting
in which a buyer and a seller engage in a T -step bargaining
process (with T <∞) over price p of the good. Specifically,
at time step t = 1, the buyer offers a price to the seller and
the game ends if the seller accepts the offer. Otherwise, the
game continues to the next time step t = 2, where the seller
makes a counteroffer. They repeat this process until the
deadline T is reached. Assuming the buyer’s value for the

item is 1 and the seller’s cost is 0, then the utility function
of the buyer, denoted as ub, and that of the seller, denoted
as us, for some price p at time step t are

ub(p, t) = (1− p) · δt−1
b , if t ≤ T , and 0 otherwise;

us(p, t) = (p− 0) · δt−1
s , if t ≤ T , and 0 otherwise.

(4)

respectively, with δb, δs ∈ [0, 1] being the discount factor of
their utilities over time. Note that in this setting, the buyer’s
value 1, the seller’s cost 0, and the values of δb, δs and T are
public information. The optimal decision for either agent,
assuming his/her opponent is also acting optimally, i.e., be-
ing rational, is to play the Subgame Perfect Equilibrium
(SPE) strategy, which, in this setting, is unique and can be
computed using backward induction (Fudenberg & Tirole,
1991). Description of this reference algorithm and the op-
erations constructed for STRIDE is given in Appendix B.
To evaluate whether STRIDE and the baselines can make
optimal decisions, we let buyer and seller empowered by
the same method to bargain with each other, and report the
success rates in reaching SPE.

Experiment Setup and Results. We evaluate on bargaining
games with deadline T ∈ {3, 6, 9}. In each case, we repeat
the experiments on 10 randomly generated instances, by
sampling discount factors δb, δs ∈ U(0.5, 1.0). The average
success rates are reported in Table 3. We can see that, none
of the baseline methods attains success rate higher than 0.5,
which is because when it is their turn to offer, they cannot
offer a price close to SPE, though being explicitly instructed
in the prompt to assume rational opponent behavior when
making decisions. It is worth noting that the existence of
the code interpreter did not provide any advantage this time
compared with the results for MDP. Though the LLM did
attempt to implement the backward induction algorithms to
solve SPE, they failed to get everything right and produce
the correct results. We hypothesize that this distinction is
due to the insufficiency of training data related to the imple-
mentation of backward induction algorithms for bargaining,
especially compared with the algorithms for MDP.

Moreover, to further illustrate the advantage of being able
to strategically reason about the decisions in bargaining,
we pit STRIDE against zero-shot CoT, the best-performing
baseline in Table 3. The results (averaged over 10 randomly
generated instances) are summarized in Table 4. We can see
that, by mimicking the reference algorithm, STRIDE guar-
antees an outcome that is no worse than the SPE regardless

7
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Table 3. Success rate in reaching SPE of single-issue bargaining (10 runs).

T zero-shot CoT zero-shot CoT w/ code few-shot CoT w/ code STRIDE
3 0.50 0.35 0.50 0.79
6 0.50 0.27 0.46 0.91
9 0.34 0.18 0.27 0.74

Table 4. Outcomes of STRIDE and zero-shot CoT bargaining with each other.

STRIDE buyer vs zero-shot CoT seller zero-shot CoT buyer vs STRIDE seller
T avg SPE price avg sale price avg SPE price avg sale price
3 0.13 0.13 0.22 0.43
6 0.57 0.56 0.65 0.70
9 0.28 0.27 0.49 0.70

Table 5. Success rate in reaching SE of single-issue bargaining with one-sided uncertainty (10 runs).

T zero-shot CoT zero-shot CoT w/ code few-shot CoT w/ code STRIDE
3 0.47 0.29 0.38 0.79
6 0.44 0.32 0.30 0.75
9 0.49 0.38 0.23 0.69

of the role it plays. As mentioned in the previous paragraph,
the baseline cannot accurately compute the SPE price, and
thus, when it serves as the buyer who needs to make the
initial offer, often ends up with a sale price that is higher
than SPE price, which demonstrates its sub-optimality.

Seller Making Offers under Uncertainty of Buyer’s
Value. Now we consider the more challenging scenario
where the buyer’s value, denoted as b ∈ [0, 1], is privately
known to himself, and thus the seller needs to update his/her
belief about b based on the observed responses, i.e., buyer’s
rejection of seller’s offers. The seller’s cost (still assumed
to be 0) and the prior distribution of b, represented as a cu-
mulative distribution function F (v), are public information.
F (·) is supported on [0, 1] and we assume F (v) = v, i.e., a
uniform distribution. In each time step t = 1, 2, . . . , T , the
seller offers a price and the buyer responds by acceptance
or rejection. Similar to Eq (4), their utility functions are

ub(p, t) = (b− p) · δt−1
b , if t ≤ T , and 0 otherwise,

us(p, t) = p · δt−1
s , if t ≤ T , and 0 otherwise.

(5)

Different from the complete information setting where we
evaluate the agents using the unique SPE, here we consider
sequential equilibrium (SE) due to the uncertainty on the
buyer’s value. Fortunately, in the particular setting described
above, the SE is still unique (Cramton, 1984), and thus we
can similarly evaluate the agents using the success rates
of reaching SE. To compute the SE, we propose a refer-
ence algorithm for STRIDE that combines bisection search
and backward induction and construct the specialized tools.
More details are given in Appendix B.

Experiment Setup and Results. We evaluate the agents on
problems with deadline T ∈ {3, 6, 9}. In each case, we re-

peat the experiments on 10 randomly generated instances, by
sampling discount factors δb, δs ∈ U(0.5, 1.0) and buyer’s
value b ∈ U(0.1, 0.9). The average success rates are re-
ported in Table 5. Again, we observe that STRIDE outper-
forms the baseline methods, as it is able to compute the SE
by mimicking the reference algorithm we designed.

Conclusion
This paper presented the STRIDE framework, enhancing
LLMs’ strategic decision-making capabilities. Through
integrating a structured Thought process with external work-
ing memory and operational tools, STRIDE enables LLMs
to overcome significant limitations such as strategic ex-
ploration and dynamic opponent interaction. Our evalu-
ations across diverse decision-making scenarios validate
STRIDE’s effectiveness, suggesting its potential as a robust
tool for strategic thinking in complex environments. For
further development of the STRIDE framework, we pro-
pose the following research avenues. (i) Currently, STRIDE
utilize specially designed Python functions as tools to facil-
itate the formation of strategies and the choice of actions
by the agents in bilateral bargaining, an interesting direc-
tion is to replace it with models trained using data collected
during interactions. (ii) Automatic synthesis of operations:
Another interesting direction would be developing LLMs
specifically fine-tuned on implementing primitives that han-
dle the low-level calculations of various decision-making
problems. (iii) Fine-tuning on the Thought Sequence: To
further enhance LLM’s understanding and execution of the
Thought sequence as well as the associated operations, we
can fine-tune the model on the sequences generated using
the procedure described in Section 2.2.
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A. Related Work
Evaluating LLMs’ Reasoning Capability in Strategic Environments. Recent advancements in LLMs have spurred
investigations into their capacity for strategic reasoning. There have been several contributions recently studying the
behavior of LLMs in strategic settings, e.g., matrix games like Dictator and Prisoner’s Dilemma (Brookins & DeBacker,
2023; Lorè & Heydari, 2023; Fan et al., 2023; Akata et al., 2023; Guo et al., 2023). These works have been particularly
interested in assessing whether LLMs can perform strategic or rational reasoning effectively with minimal initial input, often
referred to as zero-shot prompting. Recent work by Davidson et al. (2024) and Bianchi et al. (2024) also used bargaining
games to evaluate the strategic reasoning of LLMs. Their findings in general suggest that while LLMs can sometimes
generate plausible strategies, they often lack consistency and a deep understanding of game dynamics. Another pivotal
study by Gandhi et al. (2023) proposed to enhance the strategic reasoning of LLMs by providing few-shot chain-of-thought
(CoT) examples for matrix games and multi-turn bargaining games, and showed that LLMs are capable of generalizing the
demonstration to new game instances, but still has difficulties in games with complex rules or long horizon. A recent work
by Huang et al. (2024) also made a similar observation about the limited capability of LLMs to generalize to various game
instances, despite using CoT to enhance reasoning.

Applications of LLM-based Agents beyond Strategic Reasoning. While our focus is on enhancing the strategic reasoning
capabilities of LLMs, it is important to acknowledge the broader applications of LLM-based agents that do not primarily
focus on strategic tasks (Wang et al., 2024), such as social simulation, e.g., building virtual environment with LLM-based
agents to simulate social phenomena (Park et al., 2023; Aher et al., 2023), scientific research assistant, e.g., utilize LLMs for
automating the design, planning, and execution of scientific experiments (Boiko et al., 2023), software development, e.g., let
multiple LLM agents communicate and collaborate through natural language to complete the software development life
cycle (Qian et al., 2023), and robotics, e.g., equip LLM with a wide range of manipulation and navigation skills to control a
mobile manipulator robot (Ahn et al., 2022). This wide range of applications has led to various design of the LLM agent
architecture to enhance its capability in the specific domain, but typically, an LLM agent architecture features memory (Zhu
et al., 2023) and planning (Yao et al., 2022) modules that enable LLMs to recall past behaviors and plan future actions in a
dynamic environment, and a set of tools (Qin et al., 2023) that facilitate mathematical computation, accessing internal or
external memory, and interacting with the environment.

LLM-Enhanced Reinforcement Learning Algorithms. The works mentioned in the previous two paragraphs, as well as
the STRIDE framework proposed in this paper, utilize LLMs as the decision maker, that is, LLMs are fed prompts containing
the current state of the environment, and they generate action recommendations based on this input. The reasoning process
that produces the recommendation, regardless of whether it follows certain algorithmic behavior as STRIDE, happens in the
language space. Another distinct line of research, emerging primarily from the reinforcement learning community, instead
integrates LLMs into traditional reinforcement learning algorithms to leverage the common sense knowledge that LLMs
acquire during pretraining (Hao et al., 2023; Liu et al., 2023; Zhou et al., 2023; Zhao et al., 2024). In this way, the reasoning
process is hard-coded in programming language like Python, which defines how different components interact with each
other. Currently, the most prevalent approach in this domain is the integration of LLMs into Monte Carlo tree search (MCTS)
algorithms, where they typically serve as tree traversal policy (Zhao et al., 2024), action pruner (Liu et al., 2023), world
model (Hao et al., 2023), and evaluation function (Liu et al., 2023). In comparison, our approach is much more flexible in
the sense that we can repurpose the reasoning process of STRIDE to emulate different algorithmic behaviors using various
tools and demonstrations. In particular, as demonstrated in our additional experiments, apart from the model-based RL
algorithms like UCB-VI, we can also make STRIDE reason as tree-search algorithms like Minimax. And as discussed in
Section 2.2, this flexibility extends the utility of our approach well beyond decision-making problems.

B. Reference Algorithms for STRIDE
As discussed in Section 2, the main strength of STRIDE lies in its capability of implementing various algorithmic behaviors
in its Thought process to solve decision-making problems that are challenging to LLMs. In this section, we provide the
descriptions of the reference algorithms that STRIDE emulates when solving the problems in Section 3.

B.1. Value Iteration & Upper Confidence Bound Value Iteration

For MDP with known and unknown model, the reference algorithms selected for STRIDE are Value Iteration (VI) and
Upper Confidence Bound Value Iteration (UCB-VI). Here we provide description of these two algorithms in Algorithm 1
and Algorithm 2, as well as some simplified comments (e.g., results returned by the operations are omitted for simplicity)
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Algorithm 1 Value Iteration for MDPs with Known Model.
1: Initialize VH+1(s) = 0,∀s ∈ S
2: ▷ Question: Compute the Optimal Policy.
3: for step h = H,H − 1, · · · , 1 do
4: ▷ Thought: Now we can continue to compute the Q-values for the current step h.
5: ▷ Operation: call UpdateQbyR with inputs {time step: h}
6: ▷ Operation: call UpdateQbyPV with inputs {time step: h}
7: ▷ Operation: call UpdateVbyQ with inputs {time step: h}
8: for each state s ∈ S do
9: for each action a ∈ A do

10: Qh(s, a) = R(s, a) +
∑

s′∈S P (s′|s, a)Vh+1(s
′)

11: Vh(s) = maxa∈A Qh(s, a)

12: ▷ Thought: I have finished value iteration. Now exit reasoning.
13: for step h = 1, 2, · · · , H do
14: Observe state sh
15: ▷ Question: Which action I should take?
16: ▷ Thought: I should choose the action that maximizes the computed Q values.
17: ▷ Operation: call GetQ with inputs {time step: h, cur state: sh}
18: ▷ Operation: call GetArgMax with inputs {q vals: [. . . ]}
19: ▷ Exit: I should choose Action ah as it maximizes the Q values. Now exit reasoning.
20: Take action ah = argmaxa∈A Qh(sh, a)
21: Observe reward r(sh, ah) = R(sh, ah) + ϵ and state transits to sh+1

showing how we augment the algorithm during the demonstration generation procedure as discussed in Section 2.2.

Operational Tools. The following operational tools are provided to the LLM to help it implement the behavior of VI and
UCB-VI:

• UpdateQbyR: add reward R(s, a) to Qh(s, a) for all (s, a) pairs at the specified time step h,
• UpdateQbyPV: add one-step look-ahead value

∑
s′∈S P (s′|s, a)Vh+1(s

′) to Qh(s, a) for all (s, a) pairs at the specified
time step h,

• UpdateV: take maximum Vh(s) = maxa∈A Qh(s, a) for the specified time step h,
• GetQ: retrieve the values of Qh(s, a) for all action a ∈ A at the specified time step h and state s.
• GetArgMax: return the indices corresponding to the maximal value in the given list of numbers
• UpdateQbyBonus: add exploration bonus to the Q values for all state-action pairs at the specified time step
• UpdateMDPModel: update the estimation of the reward and transition function of MDP based on the observed quadruple

(old state, action, new state, reward)

MDP with Known Model. With these operational tools, STRIDE is capable of computing the optimal policy of MDP with
known model by emulating Algorithm 1.

MDP with Unknown Model. Similarly, STRIDE can emulate Algorithm 2 when facing MDP with unknown model, which
only needs two additional operations that (i) update the estimation for the unknown reward and transition function, and (ii)
update Q values with the exploration bonus, respectively.

B.2. Dynamic Programming for Dynamic Mechanism Design

For dynamic mechanism design problem, the reference algorithm selected for STRIDE is described in Algorithm 3, which is
modified based on the Markov VCG mechanism of Lyu et al. (2022). It is known that the unique solution to Eq (3) is the
VCG mechanism i.e.,

π⋆ := argmaxπ V
π(P,

∑N
i=1 R̃i),

p⋆i := V π∗
−i(P,

∑
j ̸=i R̃j)− V π∗

(P,
∑

j ̸=i R̃j), for i = 1, 2, . . . , n,

12
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Algorithm 2 Value Iteration Upper Confidence Bound for MDPs with Unknown Model
1: Initialize VH+1(s) = 0,∀s ∈ S
2: for episode t = 1, 2, . . . , T do
3: ▷ Question: Compute the Optimistic Policy for Exploration.
4: for step h = H,H − 1, · · · , 1 do
5: ▷ Thought: Now we can continue to compute the Q-values for the current step h.
6: ▷ Operation: call UpdateQbyR with inputs {time step: h}
7: ▷ Operation: call UpdateQbyPV with inputs {time step: h}
8: ▷ Operation: call UpdateQbyBonus with inputs {time step: h}
9: ▷ Operation: call UpdateVbyQ with inputs {time step: h}

10: for each state s ∈ S do
11: for each action a ∈ A do
12: ▷ Action: call Python function to calculate Q value for (s, a)
13: Qh(s, a) = R̂(s, a) +

∑
s′∈S P̂ (s′|s, a)Vh+1(s

′) + b(N(s, a))

14: Vh(s) = maxa∈A Qh(s, a)

15: ▷ Thought: I have finished value iteration. Now exit reasoning.
16: for step h = 1, 2, · · · , H do
17: Observe state sh
18: ▷ Question: Which action I should take?
19: ▷ Thought: I should choose the action that maximizes the computed Q values.
20: ▷ Operation: call GetQ with inputs {time step: h, cur state: sh}
21: ▷ Operation: call GetArgMax with inputs {q vals: [. . . ]}
22: ▷ Exit: I should choose Action ah as it maximizes the Q values. Now exit reasoning.
23: Take action ah = argmaxa∈A Qh(sh, a)
24: Observe reward r(sh, ah) = R(sh, ah) + ϵ and state transits to sh+1

25: ▷ Question: Update estimations of P and R.
26: ▷ Thought: I should update my estimation using the observed (sh, ah, sh+1, rh).
27: ▷ Operation: call UpdateMDPModel with inputs {s: sh, a: ah, s prime: sh+1, r: rh}
28: ▷ Thought: My estimation is updated. Now exit reasoning.
29: N(sh, ah) = N(sh, ah) + 1, N(sh, ah, sh+1) = N(sh, ah, sh+1) + 1

30: P̂ (sh+1|sh, ah) = N(sh,ah,sh+1)
N(sh,ah)

, R̂(s, a) = R̂(s, a)× N(sh,ah)−1
N(sh,ah)

+ r(sh,ah)
N(sh,ah)

where π∗
−i := argmaxπ V

π(P,
∑

j ̸=i R̃j). Similar to Eq (1), Eq (B.2) can be solved by separately computing policies π⋆

and {π∗
−i}Ni=1 via value iteration, and then evaluating π⋆ on MDP instances with transition function P and reward function∑

j ̸=i R̃j for i = 1, 2, . . . , N .

Operational Tools. The following operational tools are provided to the LLM:

• UpdateQbyRExcluding: add immediate rewards, excluding the reward of excluded agent, to the Q values for all
state-action pairs at current time step. If excluded agent is set to None, all agents’ rewards are used.

• UpdateQbyPVExcluding: add the one-step look-ahead value, excluding the reward of excluded agent, to the Q
values for all state-action pairs at current time step. If excluded agent is set to None, all agents’ rewards are used.

• UpdateVExcluding: update the V values, excluding the reward of excluded agent, based on the computed Q values
for the current time step. If excluded agent is set to None, all agents’s rewards are used.

• GetQExcluding: retrieve Q values, that excludes the rewards of excluded agent, for all actions at the current state and
time step. If excluded agent is set to None, the Q values computed using all agents’ rewards will be returned.

• EvaluatePolicyExcluding: evaluate the optimal policy on an fictitious MDP that excludes the reward function of
excluded agent.

• GetArgMax: return the indices corresponding to the maximal value in the given list of numbers
• GetMax: return the maximal value in the given list of numbers

With these operational tools, STRIDE is capable of computing the dynamic VCG mechanism by emulating Algorithm 3.

13
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Algorithm 3 Dynamic VCG Mechanism Design
1: Initialize VH+1(s) = 0, VH+1,−i(s) = 0,∀s ∈ S
2: ▷ Question: Compute the optimal policy that maximizes all agents’ reported rewards.
3: for step h = H,H − 1, · · · , 1 do
4: ▷ Thought: Now we can continue to compute the Q-values for the current step h.
5: ▷ Operation: call UpdateQbyRExcluding with {time step: h, excluded agent:None}
6: ▷ Operation: call UpdateQbyPVExcluding with {time step: h, excluded agent:None}
7: ▷ Operation: call UpdateVbyQExcluding with {time step: h, excluded agent:None}
8: for each action a ∈ A do
9: Qh(s, a) =

∑N
i Ri(s, a) +

∑
s′∈S P (s′|s, a)Vh+1(s

′)

10: Vh(s) = maxa∈A Qh(s, a)

11: ▷ Thought: I have finished value iteration. Now exit reasoning.
12: Denote the optimal policy as π⋆

h(s) := argmaxa∈A Qh(s, a) for h ∈ [H], s ∈ S
13: for step h = 1, 2, · · · , H do
14: Observe state sh
15: ▷ Question: Which action I should take?
16: ▷ Thought: I should choose the action that maximizes the computed Q values.
17: ▷ Operation: call GetQExcluding with {time step: h, cur state: sh, excluded agent=None}
18: ▷ Operation: call GetArgMax with {q vals: [. . . ]}
19: ▷ Exit: I should choose Action ah as it maximizes the Q values. Now exit reasoning.
20: Mechanism designer takes action ah = argmaxa∈A Qh(sh, a)
21: Agent i observes reward ri(sh, ah) = Ri(sh, ah) + ϵ for i ∈ [N ] and state transits to sh+1

22: for agent i = 1, 2, · · · , N do
23: ▷ Question: Now compute the VCG price for agent i.
24: for step h = H,H − 1, · · · , 1 do
25: ▷ Thought: Now we can continue to compute the Q-values for the current step h.
26: ▷ Operation: call UpdateQbyRExcluding with {time step: h, excluded agent: i}
27: ▷ Operation: call UpdateQbyPVExcluding with {time step: h, excluded agent: i}
28: ▷ Operation: call UpdateVbyQExcluding with {time step: h, excluded agent: i}
29: for each state s ∈ S do
30: for each action a ∈ A do
31: Qh,−i(s, a) =

∑
j ̸=i Rj(s, a) +

∑
s′∈S P (s′|s, a)Vh+1,−i(s

′)

32: Vh,−i(s) = maxa∈A Qh,−i(s, a)

33: p⋆i = V1,−i(s1)− V π∗
(P,

∑
j ̸=i R̃j)

34: ▷ Thought: Now we know the optimal value of this fictitious MDP that ignores agent i’s rewards. Next we should
evaluate policy π⋆ on this fictitious MDP.

35: ▷ Operation: call EvaluatePolicyExcluding with {excluded agent: i}
36: ▷ Thought: Then the VCG price for agent i is simply their difference ... Now exit reasoning.

B.3. Backward Induction for Bargaining in Complete Information Setting

For alternating offer bargaining under complete information, the reference algorithm selected for STRIDE is the backward
induction algorithm described in Algorithm 4, which given parameter of the game, including buyer’s discount δb, seller’s
discount δs, and deadline T , can compute the SPE of the game.

Operational Tools. The following operational tools are provided to the LLM:

• CalcUtil: calculate buyer or seller’s utility using Eq (4), with the role of the agent, the specified price and time step as
inputs.

• BackwardOneStep: compute the SPE price using one step of backward induction reasoning based on the opponent’s
utility if he/she choose to reject the offer at current time step (see the constrained optimization problem in line 14 and line
17 in Algorithm 4)

• GetSPEPrice: retrieve the previously computed SPE price for the specified time step

14
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Algorithm 4 Backward Induction to Compute SPE of Bargaining under Complete Information
1: ▷ Question: Compute the SPE Prices via Backward Induction.
2: for time step t = T, T − 1, · · · , 1 do
3: ▷ Thought: Compute the SPE price for time t, based on the results computed for time t+ 1
4: if t = T then
5: if current player = Buyer then
6: ▷ Operation: call BackwardOneStep with {agent: buyer, op u: 0.0, t: T}
7: The SPE price pT := 0.0
8: else
9: ▷ Operation: call BackwardOneStep with {agent: seller, op u: 0.0, t: T}

10: The SPE price pT := 1.0

11: else
12: if current player = Buyer then
13: ▷ Operation: call BackwardOneStep with {agent: buyer, op u: us(pt+1, t+ 1), t: t}
14: The SPE price pt := argmaxp ub(p, t), s.t. us(p, t) ≥ us(pt+1, t+ 1)
15: else
16: ▷ Operation: call BackwardOneStep with {agent: seller, op u: ub(pt+1, t+ 1), t: t}
17: The SPE price pt := argmaxp us(p, t), s.t. ub(p, t) ≥ ub(pt+1, t+ 1).

18: ▷ Operation: call CalcUtil with {agent: seller, price: pt, t: t}
19: ▷ Operation: call CalcUtil with {agent: buyer, price: pt, t: t}
20: Buyer utility ub(pt, t), Seller utility us(pt, t)

21: ▷ Thought: SPE prices for all time steps are calculated. Now exit reasoning.

With these operational tools, STRIDE is capable of computing the SPE by emulating Algorithm 4. SPE can be used to
predict the future offer to be made by the opponent, assuming the opponent is rational and that the opponent believes
the player to be rational as well. When facing a new offer p made by the opponent at time step t, STRIDE will emulate
Algorithm 5 to produce a response.

Algorithm 5 Response to Offer in Bargaining with Complete Information
1: Inputs: current player, price p, time t, SPE prices {pt}Tt=1

2: ▷ Question: Should I accept or reject opponent’s offer?
3: ▷ Thought: I should first compute the utility I get by accepting the offer, and then the utility I get by rejecting the offer

and making a counter offer using the SPE price in the next time step.
4: ▷ Operation: call CalcUtil with inputs {agent: current player, price: p, t: t}
5: ▷ Operation: call GetSPEPrice with inputs {t: t+ 1}
6: ▷ Operation: call CalcUtil with inputs {agent: current player, price: pt+1, t: t+ 1}
7: if current player = buyer then
8: ua = ub(p, t), ur = ub(pt+1, t+ 1)
9: else

10: ua = us(p, t), ur = us(pt+1, t+ 1)

11: if ua ≥ ur then
12: ▷ Thought: I should accept the offer. Now exit reasoning.
13: return Accept
14: else
15: ▷ Thought: I should reject the offer. Now exit reasoning.
16: return Reject

B.4. Backward Induction for Bargaining in Incomplete Information Setting

Since the seller is uncertain about the value b of the buyer, at each time step t the seller decides the offer price pt based on
his/her belief constructed using observations up to time step t− 1, which is denoted as U(0, bt−1), i.e., the true value b is
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Algorithm 6 Backward Induction to Compute SE of Bargaining under Incomplete Information
1: ▷ Question: Compute the SE Prices via Bisection Search and Backward Induction.
2: ▷ Thought: I need to first compute my belief about buyer’s value at time step T-1 under sequential equilibrium, denoted

bT−1, which can be done via bisection search. I should terminate when the value b′0 computed based on b′T−1 gets close
enough to my actual initial belief b0 = 1.0.

3: l = 0, h = 1, B′
T−1 = (l + h)/2

4: ▷ Operation: Call ComputeBt with inputs {time step: 1, b last: B′
T−1}

5: b′0 = ComputeBt(1, b′T−1)
6: while |b′0 − 1.0| ≥ 10−3 do
7: if b′0 ≤ 1.0 then
8: ▷ Thought: Since b′0 is smaller than b0, I should focus on the region [b′T−1, h] next time.
9: l = b′T−1

10: else
11: ▷ Thought: Since b′0 is larger than b0, I should focus on the region [l, b′T−1] next time.
12: h = b′T−1

13: b′T−1 = (l + h)/2
14: ▷ Operation: Call ComputeBt with inputs {time step: 1, b last: B′

T−1}
15: b′0 = ComputeBt(1, b′T−1)

16: ▷ Thought: Since |b′0 − 1.0| < 10−3, the value of my initial belief computed based on B′
T−1 is close enough to the

actual value b0 = 1. Therefore, B′
T−1 is an accurate approximation of BT−1 in SE. Now I can start backward induction

to compute the SE prices from time T to 1.
17: for t = T, T − 1, . . . , 1 do
18: if t = T then
19: ▷ Operation: Call function SOLVELAST with inputs {b last: B′

T−1}.
20: ut, pt = SolveLast(B′

T−1) # seller’s expected utility and price under SE
21: else
22: ▷ Operation: Call function SOLVE with inputs {u: ut+1, p: pt+1, t: t}.
23: ut, pt = Solve(ut+1, pt+1, t) # seller’s expected utility and price under SE
24: ▷ Thought: Now I need to continue to time step t− 1.
25: ▷ Thought: I have reached t = 1. Exit reasoning now.

uniformly distributed in [0, bt−1] (with b0 = 1). Therefore, different from SPE considered in complete information setting,
SE specifies not only the strategies of the players, but also the belief, which in our case is the sequence {b0, b1, . . . , bT−1}.
In classic economics literature (Sobel & Takahashi, 1983; Cramton, 1984), this sequence is obtained by: (i) backward
induction from time T to time 1, which results in b0 expressed as a function of bT−1; (ii) as the initial belief b0 = 1, we can
solve this equation to obtain the value of bT−1. This provides an analytical form for {b0, b1, . . . , bT−1} using the parameters
δb, δs, T . To make the inner logic more transparent during reasoning, we replace this analytical solution with a bisection
search when designing the reference algorithm for STRIDE, with its full description given in Algorithm 6.

We provide the following operational tools to STRIDE to help it emulate Algorithm 6:

• CalcUtil: calculate buyer or seller’s utility using Eq (5), with the role of the agent, the specified price and time step as
inputs.

• ComputeBt: compute what seller’s belief about buyer’s value would be at the current time step, given a guess of seller’s
belief at time step T − 1 (description given in Algorithm 7)

• SolveLast: compute seller’s expected utility and the corresponding price at the last time step (description given in
Algorithm 8)

• Solve: compute the expected utility and the corresponding price at the current time step, based on the results computed
for the next time step (description given in Algorithm 9)

• GetSEPrice: retrieve the previously computed SE price for the specified time step

Then similar to the complete information setting, when deciding whether to accept an offer from the seller, the buyer can
compare the utility he/she can get by accepting the current offer, and the utility he/she can get by waiting for seller’s offer in
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the next time step. For the latter, as the buyer assumes the seller is rational, the next offer from seller is predicted using the
SE price from Algorithm 6.

Algorithm 7 ComputeBt
1: Inputs time step, the time index of current belief, and b last, the belief at time step T .
2: Initialize constants {cτ}Tτ=2 with cT = 0.5 and cτ = (1−δb+δbcτ+1)

2

2(1−δb+δbcτ+1)−δscτ+1
for τ ≥ 2.

3: Set t = time step, bT−1 = b last
4: for τ = T − 1, T − 2, . . . , t do
5: bτ−1 = 2(1−δb+δbcτ+1)−δscτ+1

1−δb+δbcτ+1
bτ

6: return bt−1

Algorithm 8 SolveLast
1: Inputs b last, the belief at time step T .
2: Set bT−1 = b last
3: Compute SPE price pT := argmaxp p ·

bT−1−p
bT−1

= 1
2bT−1

4: Compute expected utility uT := pT · bT−1−pT

bT−1
= 1

4bT−1

5: return uT , pT

Algorithm 9 Solve
1: Inputs u, seller’s expected utility at t+1, p, the associated price, and t, the current time step.
2: Set ut+1 = u, pt+1 = p, and t = t
3: Compute SPE price

pt := argmax
p

bt−1 − bt
bt−1

p+
bt

bt−1
ut+1, s.t. bt = δb(bt − pt+1)

= (1− δb)bt + δbpt+1

4: Compute expected utility ut =
bt−1−bt
bt−1

pt +
bt

bt−1
ut+1

5: return ut, pt

C. Prompts of the STRIDE Framework and Baselines
The prompts used for the LLM agents in Section 3 consist of three parts, which we mark using different colors in this section:
a system prompt setting the role of the agent (gray), followed by a formal description of the decision-making problem to
be solved (light blue), and then parameters of the problem instance (light green). The system prompt is problem-agnostic,
which is given below.

System prompt for zero-shot CoT

You are a world class intelligent agent capable of solving various classes of decision making problems. For each
decision making problem you encounter next, you will be given the description of the problem setup and your objective.
You need to carefully reason about the problem step-by-step, and make optimal decisions for the encountered problem
instance.

System prompt for zero-shot CoT w/ code interpreter

You are a world class intelligent agent capable of solving various classes of decision making problems. For each
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decision making problem you encounter next, you will be given the description of the problem setup and your objective.
You need to carefully reason about the problem step-by-step, and make optimal decisions for the encountered problem
instance. You are provided with a code interpreter. You should write and run code to answer the questions.

System prompt for few-shot CoT w/ code interpreter

You are a world class intelligent agent capable of solving various classes of decision making problems. For each
decision making problem you encounter next, you will be given the description of the problem setup and your
objective. Your need to carefully reason about the problem, and make optimal decisions for the encountered problem
instance. You are provided with a code interpreter and an example implementation. You should write and run code to
answer the questions following the example.

System prompt for STRIDE

You are a world class intelligent agent capable of solving various classes of decision making problems. For each
decision making problem you encounter next, you will be given the description of the problem setup and your objective.
Your need to carefully reason about the problem step-by-step, and make optimal decisions for the encountered problem
instance. You are provided with a set of tools that handle low-level calculations and examples showing you how to
use these tools to solve this problem.

In the remainder of this section, we will provide the prompts describing the decision making problems and the problem
parameters to the agents.

C.1. MDP with Known Model

The following are the prompts we provide to all agents to describe the formulation and the agent’s objective in MDP when
the model, i.e., the transition function and reward function, is known.

Description of MDP with known model

A finite horizon tabular Markov Decision Process (MDP) is a model for decision-making in scenarios where outcomes
are influenced by both randomness and controlled decisions, with decisions being made over a finite number of time
steps.

Components:

State Space S: s0, s1, . . . , s|S|−1, where |S| is the total number of states.

Action Space A: a0, a1, . . . , a|A|−1, where |A| is the total number of actions.

Transition probability matrix P : a three-dimensional tensor with shape |S| × |A| × |A|, where each entry represents
the probability of transitioning from one state after taking a specific action to another state.

Reward matrix R: a matrix with shape |S| × |A|, where each entry gives the mean of the immediate reward received
after taking an action in a state.

Horizon length H: The total number of time steps the decision process is constrained to.

Interaction protocol:

For time step h = 1, 2, . . . ,H

Agent takes an action ah ∈ A based on the current state sh

18
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Agent receives reward rh := R[sh, ah] + ηh, where ηh ∼ N (0, 1)

The environment transits to the next state sh+1 with probability P [sh, ah, sh+1] Goal of the agent:

Maximize expected cumulative rewards E
[∑H

h=1 R[sh, ah]
]
, where the expectation is w.r.t. randomness of agent’s

policy and state transition.

For zero-shot CoT, which can only read the parameters from context, we print the complete transition matrix P and reward
matrix R as shown below, where the empty curly brackets {} are substituted with actual values of the problem instance.

Description of problem instance

Now you are going to play in a finite-horizon tabular Markov decision process, with length of horizon {} (with time
indices starting from h=0 to {}), number of states —S—={}, number of actions —A—={}. The transition matrix P
is: {} and reward matrix R is {}.

For zero-shot CoT w/ code, few-shot CoT w/ code and STRIDE, which can read the parameters from their working memory
or an external file, instead of directly printing the transition and reward matrices in context, we state in the prompt where
these values can be accessed.

Description of problem instance

Now you are going to play in a finite-horizon tabular Markov decision process, with length of horizon {} (with time
indices starting from h=0 to {}), number of states —S—={}, number of actions —A—={}. The transition matrix P
and reward matrix R are stored in working memory.

C.2. MDP with Unknown Model

The following are the prompts we provide to all agents to describe the formulation and the agent’s objective in MDP when
the model, i.e., the transition function and reward function, is unknown.

Description of MDP with unknown model

A finite horizon tabular Markov Decision Process (MDP) is a model for decision-making in scenarios where outcomes
are influenced by both randomness and controlled decisions, with decisions being made over a finite number of time
steps.

Components:

State Space S: s0, s1, . . . , s|S|−1, where |S| is the total number of states.

Action Space A: a0, a1, . . . , a|A|−1, where |A| is the total number of actions.

Transition probability matrix P : a three-dimensional tensor with shape |S| × |A| × |A|, where each entry represents
the probability of transitioning from one state after taking a specific action to another state.

Reward matrix R: a matrix with shape |S| × |A|, where each entry gives the mean of the immediate reward received
after taking an action in a state.

Horizon length H: The total number of time steps the decision process is constrained to.

Number of episodes K: The total number episodes the MDP is repeatedly played by the agent, where in each episode,
the agent starts fresh, makes a series of H decisions and then the episode ends. Note that learning achieved in earlier
episodes influences the behavior in later episodes. Unknown model of the environment: The transition probability
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matrix P and reward matrix R are unknown to the agent, and the agent needs to estimate them based on the collected
observations and improve its policy after each episode.

Interaction protocol:

For episode k = 0, 1, 2, . . . ,K − 1:

For time step h = 0, 1, 2, . . . ,H − 1:

Agent takes an action ak,h ∈ A based on the current state sk,h

Agent receives reward rk,h := R[sk,h, ak,h] + ηk,h, where ηk,h ∼ N (0, 1)

The environment transits to the next state sk,h+1 with probability P [sk,h, ak,h, sk,h+1]

Agent can update its estimation of matrix P and R based on the newly observed quadruples (sk,h, ak,h, sk,h+1, rk,h+1)
for h = 0, 1, 2, . . . ,H − 1

Goal of the agent:

Maximize expected cumulative rewards E
[∑K−1

k=0

∑H−1
h=0 R[sh, ah]

]
, where the expectation is w.r.t. randomness of

agent’s policy and state transition.

For STRIDE, since it can automatically update, store, and read the estimated transition and reward matrices in working
memory, we simply use the following description about the problem instance for all episodes.

Description of problem instance

Now you are going to play in a finite-horizon tabular Markov decision process, with length of horizon {} (with time
indices starting from h=0 to {}), number of states —S—={}, number of actions —A—={}. The transition matrix P
and reward matrix R are unknown to you, so you need to estimate them based on interaction history.

For all the baselines, since they cannot reliably summarize the interaction history and construct the estimation of P and R, we
explicitly provide the estimation of P and R and the count of visitation of state-action pairs as shown below. This is similar
to the “externally summarized interaction history” in the prompt for multi-armed bandit problems used by Krishnamurthy
et al. (2024).

Description of problem instance

Now you are going to play in a finite-horizon tabular Markov decision process, with length of horizon {} (with time
indices starting from h=0 to {}), number of states —S—={}, number of actions —A—={}. The transition matrix P
and reward matrix R are unknown to you. Your current estimation of transition matrix P is {}, your current estimation
of reward matrix R is {}, and your count of visitation of all the state-action pairs is {}.

C.3. Dynamic Mechanism Design Problem

The following are the prompts we provide to all agents to describe the formulation and the agent’s objective in Dynamic
Mechanism Design problem, when the model, i.e., the transition function and reward function, is known.

Description of dynamic mechanism design problem

The dynamic mechanism design problem involves creating allocation and pricing rules for decision-making, where
the value of resource to the agents changes over time as the state of the environment changes.

Components:
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Players: a mechanism designer and a set of N agents State Space S: s0, s1, . . . , s|S|−1, where |S| is the total number
of states.

Action Space A: a0, a1, . . . , a|A|−1, where |A| is the total number of actions. Each action represents the mechanism
designer’s allocation of some scarce resource among N agents.

Transition probability matrix P : a three-dimensional tensor with shape |S| × |A| × |A|, where each entry represents
the probability of transitioning from one state after taking a specific action to another state.

Reward matrix R: a three-dimensional tensor with shape N × |S| × |A|, where each matrix R[i, :, :] represents the
reward matrix of an agent i for i = 1, 2, . . . , N , and each of its entry gives the mean of the immediate reward received
by agent i after the mechanism designer takes an action in a state.

Horizon length H: The total number of time steps the decision process is constrained to.

Interaction protocol:

Before the interaction starts, each agent i reports a reward matrix (can be different from its true reward matrix
R[i, :, :]), denoted as R̃[i, :, :], to the designer. Based on agents’ reported reward matrix, the designer chooses a policy
π : S → ∆(A) and prices {pi}Ni=1 to be charged to each agent.

For time step h = 1, 2, . . . ,H:

Mechanism designer takes an action ah ∼ π(sh) based on the policy π and the current state sh

Each agent i receives reward R[i, sh, ah] for i = 1, 2 . . . , N The environment transits to the next state sh+1 with
probability P [sh, ah, sh+1]

After the interaction, the mechanism designer charges each agent i with some price pi

Goal of the agents:

Each agent wants to maximize its utility ui = E
[∑H

h=1 R[i, sh, ah]
]
− pi, that is, the difference

between the expected cumulative rewards, where the expectation is w.r.t. randomness of designer’s policy and state
transition, and the price charged by the mechanism designer. As the agents cannot directly take actions, their only
leverage is to decide whether to truthfully report their reward matrix to the designer.

Goal of the mechanism designer:

Maximize the expected cumulative rewards of all agents E
[∑N

i=1

∑H
h=1 R[i, sh, ah]

]
, where the expectation is w.r.t.

randomness of designer’s policy and state transition. As the designer only observes agents’ reported reward matrix R̃,
to fulfil its objective, the designer needs to guarantee, with its policy and pricing strategy, no agent i has incentive to
report R̃[i, :, :] that is different from the true reward matrix R[i, :, :] unilaterally.

It is known that VCG mechanism guarantees truthfulnes of the agents, and uniquely maximizes the objective. It is
defined as follows:

π⋆ = argmax
π

Eπ,P

[ N∑
i=1

H∑
h=1

R̃[i, sh, ah]

]

p⋆i = Eπ⋆
−i,P

[∑
j ̸=i

H∑
h=1

R̃[j, sh, ah]

]
− Eπ⋆,P

[∑
j ̸=i

H∑
h=1

R̃[j, sh, ah]

]
for i = 1, 2, . . . , N , where π⋆

−i = argmaxπ Eπ,P

[∑
j ̸=i

∑H
h=1 R̃[j, sh, ah]

]
is the optimal policy for a MDP with

transition probability matrix P and reward matrix
∑

j ̸=i R̃[j, :, :], that is, excluding the reward matrix of agent i itself.

Now as a strategic decision maker, your job is to compute the VCG mechanism based on the given transition
probability matrix P and the reward matrix R reported by the agents. Then you should take an action at each time
step and charges prices to each agent at the end, according to your computed VCG mechanism.
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Description of problem instance

Now you are going to play in a finite-horizon dynamic mechanism design problem, with number of agents N={},
length of horizon {} (with time indices starting from h=0 to {}), number of states —S—={}, number of actions
—A—={}. The transition matrix P is:{} and reward matrix R reported by the agents is {}.

C.4. Single-Issue Bargaining under Complete Information

The following are the prompts we provide to all agents to describe the formulation and the agent’s objective in single-issue
bargaining under complete information.

Description of single-issue bargaining under complete information

The alternating offer bargaining game is a negotiation framework between two players, a buyer and a seller, aimed at
determining the price of an item. This strategic game plays out over several rounds with a finite deadline, emphasizing
the tactics of bargaining under time constraints.

Components:

Players: Two (Buyer and Seller).

Buyer’s Value: 1 (the maximum price the buyer is willing to pay). Seller’s Value: 0 (the minimum price the seller is
willing to accept).

Discount Factors (δb and δs): Represents how much each player values immediate transactions over future possibilities,
where δb, δs ∈ (0, 1). Utility associated with future offers are discounted by δt−1

b and δt−1
s for the buyer and the

seller, respectively, where t indicates the current round.

Buyer’s Utility: If a price p is agreed upon at time step t <= T , then buyer’s utility is ub = (1− p) ∗ δt−1
b .

Seller’s Utility: If a price p is agreed upon at time step t <= T , then seller’s utility is ub = (p− 0) ∗ δt−1
s .

Deadline: If no sale is agreed upon by the end of time T, the negotiation fails, and no transaction occurs, in which
case, both agents get 0 utility.

Complete Information: All details about the item’s value range, the structure of the rounds, and the potential outcomes
are common knowledge.

Interaction Protocol:

Decision Turns: Starting with the buyer, players alternate in making price offers. The player making an offer proposes
a price within the range from the seller’s value to the buyer’s value.

Responses: The opponent can either accept the proposed price, resulting in a sale and the game ending, or reject the
offer, in which case the negotiation advances to the next round.

Goal of the agents:

The seller aims to maximize the sale price while the buyer seeks to minimize it. Each agent’s goal is to negotiate a
price as close as possible to their value (1 for the seller, 0 for the buyer) while considering the risk of no agreement by
the deadline.

Description of problem instance

# For buyer

This is the beginning of a new game instance, where you will play as the buyer. Your discount factor δb={}, seller’s
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discount factor δs={}, and the deadline T={}. In the following, you should make your decision by assuming your
opponent is rational as well.

# For seller

This is the beginning of a new game instance, where you will play as the seller. Your discount factor δs={}, buyer’s
discount factor δb={}, and the deadline T={}. In the following, you should make your decision by assuming your
opponent is rational as well.

C.5. Single-Issue Bargaining under Incomplete Information

The following are the prompts we provide to all agents to describe the formulation and the agent’s objective in single-issue
bargaining under incomplete information.

Description of single-issue bargaining under incomplete information

This is a finite horizon bargaining game with one-sided uncertainty, in which the uninformed bargainer, the seller,
makes all the offers and the informed bargainer, the buyer, can only decides to accept or reject the offer.

Components:

Players: Buyer (informed) and Seller (uninformed).

Buyer’s Value: b (the maximum price the buyer is willing to pay).

Seller’s Value: 0 (the minimum price the seller is willing to accept).

Discount Factors (δb and δs): Represents how much each player values immediate transactions over future possibilities,
where δb, δs ∈ (0, 1). Utility associated with future offers are discounted by δt−1

b and δt−1
s for the buyer and the

seller, respectively, where t indicates the current time step.

Buyer’s Utility: If a price p is agreed upon at time step t <= T , then buyer’s utility is ub = (b− p) ∗ δt−1
b .

Seller’s Utility: If a price p is agreed upon at time step t <= T , then seller’s utility is ub = (p− 0) ∗ δt−1
s .

Deadline: If no sale is agreed upon by the end of time T, the negotiation fails, and no transaction occurs, in which
case, both agents get 0 utility.

Information Asymmetry: Buyer himself knows the true value of b, which is drawn from a known distribution F (v)
supported on [0, 1]. We assume F (v) = v, i.e., Buyer’s value b is sampled from a uniform distribution. The seller
does not know b but knows the distribution F (v).

Interaction Protocol:

Decision Turns: In each time step t = 1, 2, . . . , T , it is always Seller who makes an offer pt within the range of [0,1].

Responses: Buyer can either accept the proposed price, resulting in a sale and the game ending, or reject the offer, in
which case the negotiation advances to the next time step.

Goal of the agents:

Seller’s Objective: Maximize their expected payoff over the horizon of the game without knowing the true value of b.
The seller must strategically decide on the prices pt to offer in each time step, considering the declining number of
opportunities to make a sale and the distribution of b inferred from the buyer’s responses.

Buyer’s Objective: Maximize their surplus, which is the difference between the true value b and the price paid p, if a
transaction occurs. The buyer needs to decide whether to accept or reject the seller’s offers based on the value b and
the likelihood of a more favorable price in subsequent time steps, considering the finite number of time steps.
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Description of problem instance

# For buyer

This is the beginning of a new game instance, where you will play as the buyer. Your discount factor δb={}, seller’s
discount factor δs={}, and the deadline T={}. Your value b = {}, which is uniformly sampled from [0, 1]. In the
following, you should make your decision by assuming your opponent is rational as well.

# For seller

This is the beginning of a new game instance, where you will play as the seller. Your discount factor δs={}, buyer’s
discount factor δb={}, and the deadline T={}. The buyer’s value b is unknown to you, but you know it is uniformly
sampled from [0, 1]. In the following, you should make your decision by assuming your opponent is rational as well.

C.6. Tic-Tac-Toe

The following are the prompts we provide to all agents to describe the formulation and the agent’s objective for the
Tic-Tac-Toe game. The prompts also detail the agents’ goals and initial game setup.

Description of Tic-Tac-Toe Game

Tic-Tac-Toe is a classic two-player game where players take turns marking spaces in a 3x3 grid, aiming to place three
of their marks in a horizontal, vertical, or diagonal row to win.
Components:

• Players: Two players, usually denoted as Player X and Player O.
• Board: A 3x3 grid where each cell can be empty, marked with an X, or marked with an O.
• Marks: Each player has a unique mark (X or O) that they place on the board.

Interaction Protocol:
• Players take turns starting with Player X.
• On each turn, a player marks an empty cell on the grid with their mark (X or O).
• The game continues until a player has three of their marks in a horizontal, vertical, or diagonal row, or all cells

are filled resulting in a draw.
Rules:

1. Players alternate turns, with Player X always going first.
2. A player can only mark an empty cell.
3. The game ends when one player achieves a row of three marks horizontally, vertically, or diagonally, or when all

cells are filled with no winner (a draw).
Goals of the Players:

• Player X: Maximize the chances of placing three X’s in a row before Player O does.
• Player O: Maximize the chances of placing three O’s in a row before Player X does.

Winning Conditions:
• A player wins if they place three of their marks in a horizontal, vertical, or diagonal row.
• If all cells are filled without any player achieving three marks in a row, the game results in a draw.

Game Setup:
1. The game begins with an empty 3x3 grid.
2. Players decide who will be Player X and who will be Player O.
3. Player X makes the first move.

Objective:
Each player aims to either achieve a row of three of their marks or to block the opponent from doing so. Strategic
planning and anticipation of the opponent’s moves are crucial to winning the game.
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Description of problem instance

Now you are going to play a game of Tic-Tac-Toe. The current state of the board is {}. It is player {}’s turn. Your
objective is to place three of your marks in a horizontal, vertical, or diagonal row to win while preventing your
opponent from doing the same.

C.7. Connect-N

The following are the prompts we provide to all agents to describe the formulation and the agent’s objective for the
Connect-N game. The prompts also detail the agents’ goals and initial game setup.

Description of Connect-N

Connect-N is a generalized version of Connect-4, where two players alternate turns dropping colored discs into a
vertically suspended grid. The objective is to form a horizontal, vertical, or diagonal line of N discs. The game
introduces a gravity effect where discs drop to the lowest available position within a column, adding a unique strategic
dimension to the gameplay.
Components:

• Players: Two players, typically referred to as Player X and Player O, who use different colored discs.
• Board: A grid with configurable dimensions, larger than the typical 3×3 Tic-Tac-Toe board.
• Discs: Each player has an ample supply of discs in their respective colors.

Interaction Protocol:
• Players take turns, starting with Player X.
• On each turn, a player chooses a column to drop a disc into. The disc falls, affected by gravity, to the lowest

available position within the column.
• The game continues until a player forms a line of N discs in a row (horizontally, vertically, or diagonally) or the

board is completely filled, resulting in a draw.
Rules:

1. Players must alternate turns, with Player X always going first.
2. A player can only choose a column that has available space.
3. The game ends when one player forms a line of N discs or when all columns are filled without any player

achieving this, which results in a draw.
Goals of the Players:

• Player X: Strategize to connect N of their discs in a row vertically, horizontally, or diagonally before Player O.
• Player O: Similarly, aim to connect N of their discs in a row while blocking Player X’s attempts.

Winning Conditions:
• A player wins by aligning N of their discs in a row in any direction.
• The game results in a draw if the entire board is filled without either player achieving N in a row.

Game Setup:
1. The game starts with an empty board of the chosen dimensions.
2. Players decide who will play first (Player X) and choose their disc colors.
3. Player X makes the first move by dropping a disc into one of the columns.

Objective:
Each player aims to strategically drop their discs to form a line of N while preventing their opponent from doing the
same. Anticipating the opponent’s moves and effectively using the gravity-affected game-play are critical to securing
a victory.

Description of problem instance
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Now, you are going to play a game of Connect-N, where two players alternate turns dropping discs into a vertically
suspended grid. The objective is to form a line of N discs in a row, either horizontally, vertically, or diagonally.
The current state of the board is {}, the current player is Player {}, the number of discs required to win is {}. Your
objective is to strategically drop your discs to form a line of {} discs while preventing your opponent from doing the
same.

D. Additional Experiments
In this section, we conduct additional experiments that evaluate STRIDE and the baselines (GPT-3.5-Turbo-0125 with
the temperature set to 0) on Tic-Tac-Toe and Connect-N Games. For these two games, we provide STRIDE with tools and
demonstration that make it emulate Minimax algorithm as shown in Algorithm 10.

D.1. Tic-Tac-Toe

Agent’s Objective in Tic-Tac-Toe. The primary objective for each agent is to win the Tic-Tac-Toe game by placing three
markers in the same row, column, or diagonal before the opponent. If a win is not feasible, the secondary objective is to aim
for a tie, preventing the opponent from winning. Each agent strives to select the optimal action based on the game’s current
state. If both players play optimally, the game results in a tie.

Experiment Setup and Results. In addition to the baselines mentioned in Section 3, here we also include RAFA with Monte
Carlo Tree Search (MCTS) (Liu et al., 2023) and RAFA with Minimax. For CoT w/ code, the LLM has been instructed to
implement Minimax algorithm to play the game, and for the RAFA agents, the search breadth, denoted B, is set to 4. In
addition to the original RAFA MCTS implementation3, we implemented RAFA with Minimax as an extra baseline. We adopt
the memory structure from their original implementation to store optimal actions and use similar prompts and interactions
with the LLM to expand the game tree and assess game states. Additionally, for RAFA with Minimax, we set the search
depth, denoted U , to the maximum value 9.

In our experiments, STRIDE is equipped with operational tools to emulate a Breadth-First version of Minimax algorithm
with alpha-beta pruning (see Algorithm 10). Starting from depth 0 and progressing to the maximum depth — determined
by the total number of empty cells on the board — the algorithm evaluates potential outcomes at each node: +1 for a
win, −1 for a loss, and 0 for a tie or non-terminal states. Utilizing backward induction, the algorithm recursively refines
and updates these scores, ensuring that the decision path optimizes the expected outcome at each node from the current
player’s perspective. These scores are stored in STRIDE’s working memory. When STRIDE agent starts playing the game,
it retrieves the scores for each possible action, and then selects the action with maximal or minimal score depending on the
role of the player. We repeat the experiments on a fixed set of parameters for 10 runs, with the initial player being ‘X’ and
an empty board to start the game. The results are presented in Table 6.

Table 6. Model performances in Tic-Tac-Toe (10 runs).
Outcome RAFA w/ Minimax RAFA w/ MCTS zero-shot CoT zero-shot CoT w/ code STRIDE

X Wins (%) 50 60 70 80 20
Tie (%) 30 20 0 20 80

O Wins (%) 20 20 30 0 0

STRIDE Vs. Baseline Models We also conducted experiments that pit STRIDE against baseline models in Tic-Tac-Toe,
including zero-shot CoT, zero-shot CoT w/ code, and RAFA w/ MCTS. We instructed zero-shot CoT w/ code to implement
the Minimax algorithm, and for RAFA w/ MCTS, we set B = 4 and U = 4. The experiments were conducted over 10 runs,
with STRIDE playing as player ‘X’ and the baseline models as player ‘O’. The outcomes are summarized in Table 7.

D.2. Connect-N

Agent’s Objective in Connect-N. In Connect-N, available moves can be made in the lowest empty space of each column.The
agent aims to drop its discs to form a line of N while preventing its opponent from doing the same. Each agent attempts to
choose the best possible action based on the game’s state. Similar to Tic-Tac-Toe, the game ends with a draw if both players

3https://github.com/agentification/RAFA code
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Table 7. STRIDE against Baseline Models in Tic-Tac-Toe (10 runs)

Matchup STRIDE Wins (%) Tie (%) Opponent Wins (%)

STRIDE vs zero-shot CoT 90 10 0
STRIDE vs zero-shot CoT w/ code 80 20 0
STRIDE vs RAFA w/ MCTS 50 50 0

play optimally.

Experiment Setup and Results We conduct experiments with two configurations: (1) Connect-3 on a 3× 3 board and (2)
Connect-4 on a 4× 4 board. Similar to the Tic-Tac-Toe game, STRIDE simulates the Breadth-First Minimax algorithm with
pruning (see Algorithm 10) to find the optimal action in Connect-N. It first simulates every possible move and scores each
node at each game’s depth (1 for a win, -1 for a loss, and 0 for a tie or non-leaf node), then uses backward induction to update
the scores for each game state. Using its working memory, STRIDE stores the computed scores for all possible actions at
various depths. When the game starts, it selects the best action based on the computed scores. The results (averaged over 10
runs) are summarized in Tables 8 and 9.

Table 8. Model performances in Connect-3 (10 runs).

Outcome zero-shot CoT zero-shot CoT w/ code STRIDE
X Wins (%) 60 90 30

Tie (%) 40 0 70
O Wins (%) 0 10 0

Table 9. Model performances in Connect-4 (10 runs).

Outcome zero-shot CoT zero-shot CoT w/ code STRIDE
X Wins (%) 50 80 50

Tie (%) 10 0 50
O Wins (%) 40 20 0

We provide the following operational tools to STRIDE to help it emulate Algorithm 10:

• CalculateScores: expand every action at each depth and calculate the score for the nodes.
• GetScores: retrieve the computed scores for all the actions at the specified depth of the game tree.
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Algorithm 10 BFS Minimax with Alpha-Beta Pruning
1: function BFSALPHABETA(root, α, β)
2: queue← new Queue()
3: parentMap← new Dictionary() ▷ To store parent-child relationships
4: queue.enqueue({root, α, β})
5: scores← new Dictionary() ▷ To store scores temporarily
6: while queue is not empty do
7: {node, current alpha, current beta} ← queue.dequeue()
8: if node is a terminal state then
9: scores[node]← U(node) ▷ Utility of terminal state

10: else
11: value← −∞ if node.isMaximizingPlayer() else∞
12: for all child ∈ Children(node) do
13: queue.enqueue({child, current alpha, current beta})
14: parentMap[child]← node

15: if node in parentMap then
16: parent← parentMap[node]
17: eval← scores[node]
18: if parent.isMaximizingPlayer() then
19: scores[parent]← max(scores[parent], eval)
20: current alpha← max(current alpha, scores[parent])
21: else
22: scores[parent]← min(scores[parent], eval)
23: current beta← min(current beta, scores[parent])

24: if current beta ≤ current alpha then
25: break ▷ Pruning
26: return scores[root]
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