
Can neural networks learn persistent homology
features?

Guido Montúfar
UCLA Math / Stats and MPI MIS

montufar@math.ucla.edu

Nina Otter
UCLA Math

otter@math.ucla.edu

Yuguang Wang
MPI MIS

yuguang.wang@mis.mpg.de

Abstract

Topological data analysis uses tools from topology — the mathematical area that
studies shapes — to create representations of data. In particular, in persistent
homology, one studies one-parameter families of spaces associated with data, and
persistence diagrams describe the lifetime of topological invariants, such as con-
nected components or holes, across the one-parameter family. In many applications,
one is interested in working with features associated with persistence diagrams
rather than the diagrams themselves. In our work, we explore the possibility of
learning several types of features extracted from persistence diagrams using neural
networks.

1 Introduction

Learning representations of data is a core component of machine learning and data science. Topo-
logical data analysis (TDA) computes feature representations of data inspired by topology. One
such representation is in terms of persistence diagrams, which are multisets of points in R2. The
computation of these diagrams is often computationally expensive [20]. Furthermore, it is not always
easy to perform statistical analysis on the space of persistence diagrams, and for subsequent analysis
it may be preferable to replace them by suitable approximations.

In our work, we train neural networks (GNNs, CNNs) to map data to specific representations of the
corresponding persistence diagrams. For the data, we focus on raster images, but the idea extends to
other types of data, including point clouds. For the representations, we focus on tropical coordinates
[13] and binary features of persistence diagrams. Other interesting features can be considered,
including persistence images [3] and features extracted from them, such as the number of “blobs”.

There are two main applications of persistence diagrams to the study of data: (i) “homological
inference”, in which one assumes that the data set is sampled from a manifold, and tries to learn
properties of the manifold, such as the number of components or holes, by computing the persistence
diagrams. In such a case, one considers the points further from the diagonal to represent significant
features; (ii) classification, in which one is not interested in inferring a specific homology type, but
rather uses the persistence diagrams to distinguish between different data sets [8, 10, 12, 16, 19].
In the latter case, it might be the points at a certain distance from the diagonal that represent the
significant features, see for instance [5, 7].

In the present work, we are interested in applications of persistent homology to downstream tasks. We
use digital images and filtered cubical complexes as input of different neural networks to learn features
of barcodes. We show that neural networks can indeed be trained to produce good approximations of
some commonly used persistent homology features, at least in the considered data sets, MNIST and
CIFAR-10. Thus, our approach can be exploited to compute persistent homology features for data
sets for which such computations are traditionally too expensive. In ongoing work, we take a natural
next step, which is to consider a broader range of data sets and persistent homology features and to

Topological Data Analysis and Beyond Workshop at the 34th Conference on Neural Information Processing
Systems (NeurIPS 2020), Vancouver, Canada.

use the features computed by a neural network as an input for a downstream task, with the possibility
also to fine-tune them.

original
image

cubical
complex

filtered
cubical

complex

boundary
matrix

persistence
diagram

features

F

F ◦ PH

Figure 1: Persistent homology computation pipeline for two images from MNIST and CIFAR-10.
Top row, from left to right: original image, cubical complex, filtered cubical complex, symmetrized
boundary matrix, persistence diagram in dimension 1. Bottom row: features extracted from per-
sistence diagrams, such as persistence images for dimension 1 at different resolutions levels, and
indicator functions of points at a certain distance from the diagonal.

2 Methods

Let X be a space of 2D images (e.g., Rn×n), D the space of persistence diagrams, and Y a
space of features that one can extract from persistence diagrams. We want to obtain the function
F ◦ PH: X → D → Y as a neural network trained from data.

To each image, we associate first a cubical complex, a space built out of points, edges, squares, in
which we label each cell by a grey value [21]. We then filter the cells of the cubical complex by
increasing grey values, and using the order induced by this filtration we construct a boundary matrix
that stores information about adjacency of cells of co-dimension 1. By reducing this matrix using
standard methods, one can read off birth-death pairs of topological features: we obtain a persistence
diagram in homological degree 0 that gives information about the lifetime of components across the
filtration, and a persistence diagram in homological degree 1 for the lifetime of holes. For details
see Appendix A.1 Each persistence diagram is a multiset of points in R2, where the two coordinates
of each point correspond to birth-death times of a topological feature. An alternative representation
of the birth-death pairs is as intervals in what is usually called a barcode. We illustrate the different
steps in this pipeline in Figure 1 and provide further details in Appendix A.2.

Once the persistence diagram is computed, the extraction of standard hand-crafted features is usually
trivial. We may consider different types of such features, including (1) tropical coordinates, which
capture information such as the mean distance from the diagonal, or the sum of the distances of
the two points furthest from the diagonal [13], which are standard quantities of interest in TDA; (2)
persistence images [3]; (3) Fourier coefficients of persistence images; (4) indicator function of points
at a certain distance from the diagonal; and (5) number of blobs in a persistence image. We note
that features (1)–(2) are known to be stable, in the sense that the map F : D → Y is Lipschitz with
respect to suitable choices of distances on the space of diagrams and the space of features [13, 3].
On the other hand, features (4)–(5) are not stable, as they are discrete invariants associated with the
images. We provide more details about these features in Appendix A.3. In the present work, we
focus on features (1) and (4). The binary features that we consider here can be fine-tuned for specific
classification tasks, for instance when one is interested in studying points at a certain distance from
the diagonal, as discussed in Section 1. We note that in [2] the authors explored how feature (2) can
be learned from time-series data.

We train the neural network using different types of input data, corresponding to different stages in
the above pipeline. We find that using the original images as inputs often gives better results than
using cubical complexes. We should point out that the trained network may represent a function that
is only an approximation of the features. This approximation may still be sensitive to perturbations

2

of the input, which is an important topic on itself, beyond the scope of our work. The theory for
the stability of the features that we consider here is a requirement for any investigation of stability
questions.

3 Experiments

We start by taking a look at the statistics of the persistence diagrams for images. The left panel
of Figure 2 shows the histogram of the number of bars in barcodes for images in MNIST [18] and
CIFAR-10 [15]. We then group the barcodes into two classes by whether there is at least one bar
whose length is larger than 0.3. The mid panel shows the average number of bars in barcodes in
these two classes for each of the 10 different image classes in MNIST and CIFAR-10. These figures
indicate that this topological feature has different statistics over the different image classes.

θ = .15 θ = .3 θ = .8

MNIST

θ = .15 θ = .3 θ = .5

CIFAR-10

Figure 2: Left: Histogram for the number of bars in barcodes. Middle: Average number of bars
in the barcodes of images in each class of MNIST and CIFAR-10 intersected with the two classes
determined by our persistence feature with parameter θ = 0.3. Right: Test accuracy of a CNN for
predicting whether the persistence diagram of an input image contains a bar of a certain length, for
10 values of the feature parameter θ. The blue, green and orange curves represent the test accuracy
on the full test data, on the test data in class 0, and test data in class 1, respectively. Inserts show the
distribution of images in the two classes defined by the feature, for three values of θ.

3.1 Mapping images to binary features of their persistence diagrams

Here we take original images as inputs and train a network to predict properties of the barcodes. We
use CNNs with architecture LeNet-5 [17] for both MNIST and CIFAR-10. We consider 10 binary
features indicating the presence of bars of a certain length in the barcode.

For MNIST, the features indicate the presence of bars of length in the intervals [0.1, θ], with feature
parameter values θ = 0.15, 0.2, 0.25, 0.3, 0.4, 0.6, 0.7, 0.8, 0.9, 1. For CIFAR-10, the features indi-
cate the presence of bars of length at least θ, with θ = 0.15, 0.19, . . . , 0.55 (equally spaced). We
train all features as separate binary classification tasks using early stopping with patience 30 and
decreasing the learning rate with patience 5 based on the validation set error.

Figure 2 shows the test results of the trained LeNet-5 for the ten binary classification tasks on MNIST
and CIFAR-10. We report the test accuracy on the full test data sets, and also on test data restricted
to class 0 and class 1. As the figure shows, the overall accuracies for MNIST images are all above
79%, varying slightly with the feature parameter. For θ = 1, most images have feature label 1, hence
predicting the label is easy and the overall test accuracy is close to 1. For CIFAR-10, the overall test
accuracies are at least 75% for all values of the feature parameter. For θ taking the extreme values

3

0.15 and 0.55, the test data is highly imbalanced, and the test accuracy is above 95%. Training curves
and additional details are presented in Appendix B.1.

3.2 Mapping cubical complexes to binary features of the persistence diagrams

In this set of experiments, we consider inputs taken at an intermediate stage of the computational
pipeline, namely cubical complexes (CC) and filtered cubical complexes (FCC). We consider the same
labels as in Section 3.1 indicating bars of a certain length. We model this as a graph classification
task with the CC or FCC as an adjacency matrix of the input graph. We view the CC or FCC matrix
as the adjacency matrix of a graph, where the cells are the nodes of the graph. We use graph neural
network (GNN) models with 3 combined layers of GCN or GIN convolutions plus TopK pooling and
a two-layer MLP. For both CC and FCC, the GCN model has good performance on classifying the
bar feature. In contrast, GIN model does not perform well, partly due to CC and FCC matrices are
non-symmetric, and then the input graphs are directed. More details on this experiment, including
data processing and implementation, are provided in Appendix B.2.

3.3 Mapping images to tropical coordinates of their persistence diagrams

In this experiment, we seek to learn the map from original images to four tropical coordinates and
the mean bar-length of their persistence diagrams. We model this as a mean square error regression
task with tropical coordinates scaled by a factor of 10 to improve numerical computation. As in
Section 3.1, we use a CNN model with LeNet-5 architecture for MNIST and CIFAR-10. In Figure 3,
the first and third rows show the training and validation losses during training. The second and fourth
rows show the predictions (in red) of the trained networks on the test data set, compared with the
ground truth (in blue). As we observe, training is fairly quick, and in most cases, the CNNs can
predict the tropical coordinates with relatively good precision. Predictions of the mean bar length are
less accurate in our experiment. We think that hyperparameter tuning can further improve the results.
More details on this experiment are provided in Appendix B.3.

MNIST - regress tropical coordinates of barcodes

CIFAR-10 - regress tropical coordinates of barcodes

Figure 3: For MNIST and CIFAR-10: First row: Training and validation losses during training a
CNN for maxi{di},maxi<j{di + dj},maxi<j<k{di + dj + dk},maxi<j<k<l{di + dj + dk + dl}
and mean length of bars. Second row: Predicted tropical coordinates (red) vs ground truth (blue).
The x-axis is the order index of all image samples, where it is in the increasing order of ground truth
values.

4

4 Conclusions and outlook

Using the MNIST and CIFAR-10 data sets, we show that we can train neural networks to compute
several types of features of persistence diagrams. In our experiments (details in Appendix B.4) a
trained CNN can produce approximate values of persistence diagram features in 0.005s, which take
3s to compute with traditional methods. Two typical applications of TDA are homological inference
and classification. In ongoing work, we are working on substituting the exact features with the
approximations obtained by neural networks and evaluating how competitive they are. We suggest
that neural networks (and GPUs) can be exploited to compute topological features for data sets that
are traditionally computationally expensive, such as large 3D point clouds and 3D images.

Acknowledgment

This material is based in part on work conducted during the Collaborate@ICERM on “Geometry
of Data and Networks” while the authors were in residence at ICERM, supported by the National
Science Foundation under Grant No. DMS-1439786. This project has received funding from the
European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation
programme (grant agreement no 757983).

References

[1] Gudhi: Geometry understanding in higher dimensions. Software available at https://gudhi.
inria.fr/.

[2] K. N. Ramamurthy M. P. Buman P. Turaga A. Som, H. Choi. PI-Net: A deep learning approach
to extract topological persistence images. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition Workshops, 2020.

[3] Henry Adams, Sofya Chepushtanova, Tegan Emerson, Eric Hanson, Michael Kirby, Francis
Motta, Rachel Neville, Chris Peterson, Patrick Shipman, and Lori Ziegelmeier. Persistence
images: A stable vector representation of persistent homology. Journal of Machine Learning
Research, 18:1–35, 2017.

[4] A. Adcock, E. Carlsson, and G. Carlsson. The ring of algebraic functions on persistence
barcodes. Homology, Homotopy and Applications, 18:381–402, 2016.

[5] P. Bendich, J. S. Marron, E. Miller, A. Pieloch, and S. Skwerer. Persistent homology analysis of
brain artery trees. The Annals of Applied Statistics, 10:198–218, 2016.

[6] Peter Bubenik. Statistical topological data analysis using persistence landscapes. Journal of
Machine Learning Research, 16(3):77–102, 2015.

[7] Peter Bubenik, Michael Hull, Dhruv Patel, and Benjamin Whittle. Persistent homology detects
curvature. Inverse Problems, 36(2):025008, 2020.

[8] Wolf Byttner. Classifying RGB Images with multi-colour Persistent Homology. PhD thesis,
Department of Mathematics, Linköping University, 2019.

[9] Cătălina Cangea, Petar Veličković, Nikola Jovanović, Thomas Kipf, and Pietro Liò. Towards
sparse hierarchical graph classifiers. In Workshop on Relational Representation Learning,
NeurIPS, 2018.

[10] Olga Dunaeva, Herbert Edelsbrunner, Anton Lukyanov, Michael Machin, Daria Malkova,
Roman Kuvaev, and Sergey Kashin. The classification of endoscopy images with persistent
homology. Pattern Recognition Letters, 83(1):13–22, 2016.

[11] Hongyang Gao and Shuiwang Ji. Graph U-Nets. In ICML, pages 2083–2092, 2019.
[12] Noah Giansiracusa, Robert Giansiracusa, and Chul Moon. Persistent homology machine

learning for fingerprint classification. In 18th IEEE International Conference On Machine
Learning And Applications (ICMLA), 2019.

[13] Sara Kališnik. Tropical coordinates on the space of persistence barcodes. Foundations of
Computational Mathematics, 19(1):101–129, 2019.

[14] Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks. In ICLR, 2017.

5

https://gudhi.inria.fr/
https://gudhi.inria.fr/

[15] Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical report,
University of Toronto, 2009.

[16] Peter Lawson, Jordan Schupbach, Brittany Terese Fasy, and John W. Sheppard. Persistent
homology for the automatic classification of prostate cancer aggressiveness in histopathology
images. In SPIE Vol 10956, Medical Imaging 2019: Digital Pathology, 2019.

[17] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

[18] Yann LeCun and Corinna Cortes. MNIST handwritten digit database.
http://yann.lecun.com/exdb/mnist/, 2010.

[19] Javier Lamar Leon, Andrea Cerri, Edel Garcia Reyes, and Rocio Gonzalez Diaz. Gait-based
gender classification using persistent homology. In José Ruiz-Shulcloper and Gabriella San-
niti di Baja, editors, Progress in Pattern Recognition, Image Analysis, Computer Vision, and
Applications, pages 366–373, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.

[20] Nina Otter, Mason A Porter, Ulrike Tillmann, Peter Grindrod, and Heather A Harrington. A
roadmap for the computation of persistent homology. EPJ Data Science, 6(1):17, 2017.

[21] Hubert Wagner, Chao Chen, and Erald Vuçini. Efficient computation of persistent homology
for cubical data. In Topological methods in data analysis and visualization II, pages 91–106.
Springer, 2012.

[22] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In ICLR, 2019.

Supplementary material

A Persistent homology computation pipeline

A.1 Persistence barcodes and diagrams

Persistent homology is one of the most successful methods in topological data analysis. Given a
finite metric space as in Figure 4(a), one considers a “thickening" of the metric space at different
distance scales, which gives a nested sequence (a so-called filtration) of spaces, and then analyses
the evolution (“persistence") of topological features across this filtration (see Figure 4(b)). Given a
grey-scale digital image, one can associate to it a filtration by thresholding the pixels or voxels by
increasing grey values (see Figure 4(f)).

The topological features that one examines include connected components, holes and voids. The
barcode is an algebraic invariant that summarises how topological features of a certain dimension
evolve across the nested sequence: the left endpoint of an interval represents the birth of a feature,
while its right endpoint represents the death of the same feature. When a feature is still “alive" at the
largest radius or grey-scale value that one considers, the lifetime interval is infinite (see Figure 4(c)
and (g)).

An alternative way to represent a barcode is what is called a “persistence diagram”: this is a multiset
of points in R2 where we represent an interval [a, b) in the barcode by a point (a, b) (see Figure 4(d)
and (h)).

A.2 Images, cubical complexes, boundary matrices

In practice, one cannot work with filtrations of spaces such as the ones in Figure 4 and instead needs
combinatorial approximations of such spaces. Thus, to each of the thresholded images in the filtration
in Figure 4(f) we associate a combinatorial approximation of it called cubical complex, which is a
space built out of vertices, edges, and squares. In ongoing work we are considering alternative ways
to associate a filtration to a digital image. For instance, one could threshold pixels by decreasing grey
values, thus obtaining a filtration consisting of “positive” versions of the images in Figure 4(f), or by
fixing a certain threshold for grey values, and then creating a filtration for the thresholded image by
swiping through the pixels to capture spatial information, in a similar way as done in [4].

6

(a)
•
••
•••••
••• ••••••••••••••••••••

••••
•••••
••• ••••••••••••••

•••••••
••
•••

••••

•

• (b)

(c) (d)

(e) (f)

(g)
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

filtration step

0

0.5

1

1.5

2

2.5

3
MNIST 18 dim 0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
filtration step

0

2

4

6

8

10

12

MNIST 18 dim 1

(h) 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
birth

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

de
at
h

MNIST 18 dim 0

0 0.2 0.4 0.6 0.8 1
birth

0

0.2

0.4

0.6

0.8

1

de
at
h

MNIST 18 dim 1

Figure 4: (a) A finite metric space. (b) A filtration of nested spaces obtained by taking the union
of balls with increasing radius values around the points. (c) Barcodes describing the lifetime of
components (left) and holes (right). (d) The corresponding persistence diagrams. (e) A grey-scale
digital image. (f) A filtration of nested spaces obtained by thresholding pixels by increasing grey
values. (g) Barcodes describing the lifetime of components and holes, and (h) the corresponding
persistence diagrams.

In the present work, to each digital image we associate a filtered cubical complex using the algorithm
from [21]. We then train the neural network using different types of input data, corresponding to the
following steps in the PH pipeline (see Example 1):

1. Original image.
2. Cubical complex (CC): we associate a cubical complex with the image as follows. We

represent pixels by vertices, we join vertices corresponding to adjacent pixels by an edge,
and we join quadruples of vertices by squares if the corresponding pixels are pairwise
adjacent. We then extend the grey values to the cells (i.e., vertices, edges and squares) in the
complex by associating a cell with the maximum grey value of the pixels corresponding to
it. We represent such a cubical complex with a matrix where each entry corresponds to a
cell, and each entry stores the (extended) grey value of the corresponding cell.

3. Filtered cubical complex (FCC): we put a total order on the cells of the cubical complex
in the previous item in such a way that the following two conditions are satisfied: (i) for
each cell its faces have to appear before the cell in the order; and (ii) if a cell has smaller
grey value than another cell, then it has to appear before it in the order. We represent such
a filtered cubical complex by a matrix in which each entry corresponds to a cell, and each
entry stores the order of the corresponding cube.

4. Boundary matrix: we use the total order from the previous item to label rows and columns
of a matrix by the cells of the cubical complex. The matrix stores adjacency information
between a cell and its faces of codimension 1: the (i, j)th entry of the matrix contains a

7

1 if the ith cell in the order is a face of codimension 1 of the jth cell in the order. In our
experiments, we symmetrize the boundary matrix, and we interpret it as and adjacency matrix
of a graph in which vertices correspond to cells and edges encode adjacency information
between cells whose dimension differs by 1.

Example 1. 1. Original image. Consider the 2× 2 image given by the following array of grey
values (

1 3
3 2

)
.

2. Image extended to the cubical complex. The grey values extended to the cubical complex
for the above image are:

(
1 3 3
3 3 3
3 3 2

) 1 3 3

3 3 3

3 3 2

3. The filtered cubical complex. Here we choose the total order in which cells whose faces
are already in the filtration are listed before other cells of lower dimension. For instance,
the edge between the vertices labelled by 3 and 2 as the 4th place in the order, whereas the
vertex in the top right corner appears at the 6th place. Another possible way to totally order
the cells would be given by listing cells according to first grey value and then dimension;
thus, one would list first all cells with grey value 1, in increasing order of dimension, then
all cells with grey value 2, and so on. In our example, the order is given as:

(
1 8 6
5 9 7
3 4 2

) 1 8 6

5 9 7

3 4 2

4. The boundary matrix. In our example we obtain the following matrix:

B =

0 0 0 0 1 0 0 1 0
0 0 0 1 0 0 1 0 0
0 0 0 1 1 0 0 0 0
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 1 0
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0

.

In our experiments we use the symmetrized boundary matrix Bsym = B +B> .

Given a boundary matrix as in item 4, one can reduce it using standard linear-algebra methods.
One can then read off from the reduced matrix the birth-death pairs that constitute the intervals
in the barcode in homological degree 0 (i.e., for components) and in homological degree 1 (i.e.,
for holes). See Figure 4 for an illustration of such barcodes. We point the reader to [20, Section
5.3] for a discussion of different algorithms to reduce a boundary matrix, and of how to read off
the intervals from the reduced matrix. We note that while we train the neural network using the
optimized filtrations of cubical complexes described in items 2–3, and introduced in [21], to compute
the persistence diagrams we use the software library GUDHI [1], which implements a different
algorithm. However, the persistence diagrams obtained with the two types of filtrations are the same.

A.3 Features from persistence diagrams

In recent years, many ways to vectorize persistence diagrams have been studied. In our work, we
consider mainly two of them: tropical coordinates and persistence images. In addition to these, in
future work we will study also persistence landscapes [6], which are vectorizations of persistence
diagrams that have been widely used in applications of persistent homology.

8

Tropical coordinates Tropical coordinates are expressions involving coordinates (xi, xj) of points
in a diagram, distances dk of points from the diagonal, standard addition and max. They were intro-
duced in [13] as a stable version of vectorisations of persistence diagrams [4]. Tropical coordinates
that we consider in our work include the following:

(1)max
j
dj , (2)max

i<j
{di + dj}, (3) max

i<j<k
{di + dj + dk},

(4) max
i<j<k<l

{di + dj + dk + dl}, (5)mean{dj} .

Persistence images Persistence images [3] are obtained from persistence diagrams by a weighted
sum of kernels at the birth-death locations in 2D. This representation depends on three parameters
that need to be specified: (i) Resolution, (ii) Probability distribution, (iii) Weighting function.

Let BC ∈ RN×2 be a list of birth-dead coordinates (barcode). Let T : R2 → R2; (x, y) 7→ (x, y−x)
be the linear transformation mapping the upper half of the positive quadrant to the positive quadrant.
Let φu : R2 7→ R be a density function with mean u ∈ R2. We take simply a Gaussian with mean u
and covariance matrix aI , where a > 0 is a hyperparameter. Let f : R2 7→ R be a weight function
defined by

f(u1, u2) =

{
0, u2 ≤ 0
u2/b, 0 < u2 < b
1, u2 ≥ b,

where b is a hyperparameter. Then the persistence image of the barcode BC obtained with hyperpa-
rameters a, b is the function PI: R2 → R defined by

PI(v) =
∑

u∈T (BC)

f(u)φu(v).

Usually we will consider only the values at points in a discrete grid v ∈ {p1, . . . , pn} ×
{q1, . . . , qn}. Here n corresponds to the resolution of the persistence image. We can also
consider the value obtained by averaging over cells around the grid points, i.e. PI′(v) =

1
|pi+1−pi|·|qj+1−qj |

∫
[pi,pi+1)×[qj ,qj+1)

PI(u)du, where v = (pi, qj).

Features from persistence images A persistence image is a high-dimensional representation
(depending on the specified resolution). For downstream tasks, it can be convenient to consider a
few salient features of the image, instead of simply reducing the resolution. An example of notable
features are discrete Fourier coefficients obtained as

φk =
∑
v

ψk(v) PI(v),

where ψk : R2 → R; exp(−2πiv ·k), and we take v in the summation over regular grids of an image.
To be consistent with 2D discrete Fourier transform in Matlab routine, we do not normalised the
Fourier basis.

Another example of a feature is the number of “blobs” in the persistence image. Here we regard the
persistence image as a real-valued function on R2 and define a blob simply as a local maximizer,
which can be weighted by the volume of its basin.

B Further details on the experiments

B.1 Mapping images to binary features of their persistence diagrams

Here we add figures to the experiments from Section 3.1.1. Examples of the training curves for
MNIST and CIFAR-10 are shown in Figures 5 and 7. Figures 6 and 8 show the histogram of
the number of bars in barcodes for three thresholds, image samples in two PH classes for the
corresponding thresholds and average bar length in two PH classes per image class.

9

MNIST - Training and validation losses for predicting bar

MNIST - Validation accuracy for predicting bar

Figure 5: Top row: training and validation losses of CNN for predicting a bar on MNIST, where
threshold is 0.15, 0.3, 0.8. Bottom row: test accuracy of CNN for predicting a bar for corresponding
thresholds.

B.2 Mapping cubical complexes to binary features of persistence diagrams

Here we provide details about the experiments in which we consider inputs taken at an intermediate
stage of the computational pipeline, namely cubical complexes (CC) and filtered cubical complexes
(FCC). This type of data is more naturally handled by graph neural networks.

We view the cubical complex matrix as the adjacency matrix of a graph, and the cells are the nodes of
the graph. The label attached to each graph is 0 or 1. Here 0 or 1 indicates whether the bar of the
corresponding diagram lies in the interval [0.1, 0.3]. The percentages of the 0 and 1 classes take up
46% and 54%. The task is then to train a GNN model to predict class labels from the graph of the
cubical complex. We split the data set of 59,986 graph samples into 8 : 1 : 1 for training, validation
and test, respectively. We call the graph data set CC-MNIST.

On the other hand, we can also use the filtered cubical complex F to map the entries of the corre-
sponding cubical complex matrix E to the entries of the adjacency matrix. That is, the (i, j)th entry
of the adjacency matrix is E(Fi,j) which is the entry of E located at Fi,j . We call the resulting graph
data set FCC-MNIST.

We use two graph neural network (GNN) models both with three blocks of a graph convolutional
layer plus a pooling layer, followed by three fully connected layers. We use GCNConv [14] and
GINConv [22] and combine with TopKPooling [11, 9] for the 2-graph classification task. In the
experiment, the hyperparameters are set as follows: learning rate 0.001, weight decay rate 5e-4,
pooling ratio 0.5, number of hidden neurons 128, and the maximum number of training epochs 100.

Figure 9 shows the curves of training loss and validation loss and validation accuracy for the two
GNN models. Here the loss function is the usual multi-class cross-entropy (negative log-likelihood).
It shows that the GCN model has much better performance than the GIN model. The GCN model
achieves the test accuracy of around 75% on both CC-MNIST and FCC-MNIST. The GIN model
only has test accuracy about 51% and 53% on the two data sets.

B.3 Mapping images to tropical coordinates of their persistence diagrams

The CNN model for MNIST and CIFAR-10 in Section 3.3.3 uses early stopping
and learning rate reduction strategies for training with patience 30 and 5 respec-
tively. The relative test MSE’s for tropical coordinates (1)–(5) in Figure 3 are

10

MNIST - Sample distribution in each class

MNIST - Samples in each PH class
Class 0 Class 1 Class 0 Class 1 Class 0 Class 1

MNIST - Distribution for number of bars for each bin and each image class

Figure 6: Data analysis for MNIST. For columns from left to right, the threshold is 0.15, 0.3 and
0.8. Top row: sample distribution in each class for the corresponding thresholds. Middle row: image
samples in each PH class for the associated thresholds. Bottom row: number of bars of two bin for
image class (0,1,2...,9).

for MNIST 0.048468, 0.000465, 0.010336, 0.00273689, 0.0017963 and for CIFAR-10
0.00398112, 0.00636546, 0.00352925, 0.0026194, 0.00218928.

The distributions of the number of bars and the tropical coordinates for MNIST and CIFAR-10 are
shown in Figure 10.

B.4 Computational time

We compare the time it takes to obtain a persistence diagram by traditional methods versus the
time it takes to obtain a persistence diagram feature by evaluating a trained neural network. For the
traditional methods, we measure the wall-time seconds that it takes to compute persistence diagrams
for every image using the library GUDHI, and take averages over the entire data sets. Thus, these
times provide a lower bound on the time that it would take to compute a persistence diagram feature
from an image using standard methods. For the NN method, we save the parameters of the trained
model and use it to predict the persistence diagram feature from the test image data. The GPU time is

11

CIFAR-10 - Training and validation losses for bar prediction

CIFAR-10 - Validation accuracy for bar prediction

Figure 7: Top row: training and validation losses of CNN for predicting a bar on CIFAR-10,
where threshold is 0.15, 0.3, 0.5. Bottom row: test accuracy of CNN for predicting a bar for the
corresponding thresholds.

recorded for computing the persistence diagram features for the whole test data set, which contains
around 60 batches, each of which has 100 samples. It then gives the average time for computing the
persistence diagram feature for one batch by the CNN model. Of course, the neural network needs to
be trained first, but once this has been done, it can produce approximate label values for new data
very quickly in comparison with traditional methods.

12

CIFAR-10 - Sample distribution for bar prediction task

CIFAR-10 - Samples in each PH class
Class 0 Class 1 Class 0 Class 1 Class 0 Class 1

CIFAR-10 - Distribution for number of bars for each bin and each image class

Figure 8: Data analysis for CIFAR-10. For columns from left to right, the threshold is 0.15, 0.3 and
0.5. Top row: sample distribution in each class for the corresponding thresholds. Middle row: image
samples in each PH class for the associated thresholds. Bottom row: the number of bars of two bins
for image class (0,1,2...,9).

13

MNIST CC - predict a bar of some length

MNIST FCC - predict a bar of some length

Figure 9: Training loss, and validation loss and accuracy of GCN and GIN models, during training for
the task of mapping a cubical complex matrix to a number 0 or 1, where 0 or 1 indicates whether at
least one bar in the corresponding diagram has length between 0.1 and 0.3. Top panel: the results for
CC-MNIST. Bottom panel: the results for FCC-MNIST. In total, 59,986 graphs, samples for training,
validation and test taking up 80%, 10% and 10% respectively.

MNIST - Histogram for tropical coordinates

MNIST - Distribution of tropical coordinate for each image class

CIFAR-10 - Histogram for tropical coordinates

CIFAR-10 - Distribution of tropical coordinate for each image class

Figure 10: For MNIST and CIFAR-10: First row: Histograms for the value of four tropical coordinates
and mean bar length. Second row: Breakdown of the above histogram into the 10 different image
classes of the data set.

14

	Introduction
	Methods
	Experiments
	Mapping images to binary features of their persistence diagrams
	Mapping cubical complexes to binary features of the persistence diagrams
	Mapping images to tropical coordinates of their persistence diagrams

	Conclusions and outlook
	Persistent homology computation pipeline
	Persistence barcodes and diagrams
	Images, cubical complexes, boundary matrices
	Features from persistence diagrams

	Further details on the experiments
	Mapping images to binary features of their persistence diagrams
	Mapping cubical complexes to binary features of persistence diagrams
	Mapping images to tropical coordinates of their persistence diagrams
	Computational time

