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Abstract

Natural Language Understanding (NLU) task
requires the model to understand the under-
lying semantics of input text. However, re-
cent analyses demonstrate that NLU mod-
els tend to utilize dataset biases to achieve
high dataset-specific performances, which al-
ways leads to performance degradation on
out-of-distribution (OOD) samples. To in-
crease the performance stability, previous de-
biasing methods empirically capture bias fea-
tures from data to prevent model from corre-
sponding biases. However, we argue that, the
semantic information can form a causal rela-
tionship with the target labels of the NLU task,
while the biases information is only correla-
tive to the target labels. Such difference be-
tween the semantic information and dataset bi-
ases still remains not fully addressed, which
limits the effectiveness of debiasing. To ad-
dress this issue, we analyze the debiasing pro-
cess under a causal perspective, and present
a causal invariance based stable NLU frame-
work (CI-sNLU). Experimental results show
that CI-sNLU can consistently improve the sta-
bility of model performance on OOD datasets.

1 Introduction

State-of-the-art Natural Language Understanding
(NLU) models such as BERT have demonstrated
promising performance on various tasks (Devlin
et al., 2019; Liu et al., 2019). These NLU models
are generally first pretrained to learn universal lan-
guage representations, then finetuned to adapt to
specific downstream tasks. However, recent analy-
ses demonstrate that these models tend to exploit
the dataset biases spuriously associated with the tar-
get labels, rather than learn the underlying semantic
information (McCoy et al., 2019; Clark et al., 2019;
Sanh et al., 2020). This leads to performance degra-
dation on out-of-distribution (OOD) samples.

To mitigate the impact of dataset biases and ob-
tain NLU models that have stable performance on

both in-distribution samples and OOD samples, a
number of debiasing methods have been proposed.
These methods work by first identifying the poten-
tial dataset biases within the dataset, then regulariz-
ing NLU model prevent it from capturing the bias
information. To identify the potential biases, one
line of debiasing works depends on the intuitions
of researchers to design features characterizing the
distribution of dataset biases (Schuster et al., 2019;
Clark et al., 2019; He et al., 2019). However, the
assumption that the types of bias should be known
a-priori limits their application to many NLU tasks
and datasets. Hence, automatic debiasing methods
are proposed to move beyond the reliance on prior
knowledge. These works usually train a biased
model to to automatically capture the dataset bias
and obtain a set of bias features. Then based on
the identified biases information, model regulariza-
tion methods such as Product-of-Expert (Hinton,
2002) or Confidence Regularization (Hinton et al.,
2015) can be employed to prompt model to focus
on learning the semantic information.

While promising, previous debiasing methods
work by empirically inducing bias features from
data. However, we argue that, the semantic infor-
mation of text is causal to the target label, while the
bias information has only correlative relationship.
This drives to the essential difference between the
bias information and semantic information. Present
debiasing methods are still unaware of knowledge
about causal invariance. Hence, the effectiveness
of bias feature identification could be rather limited,
influencing the efficiency of debiasing.

Figure 1 provides an example for illustrating the
difference between semantic information and bias
information in the causal perspective. In specific,
it is the similar semantics between the Premise: A
cat caught a mouse. and Hypothesis: A mouse
was caught by a cat., that causes the label to be
“entailment”. Therefore, the semantic information
forms a causal relationship with the label. Fur-
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Figure 1: The semantic information is causal to the target label
of NLU while the bias information such as lexical overlap is
just correlative. The correlation may fail to exist on some
counter examples.

thermore, as commented by Pearl et al. (2000),
such causal relationship would keep invariant upon
both in-distribution and OOD samples. On the con-
trary, the bias features, such as lexical overlaps,
are just correlative to the labels. The correlation
may vary upon different instances, and across dif-
ferent datasets, and thus without causal invariance.
Hence, if the NLU model can debiase under the
perspective of causal invariance, then it would have
stable performance on OOD samples.

To facilitate those issues, in this paper, we pro-
pose a Causal-Invariance-based stable NLU frame-
work (CI-sNLU). Based on the difference between
the bias information and semantic information in
causal invariance, CI-sNLU can find the “counter
examples” on which model fails to capture the
semantic information, then detect the bias infor-
mation that model captures by comparing these
“counter examples”. Then by enforcing model to
follow a causal invariance constraint, we can ex-
clude the bias information model captured to in-
crease the stability of performance. Furthermore,
theoretical analyses demonstrate that our model
regularization method can approximately minimize
the mutual information between the representation
of input text with the identified bias feature close
to 0.

Experimental results show that, our approach
can enhance the recognition of biased features
and regularize model more efficiently, to consis-
tently improve model stability on multiple OOD
datasets, meanwhile persevere the in-distribution
performance.

2 Stable Natural Language
Understanding under Causal
Perspective

We first analyze the stable NLU process under a
causal perspective. The natural language under-

standing (NLU) task requires a model to under-
stand the semantic of input text and then predict
the target label. Formally, it can be characterized
by a projection X — Y, where X and Y denote
the input text and the label, respectively. A NLU
model M is trained to capture the predictive in-
formations within X, and get a representation of
input text h € R?. For brevity, in the following
sections, we call M € R as model representa-
tion. Then the label can be predicted based on h™M.
Hence, concerning A, the NLU process can be
reformulated as: M : X — WM =Y.

However, the predictive information within X is
actually composed of two components: the seman-
tic information S that decides the value of label,
and the dataset biases B that only correlative to the
value of label (Tsipras et al., 2018; McCoy et al.,
2019; Pearl, 2009). The dataset biases could range
from simple lexical overlap (Gururangan et al.,
2018; Poliak et al., 2018), to complex language
stylistic patterns (Zellers et al., 2019; Nie et al.,
2020). As Figure 2 (a) shows, since the seman-
tic information decides the value of labels, there
is a causal relationship between S and Y. Fur-
thermore, such relationship would keep valid upon
different instances across different datasets (Pearl
et al., 2000; Pearl, 2009). Formally, such invariance
can be characterized as:

P(Yp,|Sp,) = P(YDj’SDj)a (h

where D; = {Xp,,Yp,} and D; = {Xp,,Yp,}
are arbitrary two NLU datasets, Sp, denotes the
semantic information within Xp,.

On the contrary, the correlation relationship be-
tween the dataset biases with the label would vary
across different datasets, i.e.,:

P(Yp,|Bp,) # P(Yp,|Bp,), 2)

where Bp, is the dataset biases within Xp,. There-
fore, having or not causal invariance forms the es-
sential difference between semantic information
and bias information.

In order for M to capturing the necessary seman-
tic information within X without involving the bias
information, K should satisfy a causal invariant
constraint:

VXq c T: Pdo(X:XZ)(Y“IM) — PdO(X:X,L)(Y‘X)
P(Yp,|hp,) = P(Yp,|hpy) ()

where 7 denotes the training set, P9(X=%X:) de-
notes the distribution arising from assigning X to
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Figure 2: (a) The predictive information within the input text is composed by semantic information and bias information. (b)
Ideally, a stable NLU model should avoid capturing the bias information. (c) Models empirically trained cannot distinguish
causal with correlative and hence would inevitable involve bias information into model representation. (d) Debiasing process of

the CI-sNLU framework.

be a certain instance X; (Pearl, 2009). This means,
(1) WM contains the semantic information that de-
cides the value of label Y. (2) Such causal rela-
tionship exist in every instance X; € 7, and keep
valid for arbitrary OOD datasets. Hence, training a
model M satisfying the causal invariant constraint
is the goal of stable NLU, as shown in Figure 2 (b).

However, for models that only have access to the
input text-target label pairs, they have no informa-
tion to distinguish the causal relationship from the
correlative relationship. Hence, with the existence
of the bias in the dataset, such models would in-
evitably capture the dataset bias correlative to the
target label (Figure 2 (c)). Which makes hM con-
tain both the semantic information S and the biases
B and leads to the instability. Debiasing meth-
ods have been proposed to mitigate the influence
of biases. However, due to the absence of causal
mechanism in these debiasing methods, their abil-
ity for distinguishing the bias information from the
semantic information would still be limited.

To address this issue, we propose a Causal
Invariance based stable NLU (CI-sNLU) frame-
work. CI-sNLU employs criteria deduced from the
causal invariance constraint to identify the bias in-
formation that the model captured, and regularizes
model to exclude the identified bias information by
enforcing A to obey the constraint.

3 Methodology

3.1 Causal Invariance Based Biases
Identification

The causal invariance bias feature identification al-
gorithm dynamically identifies the biases captured
by the model during the training process. The core
assumption of the algorithm is that the semantic
representation of instances will obey the causal

invariance constraint, while the bias features cor-
relative to the label does not. Hence, if we can
discover the instances on which the causal invari-
ance constraint is violated, then it could be prob-
able to identify the bias features from the model
representations of these instances.

In specific, as described in the causal invariance
constraint (Eq. 3), if the model can capture the se-
mantic information causal to the label and obtain
representation 4!, then for two instances X; and
X, if their representation 2 and hj” are rather
similar, then P(Y;|M;) should be rather close to
P(Y;|M;). Therefore, if we can find instance
pairs (X;, X;), on which h is rather close to
h]M, whereas Y; # Y}, then these examples can
be regarded as counter instances that violates the
causal invariance constraint, and can be utilized
for detecting the bias information M utilizes. For
clarity, we define such instance pairs (X;, X;) as a
counter instance pair:

Definition 1 (Counter Instance
V{X,, Y} {X;,Y;} € T,i # j,if:
SM B > 7, st Yi A2V, AV = YiVY; =Y;) (4)

RS

Pair):

where S(-) is a score function measuring the sim-
ilarity between A and hj\/‘, 7 is a threshold con-
trolling the confidence that hZM and hj\" can been
deemed as the representation of the same semantic
information. Yi, f{} are model prediction of Y; and
Y}, respectively. Note that, the additional condition
Y, =YV Yj = Yj requires that model should
make a correct prediction for X; or X;. This is
because, if M fails to correctly predict the label on
both X; and X, then it is more likely that M has
not captured the predictive information in X; and
X, rather than using the bias information.

To dynamically detect counter instance pairs
within 7~ during the training process, as Figure 2 (d)



shows, we divide the training process into two al-
ternate stages: a parameter optimization stage and
a retrospect stage. In the parameter optimization
stage, we train M to find new predictive features
from data, meanwhile regularize M to exclude the
known biases using a causal invariance based regu-
larizer (which is described in the following section).
In the retrospect stage, CI-sNLU finds the counter
instance pairs using the model representations, to
discover the bias features that model temporarily
captures and update the bias features.

Parameter Optimization Given training dataset
T = {X,,Y:}, we update the parameters of the
NLU model M through maximizing the likelihood.
Meanwhile M is regularized using a regularizer
R(M, h?) to exclude the bias components from
fitting the bias information, where b = {h?,} is
a d-dimension random variable, characterizing the
distribution of the dataset biases on the training
set T, hi?,t is the temporal bias feature of sample
¢ at tth step. hg is initialized using the previous
automatic debiasing methods (e.g., the method of
Utama et al. (2020b)), and updated in the retrospect
stage of the training process.

Retrospect After ¢ steps of parameter optimiza-
tion, we examine whether all model representa-
tion of each instance {X;,Y;} € T satisfy the
causal invariance constraint, to find the represen-
tation of instances that may contains bias informa-
tion, and update h’. In specific, for each instance
{X;,Y:} € T, we utilize M to obtain correspond-
ing temporal model representations h%, and pre-

dictions of the label f/i,t, together with a probability
iz = P(Yi|hM).

Then We traverse T to find all the counter in-
stance pairs according to the definition described
in Eq.4. In practice, we implement S(-) using the
cosine similarity function, and introduce two more
conditions to enhance the confidence of counter
instance pairs detection, i.e., for X;, X; € T, to be
the counter instance pairs, we further require that:

ﬁz‘,t > Tp, ﬁj,t > Tp 5)

where 7, is a threshold for filtering out the predic-
tions that have low confidence. With this additional
threshold, we can further control the confidence on
the discovered bias feature. Note that, the counter
instance pairs are found at the ¢th parameter opti-
mization step. Hence, we can dynamically detect
the bias feature temporarily captured by the model
for updating the bias feature distribution, rather
than only relying on fixed bias features.

Hence, for each sample X; € T, at the tth step,
its bias features hi?t can be updated using the rep-
resentation of corresponding counter instances as:

b b 1 M
hey=hly + R > oh (©)
v JENC,

where h?’to is the bias feature of the 4 th sample
previously obtained after the ¢oth parameter opti-
mization step, N, is a set composed by all counter
instances of X, |\, is the size of Ng,, « is a co-
efficient controlling the proportion of bias feature
update.

After the retrospect stage, following parameter
stage is conducted with M regularized using the
updated bias features h?,t'

3.2 Causal Invariance Based Model
Regularization

In the parameter optimization stage, we employ
an causal invariance based regularizer to exclude
the bias information model captured by forcing the
model M to fulfilling the causal invariance con-
straint. As described in Eq. 3, the prediction should
keep invariant under different kinds of bias features.
A sufficient condition is that the information model
representation A contains keeps invariant under
different biases. In other words, manipulating the
value of bias feature does not influence information
contained within A, The information within A
can be characterized using its information entropy
H (k™). Hence, formally,

Vhi, hj € h';VX; € X, 7
Hd"(hb:h’l‘?)(h;'/\/l|Xi) _ pdo(}Lb:;L§?>(hlf,‘4|Xi)

One way to ensure such invariance is making the
model representation 2! independent to the bias
feature h?, i.e, B _Il_h. The independence makes
the mutual information between h® and h® becomes
0, i, I(P™,h%) = 0. Hence, H(hM|hb) =
H(PM) — I(WM, 1Y) = H(h™M). In other words,
the value of bias will not influence the information
contained in A™M.

Therefore, at an arbitrary parameter optimiza-
tion step ¢, if we can calculate the temporary mu-
tual information I(h*, h?) and encourage it to be
zero, then we can reduce the proportion of bias
information contained in model representation A"
to increase the stability of model. However, in
general, the precise value of mutual information
I(hM, hY) for two random variables with complex



distribution are hard to calculate. To address this
issue, we resort to approximations.

With information theory and the Law of Large
Numbers (Cramér, 2016; Rao, 1992), we find that,
in the training process, by predicting the label as:

N

Vi = o(Whi,); ®)
hf,t = (h% + h?,t) )

where Y; is the predicted label of sample 7, o'(-) is
a sigmoid function, W € R%*? is a weight matrix,
and then training Y; to close to the ground truth la-
bel Y;, theoretically, we can approximately make
I(hM, h?) achieving its lower bound 0. We show
the specific proving process in the Appendix. For
clarity, we denote this regularizer as ADD.

4 [Experiments

4.1 Evaluation Tasks

We evaluate our approach on three NLU tasks: nat-
ural language inference (NLI), fact verification,
and paraphrase identification. We compare the in-
distribution performance on the test set of each task.
Then examine the stability of model on OOD sam-
ples by comparing the zero-shot performance on
the corresponding challenge dataset. On the NLI
and fact verification task, model performance is
evaluated using prediction accuracy. Following De-
vlin et al. (2019) and Radford et al. (2018), on the
Paraphrase Identification task, we evaluate model
performance using the F1 score.

Natural Language Inference This task requires
the model to predict the semantic entailment rela-
tionship between a premise and a hypothesis. We
use the MNLI dataset (Williams et al., 2018) as
the benchmark, and use corresponding challenge
HANS McCoy et al. (2019) to test the stability on
OOD samples. Since HANS is built by removing
the lexical overlap bias that extensively exists in
the MNLI dataset, models trained on MNLI often
perform close to a random baseline on HANS.
Fact Verification This task requires a model to
predict whether a claim can be supported or refuted
by corresponding evidences. We train model on the
Fever dataset (Thorne et al., 2018), and evaluate the
stability of models on the FeverSymmetric V 0.1
(Schuster et al., 2019) dataset, which is collected
to remove the claim-only biases (i.e., the biases
within the claims which make models able to make
predictions without evidence).

Paraphrase Identification We conduct experi-

ments on the QQP dataset!, which consists of 362K
questions pairs annotated as either duplicate or non-
duplicate, together with the corresponding chal-
lenge dataset PAWS (Zhang et al., 2019b), which is
constructed by removing the lexical overlap biases
within the QQP dataset.

4.2 Experimental Details

On all three tasks, we implement the main model
M using the BERT-base model (Devlin et al.,
2019), and regularize M with the ADD regularizer.
The biased feature of each example hi? is initialized
using the automatic debiasing method of (Utama
et al., 2020b), which employs a BERT-base model
trained upon a tiny subset of the original training
set to capture the biased information.

During the training process, the biased feature
detecting algorithm detects and updates the bi-
ased features at the start of the 2nd to last epoch.
Before fed into the model, each example is pre-
process into a [CLS] premise [SEP] hypothesis /
[CLS] claim [SEP] evidence form, where [CLS]
and [SEP] are two special tokens (Devlin et al.,
2019). Then we employ the embedding vector of
the [CLS] token at the top transformer layer as the
model representation 2”™*! of each instance for find-
ing the counter instances pairs. To increase the
confidence of detected biased feature, on all three
datasets, we set 7, = 0.95, and 7 = 0.9. The in-
formation update coefficient is set as a = 0.5. We
report the average result across 5 runs. More de-
tails about the hyperparameter selection and time-
costing are provided in the Appendix.

4.3 Baseline Methods
We make comparisons with:

(i) BERT (Devlin et al., 2019) refers to the
BERT-base model trained upon each NLU dataset
without debiasing process.
Prior-knowledge-depended Debiasing Methods

These methods rely on prior knowledge about
the distribution of dataset biases to detect the bi-
ased instances, then regularize model by down-
weighting the biased instances, so that the main
model can focus on learning from harder exam-
ples. The major difference resides in how the main
model is regularized.

(ii) Known-biasgeweighting (Clark et al., 2019;
Schuster et al., 2019) weights the importance of
a instance using the probability that the instance
exhibits a bias. (iii) Known-biasp,g (Clark et al.,

"https://data.quora.com



Method MNLI HANS A Fever symm. A QQP PAWS A
Bert-base 84.5 61.5 - 85.6 55.7 - 87.9 48.7 -
Known-bias reweighting 83.5 69.2 +7.7 84.6 61.7 +6.0 | 855 49.7  +1.0
Known-bias por 82.9 67.9 +6.4 86.5 60.6 +4.9 | 843 503  +1.6
Known-bias conf.reg 84.5 69.1 +7.6 86.4 60.5 +4.8 | 85.0 490 +03
Shallow Model Debiasing reweighting 823 69.1 +7.6 87.2 60.8 +5.1 | 794 46.4 2.3
Shallow Model Debiasing pog 82.7 69.8 +8.3 854 60.9 +52 | 80.7 474 -1.3
Shallow Model Debiasing conf.reg 83.9 67.7 +6.2 87.9 60.4 +4.7 | 839 492 405
Weak Learner Debiasing 83.3 67.9 +6.4 85.3 58.5 +2.8 - - -
LGTR 84.4 58.0 -3.5 85.5 57.9 +2.2 - - -
CI-sNLU 83.2 73.1 +11.6 | 85.0 63.9 +8.2 | 855 513  +2.6
CI-sNLU-+bias 84.5 - - 84.8 86.2

Table 1: Model performance (MNLI / Fever: accu. (%); QQP: F1) on in-distribution and corresponding challenge instances.

2019) forces the main model to focus on learning
from examples that are not predicted well by the bi-
ased model. (iv) Known-biascont.reg (Utama et al.,
2020a) regularizes the main model by decreasing
model confidence on biased examples.
Auto-Debiasing Methods

(v) Shallow Model Debiasing (Utama et al.,
2020b) trains a BERT-base model on a small subset
of the training set to obtain biased features char-
acterizing dataset biases distribution. (vi) Weak
Learner Debiasing (Sanh et al., 2020) employs a
Tiny-BERT model (Turc et al., 2019) as a weak
learner to obtain the biased features. (vii) LTGR
(Du et al., 2021) employs a teacher model to reg-
ularize the main model from capturing bias and
encourage it to learn long-tailed features.

In this paper, all the baseline debiasing methods
take the BERT-base model as the main model.

4.4 Main Results

From Table 1 we observe that:

(1) Comparing the automatic debiasing methods
with the prior knowledge based debiasing meth-
ods show that, in general, there is still a perfor-
mance gap between automatic and prior-knowledge
based debiasing methods. This is because the dis-
tribution of dataset bias can be rather complex,
which leads to challenges in precisely and com-
prehensively detecting the potential biases, and
makes automatic debiasing still remaining a chal-
lenging problem. However, comparing with the
prior-knowledge based debiasing methods, our ap-
proach can have better or comparable performance
on all three challenge datasets and can have com-
parable in-distribution performance. This indicates
the effectiveness of our approach.

(2) Comparing to the Shallow Model Debiasing
and the Weak Learner Debiasing which rely on
pre-detected fixed bias features, CI-sNLU can con-
sistently improve model performance on all three

Model MNLI HANS
CI-sNLU 83.2 73.1
-w/o den 81.2 72.9
-w/ POE 81.7 71.3
- -iden + POE 79.4 67.3

Table 2: Results of ablation studies.

challenge datasets. This indicates that, by dynami-
cally detecting the bias information and regulariz-
ing model to follow the causal invariance constraint,
our approach can effectively increase the stability
of model performance.

(3) In general, improvements on the chal-
lenge datasets come with the expense of the in-
distribution performance. This is because, the
bias provides additional clues that leak the label
information (Zhang et al., 2019a; Tsipras et al.,
2018; Sanh et al., 2020). Hence, omit of the bias
would naturally lead to a performance decrease
on in-distribution samples. Different from previ-
ous methods, as described in Eq.(8-9), CI-sNLU
can also combine the bias features to make pre-
dictions, to accommodate the situation where only
in-distribution performance is desired.

4.5 Ablation Study

We conduct ablation study by training CI-sNLU
without the causal invariance based feature identi-
fication (denoted as CI-sNLU -w/o iden) and sub-
stituting the ADD regularizer by a POE regularizer
(denoted as CI-sNLU -w POE), as POE regularizer
show strong performance across multiple datasets
and hence can be a strong baseline. The results are
shown in Table 2, where -iden + POE represents
the combination of -w/o iden and -w POE.

We have the following observations: (1) Com-
pared to CI-sNLU -w/o iden, the vanilla CI-sNLU
has better performance on the challenge set. This
indicates that based on the causal invariance con-
straint, our approach can effectively detect the bias



Model ANLI-R1  R2 R3

BERT-base 0 289 288
Shallow Model Debiasing 26.4 29.5 293
CI-sNLU 27.2 29.5 315

Table 3: Zero-shot performance on target datasets.

information model used during the training process,
to enhance the effectiveness of debiasing. (2) Com-
pared to CI-sNLU -w POE, CI-sNLU has better
performance. This is because, the causal invariant
based regularizer can minimize the mutual infor-
mation between the bias features and model rep-
resentations to zero, while POE cannot precisely
control the amount of mutual information between
h™M and h?, so that the model representation may
still contain bias information. (3) The large perfor-
mance gap between CI-sNLU and CI-sNLU -iden +
POE indicates the synergetic relationship between
bias feature identification and model regularizing.

4.6 Transferability Analysis

We further examine the stability of our approach
through a transferability analysis. In specific, we
train CI-sNLU on the MNLI dataset, then evalu-
ate its zero-shot performance on three challenge
sets ANLI R1-R3 (Nie et al., 2020). ANLI R1-R3
contains instances designed to fool the model to
make wrong predictions by human edition on
input text. Hence, to make correct predictions,
models have to understand the semantic of input.
Models utilizing bias information always have a
zero-shot performance close to 0. The reason for
not adopting other NLI datasets is that, different
NLI datasets could probably share similar dataset
bias patterns (McCoy et al., 2019; Geva et al., 2019;
Du et al., 2021). Hence, it would be hard to dis-
tinguish the performance improvement brought by
utilizing the same bias pattern, or by promotion
in the understanding of the semantic information.
Two baselines are involved for comparison: BERT-
base, and Shallow Model Debiasing.

The results are shown in Table 3. We observe
that: (1) The BERT-base model has poor perfor-
mance on all three target tasks, especially on the
ANLI R1 dataset, as it is specifically designed to
fool the BERT model to make its performance
close to 0. This suggests that BERT may utilize
a large amount of bias features for making predic-
tions. (2) Shallow Model Debiasing and CI-sNLU
can enhance model performance on all three target
datasets, indicating the effectiveness of automatic
debiasing methods in mitigating the influence of
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Figure 3: Model performance (Accu.(%)) under different
choice of hyperparameters.

dataset bias to improve model stability. (3) Com-
pared to Shallow Model Debiasing, our approach
can further increase the model performance on all
three target datasets, and has more consistent per-
formance. This suggests that by introducing the
causal invariance constraint, CI-SNLU can better
detect the bias information model used and regular-
ize model to further increase the stability.

4.7 Sensitivity Analysis

In the bias feature identification process, we em-
ploy two hyperparameters 7, and 7 to control the
confidence of the identified bias feature, and a hy-
perparameter « to control the proportion of bias
feature update. We investigate the sensitivity of
model performance upon these hyperparameters
by changing the value of one hyperparameter and
fixing the value of the other three hyperparameters,
then observe the model performance. Experiments
are conducted on MNLI and HANS. The results
are shown in Figure 3.

From which we observe that: (1) Empirically,
the performance of CI-sNLU keep relative stable
with a wide range of hyperparameter values, for ex-
ample, when 7, > 0.8, 7 > 0.9 and v € [0.3,0.7].
This indicates the robustness of our approach on
hyperparameter settings. (2) The change of hy-
perparameters can lead to a trade-off between the
performance on in-distribution samples and OOD
samples. This is because, with lower 7, more ex-
amples can find corresponding counter instances.
With lower 7, a given example can match up with
more counter instances. Hence, more abundant
potential bias features can be identified. However,
with a lower confidence on identified bias feature,
some of the semantic information would be mis-
taken as bias information. This would lead to a
performance decrease on the in-distribution sam-
ples. On the contrary, with 7 and 7, close to 1,
the identification of new bias features would be
strictly controlled, which impact the effectiveness
of debiasing and influence the performance on the
challenge set. On the other hand, too much or less
bias feature updates would both harm the perfor-
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Figure 4: Influence of sample size on model performance.

mance. Hence, a moderate value of 7, 75, and o is
still necessary to achieve balanced performance in
both in-distribution and OOD samples.

4.8 Influence of Sample Size

In this paper, we detect the bias features by finding
counter instance pairs. However, the probability
that proper counter instances can be found would
also be affected by the size of the training set, as
if the training set is not large enough, the prob-
able counter instances would not be covered by
the dataset. Hence, we examine the influence of
sample size on effectiveness of debiasing. In spe-
cific, we randomly sampled several new training
sets containing {50K, 150K, 250K, 350K } sam-
ples, respectively, from the original MNLI dataset.
Then examine the performance of our approach
together with BERT and Shallow-Model Debiasing
on the dev set of MNLI and HANS. The results are
shown in Figure 4.

From which we observe that, as the size of
the training set increases, the performance on in-
distribution dev set and challenge set consistently
increases. This is because, on the one hand, a larger
training set can provide more semantic information.
On the other hand, as the size of the training set
increases, the probability that the model can find
corresponding counter instance also increases. Fur-
thermore, the relationship between training set size
and performance on the challenge set shows that,
different from Shallow Model Debiasing, CI-sNLU
can further increase the performance of debiasing
once the training set of MNLI is further enlarged.

5 Related Work

The NLU task requires model to understand the
underlying semantic information. However, the
existence of dataset biases allows model to com-
plete the task without learning the intended reason-
ing skill (Gururangan et al., 2018; McCoy et al.,
2019; Belinkov et al., 2019). This phenomenon
exist in various different tasks, such as reading

comprehension (Kaushik et al., 2019), question
answering (Mudrakarta et al., 2018), and fact ver-
ification (Schuster et al., 2019). To better eval-
uate the reasoning ability of models, researchers
constructed challenge datasets composed of “coun-
terexamples” to the biases that models may adopt
(McCoy et al., 2019; Schuster et al., 2019; Naik
et al., 2018). Model performances always have a
significant decline on these challenge sets.

One line of debiasing methods mitigates the
dataset biases based on human prior knowledge.
Based on the human intuitions on task-specific bi-
ases, Schuster et al. (2019); Clark et al. (2019); He
et al. (2019) detect the biased examples and down-
weight these samples, while Min et al. (2020); Be-
linkov et al. (2018) explicitly modify the dataset
distribution by data augmentation. However, these
methods are limited by their assumption that the
task-specific biases should be available a priori. To
address this issue, automatic debiasing methods are
proposed to detect the dataset biases without depen-
dency on prior knowledge. For example, Utama
et al. (2020b) automatically capture the dataset bias
by training a shallow model on a tiny training set,
while Sanh et al. (2020) capture the dataset bias
using a learner with limited capacity. However,
researches indicate the difference between the bi-
ases shallow model or weaker learner captured, and
that the main NLU model captured (Kaushik et al.,
2019). More crucially, without the incorporation
of causal assumptions, the debiasing methods still
cannot distinguish the causation with correlation,
which limits the effectiveness of debiasing.

In this paper, we propose a Causal Invariance
based stable NLU framework. With the causal in-
variance constraint, CI-sNLU can effectively detect
the bias feature model utilized and regularize model
to exclude the correlative component to increase
the stability of model performance.

6 Conclusion

In this paper, we propose a Causal Invariance based
stable NLU framework. By introducing a causal
invariance constraint into the debiasing process,
we can dynamically detect the bias information
model captured, then regularize the model to ex-
clude the bias components temporarily captured by
the model to enhance the stability. Experimental
results show that our approach can significantly
increase stability on out-of-distribution samples
compared to previous methods.
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7 Appendix

7.1 Theoretical analysis of the regularizer

During the parameter optimization stage, we de-
vise a causal invariance based ADD regularizer to
exclude the bias information model captured. We
argue that, theoretically, this regularizer can approx-
imately minimize the mutual information between
the model representation h™ and the bias feature
distribution h® to lower bound 0 at each training
step. Here is the specific proof process.

Let I(hM, h?) denote the mutual information be-
tween A" and A? at the tth parameter optimization
step. We notice that, to make I(h, h?) = 0, a
sufficient condition is that, for each instance 7 € T,
1 (h%, hi?,t) = 0, where h% and hgt is the model
representation and bias feature for sample i. Note
that, here we regard h% and h?,t as two random

variables, as both h% and h?,t are estimated from
data, hence are not certain values and with uncer-
tainty.

However, in general, the precise value of mutual
information 7 (h}}, h?,) = 0 for two random vari-
able with comple)’i distribution are hard to calculate.
To address this issue, we resort to approximations.

We start from modeling the distribution of h%

and h?,t' Cramér (2016) and (Rao, 1992) have
proved that, under specific regularity conditions, if
arandom variable is estimated through maximizing
the likelihood function, then it should asymptoti-
cally converge to a normal distribution. In this
paper, since we initialize hf’t from the methods
of Utama et al. (2020b) which captures bias fea-
tures by maximizing the likelihood, and the model
representation A is optimized using maximizing
the likelihood function, hence both the bias feature
distribution h’i'),t and the model representation h%
would asymptotically converge to normal distribu-
tion:

h% — N(Mf\f, ZM)i,ﬁ h?,t - N(M?,u Ei’,t)
(10)
where uf’t, u% € R? is the mean of the corre-
sponding distributions, $M); , £, € R**? s the
covariance matrix of corresponding distributions.



Furthermore, for arbitrary two normal dis-
tributed random variables a; and as, their mutual
information has a close form:

> (11)

where z = p(aq, az) is the joint distribution of a;
and as; Det is the determinant operator.

Det(X,)

1
I = —71
(a1, a2) . (Det(Zal)Det(Em)

2

Hence, if we can: (1) derive the joint dis-
tribution of hg?t and h%, which we denote as
hiy = p(hi?ﬂf7 h{}f); (2) obtain X7, ZM)M, and
Eg’t, then we can calculate the mutual information
I(hM hY).

For the first problem, notice that the joint dis-
tribution A, = p(hgt, h{\f) is a combination of
the information of h?t and h%.Hence, we can
get an approximation of h7, by integrating hi?t

and h/‘f in various ways.
bl

; For example, inte-

grating h?,t and h% using a neural network as
hiy, = NN (hgt, h%), or by directly adding hgt
and h% as h, (hi-”t + h%)

To calculate the covariance matrices, interest-
ingly, Cramér (2016) and Rao (1992) have also
proven that, during the training process, if a group
of parameters h is estimated by maximizing the
likelihood, as the value of h converge to its expec-
tation E(h), the covariance matrix of & asymptoti-
cally converge to the expectation of the square of
the partial derivative, i.e.:

Y ?
Y —~E—

7 12)

where Y is the model output.

Hence, we can get the expectation of X7,
¥M), ¢, and E?’t based on the partial gradients on
h7 1 h{‘f and hé’}t the at the ¢th parameter optimiza-
tion step, i.e.:

) (13)

) (14)

) (15)

In practical, we use the sample partial gradient

11

to estimate the expectation of covariance matrix as:

. Y; 2
S ! 1
l7t (ahjit ) ( 6)
. aY; 2
M=(= 17
2,0 (ah% ) ( )
. Y; 2
bo— (=L 18

where flit, M th is the expectation of Zit,

ito
¥M); 4, and Efvt, respectively.
By substituting Eq. 16 17 18 into Eq. 11, we can
get the estimation of 1 (h%, hb,).
Furthermore, we prove that, by training model
using the ADD regularizer which is formulated as:

Y= o(Whi,);

hiy = (bt + hiy) (19)
where o (-) is a sigmoid function, W € R4 is
a weight matrix. Then we can make I(h;*}, h},)
achieving its lower bound 0.

In specific, usingnder the formalization in Eq. 19,
the partial derivatives upon A7, h{;‘ and h’i'),t equal:

. aY; 2 .
=(a ) = Y)W (0
ot ohz,
. aY; ? .
B = (g )= = Y)W @D
it
. aY; 2 .
Sa= (g )= Cu=-V)'w 2
it

By substituting Eq. 20 21 22 into Eq. 11, we can
have I(hM, hy) = 0.

By employing the ADD regularizer, we can grad-
ually exclude the bias components within 2" to in-
crease the model stability. Furthermore, I(hM, hY)
is calculated based on the partial gradients, and
the partial gradients can reflect the sensitivity of
model prediction Y upon h, hM_ and hP. Hence,
our regularizer is built upon the actual contribu-
tion of model representation and bias feature on
model prediction at each parameter optimization
step, rather than using fixed weights to regularize
M as previous researches adopts.

7.2 Experimental Details
MNLI

e batch size: 32



e number of epochs: 3

e learning rate: 5e-5

e Optimizer: Adam

Time Costing:
CPUs: ~8h
Fever

e batch size: 32

1 Geforce_rtx_2080_ti with 4

e number of epochs: 3

Time Costing:
CPUs: ~4h
QQp

e batch size: 32

learning rate: 2e-5

Optimizer: Adam

1 Geforce_rtx_2080_ti with 4

e number of epochs: 3

e learning rate: 2e-5

e Optimizer: Adam

Time Costing:
CPUs: ~5.5h

1 Geforce_rtx_2080_ti with 4
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