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Abstract

Natural Language Understanding (NLU) task001
requires the model to understand the under-002
lying semantics of input text. However, re-003
cent analyses demonstrate that NLU mod-004
els tend to utilize dataset biases to achieve005
high dataset-specific performances, which al-006
ways leads to performance degradation on007
out-of-distribution (OOD) samples. To in-008
crease the performance stability, previous de-009
biasing methods empirically capture bias fea-010
tures from data to prevent model from corre-011
sponding biases. However, we argue that, the012
semantic information can form a causal rela-013
tionship with the target labels of the NLU task,014
while the biases information is only correla-015
tive to the target labels. Such difference be-016
tween the semantic information and dataset bi-017
ases still remains not fully addressed, which018
limits the effectiveness of debiasing. To ad-019
dress this issue, we analyze the debiasing pro-020
cess under a causal perspective, and present021
a causal invariance based stable NLU frame-022
work (CI-sNLU). Experimental results show023
that CI-sNLU can consistently improve the sta-024
bility of model performance on OOD datasets.025

1 Introduction026

State-of-the-art Natural Language Understanding027

(NLU) models such as BERT have demonstrated028

promising performance on various tasks (Devlin029

et al., 2019; Liu et al., 2019). These NLU models030

are generally first pretrained to learn universal lan-031

guage representations, then finetuned to adapt to032

specific downstream tasks. However, recent analy-033

ses demonstrate that these models tend to exploit034

the dataset biases spuriously associated with the tar-035

get labels, rather than learn the underlying semantic036

information (McCoy et al., 2019; Clark et al., 2019;037

Sanh et al., 2020). This leads to performance degra-038

dation on out-of-distribution (OOD) samples.039

To mitigate the impact of dataset biases and ob-040

tain NLU models that have stable performance on041

both in-distribution samples and OOD samples, a 042

number of debiasing methods have been proposed. 043

These methods work by first identifying the poten- 044

tial dataset biases within the dataset, then regulariz- 045

ing NLU model prevent it from capturing the bias 046

information. To identify the potential biases, one 047

line of debiasing works depends on the intuitions 048

of researchers to design features characterizing the 049

distribution of dataset biases (Schuster et al., 2019; 050

Clark et al., 2019; He et al., 2019). However, the 051

assumption that the types of bias should be known 052

a-priori limits their application to many NLU tasks 053

and datasets. Hence, automatic debiasing methods 054

are proposed to move beyond the reliance on prior 055

knowledge. These works usually train a biased 056

model to to automatically capture the dataset bias 057

and obtain a set of bias features. Then based on 058

the identified biases information, model regulariza- 059

tion methods such as Product-of-Expert (Hinton, 060

2002) or Confidence Regularization (Hinton et al., 061

2015) can be employed to prompt model to focus 062

on learning the semantic information. 063

While promising, previous debiasing methods 064

work by empirically inducing bias features from 065

data. However, we argue that, the semantic infor- 066

mation of text is causal to the target label, while the 067

bias information has only correlative relationship. 068

This drives to the essential difference between the 069

bias information and semantic information. Present 070

debiasing methods are still unaware of knowledge 071

about causal invariance. Hence, the effectiveness 072

of bias feature identification could be rather limited, 073

influencing the efficiency of debiasing. 074

Figure 1 provides an example for illustrating the 075

difference between semantic information and bias 076

information in the causal perspective. In specific, 077

it is the similar semantics between the Premise: A 078

cat caught a mouse. and Hypothesis: A mouse 079

was caught by a cat., that causes the label to be 080

“entailment”. Therefore, the semantic information 081

forms a causal relationship with the label. Fur- 082
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Figure 1: The semantic information is causal to the target label
of NLU while the bias information such as lexical overlap is
just correlative. The correlation may fail to exist on some
counter examples.

thermore, as commented by Pearl et al. (2000),083

such causal relationship would keep invariant upon084

both in-distribution and OOD samples. On the con-085

trary, the bias features, such as lexical overlaps,086

are just correlative to the labels. The correlation087

may vary upon different instances, and across dif-088

ferent datasets, and thus without causal invariance.089

Hence, if the NLU model can debiase under the090

perspective of causal invariance, then it would have091

stable performance on OOD samples.092

To facilitate those issues, in this paper, we pro-093

pose a Causal-Invariance-based stable NLU frame-094

work (CI-sNLU). Based on the difference between095

the bias information and semantic information in096

causal invariance, CI-sNLU can find the “counter097

examples” on which model fails to capture the098

semantic information, then detect the bias infor-099

mation that model captures by comparing these100

“counter examples”. Then by enforcing model to101

follow a causal invariance constraint, we can ex-102

clude the bias information model captured to in-103

crease the stability of performance. Furthermore,104

theoretical analyses demonstrate that our model105

regularization method can approximately minimize106

the mutual information between the representation107

of input text with the identified bias feature close108

to 0.109

Experimental results show that, our approach110

can enhance the recognition of biased features111

and regularize model more efficiently, to consis-112

tently improve model stability on multiple OOD113

datasets, meanwhile persevere the in-distribution114

performance.115

2 Stable Natural Language116

Understanding under Causal117

Perspective118

We first analyze the stable NLU process under a119

causal perspective. The natural language under-120

standing (NLU) task requires a model to under- 121

stand the semantic of input text and then predict 122

the target label. Formally, it can be characterized 123

by a projection X → Y , where X and Y denote 124

the input text and the label, respectively. A NLU 125

model M is trained to capture the predictive in- 126

formations within X , and get a representation of 127

input text hM ∈ Rd. For brevity, in the following 128

sections, we call hM ∈ Rd as model representa- 129

tion. Then the label can be predicted based on hM. 130

Hence, concerning hM, the NLU process can be 131

reformulated as:M : X → hM → Y . 132

However, the predictive information within X is 133

actually composed of two components: the seman- 134

tic information S that decides the value of label, 135

and the dataset biases B that only correlative to the 136

value of label (Tsipras et al., 2018; McCoy et al., 137

2019; Pearl, 2009). The dataset biases could range 138

from simple lexical overlap (Gururangan et al., 139

2018; Poliak et al., 2018), to complex language 140

stylistic patterns (Zellers et al., 2019; Nie et al., 141

2020). As Figure 2 (a) shows, since the seman- 142

tic information decides the value of labels, there 143

is a causal relationship between S and Y . Fur- 144

thermore, such relationship would keep valid upon 145

different instances across different datasets (Pearl 146

et al., 2000; Pearl, 2009). Formally, such invariance 147

can be characterized as: 148

P (YDi |SDi) = P (YDj |SDj ), (1) 149

where Di = {XDi , YDi} and Dj = {XDj , YDj} 150

are arbitrary two NLU datasets, SDi denotes the 151

semantic information within XDi . 152

On the contrary, the correlation relationship be- 153

tween the dataset biases with the label would vary 154

across different datasets, i.e.,: 155

P (YDi |BDi) 6= P (YDj |BDj ), (2) 156

where BDi is the dataset biases within XDi . There- 157

fore, having or not causal invariance forms the es- 158

sential difference between semantic information 159

and bias information. 160

In order forM to capturing the necessary seman- 161

tic information withinX without involving the bias 162

information, hM should satisfy a causal invariant 163

constraint: 164

∀Xi ∈ T : P do(X=Xi)(Y |hM) = P do(X=Xi)(Y |X) 165

P (YDi |h
M
Di

) = P (YDj |h
M
Dj

) (3) 166

where T denotes the training set, P do(X=Xi) de- 167

notes the distribution arising from assigning X to 168
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Figure 2: (a) The predictive information within the input text is composed by semantic information and bias information. (b)
Ideally, a stable NLU model should avoid capturing the bias information. (c) Models empirically trained cannot distinguish
causal with correlative and hence would inevitable involve bias information into model representation. (d) Debiasing process of
the CI-sNLU framework.

be a certain instance Xi (Pearl, 2009). This means,169

(1) hM contains the semantic information that de-170

cides the value of label Y . (2) Such causal rela-171

tionship exist in every instance Xi ∈ T , and keep172

valid for arbitrary OOD datasets. Hence, training a173

modelM satisfying the causal invariant constraint174

is the goal of stable NLU, as shown in Figure 2 (b).175

However, for models that only have access to the176

input text-target label pairs, they have no informa-177

tion to distinguish the causal relationship from the178

correlative relationship. Hence, with the existence179

of the bias in the dataset, such models would in-180

evitably capture the dataset bias correlative to the181

target label (Figure 2 (c)). Which makes hM con-182

tain both the semantic information S and the biases183

B and leads to the instability. Debiasing meth-184

ods have been proposed to mitigate the influence185

of biases. However, due to the absence of causal186

mechanism in these debiasing methods, their abil-187

ity for distinguishing the bias information from the188

semantic information would still be limited.189

To address this issue, we propose a Causal190

Invariance based stable NLU (CI-sNLU) frame-191

work. CI-sNLU employs criteria deduced from the192

causal invariance constraint to identify the bias in-193

formation that the model captured, and regularizes194

model to exclude the identified bias information by195

enforcing hM to obey the constraint.196

3 Methodology197

3.1 Causal Invariance Based Biases198

Identification199

The causal invariance bias feature identification al-200

gorithm dynamically identifies the biases captured201

by the model during the training process. The core202

assumption of the algorithm is that the semantic203

representation of instances will obey the causal204

invariance constraint, while the bias features cor- 205

relative to the label does not. Hence, if we can 206

discover the instances on which the causal invari- 207

ance constraint is violated, then it could be prob- 208

able to identify the bias features from the model 209

representations of these instances. 210

In specific, as described in the causal invariance 211

constraint (Eq. 3), if the model can capture the se- 212

mantic information causal to the label and obtain 213

representation hM, then for two instances Xi and 214

Xj , if their representation hMi and hMj are rather 215

similar, then P (Yi|Mi) should be rather close to 216

P (Yj |Mj). Therefore, if we can find instance 217

pairs 〈Xi, Xj〉, on which hMi is rather close to 218

hMj , whereas Yi 6= Yj , then these examples can 219

be regarded as counter instances that violates the 220

causal invariance constraint, and can be utilized 221

for detecting the bias informationM utilizes. For 222

clarity, we define such instance pairs 〈Xi, Xj〉 as a 223

counter instance pair: 224

Definition 1 (Counter Instance Pair): 225

∀{Xi, Yi}, {Xj , Yj} ∈ T , i 6= j, if: 226

S(hM
i , hM

j ) > τ, s.t. Yi 6= Yj ∧ (Ŷi = Yi∨ Ŷj = Yj) (4) 227

where S(·) is a score function measuring the sim- 228

ilarity between hMi and hMj , τ is a threshold con- 229

trolling the confidence that hMi and hMj can been 230

deemed as the representation of the same semantic 231

information. Ŷi, Ŷj are model prediction of Yi and 232

Yj , respectively. Note that, the additional condition 233

Ŷi = Yi ∨ Ŷj = Yj requires that model should 234

make a correct prediction for Xi or Xj . This is 235

because, ifM fails to correctly predict the label on 236

both Xi and Xj , then it is more likely thatM has 237

not captured the predictive information in Xi and 238

Xj , rather than using the bias information. 239

To dynamically detect counter instance pairs 240

within T during the training process, as Figure 2 (d) 241
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shows, we divide the training process into two al-242

ternate stages: a parameter optimization stage and243

a retrospect stage. In the parameter optimization244

stage, we trainM to find new predictive features245

from data, meanwhile regularizeM to exclude the246

known biases using a causal invariance based regu-247

larizer (which is described in the following section).248

In the retrospect stage, CI-sNLU finds the counter249

instance pairs using the model representations, to250

discover the bias features that model temporarily251

captures and update the bias features.252

Parameter Optimization Given training dataset253

T = {Xi, Yi}, we update the parameters of the254

NLU modelM through maximizing the likelihood.255

Meanwhile M is regularized using a regularizer256

R(M, hbt) to exclude the bias components from257

fitting the bias information, where hbt = {hbi,t} is258

a d-dimension random variable, characterizing the259

distribution of the dataset biases on the training260

set T , hbi,t is the temporal bias feature of sample261

i at tth step. hb0 is initialized using the previous262

automatic debiasing methods (e.g., the method of263

Utama et al. (2020b)), and updated in the retrospect264

stage of the training process.265

Retrospect After t steps of parameter optimiza-266

tion, we examine whether all model representa-267

tion of each instance {Xi, Yi} ∈ T satisfy the268

causal invariance constraint, to find the represen-269

tation of instances that may contains bias informa-270

tion, and update hb. In specific, for each instance271

{Xi, Yi} ∈ T , we utilizeM to obtain correspond-272

ing temporal model representations hMi,t , and pre-273

dictions of the label Ŷi,t, together with a probability274

p̂i,t = P (Ŷi,t|hMi,t ).275

Then We traverse T to find all the counter in-276

stance pairs according to the definition described277

in Eq.4. In practice, we implement S(·) using the278

cosine similarity function, and introduce two more279

conditions to enhance the confidence of counter280

instance pairs detection, i.e., for Xi, Xj ∈ T , to be281

the counter instance pairs, we further require that:282

p̂i,t > τp, p̂j,t > τp (5)283

where τp is a threshold for filtering out the predic-284

tions that have low confidence. With this additional285

threshold, we can further control the confidence on286

the discovered bias feature. Note that, the counter287

instance pairs are found at the tth parameter opti-288

mization step. Hence, we can dynamically detect289

the bias feature temporarily captured by the model290

for updating the bias feature distribution, rather291

than only relying on fixed bias features.292

Hence, for each sample Xi ∈ T , at the tth step, 293

its bias features hbi,t can be updated using the rep- 294

resentation of corresponding counter instances as: 295

296
hb
i,t = hb

i,t0 + α
1

|NCi |
∑

j∈NCi

hM
j,t (6) 297

where hbi,t0 is the bias feature of the i th sample 298

previously obtained after the t0th parameter opti- 299

mization step,NCi is a set composed by all counter 300

instances of Xi, |NCi | is the size of NCi , α is a co- 301

efficient controlling the proportion of bias feature 302

update. 303

After the retrospect stage, following parameter 304

stage is conducted withM regularized using the 305

updated bias features hbi,t. 306

3.2 Causal Invariance Based Model 307

Regularization 308

In the parameter optimization stage, we employ 309

an causal invariance based regularizer to exclude 310

the bias information model captured by forcing the 311

model M to fulfilling the causal invariance con- 312

straint. As described in Eq. 3, the prediction should 313

keep invariant under different kinds of bias features. 314

A sufficient condition is that the information model 315

representation hM contains keeps invariant under 316

different biases. In other words, manipulating the 317

value of bias feature does not influence information 318

contained within hM. The information within hM 319

can be characterized using its information entropy 320

H(hM). Hence, formally, 321

∀hb
i , h

b
j ∈ hb; ∀Xi ∈ X, (7) 322

Hdo(hb=hb
i )(hM

i |Xi) = pdo(h
b=hb

j)(hM
i |Xi) 323

One way to ensure such invariance is making the 324

model representation hM independent to the bias 325

feature hb, i.e, hM |= hb. The independence makes 326

the mutual information between hb and hb becomes 327

0, i.e., I(hM, hb) = 0. Hence, H(hM|hb) = 328

H(hM)− I(hM, hb) = H(hM). In other words, 329

the value of bias will not influence the information 330

contained in hM. 331

Therefore, at an arbitrary parameter optimiza- 332

tion step t, if we can calculate the temporary mu- 333

tual information I(hMt , hbt) and encourage it to be 334

zero, then we can reduce the proportion of bias 335

information contained in model representation hM 336

to increase the stability of model. However, in 337

general, the precise value of mutual information 338

I(hMt , hbt) for two random variables with complex 339
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distribution are hard to calculate. To address this340

issue, we resort to approximations.341

With information theory and the Law of Large342

Numbers (Cramér, 2016; Rao, 1992), we find that,343

in the training process, by predicting the label as:344

Ŷi = σ(Whzi,t); (8)345

hzi,t = (hMi,t + hbi,t) (9)346

where Ŷi is the predicted label of sample i, σ(·) is347

a sigmoid function, W ∈ Rd×d is a weight matrix,348

and then training Ŷi to close to the ground truth la-349

bel Yi, theoretically, we can approximately make350

I(hMt , hbt) achieving its lower bound 0. We show351

the specific proving process in the Appendix. For352

clarity, we denote this regularizer as ADD.353

4 Experiments354

4.1 Evaluation Tasks355

We evaluate our approach on three NLU tasks: nat-356

ural language inference (NLI), fact verification,357

and paraphrase identification. We compare the in-358

distribution performance on the test set of each task.359

Then examine the stability of model on OOD sam-360

ples by comparing the zero-shot performance on361

the corresponding challenge dataset. On the NLI362

and fact verification task, model performance is363

evaluated using prediction accuracy. Following De-364

vlin et al. (2019) and Radford et al. (2018), on the365

Paraphrase Identification task, we evaluate model366

performance using the F1 score.367

Natural Language Inference This task requires368

the model to predict the semantic entailment rela-369

tionship between a premise and a hypothesis. We370

use the MNLI dataset (Williams et al., 2018) as371

the benchmark, and use corresponding challenge372

HANS McCoy et al. (2019) to test the stability on373

OOD samples. Since HANS is built by removing374

the lexical overlap bias that extensively exists in375

the MNLI dataset, models trained on MNLI often376

perform close to a random baseline on HANS.377

Fact Verification This task requires a model to378

predict whether a claim can be supported or refuted379

by corresponding evidences. We train model on the380

Fever dataset (Thorne et al., 2018), and evaluate the381

stability of models on the FeverSymmetric V 0.1382

(Schuster et al., 2019) dataset, which is collected383

to remove the claim-only biases (i.e., the biases384

within the claims which make models able to make385

predictions without evidence).386

Paraphrase Identification We conduct experi-387

ments on the QQP dataset1, which consists of 362K 388

questions pairs annotated as either duplicate or non- 389

duplicate, together with the corresponding chal- 390

lenge dataset PAWS (Zhang et al., 2019b), which is 391

constructed by removing the lexical overlap biases 392

within the QQP dataset. 393

4.2 Experimental Details 394

On all three tasks, we implement the main model 395

M using the BERT-base model (Devlin et al., 396

2019), and regularizeM with the ADD regularizer. 397

The biased feature of each example hbi is initialized 398

using the automatic debiasing method of (Utama 399

et al., 2020b), which employs a BERT-base model 400

trained upon a tiny subset of the original training 401

set to capture the biased information. 402

During the training process, the biased feature 403

detecting algorithm detects and updates the bi- 404

ased features at the start of the 2nd to last epoch. 405

Before fed into the model, each example is pre- 406

process into a [CLS] premise [SEP] hypothesis / 407

[CLS] claim [SEP] evidence form, where [CLS] 408

and [SEP] are two special tokens (Devlin et al., 409

2019). Then we employ the embedding vector of 410

the [CLS] token at the top transformer layer as the 411

model representation hM of each instance for find- 412

ing the counter instances pairs. To increase the 413

confidence of detected biased feature, on all three 414

datasets, we set τp = 0.95, and τ = 0.9. The in- 415

formation update coefficient is set as α = 0.5. We 416

report the average result across 5 runs. More de- 417

tails about the hyperparameter selection and time- 418

costing are provided in the Appendix. 419

4.3 Baseline Methods 420

We make comparisons with: 421

(i) BERT (Devlin et al., 2019) refers to the 422

BERT-base model trained upon each NLU dataset 423

without debiasing process. 424

Prior-knowledge-depended Debiasing Methods 425

These methods rely on prior knowledge about 426

the distribution of dataset biases to detect the bi- 427

ased instances, then regularize model by down- 428

weighting the biased instances, so that the main 429

model can focus on learning from harder exam- 430

ples. The major difference resides in how the main 431

model is regularized. 432

(ii) Known-biasReweighting (Clark et al., 2019; 433

Schuster et al., 2019) weights the importance of 434

a instance using the probability that the instance 435

exhibits a bias. (iii) Known-biasPoE (Clark et al., 436

1https://data.quora.com
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Method MNLI HANS ∆ Fever symm. ∆ QQP PAWS ∆
Bert-base 84.5 61.5 - 85.6 55.7 - 87.9 48.7 -
Known-bias Reweighting 83.5 69.2 +7.7 84.6 61.7 +6.0 85.5 49.7 +1.0
Known-bias POE 82.9 67.9 +6.4 86.5 60.6 +4.9 84.3 50.3 +1.6
Known-bias Conf-reg 84.5 69.1 +7.6 86.4 60.5 +4.8 85.0 49.0 +0.3
Shallow Model Debiasing Reweighting 82.3 69.1 +7.6 87.2 60.8 +5.1 79.4 46.4 -2.3
Shallow Model Debiasing POE 82.7 69.8 +8.3 85.4 60.9 +5.2 80.7 47.4 -1.3
Shallow Model Debiasing Conf-reg 83.9 67.7 +6.2 87.9 60.4 +4.7 83.9 49.2 +0.5
Weak Learner Debiasing 83.3 67.9 +6.4 85.3 58.5 +2.8 - - -
LGTR 84.4 58.0 -3.5 85.5 57.9 +2.2 - - -
CI-sNLU 83.2 73.1 +11.6 85.0 63.9 +8.2 85.5 51.3 +2.6
CI-sNLU+bias 84.5 - - 84.8 86.2

Table 1: Model performance (MNLI / Fever: accu. (%); QQP: F1) on in-distribution and corresponding challenge instances.

2019) forces the main model to focus on learning437

from examples that are not predicted well by the bi-438

ased model. (iv) Known-biasConf-reg (Utama et al.,439

2020a) regularizes the main model by decreasing440

model confidence on biased examples.441

Auto-Debiasing Methods442

(v) Shallow Model Debiasing (Utama et al.,443

2020b) trains a BERT-base model on a small subset444

of the training set to obtain biased features char-445

acterizing dataset biases distribution. (vi) Weak446

Learner Debiasing (Sanh et al., 2020) employs a447

Tiny-BERT model (Turc et al., 2019) as a weak448

learner to obtain the biased features. (vii) LTGR449

(Du et al., 2021) employs a teacher model to reg-450

ularize the main model from capturing bias and451

encourage it to learn long-tailed features.452

In this paper, all the baseline debiasing methods453

take the BERT-base model as the main model.454

4.4 Main Results455

From Table 1 we observe that:456

(1) Comparing the automatic debiasing methods457

with the prior knowledge based debiasing meth-458

ods show that, in general, there is still a perfor-459

mance gap between automatic and prior-knowledge460

based debiasing methods. This is because the dis-461

tribution of dataset bias can be rather complex,462

which leads to challenges in precisely and com-463

prehensively detecting the potential biases, and464

makes automatic debiasing still remaining a chal-465

lenging problem. However, comparing with the466

prior-knowledge based debiasing methods, our ap-467

proach can have better or comparable performance468

on all three challenge datasets and can have com-469

parable in-distribution performance. This indicates470

the effectiveness of our approach.471

(2) Comparing to the Shallow Model Debiasing472

and the Weak Learner Debiasing which rely on473

pre-detected fixed bias features, CI-sNLU can con-474

sistently improve model performance on all three475

Model MNLI HANS
CI-sNLU 83.2 73.1
-w/o den 81.2 72.9
-w/ POE 81.7 71.3
- -iden + POE 79.4 67.3

Table 2: Results of ablation studies.

challenge datasets. This indicates that, by dynami- 476

cally detecting the bias information and regulariz- 477

ing model to follow the causal invariance constraint, 478

our approach can effectively increase the stability 479

of model performance. 480

(3) In general, improvements on the chal- 481

lenge datasets come with the expense of the in- 482

distribution performance. This is because, the 483

bias provides additional clues that leak the label 484

information (Zhang et al., 2019a; Tsipras et al., 485

2018; Sanh et al., 2020). Hence, omit of the bias 486

would naturally lead to a performance decrease 487

on in-distribution samples. Different from previ- 488

ous methods, as described in Eq.(8-9), CI-sNLU 489

can also combine the bias features to make pre- 490

dictions, to accommodate the situation where only 491

in-distribution performance is desired. 492

4.5 Ablation Study 493

We conduct ablation study by training CI-sNLU 494

without the causal invariance based feature identi- 495

fication (denoted as CI-sNLU -w/o iden) and sub- 496

stituting the ADD regularizer by a POE regularizer 497

(denoted as CI-sNLU -w POE), as POE regularizer 498

show strong performance across multiple datasets 499

and hence can be a strong baseline. The results are 500

shown in Table 2, where -iden + POE represents 501

the combination of -w/o iden and -w POE. 502

We have the following observations: (1) Com- 503

pared to CI-sNLU -w/o iden, the vanilla CI-sNLU 504

has better performance on the challenge set. This 505

indicates that based on the causal invariance con- 506

straint, our approach can effectively detect the bias 507
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Model ANLI-R1 R2 R3
BERT-base 0 28.9 28.8
Shallow Model Debiasing 26.4 29.5 29.3
CI-sNLU 27.2 29.5 31.5

Table 3: Zero-shot performance on target datasets.

information model used during the training process,508

to enhance the effectiveness of debiasing. (2) Com-509

pared to CI-sNLU -w POE, CI-sNLU has better510

performance. This is because, the causal invariant511

based regularizer can minimize the mutual infor-512

mation between the bias features and model rep-513

resentations to zero, while POE cannot precisely514

control the amount of mutual information between515

hM and hb, so that the model representation may516

still contain bias information. (3) The large perfor-517

mance gap between CI-sNLU and CI-sNLU -iden +518

POE indicates the synergetic relationship between519

bias feature identification and model regularizing.520

4.6 Transferability Analysis521

We further examine the stability of our approach522

through a transferability analysis. In specific, we523

train CI-sNLU on the MNLI dataset, then evalu-524

ate its zero-shot performance on three challenge525

sets ANLI R1-R3 (Nie et al., 2020). ANLI R1-R3526

contains instances designed to fool the model to527

make wrong predictions by human edition on528

input text. Hence, to make correct predictions,529

models have to understand the semantic of input.530

Models utilizing bias information always have a531

zero-shot performance close to 0. The reason for532

not adopting other NLI datasets is that, different533

NLI datasets could probably share similar dataset534

bias patterns (McCoy et al., 2019; Geva et al., 2019;535

Du et al., 2021). Hence, it would be hard to dis-536

tinguish the performance improvement brought by537

utilizing the same bias pattern, or by promotion538

in the understanding of the semantic information.539

Two baselines are involved for comparison: BERT-540

base, and Shallow Model Debiasing.541

The results are shown in Table 3. We observe542

that: (1) The BERT-base model has poor perfor-543

mance on all three target tasks, especially on the544

ANLI R1 dataset, as it is specifically designed to545

fool the BERT model to make its performance546

close to 0. This suggests that BERT may utilize547

a large amount of bias features for making predic-548

tions. (2) Shallow Model Debiasing and CI-sNLU549

can enhance model performance on all three target550

datasets, indicating the effectiveness of automatic551

debiasing methods in mitigating the influence of552

Figure 3: Model performance (Accu.(%)) under different
choice of hyperparameters.

dataset bias to improve model stability. (3) Com- 553

pared to Shallow Model Debiasing, our approach 554

can further increase the model performance on all 555

three target datasets, and has more consistent per- 556

formance. This suggests that by introducing the 557

causal invariance constraint, CI-SNLU can better 558

detect the bias information model used and regular- 559

ize model to further increase the stability. 560

4.7 Sensitivity Analysis 561

In the bias feature identification process, we em- 562

ploy two hyperparameters τp and τ to control the 563

confidence of the identified bias feature, and a hy- 564

perparameter α to control the proportion of bias 565

feature update. We investigate the sensitivity of 566

model performance upon these hyperparameters 567

by changing the value of one hyperparameter and 568

fixing the value of the other three hyperparameters, 569

then observe the model performance. Experiments 570

are conducted on MNLI and HANS. The results 571

are shown in Figure 3. 572

From which we observe that: (1) Empirically, 573

the performance of CI-sNLU keep relative stable 574

with a wide range of hyperparameter values, for ex- 575

ample, when τp > 0.8, τ > 0.9 and α ∈ [0.3, 0.7]. 576

This indicates the robustness of our approach on 577

hyperparameter settings. (2) The change of hy- 578

perparameters can lead to a trade-off between the 579

performance on in-distribution samples and OOD 580

samples. This is because, with lower τp, more ex- 581

amples can find corresponding counter instances. 582

With lower τ , a given example can match up with 583

more counter instances. Hence, more abundant 584

potential bias features can be identified. However, 585

with a lower confidence on identified bias feature, 586

some of the semantic information would be mis- 587

taken as bias information. This would lead to a 588

performance decrease on the in-distribution sam- 589

ples. On the contrary, with τ and τp close to 1, 590

the identification of new bias features would be 591

strictly controlled, which impact the effectiveness 592

of debiasing and influence the performance on the 593

challenge set. On the other hand, too much or less 594

bias feature updates would both harm the perfor- 595
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Figure 4: Influence of sample size on model performance.

mance. Hence, a moderate value of τ , τp, and α is596

still necessary to achieve balanced performance in597

both in-distribution and OOD samples.598

4.8 Influence of Sample Size599

In this paper, we detect the bias features by finding600

counter instance pairs. However, the probability601

that proper counter instances can be found would602

also be affected by the size of the training set, as603

if the training set is not large enough, the prob-604

able counter instances would not be covered by605

the dataset. Hence, we examine the influence of606

sample size on effectiveness of debiasing. In spe-607

cific, we randomly sampled several new training608

sets containing {50K, 150K, 250K, 350K} sam-609

ples, respectively, from the original MNLI dataset.610

Then examine the performance of our approach611

together with BERT and Shallow-Model Debiasing612

on the dev set of MNLI and HANS. The results are613

shown in Figure 4.614

From which we observe that, as the size of615

the training set increases, the performance on in-616

distribution dev set and challenge set consistently617

increases. This is because, on the one hand, a larger618

training set can provide more semantic information.619

On the other hand, as the size of the training set620

increases, the probability that the model can find621

corresponding counter instance also increases. Fur-622

thermore, the relationship between training set size623

and performance on the challenge set shows that,624

different from Shallow Model Debiasing, CI-sNLU625

can further increase the performance of debiasing626

once the training set of MNLI is further enlarged.627

5 Related Work628

The NLU task requires model to understand the629

underlying semantic information. However, the630

existence of dataset biases allows model to com-631

plete the task without learning the intended reason-632

ing skill (Gururangan et al., 2018; McCoy et al.,633

2019; Belinkov et al., 2019). This phenomenon634

exist in various different tasks, such as reading635

comprehension (Kaushik et al., 2019), question 636

answering (Mudrakarta et al., 2018), and fact ver- 637

ification (Schuster et al., 2019). To better eval- 638

uate the reasoning ability of models, researchers 639

constructed challenge datasets composed of “coun- 640

terexamples” to the biases that models may adopt 641

(McCoy et al., 2019; Schuster et al., 2019; Naik 642

et al., 2018). Model performances always have a 643

significant decline on these challenge sets. 644

One line of debiasing methods mitigates the 645

dataset biases based on human prior knowledge. 646

Based on the human intuitions on task-specific bi- 647

ases, Schuster et al. (2019); Clark et al. (2019); He 648

et al. (2019) detect the biased examples and down- 649

weight these samples, while Min et al. (2020); Be- 650

linkov et al. (2018) explicitly modify the dataset 651

distribution by data augmentation. However, these 652

methods are limited by their assumption that the 653

task-specific biases should be available a priori. To 654

address this issue, automatic debiasing methods are 655

proposed to detect the dataset biases without depen- 656

dency on prior knowledge. For example, Utama 657

et al. (2020b) automatically capture the dataset bias 658

by training a shallow model on a tiny training set, 659

while Sanh et al. (2020) capture the dataset bias 660

using a learner with limited capacity. However, 661

researches indicate the difference between the bi- 662

ases shallow model or weaker learner captured, and 663

that the main NLU model captured (Kaushik et al., 664

2019). More crucially, without the incorporation 665

of causal assumptions, the debiasing methods still 666

cannot distinguish the causation with correlation, 667

which limits the effectiveness of debiasing. 668

In this paper, we propose a Causal Invariance 669

based stable NLU framework. With the causal in- 670

variance constraint, CI-sNLU can effectively detect 671

the bias feature model utilized and regularize model 672

to exclude the correlative component to increase 673

the stability of model performance. 674

6 Conclusion 675

In this paper, we propose a Causal Invariance based 676

stable NLU framework. By introducing a causal 677

invariance constraint into the debiasing process, 678

we can dynamically detect the bias information 679

model captured, then regularize the model to ex- 680

clude the bias components temporarily captured by 681

the model to enhance the stability. Experimental 682

results show that our approach can significantly 683

increase stability on out-of-distribution samples 684

compared to previous methods. 685
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7 Appendix 857

7.1 Theoretical analysis of the regularizer 858

During the parameter optimization stage, we de- 859

vise a causal invariance based ADD regularizer to 860

exclude the bias information model captured. We 861

argue that, theoretically, this regularizer can approx- 862

imately minimize the mutual information between 863

the model representation hM and the bias feature 864

distribution hb to lower bound 0 at each training 865

step. Here is the specific proof process. 866

Let I(hMt , hbt) denote the mutual information be- 867

tween hM and hb at the tth parameter optimization 868

step. We notice that, to make I(hMt , hbt) = 0, a 869

sufficient condition is that, for each instance i ∈ T , 870

I(hMi,t , h
b
i,t) = 0, where hMi,t and hbi,t is the model 871

representation and bias feature for sample i. Note 872

that, here we regard hMi,t and hbi,t as two random 873

variables, as both hMi,t and hbi,t are estimated from 874

data, hence are not certain values and with uncer- 875

tainty. 876

However, in general, the precise value of mutual 877

information I(hMi,t , h
b
i,t) = 0 for two random vari- 878

able with complex distribution are hard to calculate. 879

To address this issue, we resort to approximations. 880

We start from modeling the distribution of hMi,t 881

and hbi,t. Cramér (2016) and (Rao, 1992) have 882

proved that, under specific regularity conditions, if 883

a random variable is estimated through maximizing 884

the likelihood function, then it should asymptoti- 885

cally converge to a normal distribution. In this 886

paper, since we initialize hbi,t from the methods 887

of Utama et al. (2020b) which captures bias fea- 888

tures by maximizing the likelihood, and the model 889

representation hM is optimized using maximizing 890

the likelihood function, hence both the bias feature 891

distribution hbi,t and the model representation hMi,t 892

would asymptotically converge to normal distribu- 893

tion: 894

hMi,t → N(µMi,t ,Σ
M)i,t; h

b
i,t → N(µbi,t,Σ

b
i,t)

(10) 895

where µbi,t, µ
M
i,t ∈ Rd is the mean of the corre- 896

sponding distributions, ΣM)i,t,Σ
b
i,t ∈ Rd×d is the 897

covariance matrix of corresponding distributions. 898
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Furthermore, for arbitrary two normal dis-899

tributed random variables a1 and a2, their mutual900

information has a close form:901

I(a1, a2) = −1

2
ln

(
Det(Σz)

Det(Σa1)Det(Σa2)

)
(11)902

where z = p(a1, a2) is the joint distribution of a1903

and a2; Det is the determinant operator.904

Hence, if we can: (1) derive the joint dis-905

tribution of hbi,t and hMi,t , which we denote as906

hzi,t = p(hbi,t, h
M
i,t ); (2) obtain Σz

i,t, ΣM)i,t, and907

Σb
i,t, then we can calculate the mutual information908

I(hMt , hbt).909

For the first problem, notice that the joint dis-910

tribution hzi,t = p(hbi,t, h
M
i,t ) is a combination of911

the information of hbi,t and hMi,t .Hence, we can912

get an approximation of hzi,t by integrating hbi,t913

and hMi,t in various ways. For example, inte-914

grating hbi,t and hMi,t using a neural network as915

hzi,t = NN(hbi,t, h
M
i,t ), or by directly adding hbi,t916

and hMi,t as hzi,t = (hbi,t + hMi,t ).917

To calculate the covariance matrices, interest-918

ingly, Cramér (2016) and Rao (1992) have also919

proven that, during the training process, if a group920

of parameters h is estimated by maximizing the921

likelihood, as the value of h converge to its expec-922

tation E(h), the covariance matrix of h asymptoti-923

cally converge to the expectation of the square of924

the partial derivative, i.e.:925

Σh → E
∂Y

∂h

2

(12)926

where Y is the model output.927

Hence, we can get the expectation of Σz
i,t,928

ΣM)i,t, and Σb
i,t based on the partial gradients on929

hzi,t, h
M
i,t , and hbi,t the at the tth parameter optimiza-930

tion step, i.e.:931

Σz
i,t = E(

∂Yi
∂hzi,t

2

) (13)932

ΣMi,t = E(
∂Yi

∂hMi,t

2

) (14)933

Σb
i,t = E(

∂Yi

∂hbi,t

2

) (15)934

In practical, we use the sample partial gradient935

to estimate the expectation of covariance matrix as: 936

Σ̂z
i,t = (

∂Yi
∂hzi,t

2

) (16) 937

Σ̂Mi,t = (
∂Yi

∂hMi,t

2

) (17) 938

Σ̂b
i,t = (

∂Yi

∂hbi,t

2

) (18) 939

where Σ̂z
i,t, Σ̂Mi,t , Σ̂b

i,t is the expectation of Σz
i,t, 940

ΣM)i,t, and Σb
i,t, respectively. 941

By substituting Eq. 16 17 18 into Eq. 11, we can 942

get the estimation of I(hMi,t , h
b
i,t). 943

Furthermore, we prove that, by training model 944

using the ADD regularizer which is formulated as: 945

Ŷi = σ(Whzi,t); 946

hzi,t = (hMi,t + hbi,t) (19) 947

where σ(·) is a sigmoid function, W ∈ Rd×d is 948

a weight matrix. Then we can make I(hMi,t , h
b
i,t) 949

achieving its lower bound 0. 950

In specific, usingnder the formalization in Eq. 19, 951

the partial derivatives upon hzi,t, h
M
i,t and hbi,t equal: 952

Σ̂z
i,t = (

∂Yi
∂hzi,t

2

) = (Ŷi,t − Y )TW (20) 953

Σ̂Mi,t = (
∂Yi

∂hMi,t

2

) = (Ŷi,t − Y )TW (21) 954

Σ̂b
i,t = (

∂Yi

∂hbi,t

2

) = (Ŷi,t − Y )TW (22) 955

By substituting Eq. 20 21 22 into Eq. 11, we can 956

have I(hM, ĥb) = 0. 957

By employing the ADD regularizer, we can grad- 958

ually exclude the bias components within hM to in- 959

crease the model stability. Furthermore, I(hMt , hbt) 960

is calculated based on the partial gradients, and 961

the partial gradients can reflect the sensitivity of 962

model prediction Ŷ upon hz , hM, and hb. Hence, 963

our regularizer is built upon the actual contribu- 964

tion of model representation and bias feature on 965

model prediction at each parameter optimization 966

step, rather than using fixed weights to regularize 967

M as previous researches adopts. 968

7.2 Experimental Details 969

MNLI 970

• batch size: 32 971
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• number of epochs: 3972

• learning rate: 5e-5973

• Optimizer: Adam974

Time Costing: 1 Geforce rtx 2080 ti with 4975

CPUs: ∼8h976

Fever977

• batch size: 32978

• number of epochs: 3979

• learning rate: 2e-5980

• Optimizer: Adam981

Time Costing: 1 Geforce rtx 2080 ti with 4982

CPUs: ∼4h983

QQP984

• batch size: 32985

• number of epochs: 3986

• learning rate: 2e-5987

• Optimizer: Adam988

Time Costing: 1 Geforce rtx 2080 ti with 4989

CPUs: ∼5.5h990
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