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ABSTRACT

Predicting the tensor properties of crystalline materials is a fundamental task
in materials science. Unlike single-value property prediction, which is inher-
ently invariant, tensor property prediction requires maintaining O(3) group tensor
equivariance. This equivariance constraint often introduces tremendous compu-
tational costs, necessitating specialized designs for effective and efficient predic-
tions. To address this limitation, we propose a general O(3)-equivariant frame-
work for fast crystal tensor property prediction, called GoeCTP. Our framework
is efficient as it does not need to impose equivalence constraints onto the net-
work architecture. Instead, GoeCTP captures the tensor equivariance with a sim-
ple external rotation and reflection (R&R) module based on polar decomposition.
The crafted external R&R module can rotate and reflect the crystal into an in-
variant standardized crystal position in space without introducing extra compu-
tational cost. We show that GoeCTP is general as it is a plug-and-play mod-
ule that can be smoothly integrated with any existing single-value property pre-
diction framework for predicting tensor properties. Experimental results indi-
cate that GoeCTP achieves higher prediction performance and runs 13× faster
compared to existing state-of-the-art methods in elastic benchmarking datasets,
underscoring its effectiveness and efficiency. Our code is publicly available at
https://anonymous.4open.science/r/GoeCTP-FC98/.

1 INTRODUCTION

The tensor properties of crystalline materials can capture intricate material responses through high-
order tensors, with wide-ranging applications in fields such as physics, electronics, and engineer-
ing (Yan et al., 2024b). Compared to single-value property prediction, predicting tensor properties
of crystalline materials is substantially more complex. This complexity arises from the fact that
tensor properties describe how crystals respond to external physical fields, such as electric fields or
mechanical stress (Nye, 1985; Resta, 1994; Yan et al., 2024b). Consequently, tensor property pre-
diction modeling necessitates preserving consistency with the crystal’s spatial position, exhibiting
“special” O(3) equivariance (Yan et al., 2024b). Furthermore, high-order tensor property predic-
tion is computationally intensive due to its high dimensionality and large data volume. Therefore,
providing fast and accurate predictions of tensor properties across various materials is challenging.

Thus far, several works have been dedicated to crystal tensor property prediction. One prominent
category of approaches involves ab initio physical simulation techniques, such as density functional
theory (DFT) (Petousis et al., 2016). These classical simulation techniques can accurately calculate
various material properties, including electronic structures, phonon spectra, and tensor properties.
However, they necessitate extensive computational resources due to the complexity of handling a
vast number of atoms and electrons in crystal systems (Yan et al., 2024b), hindering their applica-
bility in practice. Alternatively, machine learning (ML) models have been proposed to facilitate the
process of crystalline material property prediction. These methods typically leverage high-precision
datasets deriving from ab initio simulations and utilize crystal graph construction techniques along
with graph neural networks (GNNs) (Chen et al., 2019; Louis et al., 2020; Choudhary & DeCost,
2021; Xie & Grossman, 2018) or transformers (Yan et al., 2024a; Taniai et al., 2024; Yan et al.,
2022; Lee et al., 2024; Wang et al., 2024a).
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Existing ML methods have primarily focused on predicting single-value properties of crystals. They
exhibit promising prediction performance by enforcing the periodic invariance constraint into the
model design. However, these methods cannot be directly applied to tensor property prediction as
they overlook the inherent anisotropy of the crystal systems, failing to achieve “special” O(3) equiv-
ariance (Yan et al., 2024a; Taniai et al., 2024; Yan et al., 2022; Wang et al., 2024a). Some recent
works attempt to ensure equivariance through specialized designs of network architectures (Mao
et al., 2024; Lou & Ganose, 2024; Heilman et al., 2024; Wen et al., 2024; Pakornchote et al., 2023;
Yan et al., 2024b; Zhong et al., 2023). These methods generally employ harmonic decomposition
to achieve equivariance, where the tensor space is decomposed into the direct sum of irreducible
representations of the rotation group. In this regard, numerous computationally intensive opera-
tions, such as tensor products and the merging of irreducible representations, are required. These
operations incur large amounts of computation overhead, particularly when processing high-order
data.

To address the above challenges, we propose a novel O(3)-equivariant framework for fast crystal
tensor property prediction dubbed GoeCTP. In particular, instead of enforcing the equivariance into
the model design, we craft a simple yet effective “rotation and reflection” (R&R) module based on
polar decomposition. Our designed R&R module rotates and reflects the input crystal with differ-
ent positions into a standardized invariant position in space. This standardized crystal position is
subsequently passed into the property prediction network to obtain an invariant tensor value. Mean-
while, the orthogonal matrix obtained from the R&R module is used to achieve equivariant tensor
properties prediction. Our approach is plug-and-play as it can be readily integrated with any ex-
isting single-value property prediction network for predicting tensor properties without incurring
additional computational costs. Compared to the previous state-of-the-art work Yan et al. (2024b),
the GoeCTP method achieves higher quality prediction results and runs more than 13× faster in the
elastic benchmarking dataset.

2 PRELIMINARIES AND PROBLEM STATEMENT

2.1 PRELIMINARIES

The structure of crystalline materials consists of a periodic arrangement of atoms in 3D space, with
a repeating unit called a unit cell. An entire crystal typically can be characterized by describing the
parameters of a single unit cell, such as the types and coordinates of the atoms within it, as well as
the lattice parameters (Yan et al., 2022; Wang et al., 2024b; Jiao et al., 2024). General methods for
describing crystals can be divided into the Cartesian coordinate system and the fractional coordinate
system, as described below.

Cartesian Coordinate System. A crystal can be mathematically represented as M = (A,X,L),
where A = [a1,a2, · · · ,an]

T ∈ Rn×da denotes atom features for n atoms within a unit cell.
Each ai ∈ Rda is a da-dimensional feature vector characterizing an individual atom. The matrix
X = [x1,x2, · · · ,xn]

T ∈ Rn×3 contains the 3D Cartesian coordinates of n atoms in the unit
cell. The lattice maxtrix L = [l1, l2, l3] ∈ R3×3 consists of the lattice vectors l1, l2, and l3,
which form the basis of the 3D Euclidean space. A complete crystal is therefore represented as
(Â, X̂) = {(âi, x̂i)|x̂i = xi + k1l1 + k2l2 + k3l3, âi = ai, k1, k2, k3 ∈ Z, i ∈ Z, 1 ≤ i ≤ n}. In
this representation, the integers ki and li denote all possible atomic positions in the periodic lattice.

Fractional Coordinate System. Instead of using the standard orthogonal basis, fractional coor-
dinate system utilizes the lattice matrix L = [l1, l2, l3] ∈ R3×3 as the basis vectors for atomic
positions. With this representation, the position of an atom is given by a fractional coordinate vector
denoted as fi = [f1, f2, f3]

T ∈ [0, 1)3. The corresponding Cartesian coordinate vector can then be
expressed as xi = fili. Therefore, for a crystal M, it can be represented as M = (A,F,L), where
F = [f1, · · · ,fn]

T ∈ [0, 1)n×3 represents the fractional coordinates of all atoms in the unit cell.

2.2 PROBLEM STATEMENT

Crystal Tensor Prediction. The crystal tensor properties prediction is a classic regression task.
Its goal is to estimate the high-order tensor property denoted as Ylabel from the raw crystal data
represented as M = (A,F,L) while minimizing the expected error between the actual property
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Figure 1: The illustration of O(3)-equivariance for crystal tensor prediction. Some of the visualiza-
tions in the figure are generated using the VESTA (Momma & Izumi, 2011), Yan et al. (2024b), and
VELAS (Ran et al., 2023).

Ylabel and the estimated property value Ypred. This problem can be formally formulated as follows:

min
θ

N∑
n=1

||Y(n)
pred − Y(n)

label||
2, Y(n)

pred = fθ(A,F,L), (1)

where fθ(·) represents a tensor prediction model with learnable parameters θ, and the superscript n
denotes individual samples in the dataset. In what follows, we will omit superscript n for simplicity.
As did in the literature (Mao et al., 2024; Wen et al., 2024; Yan et al., 2024b), our objective is
to estimate high-order tensor properties, including dielectric tensor (i.e., Ylabel

∆
= ε ∈ R3×3),

piezoelectric tensor (i.e., Ylabel
∆
= e ∈ R3×3×3), and elastic tensor (i.e., Ylabel

∆
= C ∈ R3×3×3×3),

respectively.

O(3)-Equivariance. The O(3) group, also known as the orthogonal group in 3D, consists of all
rotations and reflections in 3D space, i.e., 3× 3 orthogonal matrices. In predicting the crystal tensor
properties, the requirements for O(3) equivariance typically differ from the O(3)-equivariance de-
fined in the general molecular studies (Hoogeboom et al., 2022; Xu et al., 2024; Zheng et al., 2024;
Song et al., 2024). Specifically, taking the dielectric tensor as an example where Ylabel

∆
= ε ∈ R3×3,

for a tensor prediction model fθ(·) in Eq. 1, if it is O(3) equivariant, it must satisfy the following
equality formulated as:

fθ(A,F,QL) = Qfθ(A,F,L)QT , (2)
where Q ∈ Rn×n is an arbitrary orthogonal matrix (Yan et al., 2024b). For clarity, an illustration
of O(3)-equivariance for crystal tensor prediction is shown in Fig. 1; for more equivariance details,
see Appendix A.2.

Our Objective. Our objective is to devise a new framework that can capture the O(3)-equivariance
for accurately predicting the high-order crystal tensor properties.

3 METHODOLOGY

3.1 THE RATIONALE OF OUR FRAMEWORK

To enforce O(3) equivariance, as described in Eq. 2, existing crystal tensor prediction methods
typically employ specialized network architectures based on harmonic decomposition, resulting in
substantial computational overhead. For example, existing work (Yan et al., 2024b;a) gather the ro-
tational information from neighboring nodes to the central node i through the following computation
formulated:

f l
i,λ =

1

|Ni|
∑
j∈Ni

TPλ(f
l′

j ,Yλ(êji)), (3)
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Figure 2: The Illustration of GoeCTP. To begin with, (1) the R&R module rotates and reflects the
input crystal structure, which may have an arbitrary direction, to the standardized crystal position.
Next, (2) Crystal Graph Construction module organizes the adjusted input into a crystal graph,
followed by (3) the Node & Edge Feature Embedding module, which encodes the features of the
crystal graph. Subsequently, (4) the Prediction module leverages these embedded features to predict
the invariant tensor properties corresponding to the standardized crystal position. Finally, (5) the
Reverse R&R module applies the orthogonal matrix Q, obtained from the R&R module, to ensure
the output of the equivariant tensor properties.

where f l
i is node i’s features, |Ni| is the number of neighbors of node i, TPλ refers to tensor prod-

uct layers with rotation order λ (Geiger & Smidt, 2022), and Yλ(êji) represents the equivariant edge
feature embedding, which is embedded by the corresponding spherical harmonics. When transmit-
ting rotational information for higher-order tensors like the elastic tensor, the rotation order λ is set
to 3 (Yan et al., 2024b). In comparison, for transmitting lower-order tensor rotational information
(where λ is set to 1 (Yan et al., 2024a)), the dimension of Yλ(êji) increases about double, thus,
the corresponding computational cost increases. If we can transmit the rotational information and
maintain the model performance for higher-order tensors with a lower value of λ, e.g., λ = 1, this
would significantly reduce the computational costs.

To this end, we propose the GoeCTP method, which achieves O(3) equivariance without requiring
specialized network architecture design. For instance, it enables the transmission of rotational infor-
mation for higher-order tensors using λ = 1 rather than λ = 3, thereby simplifying the model com-
plexity while maintaining equivariance. GoeCTP leverages polar decomposition, a mathematical
technique with significant geometric properties. Polar decomposition decomposes a matrix into two
components: an orthogonal matrix, representing a rotation or reflection, and a positive semi-definite
matrix (Higham, 1986). The orthogonal matrix captures an O(3)-group transformation, while the
positive semi-definite matrix represents a stretching or scaling. When applied to crystal structures,
polar decomposition effectively separates the spatial directional information of the crystal via the
orthogonal matrix, allowing us to directly transfer equivariance without the need for intricate model
design. Furthermore, polar decomposition is only performed during the data preprocessing stage and
does not occur during network training, thereby introducing virtually no additional computational
burden.

3.2 OUR PROPOSED FRAMEWORK: GoeCTP

In what follows, we will first introduce the core rotation and reflection (R&R) module of the pro-
posed GoeCTP, focusing on how to obtain a standardized crystal position for a crystal with arbitrary
spatial direction using polar decomposition. Then, we will describe how the input crystal data is
processed and introduce the property prediction network of GoeCTP. Finally, we will explain how
proposed GoeCTP achieves equivariant property predictions. An overview of the GoeCTP frame-
work is illustrated in Fig. 2.

R&R Module. The primary function of the R&R Module is to rotate and reflect the crystal to a
standardized crystal position in space. In the fractional coordinate system, the O(3) group trans-
formations applied to a crystal affect only the lattice matrix L, while fractional coordinates remain
invariant, making it convenient for the R&R module to perform rotation and reflection operations
on the crystal data. Therefore, R&R module adopts the fractional coordinate system to represent the
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crystal M = (A,F,L). This choice simplifies the implementation of the R&R module. Specifi-
cally, the application of O(3)-group transformations is achieved by applying polar decomposition
as follows.

Proposition 3.1 (Polar Decomposition (Hall & Hall, 2013; Higham, 1986; Jiao et al., 2024).) An
invertible matrix L ∈ R3×3 can be uniquely decomposed into L = Q exp(S), where Q ∈ R3×3

is an orthogonal matrix, S ∈ R3×3 is a symmetric matrix and exp(S) =
∑∞

n=0
Sn

n! defines the
exponential mapping of S.

Building on the above proposition, it is evident that for a crystal M = (A,F,L), the invertible
lattice matrix L can be uniquely represented by a symmetric matrix S. By defining H = exp(S),
the lattice matrix L can also be uniquely represented by a symmetric matrix denoted as H, i.e.
L = QH. Furthermore, H remains invariant with the O(3) group transformation.

Proof 3.1.1 Given the lattice matrices L and Q′L, where Q′ is an arbitrary O(3) group transfor-
mation, applying polar decomposition on both L and Q′L yields the following expressions:

L = QH (4)

Q′L = Q1H1. (5)
By combining Eq. 4 and 5, we can have the following equation:

Q′QH = Q1H1. (6)

Because Q′Q(Q′Q)T = Q′QQTQ′T = I, it follows that Q′Q is an orthogonal matrix. According
to the uniqueness of polar decomposition, we can have Q′Q = Q1, which implies Q1H = Q1H1.
If H1 ̸= H, this would violate the uniqueness property of polar decomposition. Therefore, we
conclude that H1 = H, indicating that H remains unaffected by the O(3) group transformation.

In essence, regardless of the O(3) group transformation applied to the crystal in space, the corre-
sponding H associated with L remains invariant. Consequently, H serves as a fixed standardized
crystal position for the crystal M = (A,F,L), allowing the crystal with different position to be con-
sistently rotated to a same position through polar decomposition. The concept of the standardized
crystal position can be formally stated as the following proposition :

Proposition 3.2 (Standardized Crystal Position.) By performing polar decomposition on the lattice
matrix L = QH, the standardized crystal position H is obtained. When an arbitrary O(3) group
transformation Q′ is applied to a crystal structure, H remains unchanged.

Therefore, the R&R Module directly applies polar decomposition to the lattice matrix L formulated
as:

fp(M) = (A,F,H), (7)
where fp(M) represents the application of polar decomposition to the lattice matrix L of M.

As shown in Fig. 2, the crystal (A,F,H) is passed to the subsequent crystal graph construction mod-
ule for further processing. The orthogonal matrix Q obtained during this decomposition is passed
to the reverse R&R module, ensuring the equivariant transformation of the output tensor proper-
ties. Our proposed R&R module based on polar decomposition allows the input crystal data to be
transformed into a standardized spatial position that is invariant under O(3) space group transfor-
mations. With this particular module, the equivariance can be captured, meaning that the subsequent
components of GeoCTP are no longer required to account for equivariance.

Crystal Graph Construction. To enable networks to handle such infinite crystal structures
(A,F,H), it is typically necessary to employ graph construction methods that represent the in-
teractions between infinite crystal structures and atoms using finite graph data. Here, we use the
crystal graph construction from Yan et al. (2024a;b) to describe the structure and relationships
within crystals. Specifically, we first convert the fractional coordinate system (A,F,H) into the
Cartesian coordinate system (A,X,H) as introduced in Sec. 2. We assume that the output crys-
tal graph is represented as G(V, E), V denotes the set of nodes vi in the crystal graph, where
each node vi contains atomic features vi = (ai, p̂i). E represents the set of edges denoted as
eij , which are typically constructed based on the Euclidean distance dij between nodes vi and
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vj . When the Euclidean distance dij between nodes vi and vj is less than a given radius R,
i.e. dij = ||pj + k1l1 + k2l2 + k3l3 − pi||2 ≤ R, an edge eij will be built with edge feature
eij = pj + k1l1 + k2l2 + k3l3 − pi. Here, R is established based on the distance to the k-th
nearest neighbor, and different values of k = [k1, k2, k3] ∈ Z3 represent different edges between
nodes vi and vj . Since there are no equivariance requirements for subsequent models, any other
graph construction methods can be used to replace this part, such as Wang et al. (2024a); Yan et al.
(2024a).

Node and Edge Feature Embedding. Building on previous work (Xie & Grossman, 2018; Yan
et al., 2024b;a), node features ai are embedded into a 92-dimensional CGCNN feature vector fi.
Edge features eij are decomposed into their magnitude ||eij ||2 and a normalized direction vector
êij . The magnitude is further mapped to a term similar to potential energy, −c/||eij ||2, through the
application of a radial basis function (RBF) kernel for encoding (Lin et al., 2023). Subsequently, eij
are embedded into feature vector fe

ij .

Prediction Module. Since the R&R module is responsible for preserving equivariance, any pre-
dictive network can serve as the Prediction module, such as those proposed by Yan et al. (2024a);
Taniai et al. (2024); Yan et al. (2022); Lee et al. (2024); Wang et al. (2024a), among others. For
better performance, we select eComformer (Yan et al., 2024a), which has demonstrated excellent
performance in single-value property prediction tasks, as our Prediction module. A detailed expla-
nation of eComFormer can be found in Appendix A.1. Once processed through the stacked layers of
eComFormer, the node features are aggregated to generate the crystal’s global features as follows:

Gfinal =
1

n

∑
1≤i≤n

ffinal
i . (8)

Reverse R&R Module. The primary function of the Reverse R&R module is to generate the equiv-
ariant tensor property predictions based on the crystal global features from the Prediction module.
First, the Reverse R&R module transforms Gfinal into a tensor output, as follows:

ε = fMLP (G
final), (9)

εfinal = frp(ε,Q), (10)
where fMLP (·) represents a multilayer perceptron (MLP) and the operation reshaping dimension.
Next, frp(·) utilizes the orthogonal matrix Q obtained from the R&R Module to convert the tensor
output ε into its final equivariant form denoted as εfinal.

This conversion frp(·) for predicting the dielectric tensor can be expressed by:

εfinal = QεQT . (11)

For predicting the higher-order piezoelectric and elastic tensor, the conversion process becomes
more complex, seeing Appendix A.2 for more details.

4 RELATED WORK

GNN-Based Methods. CGCNN is a pioneering GNN model specifically designed for handling
crystal structures (Xie & Grossman, 2018). This model proposed to represent crystal structures as
multi-edge crystal graphs. It was applied to predict various single-value properties such as forma-
tion energy and band gap. Since then, several GNN methods have been developed to improve upon
CGCNN through exploring various network designs or leveraging prior knowledge (Chen et al.,
2019; Louis et al., 2020; Choudhary & DeCost, 2021; Das et al., 2023; Lin et al., 2023). These
GNN methods are primarily designed for single-value property prediction and do not address the
prediction of high-order tensor properties, such as dielectric or elastic tensors. Furthermore, they
lack the ability to preserve the equivariance required for accurate high-order tensor property predic-
tion. In contrast, recent studies attempted to ensure equivariance through specialized network archi-
tectures (Mao et al., 2024; Lou & Ganose, 2024; Heilman et al., 2024; Wen et al., 2024; Pakornchote
et al., 2023; Yan et al., 2024b; Zhong et al., 2023). These approaches generally employ harmonic
decomposition to achieve equivariance for tensor properties. Within these network architectures,
many operations are required, such as tensor products and combining irreducible representations.
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These processes significantly increase computational costs, especially when handling higher-order
data.

Transformer-Based Methods. Transformers, with their self-attention mechanism and parallel pro-
cessing capabilities, are particularly well-suited for predicting crystal material properties. Mat-
former (Yan et al., 2022), one of the earliest Transformer-based networks used for crystal material
property prediction, encoded crystal periodic patterns by using the geometric distances between
the same atoms in neighboring unit cells. This addressed the issue in earlier GNN-based meth-
ods, including CGCNN, MEGNet, GATGNN, and others, which neglected the periodic patterns of
infinite crystal structures. Subsequently, more advanced Transformer-based approaches were pro-
posed. Some methods, such as ComFormer (Yan et al., 2024a), CrystalFormer (Wang et al., 2024a),
and CrystalFormer (Taniai et al., 2024), typically incorporate either enhanced graph construction
techniques or physical priors, exhibiting impressive results in the prediction of single-value proper-
ties. Furthermore, DOSTransformer (Lee et al., 2024) is tailored for the density of states prediction,
utilizing prompt-guided multi-modal transformer architecture to achieve super performance. Never-
theless, these models are not directly applicable for accurate high-order tensor property prediction
due to their inability to capture the necessary equivariance.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Datasets. In this work, we evaluate the performance of GoeCTP on three key tensor property pre-
diction tasks: the second-order dielectric tensor, the third-order piezoelectric tensor, and the fourth-
order elastic tensor, respectively. The dataset for dielectric tensor and piezoelectric tensor is derived
from the data processed by Yan et al. (2024b), sourced from the JARVIS-DFT database. Similarly,
the dataset for elastic tensor is obtained from the dft 3d data within the JARVIS-DFT database1.
The statistical details of the datasets are presented in Table 1. Additionally, in the dielectric tensor
dataset, the dielectric tensor is a 3 × 3 symmetric matrix. Therefore, during prediction, we predict
6 elements of the matrix (see Appendix A.3 for details) and then reconstruct the entire 3 × 3 sym-
metric matrix. In the piezoelectric tensor dataset, the piezoelectric tensor is represented using Voigt
notation as a 3× 6 matrix, rather than a 3× 3× 3 third-order tensor (see Appendix A.3 for details).
we only predict the 3× 6 matrix. In the elastic tensor dataset, the elastic tensor is represented using
Voigt notation as a 6× 6 symmetric matrix, rather than a 3× 3× 3× 3 fourth-order tensor (Itin &
Hehl, 2013; Wen et al., 2024). Therefore, we predict the 6 × 6 matrix during usage (see Appendix
A.3 for details).

Dataset Sample size Fnorm Mean Fnorm STD Unit

Dielectric 4713 14.7 18.2 Unitless
Piezoelectric 4998 0.43 3.09 C/m2

Elastic 25110 306.4 238.4 GPa

Table 1: Dataset statistics.

Baseline Methods. we selected several state-of-the-art methods in the field of crystal tensor property
prediction, i.e. MEGNET (Chen et al., 2019; Morita et al., 2020), EGTNN (Zhong et al., 2023), and
GMTNet (Yan et al., 2024b), as baseline methods.

Evaluation Metrics. We followed the evaluation metrics defined by Yan et al. (2024b) to assess the
performance of the methods. The following metrics were employed: (1) Frobenius norm (Fnorm)
is used to measure the difference between the predicted tensor and the label tensor, which is the
square root of the sum of the squares of all elements in a tensor. Fnorm is widely used in various
regression tasks. (2) Error within threshold (EwT) is determined by the ratio of the Fnorm between
the predicted tensor and the ground truth tensor to the Fnorm of the ground truth tensor. This ratio
can be expressed as ||ypred − ylabel||F /||ylabel||F , where || · ||F is Fnorm, and ylabel and ypred
represent the ground truth and predicted values, respectively. For instance, EwT 25% indicates that
the proportion of predicted samples with this ratio is below 25%. Higher values of EwT signify

1https://pages.nist.gov/jarvis/databases/
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better prediction quality. In our experiments, we utilized several thresholds for EwT: EwT 25%,
EwT 10%, and EwT 5%.

Experimental Settings. The experiments were performed using an NVIDIA GeForce RTX 3090
GPU. For benchmarking, we directly utilized the codebases for MEGNET, ETGNN, and GMTNet
as provided by Yan et al. (2024b). For each property, the dataset is split into training, validation, and
test sets in an 8:1:1 ratio. During model training, Huber loss, AdamW (Loshchilov & Hutter, 2018),
a weight decay of 10−5, and polynomial learning rate decay were employed.

Since we observed some randomness in the results during the training process of the repeated di-
electric dataset experiments, we conducted 5 repeated experiments for each method and used the
average of the 5 experiment metrics as the final experimental results. The results of the 5 repeated
experiments can be found in the Appendix A.4.

5.2 EXPERIMENTAL RESULTS

Predicting Dielectric Tensors. The performance of various models in predicting the dielectric ten-
sor is summarized in Table 2. While GoeCTP and GMTNet show close results in terms of Fnorm
and EwT 25%, GoeCTP demonstrates higher values for EwT 10% and EwT 5%, with an improve-
ment of 5% in EwT 5% compared to GMTNet. This indicates that GoeCTP delivers higher-quality
predictions compared to GMTNet. Furthermore, as GoeCTP is designed to be a flexible framework,
we also evaluated its combination with other models, such as iComFormer (Yan et al., 2024a) and
CrystalFormer (Taniai et al., 2024). Detailed results of these combinations are provided in Appendix
A.4.

MEGNET ETGNN GMTNet GoeCTP (Ours)
Fnorm ↓ 3.71 3.40 3.28 3.23

EwT 25% ↑ 75.8% 82.6% 83.3% 83.2%
EwT 10% ↑ 38.9% 49.1% 56.0% 56.8%
EwT 5% ↑ 18.0% 25.3% 30.5% 35.5%

Table 2: Comparison of performance metrics between MEGNET, ETGNN, GMTNet, and GoeCTP
on the dielectric dataset.

Predicting Piezoelectric tensors. The experimental results for the elastic tensor dataset are shown
in Table 3. Similar to the experimental results on the dielectric tensors dataset, although the EwT
25% value of GoeCTP is not as good as GMTNet, it achieves optimal results on all other evaluation
metrics.

MEGNET ETGNN GMTNet GoeCTP (Ours)
Fnorm ↓ 0.465 0.535 0.462 0.448

EwT 25% ↑ 43.9% 37.5% 45.7% 44.9%
EwT 10% ↑ 37.9% 22.8% 39.3% 43.1%
EwT 5% ↑ 27.1% 13.8% 35.7% 40.1%

Table 3: Comparison of performance metrics between MEGNET, ETGNN, GMTNet, and GoeCTP
on the piezoelectric dataset.

Predicting Elastic Tensors. Experimental results on the elastic tensor dataset are presented in Ta-
ble 4. GoeCTP demonstrated outstanding performance in predicting higher-order, complex tensors,
outperforming all baseline methods across every evaluation metric. Notably, it achieved the lowest
Fnorm of 107.11 and improved all EwT metrics by an average of 6% compared to GMTNet, empha-
sizing its general applicability in predicting diverse tensor properties in materials science. Further
details on the results of GoeCTP’s combination with other models can be found in Appendix A.4.

Verifying the O(3) Equivariance. To evaluate the effectiveness of GoeCTP, we conducted exper-
iments to verify the O(3) equivariance of tensor properties. Specifically, after training GoeCTP,
we extracted its Prediction module (i.e., eComFormer) for comparative testing on two different test
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MEGNET ETGNN GMTNet GoeCTP (Ours)
Fnorm ↓ 143.86 123.64 117.62 107.11

EwT 25% ↑ 23.6% 32.0% 36.0% 42.5%
EwT 10% ↑ 3.0% 3.8% 7.6% 15.3%
EwT 5% ↑ 0.5% 0.5% 2.0% 7.2%

Table 4: Comparison of performance metrics between MEGNET, ETGNN, GMTNet, and GoeCTP
on the elastic dataset.

sets (original test set and augmented test set). All crystals in the original test set were adjusted to
the standardized crystal position, while the augmented test set was generated by applying arbitrary
O(3) group transformations to all crystals in the original test set. The method for generating the
corresponding orthogonal matrices is from Heiberger (1978). We then evaluated both the Prediction
module (eComFormer) and GoeCTP on these two datasets and compared the performance metrics.

The results on the dielectric tensor dataset are shown in Table 5. GoeCTP performed equally well on
the augmented test set as on the original test set, indicating that it maintains strong O(3) equivariance
for tensor properties. In contrast, the performance of the eComFormer method significantly declined
on the augmented test set, with Fnorm decreasing by nearly 45%, demonstrating that it does not
meet the O(3) equivariance requirements for tensor properties. The results on the piezoelectric
tensor dataset are presented in Table 6. Similar to the dielectric tensor dataset, GoeCTP maintained
consistent performance between the augmented and original test sets. In contrast, the eComFormer
method exhibited a decline in performance on the augmented test set, indicating its inability to
fully satisfy the O(3) equivariance requirements for tensor properties. The results on the elastic
tensor dataset are shown in Table 7. Similar to the dielectric tensor dataset, the performance of
the eComFormer method significantly declined on the augmented test set, with Fnorm dropping by
nearly 29%. In contrast, GoeCTP’s performance remained unchanged, further demonstrating the
effectiveness of the GoeCTP method. Additionally, runtime comparisons between GoeCTP and
eComFormer on the test set showed that GoeCTP introduced no significant increase in runtime.
This indicates that when integrated into single-value property prediction networks, GoeCTP incurs
almost no additional computational cost, enhancing its practicality without compromising efficiency.

eCom. (ori. data) eCom. (aug. data) GoeCTP (Ours) (ori. data) GoeCTP (Ours) (aug. data)

Fnorm ↓ 3.23 4.71 3.23 3.23
EwT 25% ↑ 83.2% 69.7% 83.2% 83.2%
EwT 10% ↑ 56.8% 42.7% 56.8% 56.8%
EwT 5% ↑ 35.5% 22.5% 35.5% 35.5%

Total Time (s) ↓ 26.03 26.01 26.23 26.18

Table 5: Ablation study for verifying the O(3) equivariance with dielectric dataset.

eCom. (ori. data) eCom. (aug. data) GoeCTP (Ours) (ori. data) GoeCTP (Ours) (aug. data)

Fnorm ↓ 0.448 0.496 0.448 0.448
EwT 25% ↑ 44.9% 44.3% 44.9% 44.9%
EwT 10% ↑ 43.1% 42.1% 43.1% 43.1%
EwT 5% ↑ 40.1% 38.3% 40.1% 40.1%

Total Time (s) ↓ 12.83 12.23 13.01 12.71

Table 6: Ablation study for verifying the O(3) equivariance with piezoelectric dataset.

Efficiency. The results presented in Table 8, Table 9, and Table 10 illustrate the running times for
GoeCTP and baseline methods. On the dielectric dataset, GoeCTP completed the entire training pro-
cess with only 38.2% of the time spent compared to GMTNet. On the piezoelectric dataset, GoeCTP
completed the entire training process with only 16.3% of the time spent compared to GMTNet. On
the elastic dataset, GoeCTP required less than 7.0% of the time spent by GMTNet to complete the
entire training process. To achieve O(3) equivariance for tensor properties, GMTNet’s network
architecture relies on irreducible representations and tensor operations, which considerably reduce
computational efficiency, especially for higher-order tensor property (elastic tensor) prediction tasks

9
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eCom. (ori. data) eCom. (aug. data) GoeCTP (Ours) (ori. data) GoeCTP (Ours) (aug. data)

Fnorm ↓ 107.11 138.45 107.11 107.11
EwT 25% ↑ 42.5% 25.9% 42.5% 42.5%
EwT 10% ↑ 15.3% 2.2% 15.3% 15.3%
EwT 5% ↑ 7.2% 0.2% 7.2% 7.2%

Total Time (s) ↓ 83.26 83.02 90.10 89.60

Table 7: Ablation study for verifying the O(3) equivariance with elastic dataset.

where the time cost of GMTNet increases sharply. In contrast, GoeCTP requires no special architec-
tural design for tensor property prediction tasks; it predicts tensor properties of varying orders using
only a MLP at the network’s output, ensuring both efficiency and scalability across different tensor
orders.

MEGNET ETGNN GMTNet GoeCTP (Ours)
Total Time (s) ↓ 663 1325 1611 616
Time/batch (s) ↓ 0.052 0.104 0.126 0.048

Table 8: Efficiency comparison on the dielectric dataset.

MEGNET ETGNN GMTNet GoeCTP (Ours)
Total Time (s) ↓ 843 1220 5771 938
Time/batch (s) ↓ 0.065 0.095 0.45 0.073

Table 9: Efficiency comparison on the piezoelectric dataset.

MEGNET ETGNN GMTNet GoeCTP (Ours)
Total Time (s) ↓ 2899 4448 > 36000 2422
Time/batch (s) ↓ 0.226 0.348 > 2.813 0.189

Table 10: Efficiency comparison on the elastic dataset.

6 CONCLUSION, LIMITATIONS, AND FUTURE WORKS

In this work, we propose a novel O(3)-equivariant framework GoeCTP for fast crystal tensor pre-
diction, which is a plug-and-play framework that can be integrated with any existing single-value
property prediction network, enabling them to predict tensor properties with almost no additional
computational cost. Based on predicting invariant tensor properties from standardized crystal posi-
tions and using an external module to ensure tensor equivariance, this approach has achieved state-
of-the-art performance and the highest efficiency in different widely used crystal tensor property
benchmark tests. The limitations of our current GoeCTP include (1) The performance of GoeCTP
is inherently dependent on the performance of the Prediction module. (2) Currently, GoeCTP is
specifically tailored for the prediction of tensor properties in crystalline materials and has not yet
been adapted for other material types. In future work, we intend to explore the following directions:
for (1), we aim to improve performance by integrating prior knowledge related to the independent
components of tensor properties across different crystal systems in Appendix A.3 (Further discus-
sion on the utilization of space group constraints on tensor properties can be found in Appendix
A.6); for (2), we plan to extend the framework to other domains, such as 3D point cloud research,
broadening its applicability. Seeing Appendix A.5 for more extensibility and limitations details.
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A APPENDIX

A.1 DETAILS OF ECOMFORMER

The eComFormer has demonstrated strong performance across a range of single-value property
prediction tasks (Yan et al., 2024a). It is built on an SO(3)-equivariant crystal graph representation,
where the interatomic distance vectors are employed to represent the edge features of the graph. The
model converts this crystal graph into embeddings and utilizes a transformer architecture, incorpo-
rating both a node-wise transformer layer and a node-wise equivariant updating layer, to extract rich
geometric information during the message-passing process.

concate

concate

hardmard

harmond

BN +

sigmoid

BN+

node-wise transformer

+

node-wise equivalent updating layer

Figure 3: The detailed architectures of the node-wise transformer layer and node-wise equivariant
updating layer, adapted from Yan et al. (2024a).

Specifically, the node-wise transformer layer is responsible for updating the node-invariant fea-
tures fi. This process utilizes the node features fi, neighboring node featuresfj , and edge fea-
tures fij to facilitate message passing from neighboring node j to the central node i, followed
by aggregation of all neighboring messages to update fi. The update mechanism is structured
similarly to a transformer. Fristly, the message from node j to node i is transformed into cor-
responding query qij = LNQ(fi), key kij = (LNK(fi)|LNK(fj)), and value feature vij =

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

(LNV (fi)|LNV (fj)|LNE(f
e
ij)), where LNQ(·), LNK(·), LNV (·), LNE(·) denote the linear trans-

formations, and | denote the concatenation. Then, the self-attention output is then computed as:

αij =
qij ◦ ξK(kij)√

dqij

,msgij = sigmoid(BN(αij)) ◦ ξV (υij), (12)

where ξK , ξV represent nonlinear transformations applied to key and value features, respectively,
and the operators ◦ denote the Hadamard product, ξmsg(·) refers to the batch normalization layer,
and

√
dqij

indicates the dimensionality of qij . Then, node feature fi is updated as follows,

msgi =
∑
j∈Ni

msgij ,f
new
i = ξmsg(fi +BN(msgi)), (13)

where ξmsg(·) denoting the softplus activation function.

The node-wise equivariant updating layer is designed to effectively capture geometric features by
incorporating node feature ai and edge feature ||eji||2 as inputs and stacking two tensor product (TP)
layers (Geiger & Smidt, 2022). It uses node feature f l

i and equivalent vector feature eji embedded
by corresponding spherical harmonics Y0(êji) = c0,Y1(êji) = c1∗ eji

||eji||2 ∈ R3 and Y2(êji) ∈ R5

to represent the input features. Gathering rotational information from neighboring nodes to the
central node i, the first TP layer is shown as

f l
i,0 = f l′

i +
1

|Ni|
∑
j∈Ni

TP0(f
l′

j ,Y0(êji)),f
l
i,λ =

1

|Ni|
∑
j∈Ni

TPλ(f
l′

j ,Yλ(êji)), λ ∈ {1, 2},

(14)
where f l′

i is linearly transformed from f l
i , |Ni| and TPλ represent the number of neighbors of node

i and TP layers with rotation order λ respectively. Then, to represent the invariant node features, the
second TP layer is written as

f l∗
i =

1

|Ni|
(
∑
j∈Ni

TP0(f
l
j,0,Y0(êji)) +

∑
j∈Ni

TP0(f
l
j,1,Y1(êji)) +

∑
j∈Ni

TP0(f
l
j,2,Y2(êji))),

(15)
stacking the two tensor product layers together using both linear and nonlinear transformations, the
output f l

i,updated is combined as

f l
i,updated = σequi(BN(f l∗

i )) + LNequi(f
l
i ), (16)

with σequi denoting a nonlinear transformation made up of two softplus layers with a linear layer
positioned between them. The detailed architectures of the node-wise transformer layer and node-
wise equivariant updating layer are shown in Fig. 3.

A.2 O(3) EQUIVARIANCE FOR CRYSTAL TENSOR PROPERTIES

The O(3) equivariance required for crystal tensor property prediction tasks differs from the O(3)
equivariance typically encountered in general molecular studies (Hoogeboom et al., 2022; Xu et al.,
2024; Song et al., 2024). In molecular studies, for a function f : (A,F,L) → y ∈ Rn, if it is
O(3) equivariant, then it satisfies f(A,F,QL) = Qf(A,F,L), where Q ∈ Rn×n is an arbitrary
orthogonal matrix. Here, the function f can be seen as the model.

However, in the prediction of crystal tensor properties, such as the dielectric tensor ε ∈ R3×3,
the requirements for O(3) equivariance differ. For a function f : (A,F,L) → ε, if it is O(3)
equivariant, it must satisfy f(A,F,QL) = Qf(A,F,L)QT . The specific reason for this difference
can be referenced in the previous work (Yan et al., 2024b), and is rooted in the fact that the dielectric
tensor characterizes a material’s polarization response to an external electric field, describing the
relationship between the electric displacement D ∈ R3 and the applied electric field E ∈ R3 by
D = εE. When an O(3) group transformation Q is applied to the crystal structure, we have
D′ = ε′E′, where D′ = QD and E′ = QE. This results in the transformation of the dielectric
tensor under O(3) group transformation as ε′ = QεQT . This transformation principle extends
similarly to other crystal tensors (Yan et al., 2024b). For the piezoelectric tensor e ∈ R3×3×3, it is
defined as:

efinalijk =
∑
lmn

QilQjmQknelmn. (17)
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For the elastic tensor C ∈ R3×3×3×3, the conversion is given by:

Cfinal
ijkl =

3∑
m=1

3∑
n=1

3∑
p=1

3∑
q=1

QimQjnQkpQlqCmnpq, (18)

where the subscripts denote the specific positions of the elements within the tensor data.

A.3 TENSOR PROPERTIES SYMMETRY

Tensor properties, such as dielectric tensors and elastic tensors, describe the material’s response
to external physical fields (such as electric fields or mechanical stress). In materials with symme-
try, this response must adhere to the symmetry requirements of the material. As demonstrated by
Yan et al. (2024b), when the space group transformation R is applied to the corresponding crystal
structure M = (A,F,L),the crystal remains unchanged, i.e., (A,F,L) = (A,F,RL). Therefore,
the corresponding tensor properties also remain unchanged, i.e., ε = RεRT . Thus, crystal sym-
metry imposes strict constraints on the components of the tensor, leading to the simplification or
elimination of many components, reducing the number of independent components.

Crystal system Number of independent elements Dielectric tensor

Cubic 1 ε =

(
ε11 0 0
0 ε11 0
0 0 ε11

)

Tetragonal & Hexagonal & Trigonal 2 ε =

(
ε11 0 0
0 ε11 0
0 0 ε33

)

Orthorhombic 3 ε =

(
ε11 0 0
0 ε22 0
0 0 ε33

)

Monoclinic 4 ε =

(
ε11 0 ε13
0 ε22 0
ε13 0 ε33

)

Triclinic 6 ε =

(
ε11 ε12 ε13
ε12 ε22 ε23
ε13 ε23 ε33

)

Table 11: Number of independent components in the dielectric tensor for different crystal systems.

Independent components in the dielectric tensor. The 3× 3 dielectric tensor has a minimum of 1
and a maximum of 6 independent elements for various types of systems due to the crystal symmetry.
The number of independent components in the dielectric tensor for different crystal systems is shown
in Tabel 11 (Mao et al., 2024).

Voigt notation for elastic tensor. Similar to the dielectric tensor, the elastic tensor also has inde-
pendent elements for various types of systems due to the crystal symmetry. The elastic tensor has a
minimum of 3 and a maximum of 21 independent elements for various types of systems. Voigt nota-
tion is a compact way to represent these independent components of tensor properties (Itin & Hehl,
2013). According to the rules 11 → 1 ; 22 → 2 ; 33 → 3 ; 23, 32 → 4 ; 31, 13 → 5 ; 12, 21 → 6,
the elastic tensor in Voigt notation is a 6× 6 symmetric matrix (Wen et al., 2024; Ran et al., 2023):

C =


C1111 C1122 C1133 C1123 C1131 C1112

C1122 C2222 C2233 C2223 C2231 C2212

C1133 C2233 C3333 C3323 C3331 C3312

C1123 C2223 C3323 C2323 C2331 C2312

C1131 C2231 C3331 C2331 C3131 C3112

C1112 C2212 C3312 C2312 C3112 C1212

→


C11 C12 C13 C14 C15 C16

C12 C22 C23 C24 C25 C26

C13 C23 C33 C34 C35 C36

C14 C24 C34 C44 C45 C46

C15 C25 C35 C45 C55 C56

C16 C26 C36 C46 C56 C66

 (19)

The number of independent components in the elastic tensor for different crystal systems is shown
in Tabel 12 (partial data shown; for more details, refer to Wen et al. (2024); Ran et al. (2023)).

Voigt notation for piezoelectric tensor. The number of independent components in the piezoelec-
tric tensor for different crystal systems is shown in Tabel 13 (partial data shown; for more details,
refer to De Jong et al. (2015); Gorfman & Zhang (2024)).
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Crystal system Number of independent elements Elastic tensor

Cubic 3 C =


C11 C12 C12 0 0 0
C12 C11 C12 0 0 0
C12 C12 C11 0 0 0
0 0 0 C44 0 0
0 0 0 0 C44 0
0 0 0 0 0 C44



Tetragonal 6 C =


C11 C12 C13 0 0 0
C12 C11 C13 0 0 0
C13 C13 C33 0 0 0
0 0 0 C44 0 0
0 0 0 0 C44 0
0 0 0 0 0 C66



Orthorhombic 9 C =


C11 C12 C13 0 0 0
C12 C22 C23 0 0 0
C13 C23 C33 0 0 0
0 0 0 C44 0 0
0 0 0 0 C55 0
0 0 0 0 0 C66



Triclinic 21 C =


C11 C12 C13 C14 C15 C16

C12 C22 C23 C24 C25 C26

C13 C23 C33 C34 C35 C36

C14 C24 C34 C44 C45 C46

C15 C25 C35 C45 C55 C56

C16 C26 C36 C46 C56 C66


Table 12: Number of independent components in the elastic tensor for different crystal systems.

Crystal system point groups Number of independent elements Piezoelectric tensor

Trigonal 32 2 e =

(
e11 −e11 0 e14 0 0
0 0 0 0 −e14 −e11
0 0 0 0 0 0

)

Monoclinic 2 8 e =

(
0 0 0 e14 0 e16
e21 e22 e23 0 e25 0
0 0 0 e34 0 e36

)

Triclinic 1 18 e =

(
e11 e12 e13 e14 e15 e16
e21 e22 e23 e24 e25 e26
e31 e32 e33 e34 e35 e36

)

Table 13: Number of independent components in the piezoelectric tensor for different crystal sys-
tems.

A.4 EXPERIMENTAL DETAILS AND ADDITIONAL RESULTS

Hyperparameter settings of GoeCTP. When constructing the crystal graph, we used the 16th near-
est atom to determine the cutoff radius. For edge embeddings, we used an RBF kernel with c = 0.75
and values ranging from −4 to 0, which maps −c/||eij ||2 to a 512-dimensional vector. In the
dielectric and piezoelectric tensor prediction task, the 512-dimensional vector is mapped to a 128-
dimensional vector through a non-linear layer, while in the elastic tensor prediction, it is mapped to a
256-dimensional vector. For the prediction module, eComFormer, in the dielectric tensor prediction
task, we used 4 node-wise transformer layers and 1 node-wise equivariant updating layer, whereas
in the piezoelectric and elastic tensor prediction, we used 2 node-wise transformer layers and 1
node-wise equivariant updating layer. For both dielectric, piezoelectric, and elastic tensor tasks, the
learning rate was set to 0.001, with 200 epochs and a batch size of 64. In the Reverse R&R module,
for the dielectric tensor prediction task, the 128-dimensional vector features output by the predic-
tion module are mapped to a 6-dimensional vector through two non-linear layers, then reconstructed
into a 3 × 3 matrix and combined with the orthogonal matrix Q obtained from the R&R module
to achieve O(3) equivariant output. For the piezoelectric prediction task, the 18-dimensional vector
features output by the prediction module are reconstructed into a 3×6 matrix and combined with the
orthogonal matrix Q from the R&R module to achieve O(3) equivariant output. For the elastic ten-
sor prediction task, the 256-dimensional vector features output by the prediction module are mapped
to a 36-dimensional vector through two non-linear layers, then reconstructed into a 6×6 matrix and
combined with the orthogonal matrix Q from the R&R module to achieve O(3) equivariant output.
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1st 2nd 3rd 4th 5th mean

MEGNET

Fnorm ↓ 3.62 3.70 3.66 3.74 3.81 3.71
EwT 25% ↑ 76.0% 77.1% 75.6% 73.7% 76.4% 75.8 %
EwT 10% ↑ 41.2% 39.3% 38.2% 39.7% 36.3% 38.9%
EwT 5% ↑ 17.6% 16.8% 18.5% 19.1% 17.8% 18.0%

ETGNN

Fnorm ↓ 3.42 3.48 3.33 3.35 3.41 3.40
EwT 25% ↑ 82.1% 81.7% 83.4% 82.6% 83.2% 82.6 %
EwT 10% ↑ 46.9% 47.8% 50.7% 49.4% 50.5% 49.1%
EwT 5% ↑ 22.3% 26.5% 27.1% 25.9% 24.6% 25.3%

GMTNet

Fnorm ↓ 2.98 3.64 3.23 3.16 3.39 3.28
EwT 25% ↑ 83.4% 81.3% 83.8% 84.5% 83.7% 83.3 %
EwT 10% ↑ 54.9% 56.2% 55.8% 56.2% 57.1% 56.0%
EwT 5% ↑ 31.2% 30.5% 28.8% 29.3% 32.7% 30.5%

GoeCTP (Ours)
Fnorm ↓ 3.33 3.29 3.36 3.25 2.92 3.23

EwT 25% ↑ 82.5% 83.4% 82.1% 83.9% 84.2% 83.2 %
EwT 10% ↑ 57.5% 53.9% 56.4% 56.7% 59.7% 56.8%
EwT 5% ↑ 36.9% 31.6% 37.1% 34.2% 37.8% 35.5%

Table 14: Comparison of 5 repeated experiments on dielectric dataset.

MEGNET ETGNN GMTNet GoeCTP (eCom.) GoeCTP (iCom.) GoeCTP (Crys.)
Fnorm ↓ 3.71 3.40 3.28 3.23 3.40 3.53

EwT 25% ↑ 75.8% 82.6% 83.3% 83.2% 81.7% 80.1%
EwT 10% ↑ 38.9% 49.1% 56.0% 56.8% 53.8% 52.9%
EwT 5% ↑ 18.0% 25.3% 30.5% 35.5% 32.3% 30.6%

Total Time (s) ↓ 663 1325 1611 616 535 645
Time/batch (s) ↓ 0.052 0.104 0.126 0.048 0.042 0.202

Table 15: Additional comparison of performance metrics on dielectric dataset.

Hyperparameter settings of GMTNet, ETGNN, and MEGNET. Following Yan et al. (2024b), we
trained GMTNet, ETGNN, and MEGNET for 200 epochs using Huber loss with a learning rate of
0.001 and Adam optimizer with 10−5 weight decay across all tasks. The same polynomial learning
rate decay scheduler is used in all experiments.

Additional results. Given the relatively small size of the dielectric tensor dataset, along with other
influencing factors, we observed some randomness in the results during repeated training runs, intro-
ducing noise into the outcome comparisons. To mitigate this effect and ensure the reliability of the
results, we conducted five independent trials for each method, using the average of the performance
metrics across these five trials as the final reported value. The detailed results from these repeated
experiments are presented in Table 14.

We assessed the performance of GoeCTP when combined with iComFormer (Yan et al., 2024a)
and CrystalFormer (Taniai et al., 2024) (denoted as GoeCTP (iCom.) for the combination) on both
the dielectric tensor and elastic tensor datasets. As presented in Table 15, on the dielectric tensor
dataset, although the prediction accuracy of GoeCTP (iCom.) and GoeCTP (Crys.) did not exceed
that of GoeCTP (eCom.), GoeCTP (iCom.) demonstrated slightly higher computational efficiency
compared to GoeCTP (eCom.). In contrast, as shown in Table 16, on the elastic tensor dataset,
GoeCTP (iCom.) and GoeCTP (Crys.) achieved superior prediction quality relative to GoeCTP
(eCom.), albeit with lower efficiency.
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MEGNET ETGNN GMTNet GoeCTP (eCom.) GoeCTP (iCom.) GoeCTP (Crys.)
Fnorm ↓ 143.86 123.64 117.62 107.11 102.80 107.44

EwT 25% ↑ 23.6% 32.0% 36.0% 42.5% 46.7% 43.5%
EwT 10% ↑ 3.0% 3.8% 7.6% 15.3% 18.6% 15.8%
EwT 5% ↑ 0.5% 0.5% 2.0% 7.2% 8.2% 7.9%

Total Time (s) ↓ 2899 4448 > 36000 2422 4035 7891
Time/batch (s) ↓ 0.226 0.348 > 2.813 0.189 0.315 0.616

Table 16: Additional comparison of performance metrics on elastic dataset.

A.5 THE EXTENSIBILITY AND LIMITATIONS OF OUR METHOD

limitations. (1)As discussed in the main text, GoeCTP is a plug-and-play O(3)-equivariant frame-
work designed to enhance the backbone network’s ability to achieve equivariant predictions. Conse-
quently, the performance of our method is inherently dependent on the capabilities of the backbone
network. If the backbone lacks sufficient predictive power, the combined framework may not fully
surpass the state-of-the-art tensor prediction networks in all evaluation metrics. For instance, as
shown in Table 15, when our framework is integrated with CrystalFormer (Taniai et al., 2024), al-
though the computational speed significantly exceeds that of GMTNet, the Fnorm, EwT 25%, and
EwT 10% values are lower than those achieved by GMTNet.

(2)As demonstrated in Higham (1986) and Proposition 3.1, polar decomposition applied to a 3 × 3
invertible matrix L produces a unique 3 × 3 orthogonal matrix Q. For 3D crystal structures, the
lattice matrix L is always full-rank (i.e. invertible), therefore, ensuring the applicability of our
method to 3D crystal systems. However, for certain special cases, such as 2D crystals with single-
layer structures (Novoselov et al., 2005; Sherrell et al., 2022), the rank of the lattice matrix L may be
less than 3. In these scenarios, directly applying polar decomposition may not yield an unique 3× 3
orthogonal matrix Q and an unique standardized crystal position. H. This limitation could cause
our method to fail, as crystals with different spatial orientations cannot be consistently adjusted to
a unique standardized position, thereby preventing the method from achieving the desired O(3)-
equivariance.

Extensibility. For the extensibility of our proposed method, a natural extension would be to adapt
it for use with 3D point cloud systems, such as 3D molecular systems. The ability of our method
to directly transmit rotational information renders it particularly effective for specialized equivariant
tasks. For instance, in equivariant 3D molecular generation tasks, our approach can directly transfer
equivariant information from time step 0 to time step T , bypassing multiple denoising networks
(Hoogeboom et al., 2022). This is previous equivariant techniques such as equivariant network
(Satorras et al., 2021) and frame averaging (Puny et al., 2022; Lin et al., 2024) cannot achieve.
Specifically, a molecule in 3D space can be represented as M = (A,X), where A ∈ Rda×n

denotes da-dimensional atom features for n atoms in the molecular, and X ∈ R3×n contains the 3D
coordinates of these n atoms. To extend our method, polar decomposition would be applied to the
coordinate matrix, such that X = Q exp(S). Then, the rotational information Q can be transferred
to the output of the network to complete the equivariant task. As demonstrated in Higham (1986), if
the coordinate matrix is full-rank, the polar decomposition is unique, enabling a seamless extension
of our method to 3D molecular systems. However, there are special cases where this approach may
fail. For example, in a molecule composed of three atoms all lying within the same plane, the
coordinate matrix X may not be full-rank (e.g., when all atomic coordinates lie on a plane passing
through the origin). This is similar to the scenario where our method is applied to 2D crystals,
where directly applying polar decomposition may not yield a unique 3 × 3 orthogonal matrix Q
and a unique standardized position H. Additionally, since proposed framework operates externally
to the network and does not participate in actual training, it may potentially assist large language
models in achieving equivariant prediction tasks.

A.6 HOW TO FURTHER UTILIZE THE TENSOR PROPERTIES SYMMETRY

In this section, we will use the dielectric tensor as an example to briefly discuss how to further utilize
the symmetry of tensor properties.
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Utilizing symmetry constraints for zero elements. We first present an example of GoeCTP pre-
diction results, as shown in Fig. 17. It can be observed that, within a certain margin of error, our
results are relatively consistent with the constraints.

Label Prediction Cubic dielectric tensor(
2.258 0 0
0 2.258 0
0 0 2.258

) (
2.252 0.016 0.008
0.016 2.230 0.007
0.008 0.007 2.262

)
ε =

(
ε11 0 0
0 ε11 0
0 0 ε11

)

Table 17: An example of GoeCTP prediction results

For a dielectric tensor, using 1% of the average value of non-zero elements in the labels as a thresh-
old, we judge whether the prediction for a zero element was successful. The results are as shown in
Fig. 18.

Crystal system Cubic Tetragonal Hexagonal-Trigonal Orthorhombic Monoclinic

Success rate 88.3% 86.6% 84.5% 84.5% 75.7%

Table 18: The GoeCTP results of predicting symmetry-constrained zero-valued dielectric tensor
elements.

It can be observed that our method successfully predicts most zero elements, but it is not perfect.
Since our advantage lies in transferring equivariance through an external framework, there are no
restrictions on the model itself. Therefore, to achieve a higher success rate for zero elements, we
added a ReLU activation function to the output layer of the network to improve the success rate (this
applies only to cases where tensor elements are greater than or equal to zero; for other cases, specific
activation functions need to be designed, such as ReLU(x− 0.01)− ReLU(−x)). The results after
retraining GeoCTP are as follows:

Label Prediction Cubic dielectric tensor(
2.258 0 0
0 2.258 0
0 0 2.258

) (
2.237 0.000 0.000
0.000 2.283 0.000
0.000 0.000 2.228

)
ε =

(
ε11 0 0
0 ε11 0
0 0 ε11

)

Table 19: An example of GoeCTP (ReLU) prediction results

Crystal system Cubic Tetragonal Hexagonal-Trigonal Orthorhombic Monoclinic

Success rate 100% 100% 87.2% 100% 100%

Table 20: The GoeCTP (ReLU) results of predicting symmetry-constrained zero-valued dielectric
tensor elements.

GoeCTP GoeCTP(relu)

Fnorm ↓ 3.23 3.26
EwT 25% ↑ 83.2% 82.6%
EwT 10% ↑ 56.8% 58.4%
EwT 5% ↑ 35.5% 36.3%

Table 21: Predictive performance comparisons between GoeCTP and GoeCTP (ReLU) on the di-
electric dataset.

This simple modification allows our method to more accurately predict the zero elements in dielec-
tric tensors caused by the space group.

Utilizing symmetry constraints for non-zero elements. The example of utilizing symmetry con-
straints for zero elements is a simple illustration; when the space group of the input crystal is known,
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the prior knowledge in Appendix A.3 can be used to ensure that the network output fully obeys the
constraints of tensor properties. For instance, the mask from Table 11 can be applied to weight
the network output, ensuring 100% compliance with the constraints. This was not experimentally
demonstrated in our current work, but we plan to explore related studies in future work.

20


	Introduction
	Preliminaries and problem statement
	Preliminaries
	Problem statement

	Methodology
	The Rationale of Our Framework
	Our Proposed Framework: GoeCTP

	Related work
	Experiments
	Experimental setup
	Experimental Results

	Conclusion, limitations, and future works
	Appendix
	Details of eComFormer
	O(3) equivariance for crystal tensor properties
	Tensor properties symmetry
	Experimental details and additional results
	The extensibility and limitations of our method
	How to further utilize the tensor properties symmetry


