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ABSTRACT

Diffusion models have exhibited exceptional capabilities in image generation
tasks. However, due to their inherent stochasticity, the quality of the generated
images varies across different settings and may not always be high-fidelity and
accurately align with user requirements. To address this challenge, recent works
begin to focus on enhancing human preference alignment and improving over-
all image fidelity during the inference process with inference time scaling, which
involves generating multiple candidates through repeated sampling and selecting
with predefined metrics. Although effective, it will introduce considerable com-
putational extra costs with the redundant sampling steps. To overcome these lim-
itations, we propose a novel inference time scaling framework SF2 that enables
estimators to make decisions in the early step via Co-Fusion pipeline, significantly
improving the whole process while maintaining the quality of the selected images.
In addition, for the continue generation part, we propose vision reflection mech-
anism to further align and correct the images with user requirements. Numerous
experiments demonstrate that our proposed method can achieve comparable per-
formance while 2.2 × and 2.0 × accelerating the whole inference time scaling
process on both Stable-Diffusion-3.5-Large and FLUX.1-dev models.

1 INTRODUCTION

In recent years, diffusion models have demonstrated impressive capabilities across various genera-
tive tasks and have been widely adopted in diverse modalities, e.g., image Ho et al. (2020); Song et al.
(2020); Rombach et al. (2022); Esser et al. (2024); Labs (2024); Podell et al. (2023), video Ho et al.
(2022); Blattmann et al. (2023); Kong et al. (2024); Jin et al. (2024); Chen et al. (2024b); Zheng et al.
(2024), 3D Luo & Hu (2021); Poole et al. (2022); Deng et al. (2023), and text Gong et al. (2022);
Chen et al. (2023). However, diffusion models inherently rely on stochastic processes, specifically
involving randomly sampled initial noise, resulting in variability and inconsistency in output fidelity.
Recent studies Zhou et al. (2024); Ahn et al. (2024); Qi et al. (2024); Bai et al. (2024) further reveal
that the effectiveness of these initial noise vectors various markedly, often causing generated images
to deviate from user requirements and do not consistently achieve high-quality outcomes.

In this case, a straightforward way to address this issue is to scale the training process Mei et al.
(2024); Li et al. (2024); Liang et al. (2024); Podell et al. (2023); Chen et al. (2025) from aspects
of training data volume, model size, and training duration, to enhance the generative capacity of
models, and thereby reducing the probability of generating the undesirable output. However, training
time scaling methods typically incur prohibitive training costs, and usually come with the issues
including costly data acquisition and heavy computational resources demands. Consequently, recent
research has turned to the inference time scaling method Ma et al. (2025); Xie et al. (2025); Kim
et al. (2025), with the aim of obtaining at least a high-fidelity image with only a trivial increase in
inference overhead compared to training costs. To retrieve outputs that align with user specifications,
a simple, yet effective inference time scaling method performs a repeated sampling process to form
a set of candidate images, from which the highest quality result is selected according to predefined
evaluation metrics Ma et al. (2025); Xie et al. (2025). However, this method is inefficient and time-
consuming, as it requires repeated complete passes through the entire image generation pipeline to
obtain a sufficient large candidate set. Given a fixed limited sampling budget, a slower sampling

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

process restricts the number of candidate images produced, narrowing the selection range, and thus
limiting the achievable image quality. Moreover, selection based on a one-time evaluation over
a finite sample pool typically yields merely identifying the least flawed result rather than a truly
high-fidelity image.

To address the above challenges, we propose a novel inference time scaling framework SF2 aiming
to efficiently generate a larger pool of candidate samples within the limited inference budget. Mean-
while, we further propose a reflection mechanism capable of rectifying flaws and refining details of
the selected samples during the continue generation process. Specifically, we propose Co-Fusion
pipeline that utilizes the blur and low-quality images at the early stage with a fast detail refiner to
ensure the visual maintenance of the final output, enabling the estimators to make decisions at the
early stage. Also, after performing the selection in the early stage, we leverage the powerful vision
language model, e.g., Qwen2.5-VL Bai et al. (2025), to provide the feedback, and inject the feed-
back through the continue image generation process to rectify defects and enhance fine details of the
selected images. To validate the effectiveness of our proposed method, we conduct numerous ex-
periments on current state-of-the-art diffusion models Stable-Diffusion-3.5-Large Esser et al. (2024)
and FLUX.1-dev Labs (2024). The experimental results demonstrate that our proposed method can
achieve the comparable performance with the same candidate size while accelerate the whole sam-
pling process 2.2 × for Stable-Diffusion-3.5-Large and 2.0 × for FLUX.1-dev. Also, with limited
extra inference time costs, our proposed method improves the total quality of Stable-Diffusion-3.5-
Large and FLUX.1-dev by 10.84% and 9.90%.

In summery, our contributions can be concluded as follows:

• We propose a novel inference time scaling framework for fast sampling. It can efficiently
generate a larger pool of candidate samples via Co-Fusion pipeline within the limited bud-
get while maintaining the main content of the images compared with the original pipeline,
providing a wider search space for samples and improve the overall performance;

• We propose a reflection mechanism enables the refinement of details and the rectify the
anomalous regions of the selected samples. It injects the feedback of the vision language
model into the continue generation process, suppressing undesired or unexpected elements
in the generated results;

• Extensive experiments on Stable-Diffusion-3.5-Large and FLUX.1-dev demonstrate the ef-
fectiveness of our proposed method. Our proposed method can achieve the comparable
performance with the same number of candidates while accelerating the whole sampling
process. Also, with limited extra inference time costs, our proposed method improves the
total quality of Stable-Diffusion-3.5-Large and FLUX.1-dev by 10.84% and 9.90%.

2 RELATED WORKS

2.1 INFERENCE TIME SCALING OF DIFFUSION MODELS

Diffusion models Ho et al. (2020); Song et al. (2020); Rombach et al. (2022); Esser et al. (2024);
Labs (2024); Podell et al. (2023) excel in text-to-image generation but suffer from randomness and
inconsistent quality Zhou et al. (2024); Ahn et al. (2024); Qi et al. (2024); Bai et al. (2024); Xu et al.
(2023b). Prior works mainly enhance quality via training-time scaling, e.g., larger models, datasets,
or training duration, Mei et al. (2024); Li et al. (2024); Liang et al. (2024); Podell et al. (2023);
Chen et al. (2025), which is computationally costly. Inspired by large language models Brown et al.
(2024); Snell et al. (2024); Wu et al. (2024a); Gandhi et al. (2024); Balachandran et al. (2025); Zhang
et al. (2025), inference time scaling has recently attracted interest in vision Ma et al. (2025); Xie et al.
(2025); Kim et al. (2025). Inference-time methods fall into two categories: global trajectory search,
finding better initial noise, e.g., random search or Zero-Order Search Ma et al. (2025); and stepwise
trajectory search, optimizing update directions during denoising, e.g., Search over Paths Ma et al.
(2025). The two are orthogonal, targeting the starting point and the generation process, and can be
combined. Our method focuses on efficiency and can serve as a plug-and-play enhancement.
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Figure 1: The overall framework of our proposed method. Our proposed method includes three parts.
Firstly, we introduce Co-Fusion pipeline to fast sample larger set of candidates. Then, we adopt pre-
defined evaluation metrics to select the highest fidelity candidate within the set. Lastly, we leverage
vision language model to provide feedback of the potential flaws in the reference images, and inject
the feedback to the continue generation process from early stage.

2.2 ALIGNMENT OF DIFFUSION MODELS

Alignment Liu et al. (2024); Lee et al. (2023); Xu et al. (2023a); Black et al. (2023); Fan et al. (2023);
Clark et al. (2023); Wallace et al. (2024); Yang et al. (2024c;a); Liang (2024) adapts pretrained
diffusion models for human-preferred outputs beyond training distribution. The two main training-
based strategies are RLHF (learning a reward model then finetuning) Lee et al. (2023); Xu et al.
(2023a); Black et al. (2023); Fan et al. (2023); Clark et al. (2023); Zhang et al. (2024); Uehara
et al. (2024) and DPO (direct optimization on preference data without reward models) Wallace et al.
(2024); Yang et al. (2024c;a); Liang (2024); Yuan et al. (2024); Zhu et al. (2025); Na et al. (2024).
Other alignment methods avoid finetuning, such as prompt optimization Hao et al. (2023); Wang
et al. (2023); Mañas et al. (2024); Mo et al. (2024), noise optimization Eyring et al. (2024); Tang
et al. (2024); Bai et al. (2024); Zhou et al. (2024); Qi et al. (2024), and attention control Wu et al.
(2024b); Yang et al. (2024b); Hong et al. (2023). Alignment refines the objective of models to favor
human preferences, while inference time scaling searches within the output space to exploit model
capacity. These two approaches are complementary, and our method can be integrated with both to
further improve image quality.

3 METHOD

3.1 PRELIMINARY

Assume the time cost of full sampling process is τ , and the total time budget for inference time
scaling is T , the number of candidate samples can be generated is n =

⌊T
τ

⌋
. For each i = 1, . . . , n,

x
(i)
0 ∼ N (0, I), and I(i) = G(x(i), θ). Here, G(·; θ) refers the total denoising process mapping pa-

rameterized by θ. After repeated sampling process, the final images are selected from the candidate
sets with the predefined metric R(·),

I∗ = argmax
I(I)∈{I(0),...,I(n)}

R(I(i)). (1)

Denote cumulative distribution function of each score R(i) = R(I(i)) as FR(γ) = P (R(i) ≤ γ),
the expected maximum score over n samples is as follows:

Q(n) = E
[
max
1≤i≤n

R(i)

]
=

∫ ∞

−∞
P (max

i
R(i) > γ) dγ =

∫ ∞

−∞
[1− FR(γ)

n] dγ. (2)

As n increases, the distribution shifts rightward, yielding higher expected scores, but marginal gains
diminish accordingly.
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Stable-Diffusion-3.5-Large

Original 𝑘 = 0 𝑧 = 0 𝑘 = 4 𝑧 = 1 𝑘 = 5 𝑧 = 1 𝑘 = 7 𝑧 = 1

FLUX.1-dev

Original 𝑘 = 0 𝑧 = 0 𝑘 = 4 𝑧 = 1 𝑘 = 5 𝑧 = 1 𝑘 = 7 𝑧 = 1

LPIPS: 0.5001 MS-SSIM: 0.5901 LPIPS: 0.4271 MS-SSIM:0.6438 LPIPS: 0.3733 MS-SSIM:0.7083 LPIPS: 0.2826 MS-SSIM: 0.7980

LPIPS: 0.3890 MS-SSIM: 0.7061 LPIPS: 0.3294 MS-SSIM: 0.8243 LPIPS: 0.2620 MS-SSIM: 0.8701 LPIPS: 0.2134 MS-SSIM: 0.8813

𝑘 = 16 𝑧 = 2

LPIPS: 0.1368 MS-SSIM: 0.9339

𝑘 = 16 𝑧 = 2

LPIPS: 0.1333 MS-SSIM: 0.9387

Figure 2: The visualization and quantitative results for different choice of k and z. The results
demonstrate that smaller ∆ contributes to more similar production.

3.2 CO-FUSION PIPELINE

Current widely-adopted inference time scaling method requires repeated sampling through the
whole pipeline, which is time-consuming. Also, as presented in Eq. 2, the increase in number of
candidate samples benefits the overall expected score. In this case, we propose Co-Fusion pipeline.
It accelerates the whole sampling process, while maintaining the visual of the outputs, so that the
estimators can make decisions in the early steps by consensus.

Specifically, Co-Fusion pipeline involves two stages. First, we adopt the original model performing
k denoising steps to capture coarse layout of the images. Then, the generation is switched to the
distilled Turbo model to quickly and seamlessly refine the details. The visual results of Co-Fusion
are maintained, as the generation process is constrained under the capability of the original model.
Here, assume the original model with parameter θ requires T denoising steps for generation, and the
timestep is denoted as ti for step i; the distilled Turbo model ψ only requires S denoising steps, and
S << T , and the corresponding timestep is denoted as si for step i. Co-Fusion can be formulated
as follows:

xθ,ti+1 = xθ,ti + δti+1vθ(xθ,ti , y; ti), where i = 0, 1, . . . , k − 1, xθ,t0 ∼ N (0, I),

xψ,sj+1
= xψ,sj + δsj+1

vψ(xψ,sj , y; sj), where j = z, . . . , S − 1, xψ,sz = xθ,tk ,
(3)

where δti+1 = ti+1 − ti, and δtj+1 = tj+1 − tj . xψ,sS = xN is the final output of the Co-Fusion
pipeline, and the number of the total steps is N = k+S− z < T . y refer to the condition for image
generation, e.g., text prompt. We also provide theoretical analysis of error bound of Co-Fusion
pipeline to further validate its effectiveness. For more detailed theoretical analysis, please refer to
the supplementary.
Proposition 1. Error bound for Co-Fusion pipeline

Proof. For the first k steps, Co-Fusion and the original pipeline share the same process. Thus, in
this case, eθ,0→k = 0, and xθ,tk = xψ,sz . For the rest original pipeline T − k steps, we have:

eθ,i = xθ,ti − x∗θ,ti , εθ,i = x∗θ,ti − x∗θ,ti−1
− δtivθ(x

∗
θ,ti−1

, y; ti−1), ||εθ,i|| ≤ Cδ2ti ,

eθ,i = eθ,i−1 + δti [vθ(xθ,ti−1 , y; ti−1)− vθ(x
∗
θ,ti−1

, y; ti−1)]− εθ,i.
(4)

Here, denote the Lipschitz constant for vθ and x as L, we have:

||vθ(xθ,ti−1
, y; ti−1)− vθ(x

∗
θ,ti−1

, y; ti−1)|| ≤ L||xθ,ti−1
− x∗θ,ti−1

|| = L||eθ,i−1||,
||eθ,i|| ≤ ||eθ,i−1||+ ||δti [vθ(xθ,ti−1 , y; ti−1)− vθ(x

∗
θ,ti−1

, y; ti−1)]||+ ||εθ,i||
≤ (1 + δtiL)||eθ,i−1||+ Cδ2ti .

(5)

4
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After iterative expansion, we have:

||eθ,T || ≤

[
T∏

m=k+1

(1 + δtmL)

]
||eθ,k||+ C

T∑
m=k+1

δ2tm

T∏
p=m+1

(1 + δtpL),

1 + δL ≤ eδL, ||eθ,T || ≤ e(tT−tk)L||eθ,k||+ C

T∑
m=k+1

δ2tme
(tT−tm)L.

(6)

Denote ∆ori = tT − tk, δmaxt
= max

i
δti ,

T∑
m=k+1

δ2tm ≤ ∆oriδmaxt
, e∆oriL∆ori ≤ e∆oriL−1

L ,

then we have:

||eθ,T || ≤ e∆oriL||eθ,k||+
e∆oriL − 1

L
Cδmaxt . (7)

For the rest Co-Fusion S − z steps, we have:

xψ,j = xψ,j−1 + δsjvψ(xψ,j−1, y; sj−1) = xψ,j−1 + δsj [vθ(xψ,j−1, y; sj−1) + ςsj−1
],

eψ,j = xψ,sj − x∗θ,sj , εθ,j = x∗θ,sj − x∗θ,sj−1
− δsjvθ(x

∗
θ,sj−1

; sj−1), ||εθ,j || ≤ Cδ2sj ,

eψ,j = eψ,j−1 + δsj [vθ(xψ,sj−1
, y; sj−1)− vθ(x

∗
ψ,sj−1

, y; sj−1)] + δsj ςsj−1
− εθ,j .

(8)

Here, denote the distillation error bound as the constant εdis, ||ς|| ≤ εdis, and the Lipschitz constant
for vθ and x as L, we have:

||eψ,j || ≤ (1 + δsjL)||eψ,j−1||+ Cδ2sj + δsj ||ςsj−1 ||

≤ (1 + δsjL)||eψ,j−1||+ Cδ2sj + δsjεdis
(9)

Similarly, we apply iterative expansion to Eq. 9, and we have:

||eψ,S || ≤

[
S∏

m=z+1

(1 + δsmL)

]
||eψ,z||+

S∑
m=z+1

(Cδ2sm + δsmεdis)

S∏
p=m+1

(1 + δsmL)

≤ e∆coL||eψ,z||+
e∆coL − 1

L
(Cδmaxs

+ εdis),

(10)

where ∆co = sS − sz = ∆ori, we denote it as ∆ for clarification, and ||eψ,z|| = ||eθ,k|| = 0,
δmaxs

= max
j

δsj . The final error bound for Co-Fusion pipeline is as follows:

||xθ,tT − xψ,sS || ≤
e∆·L − 1

L
[C(δmaxt + δmaxs) + εdis]. (11)

The error for the Co-Fusion pipeline is bounded with the length of the left steps and the distillation
loss between the two models.

3.3 VISUAL REFLECTION

After selection part performed in the early stage, the selected trajectory will continue to generate the
final output with the original model. However, as mentioned in Eq. 2, the performance of the final
output is bounded by the size of the candidate set. Meanwhile, from the observation, the selected
images are the least imperfect among the candidates and can not guarantee the high-fidelity. To
further improve the quality of the selected images, we propose the visual reflection method during
the continue generation process.

Specifically, we first project the noisy image at step k into the predicted final result:

x̂θ,tT = xθ,tk − tkvθ(xθ,tk , y; tk), (12)

which presents the layout of the image. Then, we leverage the visual understanding capabilities of
the vision language model M, e.g., Qwen2.5-VL, to point out the flaws of the reference images (the
predicted image x̂θ,tT and the corresponding candidate image xN generated through Co-Fusion
pipeline), such as distorted figures, low fidelity, etc. Here, the predicted image can reflect the overall

5
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Algorithm 1: SF2 Framework
Input: Original model with parameter θ, turbo model with parameter ψ, vision language model

M, evaluation metric R, prompt y, the number of candidates n
Output: High-fidelity x

′

θ,T for prompt y
Random initialize xθ,t0 ∼ N (0, I)
# Candidates generation
for idx = 1 to n do

# Co-Fusion pipeline
Generate candidate x(idx)N through Eq. 3 ▷ Store k step x(idx)θ,tk

for continue generation

I
(idx)
N = Dψ

(
x
(idx)
N

)
idx∗ = argmax1≤idx≤nR

(
I(idx)

)
# Visual reflection
Get predicted final output x̂(idx

∗)
θ,tT

with x(idx
∗)

θ,tk
through Eq. 12

Generate feedback of the flaws in the reference images through vision language model M,
y

′
= M

(
Î
(idx∗)
θ,tT

, I
(idx∗)
N , p

)
, where Î(idx

∗)
θ,tT

= Dθ
(
x̂
(idx∗)
θ,tT

)
# Continue generation
Generate the final result x

′

θ,T with x(idx
∗)

θ,tk
through Eq. 14.

return x
′

θ,T

layout of the final image and the candidate image can demonstrate the expected details of the final
image. The process can be formulated as follows:

Îθ,tT = Dθ(x̂θ,tT ), IN = Dψ(xN )

y
′
= M(Îθ,tT , IN , p),

(13)

where y
′

is the negative prompt identifying the potential defects of the selected images, D is decoder,
p refer to the instruction prompt. After that, we inject the feedback y

′
into the continue generation

process from the breakpoint k to get the final output x
′

θ,T :

x
′

θ,ti+1
= xθ,ti + δti+1vθ(xθ,ti , y, y

′
; ti), where i = k, . . . , T − 1. (14)

Since the early step k is still in layout generation phase, it exhibits effective corrective efficacy for
mitigating potential flaws, while preserving the initial favorable layout and the trajectory of fine-
detail synthesis.

3.4 ALGORITHM SUMMARY

In this paper, we propose a novel inference time scaling framework for fast and broader sampling
with early trajectory selection and reflection. The algorithm summary is shown in Algorithm 1.
Our proposed framework includes three parts. Firstly, we fast build the candidate set through our
proposed Co-Fusion pipeline, which enables the estimator to make decision in the early stage. After
selection, we leverage the vision language model to generate feedback on the flaws of the reference
images (the predicted image Î(idx

∗)
θ,tT

in the k step and the selected candidate image I(idx
∗)

N generated
through Co-Fusion pipeline). These reference images can demonstrate the layout and expected de-
tails information, respectively, offering a broader view for vision language model to provide correct
and effective feedback. Then, we inject the generated feedback into the continue generation process
from the breakpoint k of the original pipeline to get the final output x

′

θ,T . As k is in early stage
of the whole pipeline, our method can smoothly correct the potential flaws while preserving the
high-quality layout and preventing artifact generation.

6
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Table 1: Quantitative results of baseline methods and our proposed method. Here, NFEs records
the total budget each prompt requires to obtain the final image. Avg RI denotes the average relative
improvement of the four evaluation metrics over the original.

Method/Settings NFEs Estimator HPSv2.1 ImageReward PickScore Aesthetic Score Avg RI (%)

Stable-Diffusion-3.5-Large
Original 28 - 30.95 1.0441 23.03 5.435 -

SDS 280 - 30.31 1.1220 22.73 5.414 0.93%
Random (n = 10) 280 - 30.80 1.0408 23.02 5.435 -0.21%

BoN (n = 10) 280 HPSv2.1 32.78 1.2095 23.37 5.493 6.07%
Ours (n = 10) 150 HPSv2.1 32.92 1.2164 23.38 5.595 6.83%
Ours (n = 20) 280 HPSv2.1 33.22 1.2418 23.43 5.609 7.80%

BoN (n = 10) 280 ImageReward 31.64 1.4058 23.22 5.464 9.56%
Ours (n = 10) 150 ImageReward 31.98 1.3731 23.26 5.568 9.57%
Ours (n = 20) 280 ImageReward 32.10 1.4184 23.29 5.579 10.84%

BoN (n = 10) 280 PickScore 31.88 1.1751 23.67 5.490 4.84%
Ours (n = 10) 150 PickScore 32.02 1.1893 23.59 5.590 5.66%
Ours (n = 20) 280 PickScore 32.31 1.2133 23.70 5.604 6.65%

FLUX.1-dev
Original 28 - 32.08 1.0835 23.32 5.719 -

SDS 280 - 31.69 1.0835 23.19 5.680 -0.61%
Random (n = 10) 280 - 32.00 1.0720 23.30 5.702 -0.42%

BoN (n = 10) 280 HPSv2.1 33.73 1.2334 23.66 5.744 5.22%
Ours (n = 10) 130 HPSv2.1 33.64 1.2392 23.64 5.805 5.53%
Ours (n = 20) 240 HPSv2.1 33.94 1.2586 23.70 5.817 6.33%

BoN (n = 10) 280 ImageReward 32.61 1.4441 23.50 5.715 8.91%
Ours (n = 10) 130 ImageReward 32.70 1.4163 23.50 5.788 8.66%
Ours (n = 20) 240 ImageReward 32.82 1.4627 23.54 5.796 9.90%

BoN (n = 10) 280 PickScore 32.91 1.2069 23.96 5.738 4.26%
Ours (n = 10) 130 PickScore 32.93 1.2180 23.88 5.804 4.74%
Ours (n = 20) 240 PickScore 33.07 1.2340 23.99 5.810 5.36%

Table 2: Total runtime for each prompt to obtain the final image via different inference time scaling
method. Here, the runtime includes image generation and selection parts. For our proposed method,
it includes candidate image generation through Co-Fusion pipeline, image selection, visual reflec-
tion and continue generation. Here, we report the total runtime with HPSv2.1, ImageReward, and
PickScore estimators, and the results are separated by the slash.

Stable-Diffusion-3.5-Large
Original SDS Random (n = 10) BoN (n = 10) Ours (n = 10) Ours (n = 20)

19.82s 195.28s 197.12s 204.60s / 198.19s / 198.12s 98.55s / 92.15s / 92.08s 182.87s / 170.40s / 170.38s

FLUX.1-dev
Original SDS Random (n = 10) BoN (n = 10) Ours (n = 10) Ours (n = 20)

22.50s 223.04s 225.54s 233.02s / 226.61s / 226.54s 120.43s / 114.02s / 113.95s 221.77s / 209.36s / 209.34s

4 EXPERIMENTS

4.1 SETTINGS AND IMPLEMENTATION DETAILS

We conduct experiments on the open-source diffusion models Stable-Diffusion-3.5-Large and
FLUX.1-dev to validate our proposed method SF2. For each prompt, we set 280 NFEs as the
inference budget. The default number of generation steps is 28 (28 NFEs), for both two models
across all experimental settings. For the original model and scale denoising steps (SDS) method, the
seed is 42. For the rest methods (random select, best-of-n (BoN), and ours), the seeds are randomly
sampled from a uniform distribution (the value is 0 ∼ 10, 000), but remain same for the three meth-
ods. For our proposed method, we adopt the corresponding Turbo models (SD-3.5-Large-Turbo and
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Stable-Diffusion-3.5-Large
Original SDS BoN-HPSv2.1 Ours-HPSv2.1 BoN-ImageReward Ours-ImageReward BoN-PickScore Ours-PickScore

FLUX.1-dev
Original SDS BoN-HPSv2.1 Ours-HPSv2.1 BoN-ImageReward Ours-ImageReward BoN-PickScore Ours-PickScore

Figure 3: The visualization of our proposed method and BoN. The candidate images are generated
with the prompts from COCO2014val dataset under the setting of n = 10.

FLUX.1-dev-Turbo) to collaboratively perform the Co-Fusion pipeline. The default number of steps
for generation is 8 and 4 for SD-3.5-Large-Turbo and FLUX.1-dev respectively. Specifically, we set
k = 7 and z = 3 for SD-3.5-Large and k = 7 and z = 1 for FLUX.1-dev. For visual reflection pro-
cess, we adopt Qwen2.5-VL-7B model to process the selected images and generate feedback. For
dataset, we adopt 5, 000 prompts randomly selected from COCO2014val dataset Lin et al. (2014),
and generate n candidates for each prompt. We adopt HPSv2.1 Wu et al. (2023), ImageReward Xu
et al. (2023a), and PickScore Kirstain et al. (2023) as the estimator, and the performance are eval-
uated on the HPSv2.1, ImageReward, PickScore, and Aesthetic Score. We also report the required
NFEs and runtime (s) to further demonstrate the efficiency of our proposed method. All experiments
are conducted on NVIDIA RTX 6000 Ada. For more details and results, please refer to Appendix.

4.2 MAIN RESULTS

We evaluate our method on 5, 000 prompts from COCO2014val dataset. For each prompt, the lim-
ited budget for generation and search is 280 NFEs. The results are shown in Table 1. We also
evaluate the total runtime of the inference time scaling process for each prompt as shown in Table 2.
The total runtime includes image generation and selection parts, and our method includes candi-
date image generation through Co-Fusion pipeline, image selection, visual reflection and continue
generation. The visualization results are presented in Fig. 3. The results show that our proposed
method can achieve comparable performance while only requires 53.57% and 46.43% NFEs budget
of BoN. With similar NFEs budget, our proposed method substantially outperforms BoN method.
For instance, our method improves FLUX.1-dev model by 9.90% with 240 NFEs compared with
BoN method 8.91% with 280 NFEs. Moreover, the visualization results also show that our method
can effectively restore the anomalous regions in the images, and enhance overall quality of images.

4.3 ABLATION STUDIES

We also conduct ablation studies to validate the effectiveness of each component proposed in our
proposed method. The experimental settings are same with the baseline comparison. The results
are demonstrated in Table 3. From the results, our proposed Co-Fusion pipeline can quickly and
accurately restore the outputs of the original pipeline, enabling precise selection while significantly
reducing required extra time. Moreover, our proposed visual reflection effectively corrects unnatural
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Table 3: Ablation studies for each component of our proposed method. NFEs reports the total
required budget for each prompt to obtain the final image. Avg RI records the average relative
improvement of the four evaluation metrics over the original.

Method/Settings NFEs Estimator HPSv2.1 ImageReward PickScore Aesthetic Score Avg RI (%)

Stable-Diffusion-3.5-Large
Original 28 - 30.95 1.0441 23.03 5.435 -

+ Co-Fusion (n = 10) 150 HPSv2.1 32.61 1.2014 23.34 5.492 5.71%
+ Visual-Reflection (n = 10) 150 HPSv2.1 32.92 1.2164 23.38 5.595 6.83%

+ Co-Fusion (n = 20) 280 HPSv2.1 32.92 1.2267 23.41 5.496 6.66%
+ Visual-Reflection (n = 20) 280 HPSv2.1 33.22 1.2418 23.43 5.609 7.80%

+ Co-Fusion (n = 10) 150 ImageReward 31.62 1.3662 23.22 5.463 8.59%
+ Visual-Reflection (n = 10) 150 ImageReward 31.98 1.3731 23.26 5.568 9.57%

+ Co-Fusion (n = 20) 280 ImageReward 31.74 1.4137 23.25 5.460 9.84%
+ Visual-Reflection (n = 20) 280 ImageReward 32.10 1.4184 23.29 5.579 10.84%

+ Co-Fusion (n = 10) 150 PickScore 31.78 1.1719 23.57 5.490 4.57%
+ Visual-Reflection (n = 10) 150 PickScore 32.02 1.1893 23.59 5.590 5.66%

+ Co-Fusion (n = 20) 280 PickScore 31.97 1.1946 23.68 5.494 5.40%
+ Visual-Reflection (n = 20) 280 PickScore 32.31 1.2133 23.70 5.604 6.65%

FLUX.1-dev
Original 28 - 32.08 1.0835 23.32 5.719 -

+ Co-Fusion (n = 10) 130 HPSv2.1 33.59 1.2319 23.63 5.740 5.02%
+ Visual-Reflection (n = 10) 130 HPSv2.1 33.64 1.2392 23.64 5.805 5.53%

+ Co-Fusion (n = 20) 240 HPSv2.1 33.89 1.2534 23.69 5.749 5.86%
+ Visual-Reflection (n = 20) 240 HPSv2.1 33.94 1.2586 23.70 5.817 6.33%

+ Co-Fusion (n = 10) 130 ImageReward 32.62 1.4115 23.49 5.712 8.14%
+ Visual-Reflection (n = 10) 130 ImageReward 32.70 1.4163 23.50 5.788 8.66%

+ Co-Fusion (n = 20) 240 ImageReward 32.73 1.4595 23.52 5.721 9.41%
+ Visual-Reflection (n = 20) 240 ImageReward 32.82 1.4627 23.54 5.796 9.90%

+ Co-Fusion (n = 10) 130 PickScore 32.87 1.2076 23.88 5.736 4.15%
+ Visual-Reflection (n = 10) 130 PickScore 32.93 1.2180 23.88 5.804 4.74%

+ Co-Fusion (n = 20) 240 PickScore 33.01 1.2262 23.99 5.744 4.84%
+ Visual-Reflection (n = 20) 240 PickScore 33.07 1.2340 23.99 5.810 5.36%

artifacts in the source images and enhances the overall image quality, while preserving most of the
original content, e.g., layout, fine details. It can also be evidenced by the visualization results in
Fig. 3. Also, the results demonstrate that increasing n can improve the quality of the final results.

4.4 DISCUSSION

The experimental results indicate that the final quality of the selected image is highly correlated
with the adopted estimator. Although the estimators HPSv2.1, ImageReward, and PickScore are
all trained on user preference datasets, which incorporate both aesthetics and prompt following,
they diverge in their selection due to unavoidable biases in training data. Nevertheless, these models
remain interrelated: using any estimator also boosts performance on the other metrics. Our proposed
method effectively balances all four evaluation metrics by further incorporating visual reflection to
restore the unnatural artifacts and improve the quality of the final image.

5 CONCLUSION

In this paper, we propose a novel efficient inference time scaling framework SF2 for visual gener-
ation. First, we propose Co-Fusion pipeline for fast and broader sampling, while maintaining the
similar image content for estimators to make decision. It can efficiently generate a larger candidate
pool within the limited budget, providing a wider search space and improving the overall achievable
performance. After selection, we propose visual reflection mechanism to rectify the unnatural re-
gions of the selected images and further refine the overall details, while preserving the main contents.
Extensive experiments demonstrate the effectiveness of our proposed method.
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A APPENDIX

A.1 THEORETICAL ANALYSIS FOR ERROR BOUND OF CO-FUSION PIPELINE

Co-Fusion pipeline has total inference steps N = k + S − z < T . Here, S refers to the number
of total inference steps for Turbo model, and T refers to the number of total inference steps for the
original model. For the first k steps, Co-Fusion and the original pipeline share the same process.
Thus, in this case, the error for the first k steps eθ,0→k = 0, and xθ,tk = xψ,sz . For the rest original
pipeline T − k steps, we have:

eθ,i = xθ,ti − x∗θ,ti , εθ,i = x∗θ,ti − x∗θ,ti−1
− δtivθ(x

∗
θ,ti−1

, y; ti−1), ||εθ,i|| ≤ Cδ2ti ,

eθ,i = eθ,i−1 + δti [vθ(xθ,ti−1
, y; ti−1)− vθ(x

∗
θ,ti−1

, y; ti−1)]− εθ,i.
(15)

Here, denote the Lipschitz constant for vθ and x as L, we have:

||vθ(xθ,ti−1 , y; ti−1)− vθ(x
∗
θ,ti−1

, y; ti−1)|| ≤ L||xθ,ti−1 − x∗θ,ti−1
|| = L||eθ,i−1||,

||eθ,i|| = ||eθ,i−1 + δti [vθ(xθ,ti−1
, y; ti−1)− vθ(x

∗
θ,ti−1

, y; ti−1)]− εθ,i||
≤ ||eθ,i−1||+ ||δti [vθ(xθ,ti−1

, y; ti−1)− vθ(x
∗
θ,ti−1

, y; ti−1)]||+ ||εθ,i||
= ||eθ,i−1||+ δtiL||eθ,i−1||+ ||εθ,i||
≤ (1 + δtiL)||eθ,i−1||+ Cδ2ti .

(16)

After iterative expansion, we have:

||eθ,T || ≤

[
T∏

m=k+1

(1 + δtmL)

]
||eθ,k||+ C

T∑
m=k+1

δ2tm

T∏
p=m+1

(1 + δtpL),

1 + δL ≤ eδL, ||eθ,T || ≤ e(tT−tk)L||eθ,k||+ C

T∑
m=k+1

δ2tme
(tT−tm)L.

(17)

Denote ∆ori = tT − tk, δmaxt
= max

i
δti ,

T∑
m=k+1

δ2tm ≤ ∆oriδmaxt
, e∆oriL∆ori ≤ e∆oriL−1

L ,

then we have:

||eθ,T || ≤ e∆oriL||eθ,k||+
e∆oriL − 1

L
Cδmaxt

. (18)

For the rest Co-Fusion S − z steps, we have:

xψ,j = xψ,j−1 + δsjvψ(xψ,j−1, y; sj−1) = xψ,j−1 + δsj [vθ(xψ,j−1, y; sj−1) + ςsj−1
],

eψ,j = xψ,sj − x∗θ,sj , εθ,j = x∗θ,sj − x∗θ,sj−1
− δsjvθ(x

∗
θ,sj−1

; sj−1), ||εθ,j || ≤ Cδ2sj ,

eψ,j = eψ,j−1 + δsj [vθ(xψ,sj−1
, y; sj−1)− vθ(x

∗
ψ,sj−1

, y; sj−1)] + δsj ςsj−1
− εθ,j .

(19)

Here, denote the distillation error bound as the constant εdis, ||ς|| ≤ εdis, and the Lipschitz constant
for vθ and x as L, we have:

||eψ,j || ≤ (1 + δsjL)||eψ,j−1||+ Cδ2sj + δsj ||ςsj−1 ||

≤ (1 + δsjL)||eψ,j−1||+ Cδ2sj + δsjεdis
(20)
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Table 4: Hyper-parameter settings of Co-Fusion pipeline. Hyper-parameters not listed in table are
set as default.

Models Num Inference Steps Guidance Scale Max Sequence Length k or z
SD-3.5-Large 28 3.5 256 k = 7

SD-3.5-large-TurboX 8 1.5 256 z = 3

FLUX.1-dev 28 3.5 512 k = 7
FLUX.1-Turbo-Alpha 4 3.5 512 z = 1

Similarly, we apply iterative expansion to Eq. 20, and we have:

||eψ,S || ≤

[
S∏

m=z+1

(1 + δsmL)

]
||eψ,z||+

S∑
m=z+1

(Cδ2sm + δsmεdis)

S∏
p=m+1

(1 + δsmL)

≤ e(sS−sz)||eψ,z||+
S∑

m=z+1

(Cδ2sm + δsmεdis)e
(sS−sz)

≤ e∆coL||eψ,z||+
e∆coL − 1

L
(Cδmaxs

+ εdis),

(21)

where ∆co = sS − sz = ∆ori, we denote it as ∆ for clarification, and ||eψ,z|| = ||eθ,k|| = 0,
δmaxs = max

j
δsj . The final error bound for Co-Fusion pipeline is as follows:

||xθ,tT − xψ,sS || ≤
e∆·L − 1

L
[C(δmaxt + δmaxs) + εdis]. (22)

The error for the Co-Fusion pipeline is bounded with the length of the left steps and the distillation
loss between the two models.

A.2 MORE EXPERIMENTAL DETAILS

In the paper, experiments are conducted on the open-source diffusion models Stable-Diffusion-
3.5-Large (stabilityai/stable-diffusion-3.5-large) and FLUX.1-dev (black-forest-labs/FLUX.1-dev)
to validate the effectiveness of our proposed method SF2. For our proposed method, we adopt
the corresponding Turbo models Stable-Diffusion-3.5-Large-TurboX (tensorart/stable-diffusion-
3.5-large-TurboX) and FLUX.1-Turbo-Alpha (alimama-creative/FLUX.1-Turbo-Alpha) to collab-
oratively perform the Co-Fusion pipeline. The default total number of whole denoising process is
28 for Stable-Diffusion-3.5-Large and FLUX.1-dev, and 8 for Stable-Diffusion-3.5-Large-Turbo and
4 FLUX.1-Turbo-Alpha. Specifically, we set k = 7 and z = 3 for Stable-Diffusiton-3.5-Large and
k = 7 and z = 1 for FLUX.1-dev. For more information about Co-Fusion pipeline hyper-parameter
settings, please refer to Table 4.

For dataset, we adopt 5, 000 prompts randomly selected from COCO2014val dataset Lin et al.
(2014), and generate n candidates for each prompt. We adopt HPSv2.1 Wu et al. (2023), ImageRe-
ward Xu et al. (2023a), and PickScore Kirstain et al. (2023) as the estimator, and the performance
are evaluated on the HPSv2.1, ImageReward, PickScore, and Aesthetic Score. We also evaluate the
performance on more evaluation metrics, MUSIQ Ke et al. (2021), MAN-IQA Yang et al. (2022),
and TOPIQ Chen et al. (2024a), to show the quality of final images. Results are shown in Table 5.
For each prompt, we set 280 NFEs as the inference budget. The default number of generation steps
is 28, which is 28 NFEs for total denoising process, for both two models across all experimental
settings. For the original model and scale denoising steps (SDS) method, the seed is 42. For the
rest methods (random select, best-of-n (BoN), and ours), the seeds are randomly sampled from a
uniform distribution (the value is 0 ∼ 10, 000), but remain same for the three methods.

For visual reflection process, we adopt Qwen2.5-VL-7B (Qwen/Qwen2.5-VL-7B-Instruct) model to
process the reference images (the selected image generated via Co-Fusion pipeline and the corre-
sponding predicted final image from the early stage) and generate feedback. We also report the
required NFEs and runtime (s) to further demonstrate the efficiency of our proposed method. All
experiments are conducted on NVIDIA RTX 6000 Ada.
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Table 5: Quantitative results of baseline methods and our proposed method. Here, NFEs records
the total budget each prompt requires to obtain the final image. Avg RI denotes the average relative
improvement of the four evaluation metrics over the original.

Method/Settings NFEs Estimator MUSIQ ↑ MAN-IQA ↑ TOPIQ ↑ Avg RI (%)

Stable-Diffusion-3.5-Large
Original 28 - 70.30 0.4446 0.5527 -

SDS 280 - 65.92 0.3314 0.4657 -15.81%
Random (n = 10) 280 - 70.47 0.4566 0.5596 1.40%

BoN (n = 10) 280 HPSv2.1 71.11 0.4529 0.5644 1.71%
Ours (n = 10) 150 HPSv2.1 72.14 0.4650 0.5837 4.27%
Ours (n = 20) 280 HPSv2.1 72.28 0.4654 0.5850 4.45%

BoN (n = 10) 280 ImageReward 70.68 0.4520 0.5603 1.19%
Ours (n = 10) 150 ImageReward 71.79 0.4637 0.5795 3.75%
Ours (n = 20) 280 ImageReward 71.77 0.4630 0.5799 3.72%

BoN (n = 10) 280 PickScore 70.71 0.4537 0.5615 1.41%
Ours (n = 10) 150 PickScore 71.88 0.4656 0.5815 4.06%
Ours (n = 20) 280 PickScore 71.82 0.4639 0.5806 3.85%

FLUX.1-dev
Original 28 - 70.87 0.4642 0.6131 -

SDS 280 - 64.79 0.3717 0.4913 -16.12%
Random (n = 10) 280 - 71.27 0.4807 0.6191 1.70%

BoN (n = 10) 280 HPSv2.1 71.74 0.4817 0.6254 2.33%
Ours (n = 10) 130 HPSv2.1 72.22 0.4906 0.6379 3.88%
Ours (n = 20) 240 HPSv2.1 72.39 0.4923 0.6396 4.17%

BoN (n = 10) 280 ImageReward 71.40 0.4790 0.6205 1.71%
Ours (n = 10) 130 ImageReward 71.90 0.4871 0.6321 3.16%
Ours (n = 20) 240 ImageReward 71.91 0.4883 0.6322 3.26%

BoN (n = 10) 280 PickScore 71.23 0.4777 0.6205 1.54%
Ours (n = 10) 130 PickScore 71.61 0.4847 0.6302 2.75%
Ours (n = 20) 240 PickScore 71.63 0.4853 0.6304 2.81%

A.3 MORE EXPERIMENTAL RESULTS

A.3.1 QUANTITATIVE RESULTS ON MORE EVALUATION METRICS

Here, we report more quantitative results with other widely used evaluation metrics, MUSIQ Ke et al.
(2021), MAN-IQA Yang et al. (2022), and TOPIQ Chen et al. (2024a), to show the effectiveness of
our proposed method. The quantitative results are demonstrated in Table 5. The results demonstrate
both the effectiveness and efficiency of our proposed method.

A.3.2 QUANTITATIVE RESULTS ON OTHER FAST SAMPLERS

Our proposed method supports any type of approximate fast samplers which preserve output similar-
ity to the original pipeline, not necessarily limited to Turbo models. Here, we conduct experiments
of applying our proposed framework to DBCache method on FLUX.1-dev model. The prompts are
randomly selected from COCO2014val. Here, k = 7, and the rest part of Co-Fusion pipeline is
carried out by DBCache, and z = 8. The estimator we adopt here is HPSv2.1. The results are as
shown in the Table 6.
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Table 6: Results on other fast sampler. The runtime for Ours+Turbo (in paper) to generate a can-
didate is 9.45s (compared with original pipeline 22.50s), and the runtime for Ours+DBCache is
14.15s. Evaluations are under 1024× 1024 resolution.

Model HPSv2.1 ↑ ImageReward ↑ PickScore ↑

FLUX.1-dev 32.02 1.0790 23.32
BoN 33.70 1.2282 23.64

Ours+Turbo (in paper) 33.91 1.2513 23.69
Ours+DBCache 34.01 1.2542 23.69

Table 7: Results on video generation. Here, the video generation model we adopted is CogVideoX-
2B, and the fast sampler is TDM.

Original BoN Ours w/o Visual Reflection Ours w/ Visual Reflection

NFEs 50 300 294 294
Visual Quality ↑ 0.2339 0.4915 0.4859 0.5264

A.3.3 QUANTITATIVE RESULTS ON VIDEO GENERATION

We also conduct additional experiments applying our reflection mechanism to video modality and
high-resolution image generation tasks. The preliminary results demonstrated in Table 7 indicate
that our method can effectively generalize to these scenarios, demonstrating promising scalability
and adaptability. Here, for video modality, we conduct experiments on CogVideoX-2B model, and
the fast generator we adopt is TDM. The total number of inference steps for the original CogVideoX
pipeline is 50, and the original TDM pipeline is 4. Here, k = 25 and z = 2. We randomly select 100
prompts from VBench all dimension extended dataset, and for each prompts we generate 6 videos
for BoN and 10 videos for our method. Our method can successfully adapt to video modality.

A.3.4 MORE VISUALIZATION RESULTS

We also present more visualization results in Fig. 4 to demonstrate the effectiveness of our proposed
method. Here, all images are of 1024× 1024, and are generated with prompts from COCO2014val
dataset.

A.4 LIMITATIONS

Our proposed method is constrained by the capabilities of the underlying model. In this paper, we
focus on enhancing the efficiency and performance of the process of inference time scaling, which is
primarily concerned with exploring and leveraging the potential of the model, rather than enhancing
the inherent performance of the model. If the base model lacks the ability to generate images that
meet the desired requirements, the overall effectiveness of our method will be limited.

A.5 BROADER IMPACTS

Our proposed method SF2 has positive social impacts. Specifically, we propose a novel inference
time scaling method, which enhances the efficiency and performance of the inference time scal-
ing process through the incorporation of Co-Fusion pipeline and visual reflection. Our proposed
method offers practial advantages by maximizing the utility of existing pretrained models, thereby
reducing the need for resource-intensive retraining or the development of new models. Also, our
proposed method avoids redundant sampling process, which saves a lot of computational resources.
By enabling more efficient and effective use of pretrained models, our proposed method supports
the deployment of visual generation models in various real-world applications.
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Figure 4: Visualization results of our proposed method. The images demonstrated here are of 1024×
1024, and generated with prompts from COCO2014val dataset.

A.6 ETHICS STATEMENT

This research follows the ethical guidelines established by the ICLR Code of Ethics. No experiments
were conducted on human participants, and no private or sensitive data was collected or used. All
datasets employed in our study are openly accessible and accompanied by appropriate licenses.
While our work aims to advance the efficiency of diffusion model for inference-time scaling, we
acknowledge that such techniques may be misapplied in harmful or malicious contexts. We therefore
advocate for responsible use, in accordance with ethical norms and applicable legal frameworks.
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A.7 REPRODUCIBILITY STATEMENT

To improve reproducibility, we provide thorough documentation of our methodology. The main
content and Appendix detail the model architectures, hyperparameters, and experimental setups. All
datasets are publicly released. Moreover, we provide pseudocode, inference scripts, and implemen-
tation details to simplify replication efforts. Our source code is also provided in the supplementary
material to ensure faithful reproduction of results.

A.8 THE USE OF LARGE LANGUAGE MODELS

In this paper, large language models are only used to correct grammar and spelling errors.
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