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Abstract
In this paper, we provide a tighter analysis for
ProxSkip, an algorithm that allows fewer prox-
imal operator computations to solve composite
optimization problems. We improve the exist-
ing decreasing speed of Lyapunov function from
O(p2) toO(p), when p, the frequency of the prox-
imal operators is small enough. Our theoretical
analysis also reveals the drawbacks of using large
step sizes for gradient descent in ProxSkip when
the proximal operator part is the bottleneck. Our
main motivation comes from the continuous limit
in which the original analysis of ProxSkip fails
to guarantee convergence when both the step size
γ and frequency p tend to zero. We construct a
counterexample to demonstrate why such counter-
intuitive behavior occurs for the original analysis
and then propose a novel Lyapunov function vari-
ant to construct a tighter analysis, avoiding the
problem of the old one. Such a new Lyapunov
function can be directly extended to many other
variants of ProxSkip. When applied to stochastic
gradient setup, our analysis leads to an improved
proximal operator complexity for SProxSkip from
O(
√

1/εµ2 log(1/ε)) to O(√κ log(1/ε)).

1. Introduction
Composite optimization is a problem of the form

min
x∈Rd

f(x) + ψ(x),

where f : Rd → R is a smooth function and ψ : Rd →
R ∪ {+∞} is a proper, closed and convex function. In this
paper, we focus on the case where f is strongly convex.
This type of problems arises in a wide range of applications
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in machine learning and statistics modeling (Candès et al.,
2011; Candès & Recht, 2012; Lustig et al., 2007; Tibshirani,
2011; Bao et al., 2022).

Subgradient-based optimization algorithms are not gener-
ally used because of their slow convergence rates. Proximal
gradient descent (PGD) (Combettes & Wajs, 2005; Passty,
1979; Nesterov, 2013) is a canonical method for solving
composite optimization problems. It is based on the prox-
imal operator proxψ(y) = argmin

x∈Rd

{
1
2∥x− y∥2 + ψ(x)

}
and has a gradient complexity ofO(κ log(1/ε)). Accelerated
proximal gradient descent (APGD) (Nesterov, 1998; 2013),
an accelerated variant of deterministic gradient descent, has
a better gradient complexity of O(√κ log(1/ε)).
Most prior work focused on the scenario where the cost
of the proximal operator is low and the gradient descent
part is the bottleneck. In this case, typically the gradient
complexity and proximal operator complexity are equal.
On the other hand, in federated learning (FL) one needs
to minimize the average of multiple different functions
f(x) := 1

n

∑n
i=1 fi(x). It can be put in consensus form

(Parikh et al., 2014): f (x1, . . . , xn) := 1
n

∑n
i=1 fi (xi),

ψ (x1, . . . , xn) :=

{
0, if x1 = · · · = xn,

+∞, otherwise
as a spe-

cial case of composite optimization. This attracted atten-
tion because the proximal operator proxγψ (x1, . . . , xn) =

(x̄, . . . , x̄) ∈ Rnd amounts to a single global communica-
tion of the parameters from all clients for computing the
average. In this context, people sought fewer proximal op-
erator steps and hence fewer communications, rather than
focusing on the gradient complexity of optimization.

Local training is a common approach to reduce communi-
cation and consists of multiple local gradient descent steps
interspersed by a few proximal operator steps. The sim-
plest local training approach, known as Local SGD/FedAvg
(Mangasarian & Solodov, 1993; McDonald et al., 2010;
McMahan et al., 2016; Zhang et al., 2016; Stich, 2018; Lin
et al., 2018), is equivalent to a multi-step GD followed by
a single proximal operator step in composite optimization
and has been shown to suffer from client drift (Khaled et al.,
2019; Karimireddy et al., 2020; Wu et al., 2022). To ad-
dress this, various methods have been proposed, including
Scaffold (Karimireddy et al., 2020), S-Local-GD (Gorbunov
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et al., 2021), and FedLin (Mitra et al., 2021), that lever-
age control variates to obtain linear convergence. However,
the theoretical understanding of such methods is still in its
early stages, and the communication complexity remains at
O(κ log(1/ε)), which is no better than that of PGD.

Recently, ProxSkip (Mishchenko et al., 2022) was proposed
to address this issue by randomly applying the proximal
operator step. With a tighter analysis, it has successfully
achieved an acceleration over PGD even when Nesterov
momentum is not used, with an optimal proximal operator
complexity of O(√κ log(1/ε)). In comparison with Accel-
erated Proximal Gradient Descent (APGD), it has a worse
gradient complexity, but is much simpler in local training
and is allowed to have a non-optimal gradient complexity
when the bottleneck is only in communication. However,
this work does not imply that local training has been thor-
oughly understood. Specifically, existing analysis is not
tight in certain regimes and cannot extrapolate to continu-
ous limits, and only can achieve sublinear convergence with
respect to proximal operator complexity when a stochastic
gradient is used.

In this paper, we improve upon the above and make contri-
butions as follows:

• We provide a tighter analysis of ProxSkip in Section 3,
which improves the decreasing speed of Lyapunov func-
tion fromO(p2) toO(p) when the proximal operator part
is the bottleneck.

• We reveal an effect of step size that is not present in
the previous analysis, which suggests that large step size
actually hinders convergence when the proximal operator
part is the bottleneck, as illustrated in Section 3.1.

• Our analysis embodies the continuous limit as a special
case of ProxSkip, which demonstrates that gradient flow
can also solve composite optimization collaboratively
with a proximal operator and achieves O(√κ log(1/ε))
proximal operator complexity, as discussed in Section 4.

• We propose a new Lyapunov function and explain in
Section 5 why the old one does not fit and what new
proving techniques are needed.

• In Section 6, we extend our analysis to a variety of Prox-
Skip variants, including SProxSkip, ProxSkip-VR, and
GradSkip+. This demonstrates the generality of our anal-
ysis methodology.

• For SProxSkip, we further improve the proximal operator
complexity from O(

√
1/εµ2 log(1/ε)) to O(√κ log(1/ε)).

We remark that this paper only includes basic numerical ex-
perimental results, which are separated in different sections,
to verify and illustrate our theoretical analysis results. This

Algorithm 1 ProxSkip

1: stepsize γ > 0, probability p > 0, initial iterate x0 ∈
Rd, initial control variate h0 ∈ Rd, number of iterations
T ≥ 1

2: for t = 0, 1, ..., T − 1 do
3: x̂t+1 = xt − γ(∇f(xt)− ht)
4: Flip a coin θt ∈ {0, 1} where Prob(θt = 1) = p
5: if θt = 1 then
6: xt+1 = prox γ

pψ
(x̂t+1 − γ

pht)

7: else
8: xt+1 = x̂t+1

9: end if
10: ht+1 = ht +

p
γ (xt+1 − x̂t+1)

11: end for

is for two reasons: firstly, our main contribution is to derive
a tighter theoretical analysis and the algorithms are not new;
secondly, ProxSkip and other methods studied in this paper
are abstract frameworks and have multiple instantiations
suitable for different scenarios. Interested readers should
refer to the papers where these algorithms were proposed
for evaluation and comparison with other algorithms.

2. Preliminary
We start by introducing ProxSkip, the algorithm we are
primarily studying in this paper. Algorithm 1 presents the
pseudocode of ProxSkip. Mishchenko et al. (2022) proposed
ProxSkip and provides a convergence analysis, based on the
following Lyapunov function

Ψold
t = ∥xt − x⋆∥2 +

γ2

p2
∥ht − h⋆∥2. (1)

If this Lyapunov function converges to zero, then xt con-
verges to x⋆ and ht converges to h⋆ = ∇f(x⋆). Further,
the original paper guarantees the convergence of Ψold

t as
follows

Theorem 2.1. Let f be µ-strongly convex with positive
µ > 0 and L-smooth, and let 0 < γ ≤ 1

L and 0 < p ≤ 1.
Then, the iterates of ProxSkip (Algorithm 1) satisfy

E[Ψold
t+1] ≤ (1− ζold)Ψold

t , ζold = min(γµ(2− γL), p2).

In other words,

ζold =

{
γµ(2− γL) if γ ≤ γcrit

p2 if γ > γcrit.

γcrit is the root of γµ(2 − γL) = p2 if it exists, otherwise
positive infinity.

Remark 2.2. The bound in Theorem 2.1 is slightly tighter
than original result ζ = min(γµ, p2) in (Mishchenko et al.,
2022).
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Figure 1: Relationship between step size and decreasing speed of Lyapunov function when µ = 0.1 and L = 1

Notably, Theorem 2.1 suggests that there are two regimes:
gradient descent is the bottleneck when γ is sufficiently
small; proximal operator is the bottleneck when γ is suf-
ficiently large or equivalently when p is sufficiently small.
In our improved analysis later on, we use a critical value
of γ, denoted by γcrit, to separate the two regimes. All our
improvements are focused on the second regime, where
proximal operator becomes the bottleneck, i.e. γ > γcrit.

3. New Analysis
In this section, we present a new analysis of ProxSkip. The
major difference between our analysis and the existing anal-
ysis is a novel Lyapunov function. In particular,

Ψnew
t =∥xt − x⋆∥2 +

γ2

p2
∥ht − h⋆∥2

−2∆γ

p
⟨xt − x⋆, ht − h⋆⟩.

(2)

Compared with the old Lyapunov function, there is an
additional inner product term. Note that the new Lyapunov
function remains a quadratic form, and it is still positive
definite when −1 < ∆ < 1. Thus, when Ψnew

t converges,
we still have xt converging to x⋆ and ht converging to
h⋆ = ∇f(x⋆).
Based on this new Lyapunov function, we derive a new
convergence rate as follows.

Theorem 3.1. Let f be µ-strongly convex with positive
µ > 0 and L-smooth with L > µ, and let 0 < γ ≤ 1

L and
0 < p ≤ 1. Moreover, if γ ≤ γcrit, let ∆ = 0, otherwise, let
∆ be the unique solution in (0, 1) of following equation:

0 =∆3 − 2

(
µγ

p
+ 1

)
∆2 +

(
Lµγ2

p2
+ 2

µγ

p
+ 2

)
∆

− γµ(2− γL)− p2
p− p2 . (3)

Then, the iterates of ProxSkip (Algorithm 1) satisfy

E[Ψnew
t+1] ≤ (1− ζnew)Ψnew

t ,

ζnew =

{
γµ(2− γL) if γ ≤ γcrit

p2 +∆(p− p2) if γ > γcrit.

Our improvement depends on the construction of the new
Lyapunov function which will be explained in detail in
Section 5.

We remark that for the regime where proximal operator is
the bottleneck, Theorem 3.1 always provides better result
than Theorem 2.1, since the decreasing speed of Lyapunov
function is improved from p2 to p2 + ∆(p − p2). This
improvement can be more pronounced in certain special
limits when ∆ = ω(p). Here ω(p) means it decreases
strictly and asymptotically slower than p for small p. As an
example, we discuss continuous limit in Section 4, where
∆ converges to a constant at the limit of p → 0. Another
example is SProxSkip, where the gradients are replaced by
noisy stochastic gradients. The result for SProxSkip heavily
depends on the convergence rate in the continuous limit,
which will be discussed in Section 6.1.

3.1. Parameter Selection

In this subsection, we discuss how the step size γ used in
gradient descent affects the convergence rate of ProxSkip.
The traditional theory of convergence rate has led to a mis-
conception that, within the step size range γ ≤ 1/L, larger
step sizes always lead to faster convergence, as ζold is mono-
tonically increasing with respect to γ. However, our new
theory does not support this conjecture.

In our new theory, ζnew is not monotonic with respect to
γ. As demonstrated in Figure 1, our new theory yields a
much higher decreasing speed of Lyapunov function than
the traditional theory when p is small enough, and for this
rate to be achieved a proper step size must be chosen.
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Figure 2: ProxSkip experiment for comparing of different step sizes.

This raises a natural question: given that the frequency p
of the proximal operator is fixed, how do we choose the
optimal step size to maximize ζnew? To this end, we pro-
pose Algorithm 2 to solve this problem. We also provide
theoretical guarantees for this algorithm in Theorem 3.2.

Algorithm 2 Step size selection for ProxSkip

1: probability p > 0, smoothness constant L, strongly
convex constant µ.

2: if p ≥
√

1
κ then return end if

3: while γ doesn’t converge do
4: ∆← Solve Equation (3)
5: γ ← 1

L ×
p(1−∆(1−∆)(1−p))

(p+(1−p)∆)

6: end while

Theorem 3.2. The iterations in Algorithm 2 always con-
verge and γ will converge to argmaxγ ζ

new.

Finally, we conduct an experiment to verify that the “cost” of
large step sizes is not just an artifact of theory. We consider
Nesterov’s “worst function in the world” (Nesterov, 1998) in
its strongly convex version as f(x) and an indicator function
as ψ(x) (see Appendix A.5 for the details). As shown in
Figure 1, for p = 0.1, there is about twofold gap between
the convergence rate when using the largest step size and
when using Algorithm 2 to select step size. For p = 0.01,
this gap is around 20-fold. Figure 2 provides similar results
for each step size by plotting 10 random samples of the
numerical process.

Note that we are not claiming that Algorithm 2 can replace
step size tuning in practice. One reason is that the algorithm
is highly dependent on κ which is prone to under/over-
estimation and is only a global characterization of the local
behavior. Another reason is that Theorem 3.1 is not tight,
therefore the optimal ∆ in the sense of Theorem 3.1 is not
really optimal for ProxSkip.

Algorithm 3 ODEProx

1: Horizon τ > 0, initial iterate x0 ∈ Rd, initial control
variate h0 ∈ Rd, total time T ≥ 0

2: t← 0
3: loop
4: Sample random variable τ̂ ∼ Exp( 1τ )
5: t′ ← min(T, t+ τ̂)
6: x̂t ← xt
7: Solve dx̂s

ds = −(∇f(x̂s)− ht) for s ∈ [t, t′]
8: if t′ = T then
9: xt′ = x̂t′ , ht′ = ht

10: break
11: end if
12: xt′ = proxτψ(x̂t′ − τht)
13: ht′ = ht +

1
τ (xt′ − x̂t′)

14: t← t′

15: end loop

4. Continuous Limit
In this section, we consider the situation in which τ = γ/p
is fixed and both γ and p tend to 0. Under this setting, Prox-
Skip will evolve into a new algorithm, which we call ODE-
Prox (Algorithm 3), just like Gradient Descent transforms
into Gradient Flow in the limit of infinitesimal stepsize.

The Lyapunov function for ODEProx is as follows for t ≥ 0:

Ψt = ∥xt − x⋆∥2+τ2∥ht − h⋆∥2−2∆τ⟨xt−x⋆, ht−h⋆⟩

Theorem 3.1 implies following convergence guarantee.

Corollary 4.1. Let f be µ-strongly convex and L-Lipschitz
smooth. Moreover, let ∆ be the unique solution in (0, 1) of
following equation:

∆3 − 2 (µτ + 1)∆2 +
(
Lµτ2 + 2µτ + 2

)
∆− 2µτ = 0.

(4)
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For T ≥ 0, the iterates of ODEProx (Algorithm 3) satisfy

E[ΨT ] ≤
(
1− ∆

τ

)T
Ψ0.

Algorithm 2 transforms into Algorithm 4.

Algorithm 4 Horizon selection for ODEProx

1: Smoothness constant L, strongly convex constant µ.
2: τ ← 1

L
3: while τ doesn’t converge do
4: ∆← Solve Equation (4)
5: τ ← 1

L × ( 1
∆ − (1−∆))

6: end while

The following theorem characterizes the proximal operator
complexity of ODEProx with τ from Algorithm 4.

Corollary 4.2. Let f be µ-strongly convex and L-Lipschitz
smooth. Under optimal choice of τ , we have

∆2 (κ− 1)
(
∆2 − 2∆ + 2

)
− (1−∆)

2
= 0,

and when κ is large, we have ∆ = Θ(1/
√
κ). Furthermore,

the expected oracle complexity of proximal operator in order
to achieve E[ΨT ] ≤ ε is T/τ = Θ̃(1/∆) = Θ̃(

√
κ).

The continuous limit has three implications.

First, it highlights the deficiency of the existing theory as we
observe that the convergence rate of the existing theory (The-
orem 2.1) reaches 0 in the continuous limit. This is because
the decreasing speed of Lyapunov function of the existing
theory is O

(
p2
)
, while that of the new theory is O(p). We

will explain in detail why there is such a difference between
them in the next section.

Second, it implies that if we can solve a gradient flow with
respect to f(x), we can also solve the corresponding com-
posite optimization problem by incorporating the proximal
operator, as demonstrated in Figure 3.

Finally, under this continuous limit, the asymptotic proxi-
mal operator complexity is identical to that with finite step
sizes, which suggests that we always can reduce both γ
and p simultaneously without worrying about degenerated
convergence rates.

5. Main Idea of Proof
In this section, we will introduce the main idea behind the
construction of our new Lyapunov function and illustrate
the intuition through a simple example. Moreover, we will
discuss the new proof techniques required for the new Lya-
punov function.
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Figure 3: Convergence of ODEProx.

5.1. Intuition

To better explain why the old theory is not tight, we con-
struct a special example in which the old theory is unable
to guarantee convergence. As we observe under continuous
limit, the lower bound of the decreasing speed of the old
theory approaches 0, which indicates that we can find a spe-
cial point such that the expected decreasing speed of Ψold

t

from this point on is 0.

Our particular construction is as follows. Consider a one-
dimensional problem with ψ(x) = 0 and f(x) = ∥x∥2,
with starting point x0 = 0, h0 = 1. The contour plot of the
old Lyapunov function is shown in Figure 4.

In ODEProx, there are two operations involved, namely
gradient flow and proximal operator. As can be seen from
the figure, neither of them can directly lower the Lyapunov
function, since for gradient flow, the moving direction is tan-
gent to the contour lines, while for proximal operator, both
start and end points are on the same contour line. Therefore
in this example, the decrease speed of the old Lyapunov
function is 0.

With this example, we can show how our new Lyapunov
function bypasses the problem of the old Lyapunov function

x

τh

prox

Gradient Flow

Lyapunov function

Figure 4: Illustration of old Lyapunov function
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in a very straightforward way. We add an inner product
term to the Lyapunov function. The contour lines of the
new Lyapunov function are no longer circles, but ellipses,
as shown in Figure 5, which enables gradient flow to lower
the Lyapunov function directly in this example.

x

τh

prox

Gradient Flow

Lyapunov function

Figure 5: Illustration of new Lyapunov function

Thus we have skirted around the issue of the old Lyapunov
function.

5.2. Property of Proximal Operator

Our new Lyapunov function, although resolving the issue
of the old Lyapunov function, also makes previous proof
techniques unavailable. In previous proofs, a lemma based
on firm nonexpansiveness is used to give an upper bound
for the Lyapunov function after applying proximal operator.

Lemma 5.1 (Firm nonexpansiveness). For any t ≥ 0, if
θt = 1

∥xt+1 − x⋆∥2 +
γ2

p2
∥ht+1 − h⋆∥2

≤
∥∥∥∥(x̂t+1 − x⋆)−

γ

p
(ht − h⋆)

∥∥∥∥2.
Note that the left-hand side of Lemma 5.1 is consistent with
Ψold
t+1, thus this lemma is sufficient for proving convergence

of the old Lyapunov function. However, this is not the case
for the new Lyapunov function.

Therefore, we consider two independent lemmas instead, as
shown in Lemmas 5.2 and 5.3.

Lemma 5.2 (Invariance). For any t ≥ 0,

(xt+1−x⋆)−
γ

p
(ht+1−h⋆) = (x̂t+1−x⋆)−

γ

p
(ht−h⋆).

Lemma 5.3 (Monotonicity). For any t ≥ 0, if θt = 1

⟨xt+1 − x⋆, ht+1 − h⋆⟩ ≤ 0.

Note that Lemma 5.1 is a simple corollary of Lemmas 5.2
and 5.3, but not vice versa. Hence replacing the firm nonex-
pansiveness property with an invariance plus monotonicity
gives us more freedom in our proof, allowing us to complete
the proof of convergence for the new Lyapunov function.
The full proof is written in Appendix A.3.

6. Extensions
In this section, we extend the ideas and techniques from the
previous sections to other variants of ProxSkip. Specifically,
we consider:

• SProxSkip (Mishchenko et al., 2022), which substitutes
the gradient with a stochastic gradient;

• ProxSkip-VR (Malinovsky et al., 2022), which allows
ProxSkip to be combined with variance reduction tech-
niques;

• GradSkip+ (Maranjyan et al., 2022), which allows an
additional unbiased compressor to be added to the gra-
dient descent step and extends the random procedure of
proximal operators to a general unbiased compressor.

6.1. SProxSkip

When only a stochastic gradient oracle is available or
computing the full gradient is too costly, SProxSkip
(Mishchenko et al., 2022) can be used as a stochastic gra-
dient variant of ProxSkip. The only difference between
the two algorithms lies in the substitution of ∇f(xt) with
gt(xt). We provide the pseudocode of SProxSkip in Algo-
rithm 5 in the Appendix.

For stochastic gradients, we need to introduce the following
assumptions:

Assumption 6.1 (Unbiasedness). For all t ≥ 0, gt(xt) is an
unbiased estimator of the gradient∇f(xt). That is,

E[gt(xt) | xt] = ∇f(xt)

Assumption 6.2 (Expected smoothness). There exist con-
stants A ≥ 0 and C ≥ 0 such that for all t ≥ 0

E[∥gt(xt)−∇f(x⋆)∥2 | xt] ≤ 2ADf(xt, x⋆) + C

Remark 6.3. The commonly used bounded variance assump-
tion Var[gt(xt) | xt] ≤ σ2 implies Assumption 6.2 with
A = L and C = σ2.

For SProxSkip, we define a Lyapunov function Ψold and
Ψnew identical to ProxSkip’s. We quote from (Mishchenko
et al., 2022) for existing analysis results for SProxSkip:

Theorem 6.4. Under Assumptions 6.1 and 6.2, let 0 <
γ ≤ 1/A and 0 < p ≤ 1. Then, the iterates of SProxSkip
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Method Communication Complexity
FedAvg (Li et al., 2020) O

(
σ2

µNKε +
G2K
µ2ε

)
Scaffold (Karimireddy et al., 2020) Õ

(
σ2

µSKε +
1
µ + N

S

)
SProxSkip (Mishchenko et al., 2022) O

(√
1/εµ2 log(1/ε)

)
SProxSkip (Our) O(√κ log(1/ε))

Table 1: Different stochastic local methods for strongly convex optimization.

(Algorithm 5) satisfy

E
[
Ψold
T

]
≤ (1− ζold)TΨold

0 +
γ2C

ζold

ζold = min(γµ(2− γA), p2).
γcrit is the root for two branches to be equal if it exists,
otherwise positive infinity.
Remark 6.5. Similar to Theorem 2.1, the bound in Theo-
rem 6.4 is slightly improved compared to original result in
(Mishchenko et al., 2022)..

By applying similar analysis techniques as Theorem 3.1, we
can prove the following convergence result:
Theorem 6.6. Under the same assumption as Theorem 6.4,
if γ ≤ γcrit, let ∆ = 0. Otherwise, let ∆ be the unique
solution in (0, 1) of following equation:

0 =∆3 − 2

(
µγ

p
+ 1

)
∆2 +

(
Lµγ2

p2
+ 2

µγ

p
+ 2

)
∆

− γµ(2− γA)− p2
p− p2 . (5)

Then, the iterates of SProxSkip (Algorithm 5) satisfy

E [Ψnew
T ] ≤ (1− ζnew)TΨnew

0 +
γ2C

ζnew

ζnew =

{
γµ(2− γA) if γ ≤ γcrit

p2 +∆(p− p2) if γ > γcrit.

The new decreasing speed of Lyapunov function is ζnew =
O(p), compared to ζold = O

(
p2
)
, suggesting an asymptoti-

cally better result on proximal operator complexity.

We first review the asymptotic complexity of the old anal-
ysis: based on (Mishchenko et al., 2022), the stepsize is
γ = min

{
1
A ,

εµ
2C

}
, and the proximal operator frequency

is p =
√
γµ, and the proximal operator complexity is

max
{√

A
µ ,
√

2C
εµ2

}
log
(
2Ψ0

ε

)
. Note that the choice p =

O
(√
γ
)

is a direct consequence of ζold = O
(
min(γ, p2)

)
,

in order to make sure ζold is not too small. The improvement
of ζold directly allows us to use a smaller frequency of p,
thus reducing the proximal operator complexity.

Our new theory suggests following asymptotic complexity:

0.0 2.5 5.0 7.5 10.0 12.5 15.0

Expected Number of Proximal Operater Calls

10−3

10−2

10−1

100

E‖
x
‖2

p=0.100

p=0.030

p=0.010

p=0.003

p=0.001

Figure 6: SProxSkip experiment.

Corollary 6.7. Under the same assumption as Theorem 6.4,
we define ∆ODE as the solution of Equation (4) and τ = γ

p .

If ε is small, we set p = ∆ODE

τ2C ε and T = 1
p∆ODE log

Ψnew
0

ε .
Then we have E[Ψnew

T ] = 2ε + O
(
ε2
)

and the oracle
complexity of proximal operator is pT = 1

∆ODE log
Ψnew

0

ε .
When κ is large, with good choice of τ obtained from Al-
gorithm 4, the oracle complexity of proximal operator is
pT = Θ(

√
κ log(1/ε)).

Comparing the new and old theories, we see that the prox-
imal operator complexity in the new theory only logarith-
mically depends on ε, which is much better than the old
theory.

To verify our new convergence rate, we conducted an exper-
iment by manually adding gradient noise: we fixed τ = γ/p
to be the optimal value for ODEProx and tried different val-
ues of p and γ = τp. To reduce noise, we take the average
of 1000 random runs of the algorithm. As shown in Figure 6,
SProxSkip maintains linear convergence until it reaches a
flat error, which can be further reduced by decreasing both
γ and p.

6.2. ProxSkip-VR

In order to be compatible with various variance reduc-
tion techniques, ProxSkip-VR uses a stochastic gradient
g(xt, yt, ξt) similar to SProxSkip instead of the full gradi-
ent ∇f(xt). It satisfies the following assumption:

7
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Assumption 6.8 (Unbiasedness). For all t ≥ 0, gt =
g(xt, yt, ξt) is an unbiased estimator of the gradient∇f(xt).
That is,

E[gt | xt, yt] = ∇f(xt)
Assumption 6.9 (Variance reduction). There exist constants
A ≥ 0 and C ≥ 0 such that for all t ≥ 0

E[∥gt −∇f(x⋆)∥2 | xt, yt] ≤ 2ADf(xt, x⋆) +Bσt + C

E[σt+1 | xt, yt] ≤ 2ÃDf(xt, x⋆) + B̃σt + C̃

The Lyapunov function for ProxSkip-VR is given as:

Ψold
t = ∥xt − x⋆∥2 +

γ2

p2
∥ht − h⋆∥2 + γ2Wσt

and its convergence analysis is as follows:

Theorem 6.10. Under Assumptions 6.8 and 6.9 with B ̸=
0 and a number W > B/(1 − B̃), let 0 < γ ≤ 1/(A +
WÃ) and 0 < p ≤ 1. Then, the iterates of ProxSkip-VR
(Algorithm 6) satisfy

E
[
Ψold
T

]
≤ (1− ζ̃old)TΨold

0 +
γ2(C +WC̃)

ζ̃old

ζold = min(γµ(2− γ(A+WÃ)), p2).

ζ̃old = min(ζold, 1− (B +WB̃)/W)

γcrit is the root for two branches of ζold to be equal if it exists,
otherwise positive infinity.

Remark 6.11. In Theorem 6.10, we didn’t discuss the con-
dition of B = 0 as in (Malinovsky et al., 2022), because
in that case, Assumption 6.9 for ProxSkip-VR degenerates
into Assumption 6.2 for SProxSkip, therefore the Lyapunov
function and analysis in Theorems 6.4 and 6.6 applies.

Our new Lyapunov function and convergence analysis are
presented as follows:

Ψnew
t =∥xt − x⋆∥2 +

γ2

p2
∥ht − h⋆∥2

−2∆γ

p
⟨xt − x⋆, ht − h⋆⟩+ γ2Wσt

Theorem 6.12. Under the same assumption as Theo-
rem 6.10, if γ ≤ γcrit, let ∆ = 0. Otherwise, let ∆ be
the unique solution in (0, 1) of following equation:

0 =∆3 − 2

(
µγ

p
+ 1

)
∆2 +

(
Lµγ2

p2
+ 2

µγ

p
+ 2

)
∆

− γµ(2− γ(A+WÃ))− p2
p− p2 .

Then, the iterates of ProxSkip-VR (Algorithm 6) satisfy

E [Ψnew
T ] ≤ (1− ζ̃new)TΨnew

0 +
γ2(C +WC̃)

ζ̃new

ζnew =

{
γµ(2− γ(A+WÃ)) if γ ≤ γcrit

p2 +∆(p− p2) if γ > γcrit.

ζ̃new = min(ζnew, 1− (B +WB̃)/W)

ProxSkip-VR encompasses a range of algorithms such as
ProxSkip-HUB and ProxSkip-LSVRG as special cases (Ma-
linovsky et al., 2022). We do not elaborate further on each
of them individually since their convergence can be derived
from the general description in Theorem 6.12.

6.3. GradSkip+

As a general theoretical framework, GradSkip+ is built on
the foundation of unbiased compressors which satisfy the
following condition, where I is identity matrix:
Definition 6.13 (Unbiased Compressors). For any positive
semidefinite matrix Ω ≥ 0, denote by Bd(Ω) the class
of (possibly randomized) unbiased compression operators
C : Rd → Rd such that for all x ∈ Rd we have

E[C(x)] = x, E[
∥∥(I+Ω)−1C(x)

∥∥2] ≤ ∥x∥2(I+Ω)−1 .

The class Bd(Ω) is a generalization of commonly used class
Bd(ω) of unbiased compressors with variance bound

E[∥C(x)∥2] ≤ (1 + ω)∥x∥2

for some scalar ω ≥ 0.

The analysis of GradSkip+ is further based on matrix
smoothness, a generalization of Lipschitz-smoothness, de-
fined as:
Definition 6.14 (Matrix Smoothness). A differentiable func-
tion f : Rd → R is called L-smooth with some sym-
metric and positive definite matrix L > 0 if Df (x, y) ≤
1
2∥x− y∥

2
L, ∀x, y ∈ Rd.

The old analysis has the Lyapunov function:

Ψold = ∥xt − x⋆∥2 + γ2(1 + ω2)∥ht − h⋆∥2,
and its convergence is as follows:

Theorem 6.15. Let f be µ-strongly convex with positive
µ > 0 and L-smooth, Cω ∈ Bd(ω) and CΩ ∈ Bd(Ω) be the
compression operators, and

Ω̃ := I+ ω(ω + 2)Ω(I+Ω)−1.

Then, if the stepsize γ ≤ λ−1
max(LΩ̃), the iterates of Grad-

Skip+ (Algorithm 7) satisfy

E[Ψold
t+1] ≤ (1− ζold)Ψold

t ,

ζold = min

(
γµ(2− γλmax(LΩ̃)),

λmin(Ω̃)

(1 + ω)2

)
.

γcrit is the root for two branches to be equal if it exists,
otherwise positive infinity.
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Remark 6.16. Again, the bound in Theorem 6.15 is slightly
improved compared to original result in (Maranjyan et al.,
2022).

The new analysis with the Lyapunov function and conver-
gence guarantee is presented below:

Ψnew
t =∥xt − x⋆∥2 + γ2(1 + ω)2∥ht − h⋆∥2

−2∆γ(1 + ω)⟨xt − x⋆, ht − h⋆⟩

Theorem 6.17. Under the same assumption as Theo-
rem 6.15, if γ ≤ γcrit, let ∆ = 0 and Ψnew

t is the same
as Ψold

t .

When γ > γcrit, let

Ω̃ := (1 + ω∆)I+ ω(ω + 2−∆)Ω(I+Ω)−1

α = γ2λmax(LΩ̃)

ζ =
λmin(Ω̃)

(1 + ω)2

β = 2γ (∆ (ζ (ω + 1)− 1) + 1)− α

There always exists some ∆ ∈ (0, 1) such that

(βµ−ζ)I−∆
(ωI+ (Ω+ I) (ω + 1) (1− ζ))2

ω (Ω+ I)
⪰ 0, (6)

and for any ∆ that satisfy above condtion, we have

E[Ψnew
t+1] ≤ (1− ζnew)Ψnew

t ,

ζnew = ζ > ζold.

Remark 6.18. The optimal choice of ∆ is the largest value
such that inequality (6) holds. We didn’t compute the opti-
mal value as it involves an intricate optimization. However,
in practice, the optimal ∆ can be easily determined with
bisect search. It might also be easy to solve in special cases
if L and Ω have special structure.

Note that Theorem 6.17 and Theorem 3.1 for ProxSkip are
slightly different in their formula since certain simplifica-
tions cannot be made for GradSkip+ due to L being a matrix.
GradSkip+ encompasses a range of algorithms such as Grad-
Skip(Maranjyan et al., 2022), ProxSkip and RandProx-FB
(Condat & Richtárik, 2022) as special cases.

7. Conclusion
In this paper, we proposed a new way to improve the theoret-
ical analysis of ProxSkip and provided deeper understanding
on ProxSkip technique. In the context of federated learning,
fewer proximal operator steps mean lower communication
complexity. Through our discussion, we provided a lower
proximal operator complexity when the proximal operator
is the bottleneck. Our analysis revealed that in local train-
ing methods like ProxSkip, the step size should not be too

large, especially when the frequency of proximal operators
is relatively low. We for the first time demonstrated that
SProxSkip, a local training method using stochastic gradi-
ents, can train to a certain accuracy with communication
complexity logarithmically dependent on the accuracy. Fi-
nally, we showed that our proof technique can be directly
extended to many other variants of ProxSkip.
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A. ProxSkip
A.1. Useful Lemmas

We define
τ :=

γ

p
.

Proof of Lemma 5.1. Define

P (x) := proxτψ(x),

Q(x) := x− P (x).
Due to firm nonexpansiveness, we have for any x, y:

∥P (x)− P (y)∥2 + ∥Q(x)−Q(y)∥2 ≤ ∥x− y∥2.
Let

x = x̂t+1 − τht,
y = x⋆ − τh⋆.

Notice that P (y) = x⋆, we have

∥xt+1 − x⋆∥2 + ∥x̂t+1 − xt+1 − τht + τh⋆∥2 ≤ ∥(x̂t+1 − x⋆)− τ(ht − h⋆)∥2.
According to Line 10 in Algorithm 1,

x̂t+1 − xt+1 − τht = −τht+1,

Therefore we have
∥xt+1 − x⋆∥2 + τ2∥ht+1 − h⋆∥2 ≤ ∥(x̂t+1 − x⋆)− τ(ht − h⋆)∥2

Another proof of Lemma 5.1 based on Lemmas 5.2 and 5.3. Due to Lemma 5.2, we have

∥τ(ht − h⋆)− (x̂t+1 − x⋆)∥2 =∥τ(ht+1 − h⋆)− (xt+1 − x⋆)∥2

=τ2∥ht+1 − h⋆∥2 + ∥xt+1 − x⋆∥2 − 2τ⟨ht+1 − h⋆, xt+1 − x⋆⟩
≥τ2∥ht+1 − h⋆∥2 + ∥xt+1 − x⋆∥2.

The last equation is due to Lemma 5.3.

Proof of Lemma 5.2. According to Line 10 in Algorithm 1,

τht+1 − xt+1 = τht − x̂t+1,

τ(ht+1 − h⋆)− (xt+1 − x⋆) = τ(ht − h⋆)− (x̂t+1 − x⋆).

Proof of Lemma 5.3. According to Line 6 in Algorithm 1,

(x̂t+1 − τht)− xt+1 ∈ τ∂ψ(xt+1).

According to Line 10 in Algorithm 1,
−ht+1 ∈ ∂ψ(xt+1).

Similarly, we have
−h⋆ = −∇f(x⋆) ∈ ∂ψ(x⋆).

Since ψ is closed convex function, its subgradient ∂ψ is a monotone operator, therefore

⟨(−ht+1)− (−h⋆), xt+1 − x⋆⟩ ≥ 0.

11
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A.2. Old Analysis

Proof of Theorem 2.1.

Ψold
t+1 =∥xt+1 − x⋆∥2 + τ2∥ht+1 − h⋆∥2

=∥(xt+1 − x⋆)− τ(ht+1 − h⋆)∥2 + 2τ⟨xt+1 − x⋆, ht+1 − h⋆⟩.

Step 1 (expand the proximal operator) If θt = 1, according to Lemmas 5.2 and 5.3,

Ψold
t+1|θt=1 ≤∥(x̂t+1 − x⋆)− τ(ht − h⋆)∥2.

If θt = 0,

Ψold
t+1|θt=0 =∥(x̂t+1 − x⋆)− τ(ht − h⋆)∥2 + 2τ⟨x̂t+1 − x⋆, ht − h⋆⟩.

Taking expectation gives

E[Ψold
t+1] ≤ ∥(x̂t+1 − x⋆)− τ(ht − h⋆)∥2 + 2τ(1− p)⟨x̂t+1 − x⋆, ht − h⋆⟩. (7)

Step 2 (expand the gradient descent) Expand x̂t+1 according to Line 3 in Algorithm 1 gives

E[Ψold
t+1] ≤(1− p2)τ2∥ht − h⋆∥2 + ∥xt − x⋆∥2

− 2γ⟨xt − x⋆,∇f(xt)−∇f(x⋆)⟩+ γ2∥∇f(xt)−∇f(x⋆)∥2.

Step 3 (apply strongly convexity and smoothness) We have

⟨xt − x⋆,∇f(xt)−∇f(x⋆)⟩ ≥
1

L
∥∇f(xt)−∇f(x⋆)∥2,

⟨xt − x⋆,∇f(xt)−∇f(x⋆)⟩ ≥ µ∥xt − x⋆∥2.
Apply the above two inequalities with additional multipliers α and β, we have

E[Ψold
t+1] ≤(1− p2)τ2∥ht − h⋆∥2 + (1− βµ)∥xt − x⋆∥2

+ (γ2 − α

L
)∥∇f(xt)−∇f(x⋆)∥2

+ (α+ β − 2γ)⟨xt − x⋆,∇f(xt)−∇f(x⋆)⟩.
We require

γ2 − α

L
= 0,

α+ β − 2γ = 0,

which gives α = Lγ2 and β = γ(2− γL). Then we have

E[Ψold
t+1] ≤(1− p2)τ2∥ht − h⋆∥2 + (1− γµ(2− γL))∥xt − x⋆∥2

≤(1− ζold)Ψold
t ,

ζold = min(γµ(2− γL), p2).

A.3. New Analysis

Proof of Theorem 3.1. When γ ≤ γcrit, we have ∆ = 0, so the Lyapunov function and the convergence rate is same as
Theorem 2.1. Therefore, we only need to focus on γ > γcrit case. The following analysis only assumes |∆| < 1, such that
Lyapunov function is positive definite.

Ψnew
t+1 =∥xt+1 − x⋆∥2 + τ2∥ht+1 − h⋆∥2 − 2∆τ⟨xt+1 − x⋆, ht+1 − h⋆⟩

=∥(xt+1 − x⋆)− τ(ht+1 − h⋆)∥2 + 2(1−∆)τ⟨xt+1 − x⋆, ht+1 − h⋆⟩.

12
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Step 1 (expand the proximal operator) If θt = 1, according to Lemmas 5.2 and 5.3,

Ψnew
t+1|θt=1 ≤∥(x̂t+1 − x⋆)− τ(ht − h⋆)∥2.

If θt = 0,

Ψnew
t+1|θt=0 =∥(x̂t+1 − x⋆)− τ(ht − h⋆)∥2 + 2(1−∆)τ⟨x̂t+1 − x⋆, ht − h⋆⟩.

Taking expectation gives

E[Ψnew
t+1] ≤ ∥(x̂t+1 − x⋆)− τ(ht − h⋆)∥2 + 2(1−∆)τ(1− p)⟨x̂t+1 − x⋆, ht − h⋆⟩. (8)

Step 2 (expand the gradient descent) Expand x̂t+1 according to Line 3 in Algorithm 1 gives

E[Ψnew
t+1] ≤∥xt+1 − x⋆∥2

+(2∆γ2 − 2∆γτ − γ2 + τ2)∥ht − h⋆∥2

+γ2∥∇f(xt)−∇f(x⋆)∥2

+2∆γ(τ − γ)⟨∇f(xt)−∇f(x⋆), ht − h⋆⟩
−2γ⟨∇f(xt)−∇f(x⋆), xt − x⋆⟩
−2∆(τ − γ)⟨ht − h⋆, xt − x⋆⟩.

Step 3 (apply strongly convexity and smoothness) We have

⟨xt − x⋆,∇f(xt)−∇f(x⋆)⟩ ≥
1

L
∥∇f(xt)−∇f(x⋆)∥2,

⟨xt − x⋆,∇f(xt)−∇f(x⋆)⟩ ≥ µ∥xt − x⋆∥2.
, Additionally, we have

∥c1(ht − h⋆)− c2(xt − x⋆)− c3(∇f(xt)−∇f(x⋆))∥2 ≥ 0.

We also have
∥xt − x⋆∥2 + τ2∥ht − h⋆∥2 − 2∆τ⟨xt − x⋆, ht − h⋆⟩2 = Ψnew

t .

Apply the above three inequalities and one equality with additional multipliers α, β, 1 and −(1− ζ), we have

E[Ψnew
t+1] ≤

(
ζ + c22 − βµ

)
∥xt+1 − x⋆∥2

+
(
2∆γ2 − 2∆γτ − γ2 + ζτ2 + c21

)
∥ht − h⋆∥2

+
(
γ2 + c23 −

α

L

)
∥∇f(xt)−∇f(x⋆)∥2

− 2
(
∆γ2 −∆γτ + c1c3

)
⟨∇f(xt)−∇f(x⋆), ht − h⋆⟩

+ (α+ β − 2γ + 2c2c3) ⟨∇f(xt)−∇f(x⋆), xt − x⋆⟩
+ 2 (∆γ −∆ζτ − c1c2) ⟨ht − h⋆, xt − x⋆⟩
+ (1− ζ)Ψnew

t .

We require

α+ β − 2γ + 2c2c3 = 0, (9)

γ2 + c23 −
α

L
= 0, (10)

ζ + c22 − βµ = 0, (11)

2∆γ2 − 2∆γτ − γ2 + ζτ2 + c21 = 0, (12)

∆γ2 −∆γτ + c1c3 = 0, (13)
∆γ −∆ζτ − c1c2 = 0. (14)
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Solving c1, c2, c3, α and β on Equations (10) to (14) gives

c1 = ±
√
−2∆γ2 + 2∆γτ + γ2 − ζτ2,

c2 =
∆(γ − ζτ)

c1
,

c3 =
∆γ (τ − γ)

c1
,

α = L(γ2 + c23),

β =
ζ + c22
µ

.

Applying above solution into Equation (9) gives

E1 :=Lγ4µ− 2Lγ3µτ + Lγ2µτ2 − 2γ3µ+ 2γ2µζτ + 2γ2µτ + γ2 − 2γµζτ2 − 2γζτ + ζ2τ2

+
−2Lγ4µ+ 2Lγ3µτ + 4γ3µ− 4γ2µτ − 2γ2ζ + 2γζτ

∆

+
Lγ4µ− Lγ2µζτ2 − 2γ3µ+ γ2ζ + 2γµζτ2 − ζ2τ2

∆2

=0.

Step 4 (optimize free parameter ∆) E1(ζ,∆) = 0 is an implicit function, and we wish the decreasing speed ζ to be
optimized. Therefore, we require

dζ

d∆
= −∂∆E1

∂ζE1
= 0,

which further implies (
Lγ2µ− 2γµ+ ζ

) (
∆γ2 −∆γτ − γ2 + ζτ2

)
=0.

Two roots are

ζ = γµ(2− γL),

ζ =
γ(γ +∆(τ − γ)))

τ2
.

If we pick the first root, E1 = 0 implies(
Lγ2µ− 2γµ+ 1

) (
Lµτ2 − 2µτ + 1

)
= 0,

which is impossible because(
Lγ2µ− 2γµ+ 1

) (
Lµτ2 − 2µτ + 1

)
> (1− γµ)2(1− µτ)2 ≥ 0.

Therefore, we proceed with the second root. In that case E1 = 0 implies

E3 := ∆3 − 2 (µτ + 1)∆2 +
(
Lµτ2 + 2µτ + 2

)
∆− µτ2(2− γL)− γ

τ − γ = 0. (15)

The existence and uniqueness of the solution is discussed in Lemma A.1.

Lemma A.1. Equation (15) contains exactly one root in interval (0, 1) and doesn’t have root in (−1, 0].

Proof of Lemma A.1. We first prove that E3 is monotonically increasing in (−1, 1).
dE3

d∆ is a quadratic function for ∆. Its minimum is achieved at ∆ = 2
3 (1 + µτ).
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If 2
3 (1 + µτ) < 1, then the minimum is E3|∆= 2

3 (1+µτ)
= Lµτ2 − 4µ2τ2

3 − 2µτ
3 + 2

3 > −
µ2τ2

3 − 2µτ
3 + 2

3 >
1
4 . The first

inequality follows L > µ and second follows 0 < µτ < 1
2 .

If 2
3 (1 + µτ) ≥ 1, then inf∆∈(−1,1)

dE3

d∆ = dE3

d∆ |∆=1 = Lµτ2 − 2µτ + 1 > µ2τ2 − 2µτ + 1 ≥ 0.

Due to monotonic property, there is at most one root in (−1, 1).

E3|∆=0 = −µτ
2(2− γL)− γ
τ − γ = −γµ(2− γL)− p

2

p− p2 < 0,

E3|∆=1 =
τ

τ − γ (1− 2µτ + Lµτ2) >
τ

τ − γ (1− 2µτ + µ2τ2) ≥ 0.

Therefore there is exactly one root in (0, 1).

A.4. Parameter Selection

Proof of Theorem 3.2. If p ≥
√

1
κ , then we can always choose γ = 1

L to obtain best ζnew.

Otherwise, let ∆i and γi be the result of Lines 4 and 5 in Algorithm 2 after (i+ 1)-th iteration for i ∈ N. We also use γ−1

to denote the initial step size. Additionally, we use E3(∆, γ) to denote the left hand side of Equation (3).

Note that according to the discussion in Lemma A.1, E3(∆, γ) is a monotonically increasing function for ∆ ∈ (0, 1).
Moreover, E3(∆, γ) is a quadratic and convex function for γ.

The iterate in Algorithm 2 can be rewritten as

∆i+1 =Solve
∆

E3(∆, γi) = 0,

γi+1 =argmin
γ

E3(∆i+1, γ).

Since ∆i is obtained by finding a root, we have E3(∆i, γi−1) = 0. Since γi is obtained by minimization, we have
E3(∆i, γi) ≤ 0. We also have E3(∆i+1, γi) = 0. According to the fact that E3(∆, γ) is monotonically increasing function
for ∆ ∈ (0, 1), we have ∆i+1 > ∆i.

Since ∆i < 1 all the time, we can establish the convergence of ∆.

Next, the function E3(∆, ·) is always strongly convex and converge uniformly, therefore γi = argminγ E3(∆i, γ) also
converge.

Finally, we have ∆ converge to the maximum possible value, therefore ζnew = p2 +∆(p− p2) will also converge to its
maximum.

A.5. Toy Model Setup

The following definitions are used for producing Figures 2, 3 and 6.

f(x) =
µ(κ− 1)

4

{
1

2

[
x(1) +

d−1∑
i=1

(x(i) − x(i+1))2 + x(d)

]
− x(1)

}
+
µ

2
∥x∥2,

ψ(x) =

{
0 if x(1) = 0

+∞ otherwise
,

d = 10, κ = 10, µ = 0.1.

The global optimum is x⋆ = 0. The initial point is x0 = [1, 0, 0, . . . ] and h0 = 0.

When SProxSkip is used, we set gt(xt) = ∇f(xt) + 0.1× e where e ∼ N (0, I).

15
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A.6. Continuous Limit

Proof of Corollary 4.1. By substituting p = γ/τ , we have

∆3 − 2 (µτ + 1)∆2 +
(
Lµτ2 + 2µτ + 2

)
∆− µτ2(2− γL)− γ

τ − γ = 0.

Taking the limit of γ → 0, we get the condition Equation (4).

Proof of Corollary 4.2. By substituting τ = 1
L × ( 1

∆ − (1−∆)), we have

∆2 (κ− 1)
(
∆2 − 2∆ + 2

)
− (1−∆)

2
= 0.

B. SProxSkip
B.1. Algorithm

Algorithm 5 SProxSkip

Stepsize γ > 0, probability p > 0, initial iterate x0 ∈ Rd, initial control variate h0 ∈ Rd, number of iterations T ≥ 1
for t = 0, 1, ..., T − 1 do

x̂t+1 = xt − γ(gt(xt)− ht) ⋄ Take a gradient-type step adjusted via the control variate ht
Flip a coin θt ∈ {0, 1} where Prob(θt = 1) = p ⋄ Flip a coin that decides whether to skip the prox or not
if θt = 1 then

xt+1 = prox γ
pψ

(x̂t+1 − γ
pht) ⋄ Apply prox, but only very rarely! (with small probability p)

else
xt+1 = x̂t+1 ⋄ Skip the prox!

end if
ht+1 = ht +

p
γ (xt+1 − x̂t+1) ⋄ Update the control variate ht

end for

B.2. Old Analysis

Proof of Theorem 6.4. Based on the same argument as step 1 in Appendix A.2, we have following middle result same as
Equation (7):

E[Ψold
t+1] ≤ ∥(x̂t+1 − x⋆)− τ(ht − h⋆)∥2 + 2τ(1− p)⟨x̂t+1 − x⋆, ht − h⋆⟩. (16)

Step 2 (expand the gradient descent) Expand x̂t+1 according to Line 3 in Algorithm 5 gives

E[Ψold
t+1] ≤(1− p2)τ2∥ht − h⋆∥2 + ∥xt − x⋆∥2

− 2γ⟨xt − x⋆,E[gt(xt)]−∇f(x⋆)⟩+ γ2E∥gt(xt)−∇f(x⋆)∥2

≤(1− p2)τ2∥ht − h⋆∥2 + ∥xt − x⋆∥2

− 2γ⟨xt − x⋆,∇f(xt)−∇f(x⋆)⟩+ 2γ2ADf (xt, x⋆) + γ2C.

Step 3 (apply strongly convexity and smoothness) We have

⟨xt − x⋆,∇f(xt)−∇f(x⋆)⟩ ≥ Df (xt, x⋆) +
µ

2
∥xt − x⋆∥2,

⟨xt − x⋆,∇f(xt)−∇f(x⋆)⟩ ≥ µ∥xt − x⋆∥2.
Apply the above two inequalities with additional multipliers β1 and β2, we have

E[Ψold
t+1] ≤(1− p2)τ2∥ht − h⋆∥2 + (1− (β1/2 + β2)µ)∥xt − x⋆∥2

+ (β1 + β2 − 2γ)⟨xt − x⋆,∇f(xt)−∇f(x⋆)⟩
+ (2γ2A− β1)Df (xt, x⋆) + γ2C.

16
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We require

2γ2A− β1 = 0,

β1 + β2 − 2γ = 0,

which gives β1 = 2γ2A and β2 = 2γ(1− γA). Then we have

E[Ψold
t+1] ≤(1− p2)τ2∥ht − h⋆∥2 + (1− γµ(2− γA))∥xt − x⋆∥2 + γ2C

≤(1− ζold)Ψold
t + γ2C,

ζold = min(γµ(2− γA), p2).

Apply Gronwall’s inequality, we have

E
[
Ψold
T

]
≤ (1− ζold)TΨold

0 +
γ2C

ζold ,

B.3. New Analysis

Proof of Theorem 6.6. Based on the same argument as step 1 in Appendix A.3, we have following middle result same as
Equation (8):

E[Ψnew
t+1] ≤ ∥(x̂t+1 − x⋆)− τ(ht − h⋆)∥2 + 2(1−∆)τ(1− p)⟨x̂t+1 − x⋆, ht − h⋆⟩. (17)

Step 2 (expand the gradient descent) Expand x̂t+1 according to Line 3 in Algorithm 5 gives

E[Ψnew
t+1] ≤γ2E∥gt(xt)−∇f(x⋆)∥2 − 2γ⟨xt − x⋆,E[gt(xt)]−∇f(x⋆)⟩

+ 2γ∆(τ − γ)⟨ht − h⋆,E[gt(xt)]−∇f(x⋆)⟩
+ 2∆(γ − τ)⟨ht − h⋆, xt − x⋆⟩
+ (γ − τ) (γ (2∆− 1)− τ) ∥ht − h∗∥2 + ∥xt − x⋆∥2

≤2γ∆(τ − γ) ⟨∇f(xt)−∇f(x⋆), ht − h⋆⟩
− 2γ⟨∇f(xt)−∇f(x⋆), xt − x⋆⟩
+ (γ − τ) (γ (2∆− 1)− τ) ∥ht − h⋆∥2

+ 2∆(γ − τ) ⟨ht − h⋆, xt − x⋆⟩
+ (xt − x⋆)2 + 2Aγ2Df (x, x∗) + Cγ2.

Step 3 (apply strongly convexity and smoothness) We have

⟨xt − x⋆,∇f(xt)−∇f(x⋆)⟩ ≥
1

L
∥∇f(xt)−∇f(x⋆)∥2,

⟨xt − x⋆,∇f(xt)−∇f(x⋆)⟩ ≥ Df (xt, x⋆) +
µ

2
∥xt − x⋆∥2,

⟨xt − x⋆,∇f(xt)−∇f(x⋆)⟩ ≥ µ∥xt − x⋆∥2.

Additionally, we have
∥c1(ht − h⋆)− c2(xt − x⋆)− c3(∇f(xt)−∇f(x⋆))∥2 ≥ 0.

We also have
∥xt − x⋆∥2 + τ2∥ht − h⋆∥2 − 2∆τ⟨xt − x⋆, ht − h⋆⟩2 = Ψnew

t .

17
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Apply the above four inequalities and one equality with additional multipliers α, β1, β2, 1 and −(1− ζ), we have

E[Ψnew
t+1] ≤

(
ζ + c22 − (β1/2 + β2)µ

)
∥xt+1 − x⋆∥2

+
(
2∆γ2 − 2∆γτ − γ2 + ζτ2 + c21

)
∥ht − h⋆∥2

+
(
c23 −

α

L

)
∥∇f(xt)−∇f(x⋆)∥2

− 2
(
∆γ2 −∆γτ + c1c3

)
⟨∇f(xt)−∇f(x⋆), ht − h⋆⟩

+ (α+ β1 + β2 − 2γ + 2c2c3) ⟨∇f(xt)−∇f(x⋆), xt − x⋆⟩
+ 2 (∆γ −∆ζτ − c1c2) ⟨ht − h⋆, xt − x⋆⟩
+ (2γ2A− β1)Df (xt − x⋆)
+ (1− ζ)Ψnew

t + γ2C.

We require

α+ β1 + β2 − 2γ + 2c2c3 = 0, (18)

2∆γ2 − 2∆γτ − γ2 + ζτ2 + c21 = 0, (19)

c23 −
α

L
= 0, (20)

ζ + c22 − (β1/2 + β2)µ = 0, (21)

∆γ2 −∆γτ + c1c3 = 0, (22)
∆γ −∆ζτ − c1c2 = 0. (23)

2γ2A− β1 = 0, (24)

Solving c1, c2, c3, α, β1 and β2 on Equations (19) to (24) gives

c1 = ±
√
−2∆γ2 + 2∆γτ + γ2 − ζτ2,

c2 =
∆(γ − ζτ)

c1
,

c3 =
∆γ (τ − γ)

c1
,

α = Lc23,

β1 = 2γ2A,

β2 =
−Aγ2µ+ ζ + c22

µ
.

Applying above solution into Equation (18) gives

E1 :=Lγ4µ− 2Lγ3µτ + Lγ2µτ2 − 2γ3µ+ 2γ2µζτ + 2γ2µτ + γ2

− 2γµζτ2 − 2γζτ + ζ2τ2

+
−2Aγ4µ+ 2Aγ3µτ + 4γ3µ− 4γ2µτ − 2γ2ζ + 2γζτ

∆

+
Aγ4µ−Aγ2µζτ2 − 2γ3µ+ γ2ζ + 2γµζτ2 − ζ2τ2

∆2

=0.

Step 4 (optimize free parameter ∆) E1(ζ,∆) = 0 is an implicit function, and we wish the decreasing speed ζ to be
optimized. Therefore, we require

dζ

d∆
= −∂∆E1

∂ζE1
= 0,

18
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which further implies

(
Aγ2µ− 2γµ+ ζ

) (
∆γ2 −∆γτ − γ2 + ζτ2

)
= 0.

According to the analysis for special case in Appendix A.3, the first root γµ(2− γA) is discarded. And we proceed with
second root ζ = γ(γ+∆(τ−γ)))

τ2 . Then, E1 = 0 implies

∆3 − 2 (µτ + 1)∆2 +
(
Lµτ2 + 2µτ + 2

)
∆− µτ2(2− γA)− γ

τ − γ = 0. (25)

Finally, we have

E[Ψnew
t+1] ≤(1− ζ)Ψnew

t + γ2C.

Apply Gronwall’s inequality, we have

E [Ψnew
T ] ≤ (1− ζnew)TΨnew

0 +
γ2C

ζnew .

B.4. Asymptotic Convergence Rate

Proof of Corollary 6.7. Let E3 be the left hand side of optimality condition Equation (5) for SProxSkip, and EODE
3 be left

hand side of optimality condition Equation (4) for ODEProx, we haveE3 = EODE
3 + 1−2µτ+Aµτ2

(1−p)2 p+O
(
p2
)
= EODE

3 +O(p).

Let ∆ and ∆ODE be the unique solution in (0, 1) for optimality condition E3 = 0 and EODE
3 = 0 separately and ζ = ζnew

for abbreviation, then we have ∆ = ∆ODE +O(p) and ζ = ∆ODEp+O
(
p2
)
.

For each terms in upper bound of E[Ψnew
T ] in Theorem 6.6, we have

(1− ζnew)TΨnew
0 =

[(
1− p∆ODE +O

(
p2
)) 1

p∆ODE
]log Ψ0

ε

Ψ0

=

(
1

e
+O(p)

)log
Ψ0
ε

Ψ0

=ε(1 +O(p))
=ε+O

(
ε2
)
,

γ2C

ζnew =
τ2p2C

p∆ODE +O(p2) =
τ2C

∆ODE p+O
(
p2
)
= ε+O

(
ε2
)
.

Finally we have

E[Ψnew
T ] ≤ 2ε+O

(
ε2
)
. (26)

The oracle complexity of proximal operator is pT = 1
∆ODE log

Ψnew
0

ε = Θ̃(1/∆ODE). According the analysis of ODEProx,
when κ is large, we have ∆ODE = Θ(1/

√
κ).
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C. ProxSkip-VR
C.1. Algorithm

Algorithm 6 ProxSkip-VR

1: Stepsize γ > 0, probability p > 0, initial iterate x0 ∈ Rd, initial control vector y0 ∈ Rd, initial control variate h0 ∈ Rd,
number of iterations T ≥ 1

2: for t = 0, 1, ..., T − 1 do
3: gt = g(xt, yt, ξt)
4: x̂t+1 = xt − γ(gt − ht) ⋄ Take a gradient-type step adjusted via the control variate ht
5: Construct new control vector yt+1

6: Flip a coin θt ∈ {0, 1} where Prob(θt = 1) = p ⋄ Flip a coin that decides whether to skip the prox or not
7: if θt = 1 then ⋄ Apply prox, but only very rarely! (with small probability p)
8: xt+1 = prox γ

pψ
(x̂t+1 − γ

pht)

9: else
10: xt+1 = x̂t+1 ⋄ Skip the prox!
11: end if
12: ht+1 = ht +

p
γ (xt+1 − x̂t+1) ⋄ Update the control variate ht

13: end for

C.2. Old Analysis

Proof of Theorem 6.10. Based on the same argument as step 1 in Appendix A.2, we have following middle result similar
Equation (7):

E[Ψold
t+1] ≤∥(x̂t+1 − x⋆)− τ(ht − h⋆)∥2 + 2τ(1− p)⟨x̂t+1 − x⋆, ht − h⋆⟩

+ γ2WE[σt+1].

Step 2 (expand the gradient descent) Expand x̂t+1 according to Line 4 in Algorithm 6 gives

E[Ψold
t+1] ≤(1− p2)τ2∥ht − h⋆∥2 + ∥xt − x⋆∥2

− 2γ⟨xt − x⋆,E[gt]−∇f(x⋆)⟩+ γ2E∥gt −∇f(x⋆)∥2

+ γ2WE[σt+1]

≤(1− p2)τ2∥ht − h⋆∥2 + ∥xt − x⋆∥2

− 2γ⟨xt − x⋆,∇f(xt)−∇f(x⋆)⟩+ 2γ2(A+WÃ)Df (xt, x⋆)

+ γ2(C +WC̃) + γ2(B +WB̃)σt.

Step 3 (apply strongly convexity and smoothness) We have

⟨xt − x⋆,∇f(xt)−∇f(x⋆)⟩ ≥ Df (xt, x⋆) +
µ

2
∥xt − x⋆∥2,

⟨xt − x⋆,∇f(xt)−∇f(x⋆)⟩ ≥ µ∥xt − x⋆∥2.

Apply the above two inequalities with additional multipliers β1 and β2, we have

E[Ψold
t+1] ≤(1− p2)τ2∥ht − h⋆∥2 + (1− (β1/2 + β2)µ)∥xt − x⋆∥2

+ (β1 + β2 − 2γ)⟨xt − x⋆,∇f(xt)−∇f(x⋆)⟩
+ (2γ2(A+WÃ)− β1)Df (xt, x⋆) + γ2(C +WC̃)

+ γ2(B +WB̃)σt.
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We require

2γ2A− β1 = 0,

β1 + β2 − 2γ = 0,

which gives β1 = 2γ2(A+WÃ) and β2 = 2γ(1− γ(A+WÃ)). Then we have

E[Ψold
t+1] ≤(1− p2)τ2∥ht − h⋆∥2 + (1− γµ(2− γ(A+WÃ)))∥xt − x⋆∥2

+ γ2(B +WB̃)σt + γ2(C +WC̃)

≤(1− ζ̃old)Ψold
t + γ2(C +WC̃),

ζ̃old = min(γµ(2− γ(A+WÃ)), p2, 1− (B +WB̃)/W ).

Apply Gronwall’s inequality, we have

E
[
Ψold
T

]
≤ (1− ζ̃old)TΨold

0 +
γ2(C +WC̃)

ζ̃old
.

C.3. New Analysis

Proof of Theorem 6.12. Based on the same argument as step 1 in Appendix A.3, we have following middle result similar to
Equation (8):

E[Ψnew
t+1] ≤∥(x̂t+1 − x⋆)− τ(ht − h⋆)∥2 + 2(1−∆)τ(1− p)⟨x̂t+1 − x⋆, ht − h⋆⟩

+ γ2WE[σt+1].

Step 2 (expand the gradient descent) Expand x̂t+1 according to Line 4 in Algorithm 6 gives

E[Ψnew
t+1] ≤γ2E∥gt(xt)−∇f(x⋆)∥2 − 2γ⟨xt − x⋆,E[gt]−∇f(x⋆)⟩

+ 2γ∆(τ − γ)⟨ht − h⋆,E[gt]−∇f(x⋆)⟩
+ 2∆(γ − τ)⟨ht − h⋆, xt − x⋆⟩
+ (γ − τ) (γ (2∆− 1)− τ) ∥ht − h∗∥2 + ∥xt − x⋆∥2

+ γ2WE[σt+1]

≤2γ∆(τ − γ) ⟨∇f(xt)−∇f(x⋆), ht − h⋆⟩
− 2γ⟨∇f(xt)−∇f(x⋆), xt − x⋆⟩
+ (γ − τ) (γ (2∆− 1)− τ) ∥ht − h⋆∥2

+ 2∆(γ − τ) ⟨ht − h⋆, xt − x⋆⟩
+ (xt − x⋆)2 + 2(A+WÃ)γ2Df (x, x∗) + γ2(C +WC̃)

+ γ2(B +WB̃)σt.

Step 3 (apply strongly convexity and smoothness) We have

⟨xt − x⋆,∇f(xt)−∇f(x⋆)⟩ ≥
1

L
∥∇f(xt)−∇f(x⋆)∥2,

⟨xt − x⋆,∇f(xt)−∇f(x⋆)⟩ ≥ Df (xt, x⋆) +
µ

2
∥xt − x⋆∥2,

⟨xt − x⋆,∇f(xt)−∇f(x⋆)⟩ ≥ µ∥xt − x⋆∥2.
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Additionally, we have
∥c1(ht − h⋆)− c2(xt − x⋆)− c3(∇f(xt)−∇f(x⋆))∥2 ≥ 0.

We also have
∥xt − x⋆∥2 + τ2∥ht − h⋆∥2 − 2∆τ⟨xt − x⋆, ht − h⋆⟩2 = Ψnew

t .

Apply the above four inequalities and one equality with additional multipliers α, β1, β2, 1 and −(1− ζ), we have

E[Ψnew
t+1] ≤

(
ζ + c22 − (β1/2 + β2)µ

)
∥xt+1 − x⋆∥2

+
(
2∆γ2 − 2∆γτ − γ2 + ζτ2 + c21

)
∥ht − h⋆∥2

+
(
c23 −

α

L

)
∥∇f(xt)−∇f(x⋆)∥2

− 2
(
∆γ2 −∆γτ + c1c3

)
⟨∇f(xt)−∇f(x⋆), ht − h⋆⟩

+ (α+ β1 + β2 − 2γ + 2c2c3) ⟨∇f(xt)−∇f(x⋆), xt − x⋆⟩
+ 2 (∆γ −∆ζτ − c1c2) ⟨ht − h⋆, xt − x⋆⟩
+ (2γ2(A+WÃ)− β1)Df (xt − x⋆)
+ (1− ζ)Ψnew

t + γ2(C +WC̃)

+ γ2(B +WB̃)σt.

We require

α+ β1 + β2 − 2γ + 2c2c3 = 0, (27)

2∆γ2 − 2∆γτ − γ2 + ζτ2 + c21 = 0, (28)

c23 −
α

L
= 0, (29)

ζ + c22 − (β1/2 + β2)µ = 0, (30)

∆γ2 −∆γτ + c1c3 = 0, (31)
∆γ −∆ζτ − c1c2 = 0. (32)

2γ2(A+WÃ)− β1 = 0, (33)

Solving c1, c2, c3, α, β1 and β2 on Equations (28) to (33) gives

c1 = ±
√
−2∆γ2 + 2∆γτ + γ2 − ζτ2,

c2 =
∆(γ − ζτ)

c1
,

c3 =
∆γ (τ − γ)

c1
,

α = Lc23,

β1 = 2γ2(A+WÃ),

β2 =
−(A+WÃ)γ2µ+ ζ + c22

µ
.

Applying above solution into Equation (27) gives

E1 :=Lγ4µ− 2Lγ3µτ + Lγ2µτ2 − 2γ3µ+ 2γ2µζτ + 2γ2µτ + γ2

− 2γµζτ2 − 2γζτ + ζ2τ2

+
−2A′γ4µ+ 2A′γ3µτ + 4γ3µ− 4γ2µτ − 2γ2ζ + 2γζτ

∆

+
A′γ4µ−A′γ2µζτ2 − 2γ3µ+ γ2ζ + 2γµζτ2 − ζ2τ2

∆2

=0.

For simplicity, in above formula, we use A′ = A+WÃ.
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Step 4 (optimize free parameter ∆) E1(ζ,∆) = 0 is an implicit function, and we wish the decreasing speed ζ to be
optimized. Therefore, we require

dζ

d∆
= −∂∆E1

∂ζE1
= 0,

which further implies (
A′γ2µ− 2γµ+ ζ

) (
∆γ2 −∆γτ − γ2 + ζτ2

)
= 0

According to the analysis for special case in Appendix A.3, the first root γµ(2− γA′) is discarded. And we proceed with
second root ζ = γ(γ+∆(τ−γ)))

τ2 . Then, E1 = 0 implies

∆3 − 2 (µτ + 1)∆2 +
(
Lµτ2 + 2µτ + 2

)
∆− µτ2(2− γA′)− γ

τ − γ = 0. (34)

Finally, we have

E[Ψnew
t+1] ≤max((1− ζ), (B +WB̃)/W )Ψnew

t + γ2(C +WC̃).

We define
ζ̃new = min(ζ, 1− (B +WB̃)/W ).

Apply Gronwall’s inequality, we have

E [Ψnew
T ] ≤ (1− ζ̃new)TΨnew

0 +
γ2(C +WC̃)

ζ̃new
.

D. GradSkip+
D.1. Algorithm

Algorithm 7 GradSkip+

1: Parameters: stepsize γ > 0, compressors Cω ∈ Bd(ω) and CΩ ∈ Bd(Ω).
2: Input: initial iterate x0 ∈ Rd, initial control variate h0 ∈ Rd, number of iterations T ≥ 1.
3: for t = 0, 1, ..., T − 1 do
4: ĥt+1 = ∇f(xt)− (I+Ω)−1CΩ(∇f(xt)− ht) ⋄ Update the shift ĥi,t via shifted compression
5: x̂t+1 = xt − γ(∇f(xt)− ĥt+1) ⋄ Update the iterate x̂i,t via shifted gradient step
6: ĝt =

1
γ(1+ω)Cω

(
x̂t+1 − proxγ(1+ω)ψ

(
x̂t+1 − γ(1 + ω)ĥt+1

))
⋄ Estimate the proximal gradient

7: xt+1 = x̂t+1 − γĝt ⋄ Update the main iterate xi,t
8: ht+1 = ĥt+1 +

1
γ(1+ω)

(
xt+1 − x̂t+1

)
⋄ Update the main shift hi,t

9: end for

D.2. Useful Lemmas

We define

p :=
1

1 + ω
∈ (0, 1],

τ := γ(1 + ω).

Lemma D.1. For any t ≥ 0,

∥τ(ht+1 − h⋆)− (xt+1 − x⋆)∥2 =
∥∥∥τ(ĥt+1 − h⋆)− (x̂t+1 − x⋆)

∥∥∥2.
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Proof of Lemma D.1. According to Line 8 in Algorithm 7,

τht+1 − xt+1 = τ ĥt+1 − x̂t+1,

τ(ht+1 − h⋆)− (xt+1 − x⋆) = τ(ĥt+1 − h⋆)− (x̂t+1 − x⋆).

Lemma D.2. For any t ≥ 0, let ECω,t[·] be the expectation over the randomness from unbiased compressor Cω at t-th step,

ECω,t⟨xt+1 − x⋆, ht+1 − h⋆⟩ ≤
(
1− 1

1 + ω

)
⟨x̂t+1 − x⋆, ĥt+1 − h⋆⟩.

Proof of Lemma D.2. We define

x+t+1 = proxτψ
(
x̂t+1 − τ ĥt+1

))
,

h+t+1 = ĥt+1 +
1

τ
(x+t+1 − x̂t+1).

According to Lemma 5.3, ⟨x+t+1 − x⋆, h+t+1 − h⋆⟩ ≤ 0.

Then we let s = 1
1+ωCω(x̂t+1 − x+t+1), and we have

xt+1 = x̂t+1 − s,

ht+1 = ĥt+1 −
1

τ
s.

Note that

ECω,t[s] =
1

1 + ω
(x̂t+1 − x+t+1),

ECω,t∥s∥2 ≤
1

1 + ω

∥∥x̂t+1 − x+t+1

∥∥2.
Then

ECω,t⟨xt+1 − x⋆, ht+1 − h⋆⟩

=ECω,t

[
1

τ
⟨x̂t+1 − s− x⋆, τ ĥt+1 − s− h⋆⟩

]
=
1

τ
⟨x̂t+1 − ECω,t[s]− x⋆, τ ĥt+1 − ECω,t[s]− h⋆⟩

+
1

τ

(
ECω,t∥s∥2 − ∥ECω,t[s]∥2

)
≤1

τ
⟨x̂t+1 − p(x̂t+1 − x+t+1)− x⋆, τ ĥt+1 − p(x̂t+1 − x+t+1)− h⋆⟩

+
1

τ
p(1− p)

∥∥x̂t+1 − x+t+1

∥∥2
=(1− p)⟨x̂t+1 − x⋆, ĥt+1 − h⋆⟩+ p⟨x+t+1 − x⋆, h+t+1 − h⋆⟩
≤(1− p)⟨x̂t+1 − x⋆, ĥt+1 − h⋆⟩.

D.3. Old Analysis

Proof of Theorem 2.1.

Ψold
t+1 =∥xt+1 − x⋆∥2 + τ2∥ht+1 − h⋆∥2

=∥(xt+1 − x⋆)− τ(ht+1 − h⋆)∥2 + 2τ⟨xt+1 − x⋆, ht+1 − h⋆⟩.
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Step 1 (expand the proximal operator) According to Lemmas D.1 and D.2,

ECω,t[Ψ
old
t+1]

≤
∥∥∥(x̂t+1 − x⋆)− τ(ĥt+1 − h⋆)

∥∥∥2 + 2τ(1− p)⟨x̂t+1 − x⋆, ĥt+1 − h⋆⟩.

Step 2 (expand the gradient descent) Let

s = (I+Ω)−1CΩ(∇f(xt)− ht),

then

ĥt+1 = ∇f(xt)− s,
x̂t+1 = ∇xt − γs.

and

ECω,t[Ψ
old
t+1]

≤
∥∥∥(x̂t+1 − x⋆)− τ(ĥt+1 − h⋆)

∥∥∥2 + 2τ(1− p)⟨x̂t+1 − x⋆, ĥt+1 − h⋆⟩

=τ2∥∇f(xt)−∇f(x⋆)∥2 − 2γ⟨∇f(xt)−∇f(x⋆), xt+1 − x⋆⟩
+ ∥xt+1 − x⋆∥2 − 2(τ2 − γ2)⟨∇f(xt)−∇f(x⋆), s⟩+ (τ2 − γ2)∥s∥2,

and

E[Ψold
t+1]

≤τ2∥∇f(xt)−∇f(x⋆)∥2 − 2γ⟨∇f(xt)−∇f(x⋆), xt+1 − x⋆⟩
+ ∥xt+1 − x⋆∥2 − 2(τ2 − γ2)⟨∇f(xt)−∇f(x⋆),E[s]⟩+ (τ2 − γ2)E∥s∥2

≤− (τ2 − γ2)∥∇f(xt)−∇f(x⋆)∥2(I+Ω)−1 + τ2∥∇f(xt)−∇f(x⋆)∥2

− 2γ⟨∇f(xt)−∇f(x⋆), xt − x⋆⟩+ (τ2 − γ2)∥ht − h⋆∥2(I+Ω)−1 + ∥xt − x⋆∥2

=⟨∇f(xt)−∇f(x⋆), (τ2I− (τ2 − γ2)(I+Ω)−1)(∇f(xt)−∇f(x⋆))⟩
− 2γ⟨∇f(xt)−∇f(x⋆), xt − x⋆⟩+ (τ2 − γ2)∥ht − h⋆∥2(I+Ω)−1 + ∥xt − x⋆∥2

=⟨∇f(xt)−∇f(x⋆), (γ2Ω̃)(∇f(xt)−∇f(x⋆))⟩
− 2γ⟨∇f(xt)−∇f(x⋆), xt − x⋆⟩+ (τ2 − γ2)∥ht − h⋆∥2(I+Ω)−1 + ∥xt − x⋆∥2.

The last step is due to the following equivalent formula of Ω̃:

Ω̃ := (1 + ω)2I− ω(2 + ω)(I+Ω)−1.

Step 3 (apply strongly convexity and smoothness) We have

⟨xt − x⋆,∇f(xt)−∇f(x⋆)⟩ ≥ ∥∇f(xt)−∇f(x⋆)∥2L−1

⟨xt − x⋆,∇f(xt)−∇f(x⋆)⟩ ≥ µ∥xt − x⋆∥2.
Apply the above two inequalities with additional multipliers α and β, we have

E[Ψold
t+1] ≤(1− p2)τ2∥ht − h⋆∥2(I+Ω)−1 + (1− βµ)∥xt − x⋆∥2

+ ⟨∇f(xt)−∇f(x⋆), (γ2Ω̃− αL−1)(∇f(xt)−∇f(x⋆))⟩
+ (α+ β − 2γ)⟨xt − x⋆,∇f(xt)−∇f(x⋆)⟩.
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We require

λmax(γ
2Ω̃− αL−1) ≤ 0,

The smallest α we that satisfy above condition is α = γ2λmax(LΩ̃). We also require α+ β − 2γ = 0, so we have

E[Ψold
t+1] ≤(1− p2)τ2∥ht − h⋆∥2(I+Ω)−1 + (1− γµ(2− γλmax(LΩ̃)))∥xt − x⋆∥2

≤(1− p2)τ2λmax((I+Ω)−1)∥ht − h⋆∥2

+ (1− γµ(2− γλmax(LΩ̃)))∥xt − x⋆∥2

≤(1− ζold)Ψold
t

ζold = min

(
γµ(2− γλmax(LΩ̃)), 1− 1− p2

1 + λmin(Ω)

)
.

D.4. New Analysis

Proof of Theorem 3.1. We only need to focus on γ > γcrit case.

Ψnew
t+1 =∥xt+1 − x⋆∥2 + τ2∥ht+1 − h⋆∥2 − 2∆τ⟨xt+1 − x⋆, ht+1 − h⋆⟩

=∥(xt+1 − x⋆)− τ(ht+1 − h⋆)∥2 + 2(1−∆)τ⟨xt+1 − x⋆, ht+1 − h⋆⟩.

Step 1 (expand the proximal operator) According to Lemmas D.1 and D.2,

ECω,t[Ψ
new
t+1]

≤
∥∥∥(x̂t+1 − x⋆)− τ(ĥt+1 − h⋆)

∥∥∥2 + 2(1−∆)τ(1− p)⟨x̂t+1 − x⋆, ĥt+1 − h⋆⟩.

Step 2 (expand the gradient descent) Let

s = (I+Ω)−1Cω(∇f(xt)− ht),

then

ĥt+1 = ∇f(xt)− s,
x̂t+1 = ∇xt − γs,

and

ECω,t[Ψ
new
t+1]

≤
∥∥∥(x̂t+1 − x⋆)− τ(ĥt+1 − h⋆)

∥∥∥2 + 2(1−∆)τ(1− p)⟨x̂t+1 − x⋆, ĥt+1 − h⋆⟩

=τ2∥∇f(xt)−∇f(x⋆)∥2 − 2(∆(τ − γ) + γ)⟨∇f(xt)−∇f(x⋆), xt − x⋆⟩
− 2(τ − γ)((1−∆)γ + τ)⟨∇f(xt)−∇f(x⋆), s⟩
+ ∥xt − x⋆∥2 + 2∆(τ − γ)⟨xt − x⋆, s⟩+ (τ − γ)((1− 2∆)γ + τ)∥s∥2,
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and

E[Ψnew
t+1]

≤τ2∥∇f(xt)−∇f(x⋆)∥2 − 2(∆(τ − γ) + γ)⟨∇f(xt)−∇f(x⋆), xt − x⋆⟩
− 2(τ − γ)((1−∆)γ + τ)⟨∇f(xt)−∇f(x⋆),E[s]⟩
+ ∥xt − x⋆∥2 + 2∆(τ − γ)⟨xt − x⋆,E[s]⟩+ (τ − γ)((1− 2∆)γ + τ)E∥s∥2

≤⟨∇f(xt)−∇f(x⋆), (τ2 − (τ2 − γ2)(I+Ω)−1)(∇f(xt)−∇f(x⋆))⟩
+ 2∆γ(τ − γ)⟨∇f(xt)−∇f(x⋆), (I+Ω)−1(ht − h⋆)⟩
+ ⟨∇f(xt)−∇f(x⋆), (−2γI− 2∆(τ − γ)(I− (I−Ω)−1))(xt − x⋆)⟩
+ (γ − τ)(2∆γ − γ − τ)⟨ht − h⋆, (I+Ω)−1(ht − h⋆)⟩
+ 2∆(γ − τ)⟨ht − h⋆, (I+Ω)−1(xt − x⋆)⟩+ ∥xt − x⋆∥2.

Step 3 (apply strongly convexity and smoothness) We have

⟨xt − x⋆,∇f(xt)−∇f(x⋆)⟩ ≥ ∥∇f(xt)−∇f(x⋆)∥2L−1 ,

⟨xt − x⋆,∇f(xt)−∇f(x⋆)⟩ ≥ µ∥xt − x⋆∥2.
Additionally, for any positive semidefinite matrices c1, c2, c3, we have

∥c1(ht − h⋆)− c2(xt − x⋆)− c3(∇f(xt)−∇f(x⋆))∥2 ≥ 0.

We also have
∥xt − x⋆∥2 + τ2∥ht − h⋆∥2 − 2∆τ⟨xt − x⋆, ht − h⋆⟩2 = Ψnew

t .

Apply the above three inequalities and one equality with additional multipliers α, β, 1 and −(1− ζ), we have

E[Ψnew
t+1]

≤τ2∥∇f(xt)−∇f(x⋆)∥2 − 2(∆(τ − γ) + γ)⟨∇f(xt)−∇f(x⋆), xt − x⋆⟩
− 2(τ − γ)((1−∆)γ + τ)⟨∇f(xt)−∇f(x⋆),E[s]⟩
+ ∥xt − x⋆∥2 + 2∆(τ − γ)⟨xt − x⋆,E[s]⟩+ (τ − γ)((1− 2∆)γ + τ)E∥s∥2

≤⟨∇f(xt)−∇f(x⋆), (c23 + τ2I− (τ2 − γ2)(I+Ω)−1 − L−1α)(∇f(xt)−∇f(x⋆))⟩
+ ⟨∇f(xt)−∇f(x⋆), (−c3c1 + 2∆γ(τ − γ)(I+Ω)−1)(ht − h⋆)⟩
+ ⟨∇f(xt)−∇f(x⋆), ((α+ β − 2γ)I+ 2c3c2 − 2∆(τ − γ)(I− (I−Ω)−1))(xt − x⋆)⟩
+ ⟨ht − h⋆, (−τ2(1− ζ)I+ c21 + (γ − τ)(2∆γ − γ − τ)(I+Ω)−1)(ht − h⋆)⟩
+ 2⟨ht − h⋆, (∆τ(1− ζ)I− c1c2 +∆(γ − τ)(I+Ω)−1)(xt − x⋆)⟩
+ ⟨xt − x⋆, ((1− βµ+ ζ)I+ c22)(xt − x⋆)⟩
+ (1− ζ)Ψnew

t .

We require

c23 + τ2I− (τ2 − γ2)(I+Ω)−1 − L−1α ⪯ 0, (35)

−τ2(1− ζ)I+ c21 + (γ − τ)(2∆γ − γ − τ)(I+Ω)−1 ⪯ 0, (36)

(1− βµ+ ζ)I+ c22 ⪯ 0, (37)

−c3c1 + 2∆γ(τ − γ)(I+Ω)−1 = 0, (38)

(α+ β − 2γ)I+ 2c3c2 − 2∆(τ − γ)(I− (I−Ω)−1) = 0, (39)

∆τ(1− ζ)I− c1c2 +∆(γ − τ)(I+Ω)−1 = 0. (40)
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Then we have
E[Ψnew

t+1] ≤ (1− ζ)Ψnew
t .

Inspired by an analysis on the special case where L and Ω are isotropic, we manually choose following parameters:

c1 = ∆γ(τ − γ)(I−Ω)−1,

c2 = ∆(τ(1− ζ)− (τ − γ)(I−Ω)−1)c−1
1 ,

c3 = c1.

With above parameter, Equations (38) to (40) holds when α+ β = 2γ − 2∆(γ − ζτ). And Equations (35) to (37) becomes

γ2Ω̃− L−1α ⪯ 0, (41)

ζI− γ2

τ2
Ω̃ ⪯ 0, (42)

E1 := (−βµ+ ζ)I+
∆
(
τ(1− ζ)− (I−Ω)−1(τ − γ)

)2
(I−Ω)−1γ (τ − γ) ⪯ 0. (43)

We select

α = γ2λmax(LΩ̃),

ζ =
λmin(Ω̃)

(1 + ω)2
,

β = 2γ (∆ (ζ (ω + 1)− 1) + 1)− α.

which satisfy Equations (41) and (42).
Therefore we only need to make sure Equation (43) holds. It is guaranteed some feasible solution with ∆ ∈ (0, 1) exist,
because at the left end point, we have

λmax(E1)|∆=0 =

(
−γµ(2− γλmax(LΩ̃)) + 1− 1− p2

1 + λmin(Ω)

)
,

and due to γ > γcrit, we have E1|∆=0 ≺ 0.
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