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Abstract. Image analysis is a key tool for describing the detailed mech-
anisms of folliculogenesis, such as evaluating the quantity of mouse Pri-
mordial ovarian Follicles (PMF) in the ovarian reserve. The development
of high-resolution virtual slide scanners offers the possibility of quanti-
fying, robustifying and accelerating the histopathological procedure. A
major challenge for machine learning is to control the precision of pre-
dictions while enabling a high recall, in order to provide reproducibility.
We use a multiple testing procedure that gives an overperforming way
to solve the standard Precision-Recall trade-off that gives probabilistic
guarantees on the precision. In addition, we significantly improve the
overall performance of the models (increase of F1-score) by selecting the
decision threshold using contextual biological information or using an
auxiliary model. As it is model-agnostic, this contextual selection proce-
dure paves the way to the development of a strategy that can improve
the performance of any model without the need of retraining it.

Keywords: Distribution-Free risk control · Multiple testing · Ovar-
ian follicles · Whole-slide imaging · Object detection · Robustness ·
Trustworthy AI.

1 Introduction and related works

Computer-aided medical image analysis helps improving medical research and
clinical practices, in particular for analyzing and describing complex and de-
tailed mechanisms, such as the folliculogenesis. The ovarian follicular stockpile
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is constituted by primordial follicles (PMF) consisting of an oocyte stuck in the
first division of meiosis surrounded by a few somatic cells, known as granulosa
cells. These PMFs remain in a quiescent state until initial recruitment, or fol-
licular activation. This first step of folliculogenesis is defined by an increase in
the size of the oocyte accompanied by a differentiation of the flattened granu-
losa cells into cuboidal cells. The activated PMFs have become primary follicles
and can undergo the different steps of follicular growth. It allows the progres-
sion of the primary follicle to secondary follicles then small antral stage [16].
Morphologically, it is characterized by a significant increase in the size of the
oocyte, differentiation, and proliferation of granulosa cells, and the formation of
a liquid-filled cavity at the core of the follicle. Such mechanism can be observed
with high-resolution virtual slide scanners, see Figure 1.

Evaluating the overall count of PMFs within the ovaries provides valuable
insights into ovarian reserve and reveals the ultimate impact of certain treat-
ments or pathologies on fertility. Additionally, assessing the total number of
primary and secondary follicles helps elucidating the underlying mechanisms af-
fecting the primordial follicular pool and subsequent fertility, such as the effects
of chemotherapies, with high gonadotoxicity on ovaries [19,10]. Eventually, it
enables the development of novel therapeutic strategies to limit these ovarian
damages. However, identifying and quantifying follicles in mouse ovaries is a
time-consuming task, usually carried out manually, which has led to the devel-
opment of various alternative counting methods [22,17].
Deep Learning is a powerful tool for histological section analysis and histopathol-

Fig. 1: Example of an ovary cut with a zoom on an annotated area with PMF
(red), Primary (green) and Secondary (blue) follicles

ogy [14,1], but it remains underused in fertility studies whereas it could automate
the PMFs detection process, thereby facilitating and improving research into re-
productive function. A noticeable attempt for counting PMFs in mouse ovaries
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is proposed in [20], where an ad-hoc convolutional neural network is developed;
followed by the use of standard models in [11,7,17]. However, the detection and
classification task remains challenging because of the size of the images to be
analyzed and subtleties characterizing the follicles.

The aim of the object detection (OD) algorithm is to accelerate the counting
of the follicles and to improve its reliability and reproductibility by reducing the
intra and inter operator variance. The model should have a high Recall, but
also a controlled Precision in order to give trust in the predictions, as well as
reducing the cost of checking the correctness of predictions. A major difficulty
is that the uncertainty associated to the selection of the threshold for control-
ling the precision (or the recall) is rarely taken into account: consequently large
variations of performance are often observed. In order to solve the standard
trade-off, while controlling the uncertainty of the selection process, we maxi-
mize the Recall under the constraint that, with high probability, Precision is
equal to P0, where P0 is user-defined. To achieve this, we leverage recent results
from Distribution Free Uncertainty Quantification theory tightly related to the
domain of conformal prediction [3]. Contrary to a straightforward selection of
the decision threshold on the objectness, we use a multiple testing procedure
introduced in [4] in order to select the threshold λ̃ for detecting objects from
the boxes outputted by the model. Similar approaches have been successfully in-
troduced in computer vision in order to give probabilistic guarantees on Recall,
IOU,. . . [6,5,2], and are at the basis of Trustworthy Artificial Intelligence. Our
main contributions are:

– Efficient models for follicle counting accompanied by a guarantee on precision
which permits reproducibility of the measurements and reduced human time
verification7.

– A new open-sourced dataset of high-quality images8.
– A contextual-aware object detection procedure that can use biological infor-

mation and analysis of the errors that gives probabilistic guarantee on the
precision, and improve the recall.

We emphasize that our context-aware detection procedure is of general interest
as it is model-agnostic and can improve the overall performance (F1-score) of
any model without retraining it, as the detection rule is directly learned from
the data.

2 Method

2.1 Selecting hyperparameters in Object Detection Models

We consider that the model f̂ is trained to detect objects belonging to K classes.
For any image x ∈ X = RN×N , f̂(x) = b ∈ B is a list of boxes b = {b1, . . . , bn(x)}
7 Code available at https://github.com/vincentblot28/follicle-assessment
8 Data available at https://zenodo.org/records/12804564

https://github.com/vincentblot28/follicle-assessment
https://zenodo.org/records/12804564


4 V. Blot

with bi = (xi, yi, wi, hi, si,1, . . . , si,K , ci) where (xi, yi, wi, hi) are the coordinates
of the box and si,k is the classification score of the box for the class k and ci

is the objectness (confidence score) of the box. We have a calibration dataset
D = {(x1, b1), . . . , (xn, bn)} that is used for selecting the decision threshold. Ob-
ject detection algorithms are commonly evaluated using metrics such as mean
Average Precision (mAP), Precision, and Recall. We denote Precision(b, b̂)
when we compare the ground truth b and the prediction b̂. These metrics pro-
vide insights into the performance of the detector. The mAP is calculated as
the mean of the Average Precision (AP) across all classes. AP, in turn, is com-
puted as the area under the precision-recall curve. While mAP is a global met-
ric over all possible thresholds of objectness, Precision, and Recall are com-
puted for a specific threshold. The trade-off between Precision, and Recall
can be visualized thanks to the Precision-Recall curve (function pr : R 7→ P ).
Follicles are detected in the image xnew, for each bi ∈ f̂(xnew) = b̂new such
that ci ≥ λ. We denote this last layer of the object detection algorithm as
the post-processing decision operator Tλ(b). The hyperparameter λ̃0 is gener-
ally selected in order to get Precision = P0 based on the calibration dataset
D, and we derive the corresponding recall R0 as the solution to R0 = pr(P0).
We call this selection method as naive, as there is no way to assess the gen-
eralization power of λ̃0: if (Xnew, bnew) ∼ P new, we have no guarantee that
Precision(bnew, Tλ̃0

(b̂new)) = P0, nor

EP new

[
Precision(bnew, Tλ̃0

(b̂new))
]

= P0.

In the context of controlling the cost associated to the correction of False
Positives (proportional to (1 − P0) + γ(1 − R0), for γ > 0) or for insuring the
reproducibility of the counting process (impacted by the quality of the predic-
tion), we propose a principled way for selecting λ such that a minimal expected
precision P0 is guaranteed for every new images without degrading the recall
too much. As we can see in Fig. 3 with the red violin plot, the precision with
λ̃0 can vary a lot above or below P0: while the target precision is P0 = 0.4,
the median is below 0.4, the object detector exhibits significant performance
variability, that impacts negatively the reproducibility and trust. As a conse-
quence, we propose to enhance the standard precision control by introducing a
contextual-aware decision operator that can improve the overall performance of
the model. This improvement of the performance is possible by leveraging the
”Learn Then Test” (LTT) framework [4], that provides a probabilistic guarantee
on the target precision.

2.2 Guarantee on the precision of an OD model

A solution for selecting a proper threshold is to inflate the threshold based
on statistical arguments, as it is done in statistical testing for controlling the
significativity. For this reason, we use the LTT methodology proposed in [4] that
sees the selection of the parameter λ as a multiple testing problem.
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We denote for brevity P(1)(λ) = EP new [Precision(bnew , T (1)
λ (b̂new))]. If we

introduce the statistical hypothesis H1,λ
0 : P(1)(λ) ≤ P0, for any λ, this means

that rejecting the null hypothesis is equivalent to claim that λ is compatible
with the guarantee that the precision of the post-processing T (1)

λ is higher than
P0. Instead of considering a continuous set of thresholds λ, we consider only
a discrete set λ1, . . . , λm, and we use multiple testing technics for controlling
the False Discovery Rate, i.e. the number of λjs that are wrongly considered to
provide a performance P(1)(λj) ≥ P0. In order to enable such an approach, it
is necessary to have reliable and sharp p-values pj for each hypothesis H1,λj

0 .
As recommended in [4], the test statistic is 1

n

∑n
i=1 Precision(bi, T (1)

λ (b̂i)) and
we use the Hoeffding-Bentkus inequality [6] to compute the p-value of the tests
pj . Among the approaches introduced for controlling the family-wise error rate
(FWER) [9], we choose the so-called Fixed Sequence Testing (FST, see [4] for
other technics). The methodology is then:

1. Split the dataset into a training set and a calibration set D.
2. Train the OD model on the training set.
3. Define a set of thresholds ΛO = {λ1, . . . , λm}, and for each threshold λj ∈

ΛO, associate the null hypothesis H1,λj

0 : P(1)(λj) ≤ P0. In practice, we use
ΛO = {0.1, 0.2, . . . , 0.9}.

4. For each null hypothesis H1,λj

0 , compute the p-value pj based on the Hoeffding-
Bentkus inequality (Equation (1)).

pHB
j = min

{
exp

(
−nh1

(
R̂j ∧ α, α

))
, eP (Bin(n, α) ≤ ⌈nR̂j⌉)

}
(1)

where h1(a, b) = a log(a/b) + (1 − a) log((1 − a)/(1 − b)).
5. Return Λ̂O = A({pj}j∈{1,...N}) ⊂ Λ, where A is an algorithm that controls

the FWER. Here, we use the Fixed Sequence Testing (FST) that gives a
set of compatible thresholds Λ̂O ⊂ {λj : pj ≤ δ/m′}, where m′ < m is
the number of starting points of the FST algorithm (this algorithm is less
conservative than the Bonferroni procedure).

Once we have the set Λ̂O, we maximize the mean Recall which means that we
select λ̂∗

O = min{λj ∈ Λ̂O}, because of the 1-to-1 relationship between precision
and recall. From Theorem 1 in [4], our selection procedure gives λ̂∗

O = λ̂∗
O(D),

such that for a user-defined probability 1 − δ > 0,

PD

(
E

[
Precision(bnew, Tλ̂∗

O
(b̂new))

]
≥ P0

)
≥ 1 − δ. (2)

where PD is the probability under the calibration dataset. As we show in section
3, the guarantee (Equation (2)) is satisfied on the follicule dataset thanks to the
more conservative decision threshold selected by the LLT procedure, but at the
price of a dramatic drop in the Recall. The aim of the next section is to show
that we can reduce significantly this drop, and improve the overall performance
as measured by F1−score.
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2.3 Improving Recall with multicriteria decision

We solve the Precision-Recall trade-off by replacing the univariate post pro-
cessing decision operator T (1)

λ , with λ ∈ [0, 1], by a multiparameter operator
T (2)

λ,µ , with λ, µ ∈ (0, 1), evaluated on finite grids ΛO and Λ′. The previous ap-
proach encompasses such a situation by considering more assumptions H2,λi,µj

0 :
P(2)(λ, µ) ≤ P0, based on the finite set of couples (λi, µj) ∈ Λ(2) = ΛO × Λ′.
P(2)(λ, µ) corresponds to the precision obtained with T (2)

λ,µ . We can apply the
steps 4-5 of the previous methodology in order to obtain the set of compatible
thresholds Λ̂(2), that corresponds to the set of hyperparamaters (λ, µ) such that
P(2)(λ, µ) ≥ P0, and we select the decision thresholds as

(λ̂∗
(2), µ̂∗

(2)) = argmax
(λ,µ)∈Λ̂(2)

1
n

n∑
i=1

Recall(bi, T (2)
λ̂,µ̂

(b̂i)). (3)

As Λ(2) is bigger than ΛO (that is included in Λ(2) with a default parameter µ),
we can reach higher values for the Recall by optimising on Λ̂(2), while main-
taining the guarantee on Precision. This can be extended straightforwardly to
d hyperparameters.
Hence the efficiency of our approach relies on the ability to design sharp post
processing operators. We describe below two generic ways of building sharper
decision operators based on the analysis and the reduction of the errors gener-
ated by the simple decision rule ci > λ. We introduce below two families of extra
criterion for predicting a bounding box.

Exploitation of interpretable biological information We start by con-
sidering ”use-case specific” information coming from biological expertise. Such
information are often available in practice, but there are difficult to exploit in
Deep Learning/Computer Vision algorithms and they are often used as probes
for post-evaluation of the quality of prediction.
In our case, we know that folliculogenesis process is mainly located at the pe-
riphery of the ovary, meaning that we cannot expect a lot of follicles deep inside
the ovary (see ?? in supplementary material). For this reason, we introduce the
depth di = D(bi) of a box bi (or the distance with respect to periphery), such
that di = 1 if bi is predicted exactly at the center of the ovary, and di = 0 if bi is
predicted on the boundary (see Figure 2). Our definition of depth is based on the
detection of the contour but in order to reduce the sensitivity to the quality of
the detection of the contour, and solve the problem of defining a unique distance
between an inner point and the contour (because the follicules are non-convex in
general), we use the inner volume between the contour an the inner point. The
exact computation of the depth D(·) is given in the supplementary material (??).

We introduce then the two-parameter post-processing detector T(λ,µ)(b) =
{bi : ci ≥ λ and di ≤ µ}, that will predict a box if the objectness is high
enough, and also if it is not too deep. The previous general methodology can be
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contour

depth = 0.33

depth = 0.68
depth = 0.94

Fig. 2: Computation of the depth of a box. The box is predicted by the OD model
and the contour of the ovary is computed. The contour is then dilated until the
box is inside. The depth of the box is then computed as the ratio of the area of
the dilated contour over the area of the ovary. Each line represents the contour-
line of the dilatation associate to a bounding-box and each box represents a
prediction of the model.

applied for selecting the appropriate thresholds (λ̂∗
O,D, µ̂∗

O,D) on the objectness
and depth.

Prediction of False Detections. The previous approach proposes an inter-
pretable analysis and correction of the errors of the object detector, but in general
we can explain the errors of the model by learning the false detections. We can
learn to classify the falsely detected boxes and actual detected boxes, i.e., we
predict 1 if the rule ci > λ provides a good detection and 0 if not. It is often
the case that it remains some signal in the data that can be exploited. There is
some parallel with boosting [18], where a sequence of models is used to improve
the residuals of the previous ones. In our case, instead of optimising only the
performance (such as accuracy), we maximize the Recall under a probabilistic
guarantee on the Precision. To do this, once the OD model trained, we run
an inference on all the training data, and for each predicted bounding box, we
create fixed size patches around it, and assign them the label 1 if there is an
follicle inside the box and 0 otherwise (we do not consider the class predicted in
the OD, but only presence or not of the box). We train a CNN g for this binary
classification task on the same training data as the object detector. The final
post processing detector is defined as T(λ,µ)(b) = {bi : ci ≥ λ and g(bi) ≥ µ} (as
g(·) is the probability of true detection). The hyperparameter selection is done
in ΛO × ΛClassif , where ΛClassif is a discretized grid in (0, 1), and we obtain
(λ̂∗

O,Classif , µ̂∗
O,Classif ).

3 Experimental setup & Results

3.1 Dataset
Our dataset is composed of 643 cut slices of ovaries coming from 92 mice (each
mouse have between 6 and 8 cuts). Ovaries were fixed in Bouin’s solution and
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subsequently embedded in paraffin blocks. The entire ovaries were serially sec-
tioned into 4µm slices using a microtome. Every fifth section was mounted on
microscope slides and stained with Hematoxylin and Eosin. Ovaries have been
digitized on a Panoramic 250 Flash, Slide Scanner (3DHISTECH Ltd. HUN-
GARY). Each section was analyzed using Calopix Viewer®. Follicles were classi-
fied according to Pedersen’s [15] classification. Briefly, follicles were categorized
as follows: primordial follicles contained an oocyte surrounded by a partial or
complete layer of squamous granulosa cells; primary follicles had an oocyte sur-
rounded by a single layer of cuboidal granulosa cells; secondary follicles presented
with at least two layers of granulosa cells; and antral follicles featured a visible
antrum cavity. The size of those cuts is approximately 20000 × 20000. As cuts
coming from the same mouse can be quite similar, we have decided to perform
the split between train, calibration and test set at the mouse level to avoid po-
tential overfitting (i.e. two cuts coming from the same mouse can’t be into two
different sets). For training our algorithm, we used 503 cuts and the rest will
be used for calibration and test. As the cuts images are way to large to be pro-
cessed by a neural network, we split them into patches of size 1000 × 1000 with
a stride of 500. We choose to keep only 5% of patches without follicle, resulting
in a dataset with 31256 images, among which 16245 contain at least one labelled
follicle. This dataset was separated into training and validation with a 85%/15%
split). For the calibration, as we want to achieve a precision control at the cut
level (and not the patch), we consider only the cut images (and the patches will
be used for the prediction of our OD model). We have 35 ovary cuts for the
calibration and 35 for test with 12 annotations by cut on average.

3.2 Training and results of the OD and the classification models

We ran our experiments with two different models : EfficientDet [21] and YoloV8 [12].
Performance of both detectors is displayed in Table 1 (a detailed version is avail-
ble in ?? of supplementary material). For both OD models, the auxiliary classifi-
cation model is a VGG16 [13] network pre-trained on the ImagetNet dataset [8].
It achieves 75% accuracy on the validation dataset. Training parameters for all
three models are described in ?? of the supplementary materials.

3.3 Results of our methodology

The results of our methodology are shown in Figure 3. Those results were gener-
ated over 100 independent data splits between calibration and test. The thresh-
olds λ̃0, λ̂∗

O,
(

λ̂∗
O,D, µ̂∗

O,D

)
and

(
λ̂∗

O,C , µ̂∗
O,C

)
are computed for a target precision

P0 = 0.4 and δ = 10−3. The thresholds returned by the LTT procedure are
displayed in Table 1.

First, we can see that either with LTT on objectness or LTT on depth and
objectness, we achieve a control of the Precision above with a high probability,
contrary to the naive method where almost half of the observation have a preci-
sion lower than expected. Moreover, our methodology achieves a higher F1-score
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than LTT on a single parameter; and a higher recall than both the ”standard
LTT” and the naive method, which makes it more efficient than those methods
(because with the same guarantee on the precision, we do improve the F1-score).

Table 1: Performance of the OD models and thresholds returned by the LTT
procedure and the naive method for EfficentDet and Yolo models

EfficientDet YOLO-V8

Precision (%) Recall (%) mAP (%) Precision (%) Recall (%) mAP (%)All Classes 29.8 83.8 32.8 44.2 74.9 33.7

Thresholds Objectness Depth Classification Objectness Depth Classification

Naive Method 0.568 - - 0.405 - -
LTT Objectness 0.700 - - 0.699 - -

LTT Objectness + Depth 0.642 0.515 - 0.618 0.514 -
LTT Objectness + Classification 0.534 - 0.230 0.461 - 0.214

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Value

Precision

Recall

F1-score

M
et

ri
c

EfficientDet

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Value

Precision

Recall

F1-score

M
et

ri
c

Yolo-V8

LTT with objectness + depth

LTT with objectness + classif

LTT objectness

Naive method

Target precision

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Value

Precision

Recall

F1-score

M
et

ri
c

Yolo-V8

LTT with objectness + depth

LTT with objectness + classif

LTT objectness

Naive method

Target precision

Fig. 3: Precision, Recall and F1-score for target precision P0 = 0.4. Left: Effi-
cientDet model. Right: Yolo model. In blue: decision with objectness and depth;
in orange: decision with objectness and classification score, in green: LTT deci-
sion with objectness only; in red: the naive decision.
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4 Discussion and Conclusion

We have introduced a general methodology that permits to control the uncer-
tainty of the hyperparameter selection process in a more efficient way. As a
consequence, we have accelerated and robustified follicle counting. Such an in-
crease in reproducibility will contribute to the adoption of AI among physicians,
and ability to compare clinical studies. As our approach is model-agnostic and
relies on a scalable multiple testing procedure, it shows that repeatability and
performance can be both augmented by abandoning the naive threshold selec-
tion. Future work will focus on refining multiple testing strategies for improving
this gain, and in defining and learning more complex post processing detectors,
with various models and biological information.
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