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ABSTRACT

The scarcity of labeled data is a long-standing challenge for cross-domain machine
learning tasks. This paper leverages the existing dataset (i.e., source) to augment
new samples that are close to the dataset of interest (i.e., target). To relieve the
need to learn a metric on the feature-label space, we lift both datasets to the space
of probability distributions on the feature-Gaussian manifold, and then develop a
gradient flow that minimizes the maximum mean discrepancy loss. To perform the
gradient flow of distributions on the curved feature-Gaussian space, we unravel the
Riemannian structure of the space and compute explicitly the Riemannian gradient
of the loss function induced by the optimal transport metric. For practical purposes,
we also propose a discretized flow, and provide conditional results guaranteeing
the global convergence of the flow to the optimum. We illustrate the results of our
proposed gradient flow method in several real-world datasets.

1 INTRODUCTION

A major challenge facing machine learning and data science is the lack of labeled data. A popular
approach is developing learning methods that can interpolate, adapt, or transfer knowledge across
datasets and domains. Some well-known methods for these tasks are domain adaptation (Ben-
David et al., 2007; Mansour et al., 2009; Courty et al., 2017; Damodaran et al., 2018; Gong et al.,
2012; Taigman et al., 2016), transfer learning (Long et al., 2017; Pan & Yang, 2010; Zamir et al.,
2018), and meta-learning (Finn et al., 2017; Khodak et al., 2019). Recently, these methods have
produced promising results for important tasks in autonomous driving and robotics (Wang et al.,
2018; Bousmalis et al., 2018).

A straightforward remedy to the lack of data is to devise mechanisms to synthesize new sensible data
samples, particularly in the target domain. In this paper, we consider a specific setup in which we
have access to labelled data samples generated from both the source and the target domain. More
concretely, we consider a covariate space X = Rm and a categorical label space Y . We are given
a source domain dataset consisting of N samples (xi, yi) ∈ X × Y for i = 1, . . . , N , and a target
domain dataset of M samples (x̄j , ȳj) ∈ X × Y for j = 1, . . . ,M . We consider the situation where
M is not large enough, and the target data is scarce. The ultimate goal of this paper is to generate
new samples in the target domain, and we aim to create new samples whose distribution is as close as
possible to the unknown distribution that governs the target domain.

We here adopt a gradient flow method to synthesize new, unseen data samples. Because we have
access to the source domain samples, it is possible to flow each source sample towards the target data
in order to minimize a certain loss function. If the loss function is chosen to reflect the dissimilarity
between distributions, and if the flow is properly designed to converge, then the terminal product
of the flow will provide us with new samples that can sufficiently approximate the data-generating
distribution of the target domain. As a consequence, using gradient flows is a sensible approach to
synthesize target domain samples.

Unfortunately, formulating a gradient flow algorithm for labelled data with categorical set Y is
problematic. Indeed, there is no clear metric structure on Y in order to define the topological
neighborhood, this in turn leads to the difficulty of forming the gradients with respect to the categorical
component. To overcome this difficulty, a gradient flow on the dataset space was recently proposed
in Alvarez-Melis & Fusi (2021) by leveraging a new notion of distance between datasets in Alvarez-
Melis & Fusi (2020); Courty et al. (2017); Damodaran et al. (2018). The main idea behind this
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approach is to reparametrize the categorical space Y using the conditional distribution of the features,
which is assumed to be Gaussian, and then construct a gradient flow on the feature-Gaussian space.
Nevertheless, the theoretical analysis in Alvarez-Melis & Fusi (2021) focuses solely on the gradients
with respect to the feature, and there is no derivation of the flow with respect to the Gaussian
component. In fact, the space of Gaussian distributions is not a (flat) vector space, and extracting
gradient information depends on the choice of the metric imposed on this Gaussian space.

Contributions. We study in this paper a gradient flow approach to synthesize new labelled samples
related to the target domain. To construct this flow, we consider the space of probability distributions
on the feature-Gaussian manifold, and we are metrizing this space with an optimal transport distance.
We summarize the contributions of this paper as follows.

• We study in details the Riemannian structure of the feature-Gaussian manifold in Section 3.1, as
well as the Riemannian structure of the space of probability measures supported on this manifold
in Section 3.2.

• We consider a gradient flow that minimizes the squared maximum mean discrepancy (MMD) loss
function to the target distribution. We describe explicitly the (Riemannian) gradient of the squared
MMD in Lemma 4.1, and we provide a partial differential equation describing the evolution of the
gradient flow that follows the (Riemannian) steepest descent direction.

• We propose two discretization schemes to approximate the continuous gradient flow equation: an
Euler scheme in Section 4.1 and an Euler scheme with noise in Section 4.2. We provide conditions
guaranteeing the global convergence of our gradient flows to the optimum in both continuous and
discretized schemes.

Our gradient flows minimize the MMD loss function, thus it belongs to the family of MMD gradient
flows that was pioneered in Mroueh et al. (2019) and Arbel et al. (2019), and further extended
in Mroueh & Nguyen (2021). The MMD function compares two distributions via their kernel mean
embeddings on a flat reproducing kernel Hilbert space (RKHS). In contrast to the Kullback-Leibler
divergence flow, the MMD flow can employ a sample approximation for the target distribution (Liu,
2017). Further, the squared MMD possesses unbiased sample gradients (Bińkowski et al., 2018;
Bellemare et al., 2017). However, existing literature on MMD flows focus on distributions on (flat)
Euclidean spaces. The flow developed in our paper here is for distributions on the (curved) Riemannian
feature-Gaussian space. Moreover, our approach is distinctive from the flow in Alvarez-Melis & Fusi
(2021) because the flow therein does not consider the gradient in the Gaussian component. Here, we
impose a specific metric on the Gaussian component, and we compute explicitly the (Riemannian)
gradient of the MMD loss function with respect to this metric to formulate our flow.

Generating new data samples is particularly useful when we have to train classifiers with limited
labelled target data. The numerical experiments in Section 5 will demonstrate that our gradient flows
on the feature-Gaussian manifold can effectively augment the target data in the few-shot learning
setting, and thus can significantly boost the accuracy in the classification task.

Other related works. Nonparametric gradient flows using the 2-Wasserstein distance between
distributions are investigated in (Ambrosio et al., 2008; Jordan et al., 1998; Otto, 2001; Villani, 2008;
Santambrogio, 2015; 2017; Frogner & Poggio, 2020; Kolouri et al., 2020), but only for distributions
on Euclidean spaces and for different loss functions. Related nonparametric gradient flows with
other metrics include Sliced-Wasserstein Descent (Liutkus et al., 2019), Stein Descent (Liu, 2017;
Liu & Wang, 2016; Duncan et al., 2019), and Sobolev Descent (Mroueh et al., 2019), however, they
also consider only distributions on Euclidean spaces. In particular, (Liu, 2017; Duncan et al., 2019)
introduce Riemannian structures for the Stein geometry on flat spaces, while ours is for an optimal
transport metric on a curved space. On the other hand, related parametric flows for training generative
adversarial networks have been studied in (Bottou et al., 2017; Chizat & Bach, 2018; Chen & Li,
2018; Arbel et al., 2020; Chizat, 2020; Mroueh & Nguyen, 2021).

Notations. We use Sn to denote the set of n×n real and symmetric matrices, and Sn++ ⊂ Sn consists
of all positive definite matrices. For A ∈ Sn, tr(A) :=

∑
iAii. We use 〈·, ·〉 and ‖ · ‖2 to denote the

standard inner product and norm on Euclidean spaces. Let P(X) be the collection of all probability
distributions with finite second moment on metric space X . If ϕ : X → Y is a Borel map and
ν ∈ P(X), then the push-forward ϕ#ν is the distribution on Y given by ϕ#ν(E) = ν(ϕ−1(E)) for
all Borel sets E ⊂ Y . For a function f of the continuous time variable t, ft denotes the value of f at t
while ∂tf denotes the standard derivative of f w.r.t. t. Also, δz denotes the Dirac delta measure at z.
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2 LABELLED DATA SYNTHESIS VIA GRADIENT FLOWS OF LIFTED
DISTRIBUTIONS

In this section, we describe our approach to synthesize target domain samples using gradient flows. A
holistic view of our method is presented in Figure 1.

Figure 1: Schematic view of our approach: The source and target datasets are first lifted to distributions
ρ0 and % on the feature-Gaussian space (left box). We then run a gradient flow for T iterations to get
a terminal distribution ρT (middle). Atoms of ρT are projected to get labeled target samples (right).

In the first step, we would need to lift the feature-label space X × Y to a higher dimensional space
where a metric can be defined. Consider momentarily the source data samples (xi, yi)

N
i=1. Notice

that this data can be represented as an empirical distribution ν on X × Y . More precisely, we have
ν = N−1

∑N
i=1 δ(xi,yi). Because Y is discrete, the law of conditional probabilities allows us to

identify the conditional distribution νy of X|Y = y under ν. The lifting procedure is obtained
by employing a pre-determined mapping φ : X → Rn, and any categorical value y ∈ Y can
now be represented as an n-dimensional distribution φ#νy. Using this lifting, any source sample
(xi, yi) ∈ X ×Y is lifted to a point (xi, φ#νyi) ∈ X ×P(Rn) and the source dataset is representable
as an empirical distribution of the form N−1

∑N
i=1 δ(xi,φ#νyi )

.

The lifted representation of a categorical value y ∈ Y as an n-dimensional distribution φ#νy ∈ P(Rn)
is advantageous because P(Rn) is metrizable, for example, using the 2-Wasserstein distance. The
downside, unfortunately, is that P(Rn) is infinite dimensional, and encoding the datasets in this lifted
representation is not efficient. To resolve this issue, we assume that φ#νy is Gaussian for all y ∈ Y ,
and thus any distribution φ#νy can be characterized by the mean vector µy ∈ Rn and covariance
matrix Σy ∈ Sn++ defined as

µy =

∫
X
φ(x)νy(dx), Σy =

∫
X
φ(x)φ(x)>νy(dx)− µyµ>y ∀y ∈ Y.

In real-world settings, the conditional moments of φ(X)|Y are sufficiently different for y 6= y′, and
thus the representations using (µy,Σy) will unlikely lead to any loss of label information. With this
lifting, the source data thus can be represented as an empirical distribution ρ0 on Rm×Rn×Sn++ via

ρ0 = N−1
∑N

i=1
δ(xi,µyi ,Σyi ).

By an analogous construction to compute µ̄y and Σ̄y using the target data, the target domain data
(x̄j , ȳj)

M
j=1 can be represented as another empirical distribution

% = M−1
∑M

j=1
δ(x̄j ,µ̄ȳj ,Σ̄ȳj ).

Let us denote the shorthand Z = Rm × Rn × Sn++, then ρ0 and % are both probability measures on
Z . We refer to ρ0 and % as the feature-Gaussian representations of the source and target datasets.

We now consider the gradient flow associated with the optimization problem

min
ρ∈P(Z)

{
F(ρ) :=

1

2
MMD(ρ, %)2

}
under the initialization ρ = ρ0. The objective function F(ρ) quantifies how far an incumbent solution
ρ is from the target distribution %, measured using the MMD distance. In Sections 3 and 4, we will
provide the necessary ingredients to construct this flow.
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Suppose that after T iterations of the (discretized) gradient flow algorithm, we obtain a distribution
ρT ∈ P(Z) that is sufficiently close to %, i.e., F(ρT ) is close to zero. Then we can recover new target
samples by projecting the atoms of the distribution ρT to the locations on X × Y . This projection
can be achieved efficiently by solving a linear optimization problem, as suggested in Appendix B.
Remark 2.1 (Reduction of dimensions). If m = n and φ is the identity map, then our lifting
procedure coincides with that proposed in Alvarez-Melis & Fusi (2020). However, a large dimension
n is redundant, especially when the cardinality of Y is low. If n � m, then φ offers significant
reduction in the number of dimensions, and will speed up the gradient flow algorithms. In this paper,
we use φ as the t-SNE embedding. According to van der Maaten & Hinton (2008), t-SNE’s low-
dimensional embedded space forms a Student-t distribution, and SNE uses a Gaussian distribution.
Our proposed framework can be straightforwardly extended to elliptical distributions since the Bures
distance still has the same closed-form as for the Gaussian distributions (Gelbrich, 1990).

3 RIEMANNIAN GEOMETRY OF THE SPACES Z AND P(Z)

If we opt to measure the distance between two Gaussian distributions using the 2-Wasserstein metric,
then this choice would induce a natural distance d on the space Z = Rm × Rn × Sn++ prescribed as

d
(
(x1, µ1,Σ1), (x2, µ2,Σ2)

)
:=
[
‖x1 − x2‖22 + ‖µ1 − µ2‖22 + B(Σ1,Σ2)2

] 1
2 (3.1)

where B is the Bures metric on Sn++ given by B(Σ1,Σ2) :=
[
tr(Σ1 + Σ2 − 2[Σ

1
2
1 Σ2Σ

1
2
1 ]

1
2 )
] 1

2 .

As B is a metric on Sn+ (Bhatia et al., 2019, p.167), d is hence a product metric on Z . This section
serves two purposes: first, we study the non-Euclidean geometry of Z under the ground metric d.
Second, we investigate the Riemannian structure on P(Z), the space of all distributions supported
on Z and with finite second moment, that is induced by the optimal transport distance. These
Riemannian structures are required to define the Riemannian gradients of any loss functionals on
P(Z), and will play an important role in our development of the gradient flow for the squared MMD.

3.1 GEOMETRY OF Z

The space Z is not a linear vector space. In this section, we reveal the Riemannian structure on Z
associated to the ground metric d. As we shall see, Z is a curved space as its geodesics are not straight
lines and involve solutions to the Lyapunov equation. For any positive definite matrix Σ ∈ Sn++ and
any symmetric matrix V ∈ Sn, the Lyapunov equation

HΣ + ΣH = V (3.2)

has a unique solution H ∈ Sn (Bhatia, 1997, Theorem VII.2.1). Let LΣ[V ] denote this unique
solution H .

Riemannian metric. The space Sn++ is a Riemannian manifold with the Bures metric B as the
associated distance function, see Takatsu (2011, Proposition A). Since Z is the product of two
Euclidean spaces and Sn++, this gives rise to the following geometric structure for Z .
Proposition 3.1 (Geometry of Z). The space Z is a Riemannian manifold: at each point z =
(x, µ,Σ) ∈ Z , the tangent space is TzZ = Rm × Rn × Sn and the Riemannian metric is given by〈

(w1, v1, V1), (w2, v2, V2)
〉
z

:= 〈w1, w2〉+ 〈v1, v2〉+ 〈V1, V2〉Σ (3.3)

for two tangent vectors (w1, v1, V1) and (w2, v2, V2) in Rm × Rn × Sn, where 〈V1, V2〉Σ :=

tr
(

LΣ[V1] Σ LΣ[V2]
)

. Moreover, the distance function corresponding to this Riemannian metric
coincides with the distance d given by (3.1).

The proofs of Proposition 3.1 and all other results will be provided in the Appendix A.

Geodesic and exponential map. As Z is a product Riemannian manifold, any geodesic in Z is of
the form (θ, γ,Γ) with θ, γ being the Euclidean geodesics (straight lines) and Γ being a geodesic in
the Riemannian manifold Sn++. More precisely, for each Σ ∈ Sn++ and each tangent vector V ∈ Sn,
the geodesic in the manifold Sn++ emanating from Σ with direction V is given by

Γ(t) = (I + tLΣ[V ])Σ(I + tLΣ[V ]) for t ∈ J∗, (3.4)
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where J∗ is the open interval about the origin given by J∗ = {t ∈ R : I + tLΣ[V ] ∈ Sn++} (Malagò
et al., 2018). As a consequence, for each point (x, µ,Σ) ∈ Z and each tangent vector (w, v, V ) ∈
Rm × Rn × Sn, the Riemannian exponential map in Z is given by

exp(x,µ,Σ)(t(w, v, V )) := (θ(t), γ(t),Γ(t)) for t ∈ J∗, (3.5)

where θ(t) := x + tw, γ(t) := µ + tv, and Γ(t) is defined by (3.4). Note that by its definition,
t 7→ exp(x,µ,Σ)(t(w, v, V )) is the geodesic in Z emanating from (x, µ,Σ) with direction (w, v, V ).

Gradient and divergence. Given the Riemannian metric (3.3), ones can define the corresponding
notion of gradient and divergence (Lee, 2003). For a differentiable function ϕ : Z → R, its gradient
∇dϕ(z) is the unique element in the tangent space Rm × Rn × Sn satisfying〈

∇dϕ(z), (w, v, V )
〉
z

= Dϕz(w, v, V ) for all (w, v, V ) ∈ Rm × Rn × Sn

with Dϕz(w, v, V ) denoting the standard directional derivative of ϕ at z in the direction (w, v, V ).
By exploiting the special form of 〈·, ·〉z in (3.3), we can compute ∇dϕ(z) explicitly:
Lemma 3.2 (Gradients). For a differentiable function ϕ : Z → R, we have for z = (x, µ,Σ) that

∇dϕ(z) =
(
∇xϕ(z), ∇µϕ(z), 2[∇Σϕ(z)]Σ + 2Σ[∇Σϕ(z)]

)
, (3.6)

where (∇x,∇µ,∇Σ) are the standard (Euclidean) gradients of the respective components.

The last component in formula (3.6) for∇dϕ reflects the curved geometry ofZ , and can be interpreted
as the Riemannian gradient of the function Σ 7→ ϕ(x, µ,Σ) w.r.t. the Bures distance B.

For a continuous vector field Φ : Z → Rm × Rn × Sn and a distribution ρ ∈ P(Z), the divergence
divd(ρΦ) is defined as the signed measure on Z satisfying the following integration by parts formula∫

Z
ϕ(z) divd(ρΦ)(dz) = −

∫
Z
〈Φ(z),∇dϕ(z)〉z ρ(dz)

for every differentiable function ϕ : Z → R with compact support. In case ρ has a density w.r.t. the
Riemannian volume form on Z , then this definition coincides with the standard divergence operator
induced by Riemannian metric (3.3).

3.2 OPTIMAL TRANSPORT AND RIEMANNIAN STRUCTURE ON P(Z)

To define a gradient low for probability distributions onZ , it is essential to have a concept of gradients
for functionals defined on P(Z). This requires a meaningful Riemannian structure on P(Z), and
here, we adopt a Riemannian structure generated by the optimal transport on P(Z) with ground cost
d2. The optimal transport metric W(ρ0, ρ1) between any two distributions ρ0, ρ1 ∈ P(Z) is defined
by formula (A.4) of Appendix A.1. As (Z, d) is a Riemannian manifold by Proposition 3.1, it follows
from the celebrated Benamou-Brenier formula (Benamou & Brenier, 2000) that W can be expressed
in terms of a dynamic formulation. Precisely,

W(ρ0, ρ1)2 = inf
(ρ,φ)∈A(ρ0, ρ1)

∫ 1

0

∫
Z
‖∇dφt(z)‖2z ρt(dz) dt, (3.7)

where A(ρ0, ρ1) is the collection of all pairs (ρ, φ) of curve ρ : [0, 1] → P(Z) with endpoints ρ0

and ρ1, and function φ : [0, 1]×Z → R that satisfies the continuity equation
∂tρ+ divd(ρt∇dφt) = 0 in the sense of distributions in (0, 1)×Z. (3.8)

Riemannian metric onP(Z). The formulation (3.7) gives rise to the following Riemannian structure
on P(Z) induced by distance W. First, the continuity equation enables us to identify a tangent vector
∂tρwith the divergence−divd(ρt∇dφt). Thus the tangent space ofP(Z) at a distribution ρ can be de-
fined as TρP(Z) :=

{
− divd(ρ∇dϕ) : ϕ is a differentiable function with compact support onZ

}
.

Second, we let gρ : TρP(Z)× TρP(Z) −→ R be the Riemannian metric tensor given by

gρ(ζ1, ζ2) :=

∫
Z
〈∇dϕ1(z),∇dϕ2(z)〉z ρ(dz) (3.9)

for ζ1 = −divd(ρ∇dϕ1) and ζ2 = −divd(ρ∇dϕ2). With this definition and due to (3.8), formula
(3.7) can be rewritten using the metric tensor as W(ρ0, ρ1)2 = inf(ρ,φ)∈A(ρ0, ρ1)

∫ 1

0
gρt(∂tρ, ∂tρ) dt.

The metric tensor (3.9) allows us to define a notion of Riemannian gradients for functionals on P(Z).
In the next section we shall compute this gradient explicitly for the squared MMD gradient flow.
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4 GRADIENT FLOW FOR MAXIMUM MEAN DISCREPANCY

As P(Z) is an infinite dimensional and curved space, many machine learning methods based on
finite dimensional or linear structure cannot be directly applied to this manifold. To circumvent this
problem, we use a positive definite kernel to map P(Z) to a RKHS and then perform our analysis
on it. Let k be a positive definite kernel on Z , and let H be the RKHS generated by k. The inner
product on H is denoted by 〈·, ·〉H, and the kernel mean embedding ρ ∈ P(Z) 7−→ mρ(·) ∈ H is
given by mρ(z) :=

∫
Z k(z, w) ρ(dw) for z in Z . The maximum mean discrepancy (MMD) (Gretton

et al., 2012) between ρ ∈ P(Z) and the target % is defined as the maximum, over all test functions
in the unit ball of H, of the mean difference between the two distributions. Moreover, it can be
expressed by MMD(ρ, %) = ‖mρ −m%‖H (see Appendix A). When k is characteristic, the kernel
mean embedding ρ 7→mρ is injective and therefore, MMD(ρ, %) = 0 if and only if ρ = %.

Consider the loss function F [ρ] := 1
2MMD(ρ, %)2 = 1

2‖mρ −m%‖2H. For each ρ, the Riemannian
gradient gradF [ρ] is defined as the unique element in TρP(Z) satisfying

gρ(gradF [ρ], ζ) =
d

dt

∣∣∣
t=0
F [ρt]

for every differentiable curve t 7→ ρt ∈ P(Z) passing through ρ at t = 0 with tangent vector
∂tρt|t=0 = ζ. By using the Riemannian metric tensor (3.9), we can compute explicitly this gradient.
Lemma 4.1 (Gradient formula). The Riemannian gradient of the functional F satisfies

gradF [ρ] = −divd (ρ∇d[mρ −m%]) .

The Riemannian gradient gradF on P(Z) depends not only on the gradient operator ∇d but
also on the divergence operator. Using Lemma 4.1, we can rewrite the gradient flow equation
∂tρt = −gradF [ρt] explicitly as

∂tρt = divd
(
ρt∇d[mρt −m%]

)
for t ≥ 0. (4.1)

The next result exhibits the rate at which F decreases its value along the flow.
Proposition 4.2 (Rate of decrease). Along the gradient flow t 7→ ρt ∈ P(Z) given by (4.1), we have

d

dt
F [ρt] = −

∫
Z

∥∥∇d[mρt −m%]
∥∥2

z
ρt(dz) for t ≥ 0.

Proposition 4.2 implies that d
dtF [ρt] = 0 if and only if ∇d[mρt −m%](z) = 0 for every z in the

support of the distribution ρt. As a consequence, the objective function will decrease its value
whenever the gradient ∇d[mρt −m%] is not identically zero.

4.1 RIEMANNIAN FORWARD EULER SCHEME

We now propose the Riemannian version of the forward Euler scheme to discretize the continuous
flow (4.1):

ρτ+1 = exp(sτΦτ )#ρ
τ with Φτ := −∇d[mρτ −m%], (4.2)

where sτ > 0 is the step size. Here, for a vector field Φ = (Φ1,Φ2,Φ3) : Z → Rm × Rn × Sn and
for ε ≥ 0, exp(εΦ) : Z → Z is the Riemannian exponential map induced by (3.5), i.e.,

expz(εΦ(z)) =
(
x+ εΦ1(z), µ+ εΦ2(z), (I + εLΣ[Φ3(z)])Σ(I + εLΣ[Φ3(z)])

)
for z = (x, µ,Σ) ∈ Z . Notice in the above equation that the input z affects simultaneously the
bases of the exponential map expz as well as the direction Φ(z). This map is the ε-perturbation
of the identity map along geodesics with directions Φ. When ρτ = N−1

∑N
i=1 δzτi is an empirical

distribution that is supported on (zτi )Ni=1, scheme (4.2) flows each particle zτi to the new position
zτ+1
i = expzτi (sτΦ(zτi )). The next lemma shows that Φτ is the steepest descent direction for F

w.r.t. the exponential map among all directions in the space L2(ρτ ), which is the collection of all
vector fields Φ on Z satisfying ‖Φ‖2L2(ρτ )

:=
∫
Z ‖Φ(z)‖2zρτ (dz) <∞.
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Algorithm 1 Discretized Gradient Flow Algorithm for Scheme (4.2)

Input: a source distribution ρ0 = N−1
∑N
i=1 δz0

i
, a target distribution % = M−1

∑M
j=1 δz̄j , a

number of iterations T , a sequence of step sizes sτ > 0 with τ = 0, 1, ..., T and a kernel k
Initialization: Compute Ψ̄(z) = M−1

∑M
j=1∇1

dk(z, z̄j) with∇1
dk(z, z̄j) is∇d of z 7→ k(z, z̄j)

repeat for each τ = 0, . . . , T − 1:
Compute Ψτ (z) = N−1

∑N
i=1∇1

dk(z, zτi )

for i = 1, . . . , N do zτ+1
i ← expzτi

(
sτ (Ψ̄−Ψτ )(zτi )

)
end for

Output: ρT = N−1
∑N
i=1 δzTi

Lemma 4.3 (Steepest descent direction). Fix a distribution ρτ ∈ P(Z). For any vector field
Φ : Z → Rm × Rn × Sn, we have

d

dε

∣∣∣
ε=0
F [exp(εΦ)#ρ

τ ] =

∫
Z
〈∇d[mρτ −m%](z),Φ(z)〉z ρτ (dz).

As a consequence, if we let Φ̂τ be the unit vector field (w.r.t. ‖ · ‖L2(ρτ ) norm) in the direction of
Φτ given in (4.2), then d

dε

∣∣
ε=0
F [exp(εΦ̂τ )#ρ

τ ] = −‖∇d[mρτ −m%]‖L2(ρτ ) and this is the fastest
decay rate among all unit directions Φ in L2(ρτ ).

It follows from Lemma 4.3 that the discrete scheme (4.2) satisfies the Riemannian gradient descent
property: if ∇d[mρτ −m%] is nonzero and if sτ > 0 is chosen sufficiently small, then F [ρτ+1] <
F [ρτ ]. In the Appendix (Proposition A.5), we quantify the amount of decrease of F at each iteration.
An iterative algorithm that implements the flow (4.2) is described in Algorithm 1.

Complexity. For each iteration τ in Algorithm 1, its complexity is O(N(Nm+ n3)) where m is
the feature’s dimension, n is the reduced dimension (n� m), N is the number of particles.

Convergence guarantees. We now study the (weak) convergence of the solution ρt of the continuous
gradient flow (4.1), as well as the discretized counterpart ρτ of flow (4.2), to the target distribution
%. When the kernel k is characteristic, this convergence is equivalent to limt→∞MMD(ρt, %) = 0.
Because the objective function F is not displacement convex (Arbel et al., 2019, Section 3.1),
the convergent theory for gradient flows in (Ambrosio et al., 2008) does not apply even in the
case of Euclidean spaces. In general, there is a possibility that MMD(ρt, %) does not decrease to
zero as t tends to infinity. In view of Proposition 4.2, this happens if the solutions ρt are trapped
inside the set

{
ρ :

∫
Z

∥∥∇d[mρ −m%]
∥∥2

z
ρ(dz) = 0

}
. For each distribution ρ on Z , we define

in Appendix A.2 a symmetric linear and positive operator Kρ : H → H having the property that
〈Kρ[mρ−m%],mρ−m%〉H =

∫
Z

∥∥∇d[mρ−m%]
∥∥2

z
ρ(dz) (see Lemma A.6 in the Appendix). We

further shows in Proposition A.8 that ρt globally converges in MMD if the minimum eigenvalue λt
of the operator Kρt satisfies an integrability condition.

4.2 NOISY RIEMANNIAN FORWARD EULER SCHEME

The analysis in Section 4.1 reveals that the gradient flows suffer from convergence issues if the
residual mρt − m% belongs to the null space of the operator Kρt . To resolve this, we employ
graduated optimization (Arbel et al., 2019; Chaudhari et al., 2017; Gulcehre et al., 2016; 2017; Hazan
et al., 2016) used for non-convex optimization in Euclidean spaces. Specifically, we modify algorithm
(4.2) by injecting Gaussian noise into the exponential map at each iteration τ to obtain

ρτ+1 = exp(sτΦτ )#ρ
τ,βτ with fβτ : (z, u) 7→ expz(βτu), ρτ,βτ := fβτ#(ρτ⊗g). (4.3)

Here g is a Gaussian measure with distribution NRm(0, 1)⊗NRn(0, 1)⊗NSn(0, 1) on the tangent
space and NSn(0, 1) denotes an n-by-n symmetric matrix whose upper triangular elements are
i.i.d. standard Gaussian random variables. When ρτ = N−1

∑N
i=1 δzτi , scheme (4.3) flows each

particle zτi first to zτ,βτi := expzτi (βτU) with noiseU ∼ g and then to zτ+1
i = expzτ,βτi

(sτΦ(zτ,βτi )).
Our next result extends Proposition 8 in (Arbel et al., 2019) for the standard quadratic cost on the
Euclidean space to the nonstandard cost function d2 on the curved Riemannian manifold Z++. It
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demonstrates that scheme (4.3) achieves the global minimum of F provided that k is a Lipschitz-
gradient kernel and both the noise level βτ and the step size sτ are well controlled. The proof of
Proposition 4.4 is given in Appendix A.2 and relies on arguments that are different from that of
(Arbel et al., 2019).
Proposition 4.4 (Objective value decay for noisy scheme). Suppose that k is a Lipschitz-gradient
kernel1 with constant L, and the noise level βτ satisfies

λβ2
τF [ρτ ] ≤

∫
Z
‖Φτ (z)‖2z ρτ,βτ (dz) (4.4)

for some constant λ > 0. Then for ρτ+1 obtained from scheme (4.3), we have

F [ρτ+1] ≤ F [ρ0] exp
(
− λ

∑τ

i=0
[si
(
1− 2Lsi

)
β2
i ]
)
.

In particular, F [ρτ ] tends to zero if the sequence
∑τ
i=0 si

(
1− 2Lsi

)
β2
i goes to positive infinity. For

an adaptive step size sτ ≤ 1/4L, this condition is met if, for example, βτ is chosen of the form
(τsτ )−

1
2 while still satisfying (4.4). The noise perturbs the direction of descent, whereas the step

size determines how far to move along this perturbed direction. The noise level needs to be adjusted
so that the gradient is not too blurred, but it does not necessarily decrease at each iteration. When
the incumbent distribution ρτ is close to a local optimum, it is helpful to increase the noise level to
escape the local optimum. We demonstrate in Lemma A.5 of the Appendix that any positive definite
kernel k with bounded Hessian w.r.t. distance d is a Lipschitz-gradient kernel. On the other hand, the
detailed algorithm of scheme (4.3) are provided in the Appendix B.

5 NUMERICAL EXPERIMENTS

We evaluate the proposed gradient flow on real-world datasets and then illustrate its application to
augment samples for dataset of interest in transfer learning where only a few samples in the dataset
of interest are available.

We consider four datasets: the MNIST (M), Fashion-MNIST (F) and the Kanji-MNIST (K) datasets,
along with the USPS (U) dataset. All images are resized to 20 × 20, thus the feature space is of
dimension m = 400. To satisfy the Gaussianity assumption of the conditional distributions, we apply
K-means clustering to each dataset, and subsampling a smaller dataset using the biggest cluster.

We use t-distributed stochastic neighbor embedding (tSNE) as our mapping φ from Rm to R2. To
compute the MMD distance using kernel embeddings, we use a tensor kernel on Z composed from
three standard Gaussian kernels corresponding for each component of the feature space R400, the
mean space R2 and the covariance matrix space S2

++. The kernel k is thus characteristic by (Szabó &
Sriperumbudur, 2018, Theorem 4). Our algorithms and experiments are implemented in PyTorch. All
the experiments are run on a machine with a NVIDIA Tesla V100 GPU and an Intel Xeon E5-2690
6-core v4 CPU. Codes and data are available in the supplementary file.

5.1 FLOWS BETWEEN DATASETS

In the first set of experiments, we examine the path travelled by each particle from the source domain
to the target domain. To this end, we fix a source-domain pair, then we sample randomly N = 200
images equally for 10 classes of the source domain, and M = 50 images equally for 10 classes of
the target domain. The results of our flows are depicted in Fig. 2. In each subfigure, each column
represents a snapshot of a certain time-step and the samples flow from the source (left) to the target
(right). The number of iterations T that is used to generate the results in Fig. 2 is capped at 140.

5.2 TRANSFER LEARNING

One application of the gradient flow approach is to alleviate the problem of insufficient labeled data
by augmenting the target dataset with new samples. In this experiment, we demonstrate how new
target domain samples obtained from our gradient flows can be used in a transfer learning setting.

1See Definition A.3 in the Appendix for the technical definition of a Lipschitz-gradient kernel
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time−−−−−−→
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M�K
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F�M

time−−−−−−→

K�M

time−−−−−−→

U�M

Figure 2: Sample path visualizations for different source-target domain combinations.

To this end, we fix a source domain, and pretrain a classifier P on this domain. This classifier is
using LeNet-5’s architecture. We also draw randomly N = 200 samples from the source domain
(equal size for each class) to form the source dataset (xi, yi)

200
i=1. Next, we pick a target domain and

draw randomly a few samples from this target domain: in 1-shot (resp. 5-shot) learning, only 1 image
(resp. 5 images) per class from the target domain is drawn to form the target dataset D = (x̄j , ȳj)

M
j=1.

We then perform a noisy gradient flow scheme (4.3) from the source dataset to the target dataset to
get 200 new samples ST = (xTi , y

T
i )200
i=1. With the target dataset D and new samples ST , we can

retrain the classifier P with 10 epochs with Adam optimizer and learning rate 2× 10−3. Similarly,
we can also train new networks from scratch using only D and ST . Finally, we test the classifiers on
the test set in the target domain. This process is replicated independently 10 times. We include more
details on implementation in Section B.5.

In Fig. 3, we present the accuracy of different transfer learning strategies using the new labelled
samples. D and D ∪ ST mean training a new classifier from scratch, whereas P means transferring
from the pretrained classifier. We observe a common trend that the addition of the new samples ST
always improves the accuracy of the classifiers. Both the 5-shot learning and 1-shot learning results
demonstrate similar relative order of accuracy among approaches. Moreover, the data augmentation
with ST leads to higher increase of accuracy for the 1-shot learning. We compare with Alvarez-Melis
& Fusi (2021) in transfer learning results and computation cost, see Section B.6.

Figure 3: Average target domain accuracy and error bars for transfer learning with one-shot (left) and
five-shot (right). Results are taken over 10 independent replications.

Concluding Remarks. This paper focuses on a gradient flow approach to generate new labelled data
samples in the target domain. To overcome the discrete nature of the label set, we represent datasets
as distributions on the feature-Gaussian space, and the flow is formulated to minimize an MMD loss
function under an optimal transport metric. Contrary to existing gradient flows on linear structure,
our flows are developed on the curved Riemannian manifold of Gaussian distributions. We provide
explicit formula for the (Riemannian) gradient of the MMD loss function, and examine in details the
flow equations and the convergence properties of both continuous and (noisy) discretized forms. The
numerical experiments demonstrate that our method can generate sensible labelled training data for
the target domain, and improve the classification accuracy in few-shot learning.

9
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The Appendix is organized into two parts. In Section A, we provide the proofs and further discussions
of the results in the main paper. Section B includes implementation details as well as additional nu-
merical results. All the models and data used to create the results in the paper are in the supplementary
file.

A PROOFS

A.1 PROOFS AND RESULTS RELATED TO SECTION 3

For Proposition 3.1. Recall that the Bures distance defined on Sn++ is

B(Σ1,Σ2) :=
[
tr(Σ1 + Σ2 − 2[Σ

1
2
1 Σ2Σ

1
2
1 ]

1
2 )
] 1

2 , (A.1)

and ∇dϕ(z) is the unique element in the tangent space Rm × Rn × Sn satisfying〈
∇dϕ(z), (w, v, V )

〉
z

= Dϕz(w, v, V ) for all (w, v, V ) ∈ Rm × Rn × Sn. (A.2)

The proof of Proposition 3.1 relies on the following result from (Takatsu, 2011, Proposition A) (see
also (Bhatia et al., 2019, Theorem 5) and (Malagò et al., 2018, Proposition 6)).
Proposition A.1. The space Sn++ is a Riemannian manifold with the following structures: at each
point Σ ∈ Sn++, the tangent space is TΣSn++ = Sn and the Riemannian metric is given by

〈X,Y 〉Σ := tr
(

LΣ[X] Σ LΣ[Y ]
)

=
1

2
〈LΣ[X], Y 〉 for X,Y ∈ Sn.

Moreover, the distance function corresponding to this Riemannian metric coincides with the Bures
distance B given by (A.1).

We are now ready to prove Proposition 3.1.

Proof of Proposition 3.1. As a consequence of Proposition A.1, Z is the product Riemannian man-
ifold with tangent space T(x,µ,Σ)Z = TxRm × TµRn × TΣSn++ and with the standard product
Riemmanian metric (3.3). The result then follows. We note that if we let D((x1, µ1,Σ1), (x2, µ2,Σ2))
denote the distance function corresponding to the Riemannian metric 〈·, ·〉z on Z , then its square
D((x1, µ1,Σ1), (x2, µ2,Σ2))2 is the sum of the square of the distance function w.r.t. standard metric
〈·, ·〉 on Rm, the square of the distance function w.r.t. standard metric 〈·, ·〉 on Rn, and the square
of the distance function w.r.t. metric 〈·, ·〉Σ on Sn++. As a result and by Proposition A.1, we have
D((x1, µ1,Σ1), (x2, µ2,Σ2))2 = ‖x1−x2‖22+‖µ1−µ2‖22+B(Σ1,Σ2)2. So, D is the same as d.

For Lemma 3.2

Proof of Lemma 3.2. Let us express∇dϕ(z) = (Φ1(z),Φ2(z),Φ3(z)) with Φ1(z) ∈ Rm, Φ2(z) ∈
Rn and Φ3(z) ∈ Sn. Then by using the definition of Riemannian metric 〈·, ·〉z in (3.3), we can
rewrite equation (A.2) as

〈Φ1(z), v〉+ 〈Φ2(z), w〉+ 〈1
2

LΣ[Φ3(z)], V 〉 = 〈∇ϕ(z), (v, w, V )〉.

This is equivalent to

〈Φ1(z), v〉+〈Φ2(z), w〉+〈1
2

LΣ[Φ3(z)], V 〉 = 〈∇xϕ(z), v〉+〈∇µϕ(z), w〉+〈∇Σϕ(z), V 〉, (A.3)

where ∇ϕ(z) =
(
∇xϕ(z),∇µϕ(z),∇Σϕ(z)

)
denotes the standard Euclidean gradient. Equation

(A.3) is obviously satisfied if Φ1(z) = ∇xϕ(z), Φ2(z) = ∇µϕ(z), and LΣ[Φ3(z)] = 2∇Σϕ(z). By
the definition of operator LΣ right after (3.2), the third identity is the same as Φ3(z) = 2[∇Σϕ(z)]Σ+
2Σ[∇Σϕ(z)]. Due to uniqueness of the gradient, we therefore infer that ∇dϕ(z) is given by the
formula:

∇dϕ(z) =
(
∇xϕ(z),∇µϕ(z), 2[∇Σϕ(z)]Σ + 2Σ[∇Σϕ(z)]

)
.

This completes the proof.
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In this paper, the optimal transport metric between any two distributions ρ0, ρ1 ∈ P(Z) is defined by

W(ρ0, ρ1)2 := inf
π∈Π(ρ0,ρ1)

∫∫
Z×Z

d(z0, z1)2 π(dz0,dz1), (A.4)

where Π(ρ0, ρ1) is the set of all probability distributions on Z × Z whose marginals are ρ0 and ρ1,
respectively.

A.2 PROOFS AND RESULTS RELATED TO SECTION 4

The maximum mean discrepancy (MMD) between a distribution ρ ∈ P(Z) and the target distribution
% is defined as

MMD(ρ, %) := sup
f∈H:‖f‖H≤1

{∫
Z
f(z) ρ(dz)−

∫
Z
f(z) %(dz)

}
.

It is well-known that the MMD admits the following closed-form formula (Gretton et al., 2012,
Lemmas 4 and 6).

Lemma A.2. We have MMD(ρ, %) = ‖mρ −m%‖H. As a consequence,

MMD(ρ, %)2 =

∫
Z

∫
Z
k(z, w)ρ(dz)ρ(dw)− 2

∫
Z
m%(z)ρ(dz) + ‖m%‖2H.

Proof of Lemma A.2. For any f ∈ H, we have f(z) = 〈f, k(·, z)〉H. Therefore,∫
Z
f(z) ρ(dz) =

〈
f,

∫
Z
k(·, z) ρ(dz)

〉
H

= 〈f,mρ〉H for all f ∈ H. (A.5)

It follows that MMD(ρ, %) = supf∈H:‖f‖H≤1〈f,mρ −m%〉H = ‖mρ −m%‖H. Using this closed-
form formula and identity (A.5), we also obtain

MMD(ρ, %)2 = ‖mρ −m%‖2H = 〈mρ,mρ〉H − 2〈mρ,m%〉H + 〈m%,m%〉H

=

∫
mρ(z)ρ(dz)− 2

∫
m%(z)ρ(dz) + ‖m%‖2H

=

∫∫
k(z, w)ρ(dz)ρ(dw)− 2

∫
m%(z)ρ(dz) + ‖m%‖2H.

This completes the proof.

For Lemma 4.1

Proof of Lemma 4.1. We recall that gradF [ρ] is defined as the unique element in TρP(Z) satisfying

gρ

(
gradF [ρ], ∂tρt|t=0

)
=

d

dt

∣∣∣
t=0
F [ρt]

for every differentiable curve t 7→ ρt ∈ P(Z) passing through ρ at t = 0. Let t 7→ ρt ∈ P(Z) be
such a curve. Then since ∂tρt|t=0 ∈ TρP(Z), we can write ∂tρt|t=0 = −divd(ρ∇dϕ) for some
differentiable function ϕ on Z . Then by using Lemma A.2 and k(z, w) = k(w, z) we have

d

dt

∣∣∣
t=0
F [ρt] =

1

2

d

dt

∣∣∣
t=0

[∫∫
k(z, w)ρt(dz)ρt(dw)− 2

∫
m%(z)ρt(dz)

]
=

1

2

∫∫
k(z, w)∂tρt|t=0(dz)ρ(dw) +

1

2

∫∫
k(z, w)∂tρt|t=0(dw)ρ(dz)

−
∫

m%(z) ∂tρt|t=0(dz)

= −
∫
Z

∫
Z
k(z, w)divd(ρ∇dϕ)(dz) ρ(dw) +

∫
Z
m%(z) divd(ρ∇dϕ)(dz).
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Let∇1
dk(z, w) denote the gradient∇d of the function z 7→ k(z, w. It then follows from the definition

of the divergence operator divd(ρ∇dϕ) at the end of Section 3.1 that

d

dt

∣∣∣
t=0
F [ρt] =

∫
Z

∫
Z
〈∇1

dk(z, w),∇dϕ(z)〉z ρ(dz)ρ(dw)−
∫
Z
〈∇dm%(z),∇dϕ(z)〉zρ(dz)

=

∫ [〈∫
∇1
dk(z, w) ρ(dw),∇dϕ(z)

〉
z

]
ρ(dz)−

∫
Z
〈∇dm%(z),∇dϕ(z)〉zρ(dz)

=

∫ [〈
∇d
∫
k(z, w) ρ(dw),∇dϕ(z)

〉
z

]
ρ(dz)−

∫
Z
〈∇dm%(z),∇dϕ(z)〉zρ(dz)

=

∫
Z
〈∇d[mρ −m%](z),∇dϕ(z)〉zρ(dz).

By the definition of the Riemannian metric tensor gρ given in (3.9) and due to ∂tρt|t=0 =
−divd(ρ∇dϕ), we thus obtain

d

dt

∣∣∣
t=0
F [ρt] = gρ

(
− divd

(
ρ∇d[mρ −m%]

)
,−divd(ρ∇dϕ)

)
= gρ

(
− divd

(
ρ∇d[mρ −m%]

)
, ∂tρt|t=0

)
.

Therefore, we infer that gradF [ρ] = −divd
(
ρ∇d[mρ −m%]

)
as desired.

For Proposition 4.2

Proof of Proposition 4.2. The proof is similar to that of Lemma 4.1 and with the same notation for
∇1
dk(z, w). Indeed, by the same computation at the beginning of the proof of Lemma 4.1 we have

d

dt
F [ρt] =

1

2

∫∫
k(z, w)∂tρt(dz)ρt(dw) +

1

2

∫∫
k(z, w)∂tρt(dw)ρt(dz)−

∫
m%(z) ∂tρt(dz)

=

∫∫
k(z, w)∂tρt(dz)ρt(dw)−

∫
m%(z) ∂tρt(dz).

This together with the gradient flow equation (4.1) gives

d

dt
F [ρt] =

∫
Z

∫
Z
k(z, w)divd

(
ρt∇d[mρt −m%]

)
(dz)ρt(dw)

−
∫
Z
m%(z) divd

(
ρt∇d[mρt −m%]

)
(dz).

Using the definition of the divergence operator divd at the end of Section 3.1, we further obtain

d

dt
F [ρt] = −

∫
Z

∫
Z
〈∇1

dk(z, w),∇d[mρt −m%](z)〉z ρt(dz)ρt(dw)

+

∫
Z
〈∇dm%(z),∇d[mρt −m%](z)〉zρt(dz)

= −
∫ [〈∫

∇1
dk(z, w) ρt(dw),∇d[mρt −m%](z)

〉
z

]
ρt(dz)

+

∫
Z
〈∇dm%(z),∇d[mρt −m%](z)〉zρt(dz)

= −
∫
Z
〈∇dmρt(z),∇d[mρt −m%](z)〉zρt(dz)

+

∫
Z
〈∇dm%(z),∇d[mρt −m%](z)〉zρt(dz)

= −
∫
Z
‖∇d[mρt −m%](z)‖2zρt(dz).

This yields the desired result.
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For Lemma 4.3

Proof of Lemma 4.3. From the formula for expz(εΦ(z)) given at the beginning of Section 4.1, we
observe that

d

dε

∣∣∣
ε=0

expz(εΦ(z)) =
(

Φ1(z),Φ2(z),LΣ[Φ3(z)] Σ + Σ LΣ[Φ3(z)]
)

=
(

Φ1(z),Φ2(z),Φ3(z)
)

= Φ(z), (A.6)

where the second equality is due to the definition of LΣ[V ] given at the beginning of Section 3.1.

We obtain from Lemma A.2 that
MMD(exp(εΦ)#ρ

τ , %)2

=

∫∫
k(z, w) exp(εΦ)#ρ

τ (dz) exp(εΦ)#ρ
τ (dw)− 2

∫
m%(z) exp(εΦ)#ρ

τ (dz) + ‖m%‖2H

=

∫∫
k
(

expz(εΦ(z)), expw(εΦ(w))
)
ρτ (dz)ρτ (dw)− 2

∫
m%

(
expz(εΦ(z))

)
ρτ (dz) + ‖m%‖2H.

Moreover, we have∫∫
d

dε

∣∣∣
ε=0

[
k(expz(εΦ(z)), expw(εΦ(w)))

]
ρτ (dz)ρτ (dw)

=

∫∫ {
d

dε

∣∣∣
ε=0

[
k(expz(εΦ(z)), w)

]
+

d

dε

∣∣∣
ε=0

[
k(z, expw(εΦ(w)))

]}
ρτ (dz)ρτ (dw)

=

∫
d

dε

∣∣∣
ε=0

[ ∫
k(expz(εΦ(z)), w)ρτ (dw)

]
ρτ (dz) +

∫
d

dε

∣∣∣
ε=0

[ ∫
k(z, expw(εΦ(w)))ρτ (dz)

]
ρτ (dw)

=

∫
d

dε

∣∣∣
ε=0

[
mρτ (expz(εΦ(z)))

]
ρτ (dz) +

∫
d

dε

∣∣∣
ε=0

[
mρτ (expw(εΦ(w)))

]
ρτ (dw)

= 2

∫
d

dε

∣∣∣
ε=0

[
mρτ (expz(εΦ(z)))

]
ρτ (dz).

Thus, it follows that
d

dε

∣∣∣
ε=0

MMD(exp(εΦ)#ρ
τ , %)2

= 2

∫
d

dε

∣∣∣
ε=0

[
mρτ (expz(εΦ(z)))

]
ρτ (dz)− 2

∫
d

dε

∣∣∣
ε=0

[
m%(expz(εΦ(z)))

]
ρτ (dz)

= 2

∫
D[mρτ −m%]z

( d

dε

∣∣∣
ε=0

expz(εΦ(z))
)
ρτ (dz)

with Dϕz(w, , v, V ) denoting the standard directional derivative of ϕ at z in the direction (w, v, V ).
Using the definition of F together with (A.6) and the definition of gradient∇d in (A.2), we obtain

d

dε

∣∣∣
ε=0
F [exp(εΦ)#ρ

τ ] =

∫
D[mρτ −m%]z(Φ(z)) ρτ (dz)

=

∫
〈∇d[mρτ −m%](z),Φ(z)〉zρτ (dz). (A.7)

This yields the first conclusion of the lemma.

Now let Φ̂τ := Φτ

‖Φτ‖L2(ρτ )
be the unit vector field in the direction of Φτ := −∇d[mρτ −m%]. Then

by (A.7), we have
d

dε

∣∣∣
ε=0
F [exp(εΦ̂τ )#ρ

τ ] = −‖Φτ‖−1
L2(ρτ )

∫
‖Φτ (z)‖2zρτ (dz) = −‖Φτ‖L2(ρτ ) ≤ 0.

On the other hand, for any unit direction Φ in L2(ρτ ) we obtain from (A.7) and Hölder inequality
that ∣∣∣ d

dε

∣∣∣
ε=0
F [exp(εΦ)#ρ

τ ]
∣∣∣ ≤ ∫ ‖Φτ (z)‖z‖Φ(z)‖zρτ (dz)

≤
(∫
‖Φτ (z)‖2zρτ (dz)

) 1
2
(∫
‖Φ(z)‖2zρτ (dz)

) 1
2

= ‖Φτ‖L2(ρτ ).
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Therefore, we conclude further that

d

dε

∣∣∣
ε=0
F [exp(εΦ̂τ )#ρ

τ ] ≤ d

dε

∣∣∣
ε=0
F [exp(εΦ)#ρ

τ ]

for any unit direction Φ in L2(ρτ ). These give the last conclusion of the lemma.

Definition A.3 (Lipschitz-gradient kernel). Let L > 0. A differentiable kernel k on Z is called a
Lipschitz-gradient kernel with constant L if there exists a number ε0 ∈ (0, 1) such that∣∣∣k(expz(εΦ(z)), expw(δΦ(w)))− k(z, w)−

[
〈∇1

dk(z, w), εΦ(z)〉z + 〈∇2
dk(z, w), δΦ(w)〉w

]∣∣∣
≤ L

[
‖εΦ(z)‖2z + ‖δΦ(w)‖2w

]
(A.8)

for every ε, δ ∈ [0, ε0] and every bounded vector field Φ : Z → Rm×Rn×Sn. Hereafter,∇1
dk(z, w)

and ∇2
dk(z, w) denote respectively the gradient ∇d of the function z 7→ k(z, w) and the function

w 7→ k(z, w).

Remark A.4. The right hand side of condition (A.8) can be expressed in terms of the d distance as

d
(

expz(εΦ(z)), z
)2

+ d
(

expw(δΦ(w)), w
)2
.

Thus condition (A.8) can be interpreted as the gradient∇dk is Lipschitz w.r.t. the distance d.

Condition (A.8) is motivated by the following observation in the Euclidean space. Assume that
G : Rd × Rd → R is a differentiable function such that its Euclidean gradient ∇G(z, w) :=
(∇1G(z, w),∇2G(z, w)) satisfies the standard Lipschitz condition

‖∇G(z1, w1)−∇G(z2, w2)‖2 ≤ L‖(z1, w1)− (z2, w2)‖2 ∀(z1, w1), (z2, w2) ∈ Rd × Rd.

Then for any point (z, w) ∈ Rd×Rd and any tangent vector (u, v) ∈ Rd×Rd, we have by using the
mean value theorem that G(z+u,w+v)−G(z, w) = 〈∇G(z0, w0), (u, v)〉 for some point (z0, w0)
in the line segment in Rd × Rd connecting the points (z, w) and (z + u,w + v). As a consequence,
we obtain∣∣∣G(z + u,w + v)−G(z, w)−

[
〈∇1G(z, w), u〉+ 〈∇2G(z, w), v〉

]∣∣∣
=
∣∣∣〈∇G(z0, w0), (u, v)〉 − 〈∇G(z, w), (u, v)〉

∣∣∣
=
∣∣∣〈∇G(z0, w0)−∇G(z, w), (u, v)

〉∣∣∣ ≤ ‖∇G(z0, w0)−∇G(z, w)‖2‖(u, v)‖2.

Then we can use the Lipschitz condition for∇G to imply further that∣∣∣G(z + u,w + v)−G(z, w)−
[
〈∇1G(z, w), u〉+ 〈∇2G(z, w), v〉

]∣∣∣
≤ L‖(z0, w0)− (z, w)‖2‖(u, v)‖2 ≤ L‖(u, v)‖22,

which is the same as∣∣∣G(z + u,w + v)−G(z, w)−
[
〈∇1G(z, w), u〉+ 〈∇2G(z, w), v〉

]∣∣∣ ≤ L[‖u‖22 + ‖v‖22
]
.

Condition (A.8) is the Riemannian version of this last inequality for the Euclidean space, which is a
consequence of the standard Lipschitz condition for the gradient.

Bounded Hessian kernels are Lipschitz-gradient. The following lemma gives a sufficient condi-
tion for a kernel to be Lipschitz-gradient.

Lemma A.5. Let k be a positive definite kernel such that its Hessian w.r.t. distance d is bounded.
Then k is a Lipschitz-gradient kernel.

Proof of Lemma A.5. LetH1
dk(z, w) andH2

dk(z, w) denote respectively the Hessian w.r.t. distance d
of the function z 7→ k(z, w) and the functionw 7→ k(z, w). Let ε, δ > 0, and Φ : Z → Rm×Rn×Sn
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be a bounded vector field. Define γz(t) := expz(tΦ(z)) and θw(t) := expw( δε tΦ(w)) for t ∈ [0, ε].
Then we have

k(expz(εΦ(z)), expw(δΦ(w)))− k(z, w) =

∫ ε

0

d

dt
[k(γz(t), θw(t))] dt

=

∫ ε

0

[
〈∇1

dk(γz(t), θw(t)), γ̇z(t)〉γz(t) + 〈∇2
dk(γz(t), θw(t)), θ̇w(t)〉θw(t)]

]
dt.

This together with the facts that γ̇z(0) = Φ(z) and θ̇w(0) = δ
εΦ(z) yields

A := k(expz(εΦ(z)), expw(δΦ(w)))− k(z, w)−
[
〈∇1

dk(z, w), εΦ(z)〉z + 〈∇2
dk(z, w), δΦ(w)〉w

]
=

∫ ε

0

[
〈∇1

dk(γz(t), θw(t)), γ̇z(t)〉γz(t) − 〈∇1
dk(γz(0), θw(0)), γ̇z(0)〉γz(0)

]
dt

+

∫ ε

0

[
〈∇2

dk(γz(t), θw(t)), θ̇w(t)〉θw(t) − 〈∇2
dk(γz(0), θw(0)), θ̇w(0)〉θw(0)]

]
dt

=

∫ ε

0

∫ t

0

d

ds

[
〈∇1

dk(γz(s), θw(s)), γ̇z(s)〉γz(s)

]
dsdt

+

∫ ε

0

∫ t

0

d

ds

[
〈∇2

dk(γz(s), θw(s)), θ̇w(s)〉θw(s)

]
dsdt

=

∫ ε

0

∫ t

0

[
〈H1

dk(γz(s), θw(s))γ̇z(s), γ̇z(s)〉γz(s) + 〈∇1
dk(γz(s), θw(s)), γ̈z(s)〉γz(s)

]
dsdt

+

∫ ε

0

∫ t

0

[
〈H2

dk(γz(s), θw(s))θ̇w(s), θ̇w(s)〉θw(s) + 〈∇2
dk(γz(s), θw(s)), θ̈w(s)〉θw(s)

]
dsdt.

Since the curve s 7→ γz(s) is a geodesic, its acceleration γ̈z(s) is orthogonal to Z (that is, γ̈z(s) is
orthogonal to every tangent vector in TzZ). This implies that 〈∇1

dk(γz(s), θw(s)), γ̈z(s)〉γz(s) = 0.
Likewise, we also have 〈∇2

dk(γz(s), θw(s)), θ̈w(s)〉θw(s) = 0. Thanks to these, we deduce from the
above identity that

A =

∫ ε

0

∫ t

0

〈H1
dk(γz(s), θw(s))γ̇z(s), γ̇z(s)〉γz(s)dsdt

+

∫ ε

0

∫ t

0

〈H2
dk(γz(s), θw(s))θ̇w(s), θ̇w(s)〉θw(s)dsdt.

By using the assumption that the Hessians H1
d and H2

d are bounded, we then obtain

|A| ≤M
∫ ε

0

∫ t

0

[
‖γ̇z(s)‖2γz(s) + ‖θ̇w(s)‖2θw(s)

]
dsdt,

whereM is the sup norm of the Hessian of k. But as γz(s) and θw(s) are geodesic, they have constant
speeds. Therefore, ‖γ̇z(s)‖γz(s) = ‖γ̇z(0)‖γz(0) = ‖Φ(z)‖z and ‖θ̇w(s)‖θw(s) = ‖θ̇w(0)‖θw(0) =

‖ δεΦ(z)‖z . Using these, we infer further that

|A| ≤M
∫ ε

0

∫ t

0

[
‖Φ(z)‖2z + (

δ

ε
)2‖Φ(z)‖2z

]
dsdt =

M

2

[
‖εΦ(z)‖2z + ‖δΦ(w)‖2w

]
.

According to Definition A.3, we thus conclude that k is a Lipschitz-gradient kernel with constant
M/2.

Quantified estimate of decrease for the Riemannian forward Euler scheme (4.2). The next
result quantifies the amount that the value of F decreases after each iteration.

Proposition A.6 (Quantified estimate of decrease). Suppose that k is a Lipschitz-gradient kernel
with constant L. Then for ρτ+1 given by (4.2) with sτ ∈ (0, ε0], we have

F [ρτ+1]−F [ρτ ] ≤ −sτ
(
1− 2Lsτ

) ∫
Z
‖∇d[mρτ −m%](z)‖2z ρτ (dz).
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Proof of Proposition A.6. Let Φτ := −∇d[mρτ −m%]. Then from the computation at the beginning
of the proof of Lemma 4.3 and by using Lemma A.2, we obtain

F [ρτ+1]−F [ρτ ] =
1

2

[
MMD(exp(sτΦτ )#ρ

τ , %)2 −MMD(ρτ , %)2
]

=
1

2

∫∫ {
k
(

expz(sτΦτ (z)), expw(sτΦτ (w))
)
− k(z, w)

}
ρτ (dz)ρτ (dw)

−
∫∫ {

k
(

expz(sτΦτ (z)), w
)
− k(z, w)

}
ρτ (dz)%(dw).

Moreover, we have∫
〈∇d[mρτ −m%](z),Φ

τ (z)〉zρτ (dz)

=

∫∫
〈∇1

dk(z, w),Φτ (z)〉zρτ (dz)ρτ (dw)−
∫∫
〈∇1

dk(z, w),Φτ (z)〉zρτ (dz)%(dw)

=
1

2

[∫∫
〈∇1

dk(z, w),Φτ (z)〉zρτ (dz)ρτ (dw) +

∫∫
〈∇2

dk(z, w),Φτ (w)〉wρτ (dz)ρτ (dw)

]
−
∫∫
〈∇1

dk(z, w),Φτ (z)〉zρτ (dz)%(dw),

where the last equality is due to the symmetry of k and relation (3.6). Here∇1
dk(z, w) and∇2

dk(z, w)
respectively denote the gradient ∇d of the function z 7→ k(z, w) and w 7→ k(z, w). Therefore, it
follows that

F [ρτ+1]−F [ρτ ]− sτ
∫
〈∇d[mρτ −m%](z),Φ

τ (z)〉zρτ (dz)

=
1

2

∫∫ {
k
(

expz(sτΦτ (z)), expw(sτΦτ (w))
)
− k(z, w)

−
[
〈∇1

dk(z, w), sτΦτ (z)〉z + 〈∇2
dk(z, w), sτΦτ (w)〉w

]}
ρτ (dz)ρτ (dw)

−
∫∫ {

k
(

expz(sτΦτ (z)), w
)
− k(z, w)− 〈∇1

dk(z, w), sτΦτ (z)〉z
}
ρτ (dz)%(dw).

As sτ ∈ (0, ε0], we can now use the assumption that k is a Lipschitz-gradient kernel with constant L
to obtain

F [ρτ+1]−F [ρτ ] + sτ

∫
Z
‖Φτ (z)‖2zρτ (dz)

≤ L

2

∫∫ [
‖sτΦτ (z)‖2z + ‖sτΦτ (w)‖2w

]
ρτ (dz)ρτ (dw) + L

∫∫
‖sτΦτ (z)‖2zρτ (dz)%(dw)

= 2Ls2
τ

∫
‖Φτ (z)‖2zρτ (dz).

This gives

F [ρτ+1]−F [ρτ ] ≤
(
− sτ + 2Ls2

τ

) ∫
Z
‖Φτ (z)‖2zρτ (dz),

and the conclusion of the proposition follows.

Convergence guarantees. For each distribution ρ on Z , let Kρ : H → H be the linear operator
defined by Kρf(w1) := 〈K̃ρ(w1, ·), f(·)〉H with K̃ρ : Z × Z → R being given by

K̃ρ(w1, w2) =

∫
Z
〈∇1

dk(z, w1),∇1
dk(z, w2)〉z ρ(dz) for w1, w2 ∈ Z.

The next result gives some basic properties of the operator Kρ.
Lemma A.7. For a differentiable kernel k and for ρ ∈ P(Z), we have

i) Kρf(w) =
∫
Z〈∇

1
dk(z, w),∇df(z)〉z ρ(dz) for f ∈ H.
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ii) 〈Kρf, g〉H =
∫
Z〈∇df,∇dg〉z ρ(dz) for every f, g ∈ H. Consequently, the operator Kρ is

symmetric and positive, and hence its spectrum is contained in [0,+∞).

Proof of Lemma A.7. By using the definition of the Riemannian metric 〈·, ·〉z given in (3.3), it can
be verified for f ∈ H that〈

〈∇1
dk(z, w),∇1

dk(z, ·)〉z, f(·)
〉
H

=
〈
∇1
dk(z, w), 〈∇1

dk(z, ·), f(·)〉H
〉
z
.

As f(z) = 〈k(z, ·), f(·)〉H, we moreover have∇df(z) = 〈∇1
dk(z, ·), f(·)〉H. Therefore,〈

〈∇1
dk(z, w),∇1

dk(z, ·)〉z, f(·)
〉
H

=
〈
∇1
dk(z, w),∇df(z)

〉
z
. (A.9)

Using the definition of Kρ and (A.9), we obtain

Kρf(w) =
〈∫
〈∇1

dk(z, w),∇1
dk(z, ·)〉z ρ(dz), f(·)

〉
H

=

∫ 〈
〈∇1

dk(z, w),∇1
dk(z, ·)〉z, f(·)

〉
H
ρ(dz)

=

∫ 〈
∇1
dk(z, w),∇df(z)

〉
z
ρ(dz),

which gives i). Now for f, g ∈ H, we can use part i) and similar arguments leading to (A.9) to obtain

〈Kρf, g〉H =
〈∫ 〈

∇1
dk(z, ·),∇df(z)

〉
z
ρ(dz), g(·)

〉
H

=

∫ 〈
〈∇1

dk(z, ·),∇df(z)〉z, g(·)
〉
H
ρ(dz)

=

∫ 〈
〈∇1

dk(z, ·), g(·)〉H,∇df(z)
〉
z
ρ(dz) =

∫ 〈
∇dg(z),∇df(z)

〉
z
ρ(dz).

This implies in particular that the operator Kρ is symmetric (i.e. 〈Kρf, g〉H = 〈Kρg, f〉H for
f, g ∈ H) and positive (i.e. 〈Kρf, f〉H ≥ 0 for f ∈ H). Since any symmetric, positive, and linear
operator must have nonnegative eigenvalues, we have completed the proof.

Our next result gives a quantified decay rate for the objective function.
Proposition A.8 (Objective value decay). There hold:

i) Let ρt be given by (4.1), and let λt ≥ 0 be any constant satisfying

〈Kρtft, ft〉H ≥ λt‖ft‖2H with ft := mρt −m%. (A.10)

Then F [ρt] ≤ F [ρ0] exp
(
− 2

∫ t
0
λsds

)
for any t ≥ 0. In particular, limt→∞MMD(ρt, %) = 0

if
∫∞

0
λt dt = +∞.

ii) Let ρτ be given by scheme (4.2), and λτ ≥ 0 be any constant satisfying

〈Kρtfτ , fτ 〉H ≥ λτ‖fτ |2H with fτ := mρτ −m%.

Assume that k is a Lipschitz-gradient kernel and step size sτ satisfies sτλτ < 1, then we have
F [ρτ+1] ≤ F [ρ0] exp

(
−
∑τ
i=0siλi

)
for any τ ≥ 0. In particular, limτ→∞MMD(ρτ , %) = 0

if
∑∞
τ=0 sτλτ = +∞.

Condition
∫∞

0
λt dt = +∞ guaranteeing the convergence in MMD holds true for example if

λt ≥ c t−1 for some constant c > 0 and for large t. We note also that Condition (A.10) is satisfied
if λt is chosen to be the minimum eigenvalue of operator Kρt . Thus Proposition A.8 implies in
particular that ρt globally converges in MMD if the minimum eigenvalue λt of operator Kρt satisfies
the integrability condition

∫∞
0
λt dt = +∞. The proof of Proposition A.8 relies on the following

proposition, which shows that the dynamic of the mean embedding is governed by the equation
∂t(mρt −m%) = −Kρt(mρt −m%).

20



Under review as a conference paper at ICLR 2022

Proposition A.9 (Dynamic of the mean embedding). Let t ∈ [0,∞) 7−→ ρt be the gradient flow
given by equation (4.1). For each t ≥ 0, take ft := mρt −m%. Then ft is a solution of the linear
partial differential equation

∂tft = −Kρtft in [0,∞)×Z. (A.11)

Proof of Proposition A.9. From the definition of the mean embedding and by using equation (4.1),
we have

∂tft(w) = ∂tmρt(w) = ∂t

∫
Z
k(z, w) ρt(dz) =

∫
Z
k(z, w) ∂tρt(dz)

=

∫
Z
k(z, w) divd(ρt∇dft)(dz).

Using the definition of the divergence operator divd at the end of Section 3.1, we further obtain

∂tft(w) = −
∫
Z
〈∇1

dk(z, w),∇dft(z)〉z ρt(dz).

It then follows from part i) of Lemma A.7 that ∂tft(w) = −Kρtft(w). This completes the proof.

We are now ready to present the proof of Proposition A.8.

Proof of Proposition A.8. Let ft := mρt −m%. Then we have from Proposition 4.2 and part ii) of
Lemma A.7 that ∂t‖ft‖2H = −2〈Kρtft, ft〉H. But as

〈Kρtft, ft〉H ≥ λt‖ft‖2H

by Condition A.10, we infer that ∂t‖ft‖2H ≤ −2λt‖ft‖2H, and hence ∂t
(

log ‖ft‖2H
)
≤ −2λt. By

integrating from 0 to t, one gets log ‖ft‖2H − log ‖f0‖2H ≤ −2
∫ t

0
λs ds. We next take exponential to

obtain

‖ft‖2H ≤ ‖f0‖2H exp
(
− 2

∫ t

0

λs ds
)
.

This can be rewritten as F [ρt] ≤ F [ρ0] exp
(
− 2

∫ t
0
λsds

)
for t ≥ 0. In particular, F [ρt] (and hence

MMD(ρt, %)) tends to zero if
∫∞

0
λt dt = +∞. This completes the proof for part i).

To prove ii), let fτ := mρτ −m%. Notice that in contrast to the continuous case, upper indices
are used for fτ and ρτ in the discrete case. Then by using Proposition A.6 together with part ii) of
Lemma A.7 and the assumption sτ ∈ (0, 1

4L ] we have

F [ρτ+1]−F [ρτ ] ≤ −1

2
sτ 〈Kρτ fτ , fτ 〉H.

But as 〈Kρτ fτ , fτ 〉H ≥ λτ‖fτ‖2H due to our assumption, we obtain F [ρτ+1] − F [ρτ ] ≤
−sτλτF [ρτ ], or

F [ρτ+1] ≤ (1− sτλτ )F [ρτ ]

for every τ ≥ 0. As 1− sτλτ > 0, it follows by iteration that F [ρτ+1] ≤ F [ρ0]

τ∏
i=0

(1− siλi). Due

to 1 − x ≤ exp(−x) for every x ≥ 0, we infer that F [ρτ+1] ≤ F [ρ0] exp
(
−

τ∑
i=0

siλi
)

for τ ≥ 0.

In particular, F [ρτ ] (and hence MMD(ρτ , %)) tends to zero if
∞∑
τ=0

sτλτ = +∞.
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For Proposition 4.4

Proof of Proposition 4.4. Let h(z) := expz(sτΦτ (z)) for z ∈ Z. Then ρτ+1 can be expressed as

ρτ+1 = h#ρ
τ,βτ = (h ◦ fβτ )#(ρτ ⊗ g).

By the computation at the beginning of the proof of Lemma 4.3 using Lemma A.2, we obtain

F [ρτ+1]−F [ρτ ] =
1

2

[
MMD

(
(h ◦ fβτ )#(ρτ ⊗ g), %

)2

−MMD(ρτ , %)2

]
=

1

2

∫∫∫∫ {
k
(
h(fβτ (z, u)), h(fβτ (w, v))

)
− k(z, w)

}
ρτ (dz)g(du)ρτ (dw)g(dv)

−
∫∫∫ {

k
(
h(fβτ (z, u)), w

)
− k(z, w)

}
ρτ (dz)g(du)%(dw).

Moreover, we have

I :=

∫
〈∇d[mρτ −m%](z),Φ

τ (z)〉zρτ,βτ (dz)

=

∫∫
〈∇1

dk(z, w),Φτ (z)〉zρτ,βτ (dz)ρτ (dw)−
∫∫
〈∇1

dk(z, w),Φτ (z)〉zρτ,βτ (dz)%(dw)

=
1

2

∫∫
〈∇1

dk(z, w),Φτ (z)〉zρτ,βτ (dz)ρτ (dw) +
1

2

∫∫
〈∇2

dk(z, w),Φτ (w)〉wρτ,βτ (dw)ρτ (dz)

−
∫∫
〈∇1

dk(z, w),Φτ (z)〉zρτ,βτ (dz)%(dw)

=
1

2

∫∫∫ 〈
∇1
dk(fβτ (z, u), w),Φτ (fβτ (z, u))

〉
fβτ (z,u)

ρτ (dz)g(du)ρτ (dw)

+
1

2

∫∫∫ 〈
∇2
dk(z, fβτ (w, v)),Φτ (fβτ (w, v))

〉
fβτ (w,v)

ρτ (dw)g(dv)ρτ (dz)

−
∫∫∫ 〈

∇1
dk(fβτ (z, u), w),Φτ (fβτ (z, u))

〉
fβτ (z,u)

ρτ (dz)g(du)%(dw),

where the third equality is due to the symmetry of k and relation (3.6). Therefore, it follows that

F [ρτ+1]−F [ρτ ]− sτI

=
1

2

∫∫∫∫ {
k
(
h(fβτ (z, u)), h(fβτ (w, v))

)
− k(z, w)

−
[
〈∇1

dk(fβτ (z, u), w), sτΦτ (fβτ (z, u))〉fβτ (z,u)

+〈∇2
dk(z, fβτ (w, v)), sτΦτ (fβτ (w, v))〉fβτ (w,v)

]}
ρτ (dz)g(du)ρτ (dw)g(dv)

−
∫∫∫ {

k
(
h(fβτ (z, u)), w

)
− k(z, w)− 〈∇1

dk(fβτ (z, u), w), sτΦτ (fβτ (z, u))〉fβτ (z,u)

}
ρτ (dz)g(du)%(dw).

As h(z) = expz(sτΦτ (z)) and sτ ∈ (0, ε0], we can now use the Lipschitz-gradient condition (A.8)
for k to obtain

F [ρτ+1]−F [ρτ ]− sτI

≤ L

2

∫∫∫∫ [
‖sτΦτ (fβτ (z, u))‖2fβτ (z,u) + ‖sτΦτ (fβτ (w, v))‖2fβτ (w,v)

]
ρτ (dz)g(du)ρτ (dw)g(dv)

+ L

∫∫∫
‖sτΦτ (fβτ (z, u))‖2fβτ (z,u)ρ

τ (dz)%(dw)g(du)

= 2Ls2
τ

∫∫
‖Φτ (fβτ (z, u))‖2fβτ (z,u)ρ

τ (dz)g(du).
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Using the definition ρτ,βτ = fβτ# (ρτ ⊗ g) and the fact I = −
∫
Z ‖Φ

τ (z)‖2z ρτ,βτ (dz), we can rewrite
this more compactly as

F [ρτ+1]−F [ρτ ] ≤ −sτ
(
1− 2Lsτ

) ∫
Z
‖Φτ (z)‖2z ρτ,βτ (dz)

= −sτ
(
1− 2Lsτ

) ∫
Z
‖∇d[mρτ −m%](z)‖2z ρτ,βτ (dz).

This together with condition (4.4) gives

F [ρτ+1] ≤ (1− aτ )F [ρτ ] with aτ := λsτ
(
1− 2Lsτ

)
β2
τ .

In particular, we must have ai ≤ 1. By iterating this estimate, we obtain

F [ρτ+1] ≤ F [ρ0]

τ∏
i=0

(1− ai). (A.12)

Due to 1− x ≤ exp(−x) for every number x ≥ 0, we get
∏τ
i=0(1− ai) ≤ exp(−

∑τ
i=0 ai). This

together with (A.12) yields the conclusion of the proposition.

B IMPLEMENTATION AND EXPERIMENT DETAILS

We use ∇1
Bk(x, µ,Σ, w) to denote the last component in (3.6) for the gradient ∇d of the function

(x, µ,Σ) 7→ k(x, µ,Σ, w). Precisely,

∇1
Bk(x, µ,Σ, w) := 2[∇Σk(x, µ,Σ, w)]Σ + 2Σ[∇Σk(x, µ,Σ, w)].

B.1 ALGORITHMS

Algorithm 2 Discretized Gradient Flow Algorithm for Scheme (4.2) – Detailed Version of Algo-
rithm 1

Input: a source distribution ρ0 = 1
N

∑N
i=1 δ(x0

i ,µ
0
i ,Σ

0
i )

, a sample 1
M

∑M
j=1 δ(x̄j ,µ̄j ,Σ̄j) for the

target distribution %, a number T of iterations for training, a sequence of step sizes sτ > 0 with
τ = 0, 1, ..., T , and a kernel k.
Initialization:

Compute (Ψ̄1, Ψ̄2, Ψ̄3)(x, µ,Σ) =
1

M

M∑
j=1

(∇x,∇µ,∇1
B)k(x, µ,Σ, x̄j , µ̄j , Σ̄j)

τ ← 0
while τ < T do

Compute (Ψτ
1 ,Ψ

τ
2 ,Ψ

τ
3)(x, µ,Σ) =

1

N

N∑
i=1

(∇x,∇µ,∇1
B)k(x, µ,Σ, xτi , µ

τ
i ,Σ

τ
i )

for i = 1, . . . , N do
xτ+1
i ← xτi + sτ (Ψ̄1 −Ψτ

1)(xτi , µ
τ
i ,Σ

τ
i )

µτ+1
i ← µτi + sτ (Ψ̄2 −Ψτ

2)(xτi , µ
τ
i ,Σ

τ
i )

Στ+1
i ←

(
I + sτLΣτi

[
(Ψ̄3 −Ψτ

3)(xτi , µ
τ
i ,Σ

τ
i )
])

Στi

(
I + sτLΣτi

[(Ψ̄3 −Ψτ
3)(xτi , µ

τ
i ,Σ

τ
i )]
)

end for
Set τ ← τ + 1

end while

Output: ρT =
1

N

N∑
i=1

δ(xTi ,µTi ,ΣTi )
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Algorithm 3 Discretized Gradient Flow Algorithm for Scheme (4.3)

Input: a source distribution ρ0 = 1
N

∑N
i=1 δ(xi,µi,Σi), a target distribution % =

1
M

∑M
j=1 δ(x̄j ,µ̄j ,Σ̄j), number of iterations T , step sizes sτ > 0, noise levels βτ , and a kernel

k.
Initialization:

Compute (Ψ̄1, Ψ̄2, Ψ̄3)(x, µ,Σ) =
1

M

M∑
j=1

(∇x,∇µ,∇1
B)k(x, µ,Σ, x̄j , µ̄j , Σ̄j)

τ ← 0
while τ < T do

Compute (Ψτ
1 ,Ψ

τ
2 ,Ψ

τ
3)(x, µ,Σ) =

1

N

N∑
j=1

(∇x,∇µ,∇1
B)k(x, µ,Σ, xτj , µ

τ
j ,Σ

τ
j )

for i = 1, . . . , N do
Perturb xτ,pi ← xτi + βτNRm(0, 1) and µτ,pi ← µτi + βτNRn(0, 1)
Set S ← βτNSn(0, 1) and perturb Στ,pi ← (I + LΣτi

[S])Στi (I + LΣτi
[S])

xτ+1
i ← xτ,pi + sτ (Ψ̄1 −Ψτ

1)(xτ,pi , µτ,pi ,Στ,pi )

µτ+1
i ← µτ,pi + sτ (Ψ̄2 −Ψτ

2)(xτ,pi , µτ,pi ,Στ,pi )

Στ+1
i ←

(
I + sτLΣτ,pi

[
(Ψ̄3 − Ψτ

3)(xτ,pi , µτ,pi ,Στ,pi )
])

Στ,pi

(
I + sτLΣτ,pi

[(Ψ̄3 −

Ψτ
3)(xτ,pi , µτ,pi ,Στ,pi )]

)
end for
Set τ ← τ + 1

end while

Output: ρT =
1

N

N∑
i=1

δ(xTi ,µTi ,ΣTi )

B.2 KERNEL AND ITS GRADIENT FOR IMPLEMENTATION

We use the kernel k given by:

k
(
(x, µ,Σ), (x̄, µ̄, Σ̄)

)
:= exp

(
−α‖x− x̄‖22

)
exp

(
−β‖µ− µ̄‖22

)
exp

(
−γ‖Σ− Σ̄‖22

)
,

where α, β and γ are parameters (bandwidth) of the kernel. We note that this kernel is characteristic
by (Szabó & Sriperumbudur, 2018, Theorem 4). Then its standard Euclidean gradient is given by

∇(x,µ,Σ)k
(
(x, µ,Σ), (x̄, µ̄, Σ̄)

)
= −2 exp

(
−α‖x− x̄‖22 − β‖µ− µ̄‖22 − γ‖Σ− Σ̄‖22

)α(x− x̄)
β(µ− µ̄)
γ(Σ− Σ̄)

 .
Thus by plugging into formula (3.6), we obtain

∇1
dk
(
(x, µ,Σ), (x̄, µ̄, Σ̄)

)
= −2 exp

(
−α‖x− x̄‖22 − β‖µ− µ̄‖22 − γ‖Σ− Σ̄‖22

) α(x− x̄)
β(µ− µ̄)

2γ(2Σ2 − ΣΣ̄− Σ̄Σ)

 .
That is,

∇xk
(
(x, µ,Σ), (x̄, µ̄, Σ̄)

)
= −2 exp

(
−α‖x− x̄‖22 − β‖µ− µ̄‖22 − γ‖Σ− Σ̄‖22

)
α(x− x̄),

∇µk
(
(x, µ,Σ), (x̄, µ̄, Σ̄)

)
= −2 exp

(
−α‖x− x̄‖22 − β‖µ− µ̄‖22 − γ‖Σ− Σ̄‖22

)
β(µ− µ̄),

∇1
Bk
(
(x, µ,Σ), (x̄, µ̄, Σ̄)

)
= −2 exp

(
−α‖x− x̄‖22 − β‖µ− µ̄‖22 − γ‖Σ− Σ̄‖22

)
2γ(2Σ2 − ΣΣ̄− Σ̄Σ).

B.3 LABEL PROJECTION

We here propose an approach to recover new samples in the feature-label space from an empirical
distribution in the feature-Gaussian space. Consider that after T iterations of the gradient algorithms,
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we arrive at a distribution ρT = 1
N

∑N
i=1 δ(xTi ,µTi ,ΣTi ). We would like to recover a distribution

νT ∈ P(X ×Y) which is induced by ρτ . As such, we would like to find a distribution νT of the form

νT =
1

N

N∑
i=1

δ(xTi ,yTi )

which corresponds to new target samples (xTi , y
T
i )Ni=1. Moreover, we are interested in recovering

labels within the target domain. To this end, let Ytarget = {y ∈ Y : ∃j ∈ [M ] such that ȳj = y}
be the set of labels in the target dataset, and remind that for any y ∈ Ytarget, (µ̄y, Σ̄y) ∈ Rn × Sn+
is the mean vector and the covariance matrix of the distribution of φ(X) given Y = y. Notice that
the mean-covariance embeddings (µ̄y, Σ̄y) for y ∈ Ytarget depend only on the target domain data,
and it does not depend on the incumbent distribution ρT , nor does it depend on the source dataset.
Moreover, we can also compute N̄y as the number of samples from the target dataset with label y.

Because (µ̄y, Σ̄y) is readily computed, we can consider (µ̄y, Σ̄y) as the centroids and simply find
an assignment that minimizes the sum of distances from (µTi ,Σ

T
i ) to these centroids. We thus can

assign each sample from ρT to the the target labels by solving the linear program

min

N∑
i=1

∑
y∈Ytarget

θiy

√
‖µTi − µ̄y‖22 + B(ΣTi , Σ̄y)2

s.t.
∑

y∈Ytarget

θiy =
1

N
∀i = 1, . . . , N,

N∑
i=1

θiy =
N̄y
N

∀y ∈ Ytarget, θ ∈ [0, 1]N×|Ytarget|,

(B.1)
Notice that the assignment problem above does not utilize the information from the covariate xTi .
Let θ? be the optimal solution of the above optimization problem. Then the dataset (xTi , z

T
i )Ni=1

recovered from ρτ is

νT =
1

N

N∑
i=1

δ(xTi ,yTi ), yTi =
∑

y∈Ytarget

y1(θ?iy = max{θ?i }) ∀i = 1, . . . , N.

We used the POT library to solve the label recovery problem (B.1).

B.4 ADDITIONAL NUMERICAL RESULTS

B.4.1 MIXTURE OF GAUSSIANS

We test our algorithm on a toy example: a mixture of Gaussian distributions to another mixture of
Gaussian distributions.

The source distribution and target distribution are:

ps(x) =
1

4
N
((

2.0
−0.3

)
,

(
0.14 −0.00
−0.00 0.22

))
+

1

4
N
((

2.0
0.3

)
,

(
0.43 0.18
0.18 0.26

))
+

1

4
N
((
−0.3
2.0

)
,

(
0.66 0.02
0.02 0.63

))
+

1

4
N
((

0.3
−2.0

)
,

(
0.39 −0.02
−0.02 0.13

))
pt(x) =

1

4
N
((

2.9
0.1

)
,

(
0.16 0.03
0.03 0.20

))
+

1

4
N
((

0.9
0.5

)
,

(
0.22 0.16
0.16 0.46

))
+

1

4
N
((

0.8
2.2

)
,

(
0.63 0.02
0.02 0.66

))
+

1

4
N
((

1.4
−1.8

)
,

(
0.18 0.10
0.10 0.36

))
From each distribution, we sample 25 particles and flow the particles’ positions, means, and covariance
simultaneously using Alg. 1. After the algorithm converges, we recover the particles’ label in the
feature-label space by solving problem (B.1).
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Figure 4: The results of flowing a mixture of 4 Gaussian distributions to a mixture of 4 Gaussian
distributions. We demonstrate the initialization (left), the trace of particles in first 200 steps (middle),
and the results at step 1000 (right).

We test how our algorithm deals with flowing a mixture of 2 Gaussian distributions to a mixture of 4
Gaussian distributions. From the trace of first 200 steps, we demonstrate that each source Gaussian
distribution splits into 2 Gaussian distributions. The source distribution and target distribution are:

ps(x) =
1

2
N
((

0.0
0.0

)
,

(
0.18 −0.24
−0.24 0.70

))
+

1

2
N
((

5.8
0.0

)
,

(
0.44 0.00
0.00 0.87

))
pt(x) =

1

4
N
((

2.0
0.7

)
,

(
0.63 −0.30
−0.30 0.26

))
+

1

4
N
((

2.2
−0.8

)
,

(
0.77 −0.18
−0.18 0.55

))
+

1

4
N
((

7.0
0.8

)
,

(
0.63 −0.30
−0.30 0.26

))
+

1

4
N
((

7.7
−0.8

)
,

(
0.77 −0.18
−0.18 0.55

))

Figure 5: The results of flowing a mixture of 2 Gaussian distributions to a mixture of 4 Gaussian
distributions. We demonstrate the initialization (left), the trace of particles in first 200 steps (middle),
and the results at step 2400 (right). We use method in Section B.3 to relabel the source data.

B.5 IMPLEMENTATION DETAILS

When flowing images in *NIST datasets and flowing a mixture of Gaussians, we use the parameters
and methods described in Table 1.

Our method assumes images of each class form one Gaussian distribution. In reality, the data can
be a mixture of Gaussian. To satisfy the Gaussianity assumption, in the preprocessing step, we use
a clustering method (k-nearest neighbors) and pick only data from one mode for each class. As a
consequence, the data used in the experiment satisfies the conditional Gaussian assumption. For
example, the images of the digit 1 can have two modes: slanted left or slanted right. In this case, we
can generate two labels (1L, 1R), and the methodology developed in this paper can be applied in a
straightforward manner. When testing our transfer learning scheme, we apply the same clustering
method on the test dataset, so our test set is within the same mode as our training set.
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Table 1: Parameters and Optimizer

*NIST Gaussian (Figure 4) Gaussian (Figure 5)

α 0.001 0.3 0.3
β 0.002 0.15 0.1
γ 100 1.0 0.5
initial sτ 0.3 0.05 0.03
noise level 0.01 0 0.1
T 150 2000 2500
Optimizer RMSprop Hinton et al. (2012) RMSprop RMSprop

We store the preprocessed data and apply dimension reduction method on the data’s means and
covariance matrices, so the Lyapunov equation is much faster to solve. We use the cluster’s mean
and covariance matrix to approximate the 1-shot and 5-shor data’s mean and covariance matrix. In
1-shot learning, the covariance matrix is an identity matrix. All the code and data are available in the
supplementary file.

We use k-nearest neighbors algorithm to solve the labels of the flowed data, as it performs better with
the noisy scheme.

B.5.1 ADDITIONAL RESULTS ON FLOWS

We conduct additional experiments of flowing between KMNIST and FashionMNIST datasets. The
results of our flows are depicted in Fig. 6. In each subfigure, each column represents a snapshot of
a certain time-step and the samples flow from the source (left) to the target (right). The number of
iterations T that is used to generate the results in Fig. 6 is capped at 140. We also attach the same

Figure 6: Sample path visualizations between FashionMNIST dataset and KMNIST dataset

results as Fig. 2 in high resolution in Fig. 7 and Fig. 8. Each picture illustrates one experiment of
gradient flow between two datasets and the samples flow from the source (left) to the target (right).
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Figure 7: Sample path visualizations between KMNIST dataset and MNIST dataset
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Figure 8: Sample path visualizations between FashionMNIST dataset and MNIST dataset

B.5.2 ADDITIONAL RESULTS ON TRANSFER LEARNING

We transfer a pretrained classifier from FashionMNIST dataset to KMNIST dataset and from KMNIST
dataset to FashionMNIST dataset. We use the same model architecture and training settings as in
Fig. 3. We illustrate the accuracy and error bars of the 1-shot learning and 5-shot learning in Fig. 9.
Our flowed samples increase the accuracy of the transferred classifiers in both 1-shot and 5-shot
learning.
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Figure 9: 1-shot and 5-shot transfer learning results between KMNIST and FashionMNIST datasets

B.6 COMPARISON WITH BASELINE

Comparison with Alvarez-Melis & Fusi (2021)’s approach. We adopted the same values of pa-
rameters (number of steps, step size) from the paper of Alvarez-Melis & Fusi (2021) and experimented
with different values of entropy regularization λ. Entropy regularization λ is a hidden parameter in
their code and they reported using the value of λ = 100 in transfer learning experiments. Also, we
experimented with different methods in their code and found that “xyaugm” gives the best qualitative
gradient flow results. We test their algorithm using the same transfer learning setting as ours (using
the same clustered data as our experiments), see Table 2 and Table 3 for results.

Table 2: KMNIST � MNIST

Accuracy D ∪ ST P ∪D ∪ ST

λ = 0.001 0.1941 0.2478
λ = 0.01 0.1175 0.2998
λ = 1.0 0.1739 0.2951
λ = 100 0.2093 0.3025

Table 3: FMNIST � MNIST

Accuracy D ∪ ST P ∪D ∪ ST

λ = 0.001 0.4488 0.3083
λ = 0.01 0.3915 0.2897
λ = 1.0 0.5268 0.4627
λ = 100 0.2917 0.3307

For runtime comparison, the default device for Alvarez-Melis & Fusi (2021)’s code is on the CPU.
As we run their code on the GPU, the kernel crashed without giving any informative errors. Thus, we
will compare our codes’ runtime per step on the CPU. While our approach takes about 11.72 seconds,
the approach in Alvarez-Melis & Fusi (2021) requires 74.78 seconds.
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