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Abstract

Tokenization is the process of encoding strings into tokens of a fixed vocabulary
size, and is widely utilized in Natural Language Processing applications. The lead-
ing tokenization algorithm today is Byte-Pair Encoding (BPE), which formulates
the tokenization problem as a compression problem and tackles it by performing
sequences of merges. In this work, we formulate tokenization as an optimization
objective, show that it is NP-hard via a simple reduction from vertex cover, and
propose a polynomial-time greedy algorithm GREEDTOK. Our formulation nat-
urally relaxes to the well-studied weighted maximum coverage problem which
has a simple (1 — 1/e)-approximation algorithm GREEDWMC. Through empir-
ical evaluations on real-world corpora, we show that GREEDTOK outperforms
BPE and UNIGRAM on compression and achieves a covering score comparable
to GREEDWMC. Finally, our extensive pre-training for two transformer-based
language models with 1 billion parameters, comparing the choices of BPE and
GREEDTOK as the tokenizer, shows that GREEDTOK achieves a lower bit per byte
even when we control for either the total dataset proportion or total training tokens.

1 Introduction

Tokenization encodes text into tokens from a fixed vocabulary and is fundamental to Natural Lan-
guage Processing (NLP) applications. With Large Language Models (LLMs) growing in prominence,
understanding tokenization has become increasingly important, as it plays an integral role in their
architectures and even modest gains in efficiency can yield substantial computational savings. Fur-
thermore, LLMs such as LLaMA [TLI"23] and Mistral [JSM 23] use fixed-length context windows,
which will benefit from tokenizers with better compression utility that enables them to fit more
information within their context window. There are also prompt-based [WWS™22, YYZ 23] and
fine-tuning [FTL'23] techniques that increase the number of processed tokens to improve model
performance.

A common way to formalize the tokenization problem is as a compression task that minimizes the
ratio of tokens produced when tokenizing the input data. The leading tokenization algorithm today is
Byte-Pair Encoding (BPE) [Gag94, SHB16, KHM 23], which formulates the tokenization problem
as a compression problem and tackles it by performing a sequence of pairwise merges. Due to its
popularity, there have been a multitude of recent works analyzing the theoretical properties of BPE
[ZMG 123, KV24, WBP24]. Another approach frames tokenization as a pathing/sequence problem
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[Kud18, SRZ*24], Unigram [Kud18] is one such example and is favored by models with bidirectional
contexts, i.e. [YDY"19] and [RSR20]. Although UNIGRAM is believed to perform better in pre-
training tasks [BD20], its compression performance is weaker compared to BPE [SRZ " 24], affecting
its adoption for large-scale expensive pre-training in language modeling.

Contributions. In this work, we deviate from the usual path, sequence, and merge-based tokenization
formulations. Instead, we propose to examine the tokenization problem as a problem of covering.

C1. Partition cover formulation. We introduce a partition cover optimization formulation of the
tokenization problem that goes beyond prior merge-based approaches [ZMG ™23, KV24]. These
earlier methods rely on bottom-up pairwise merges from an existing token set. However, the idea
of tokenization is simply to efficiently represent a corpus with a judiciously selected set of tokens,
whose construction is independent of such merge patterns. Our formulation subsumes these prior
formulations in the following sense: all merge-based solutions are valid solutions to our formulation,
but a solution to our formulation need not be based on bottom-up pairwise merges.

C2. Simple NP-hardness proof. We provide a simple and intuitive proof that tokenization is NP-
hard in our optimization objective formulation via a reduction from vertex cover [Kar72]. Although
there has been a recent concurrent work [WBP24] that also showed that the tokenization problem is
NP-hard, our proof is arguably simpler due to our formulation.

C3. New polynomial-time tokenizer. We propose a polynomial-time greedy algorithm GREEDTOK
that does not rely on a sequence of pairwise token merges or path construction. Evaluation on
four real-world corpora shows that GREEDTOK outperforms BPE and UNIGRAM with a stronger
compression of ~3% tokens per word. Our implementation and compression evaluations can be
found at https://github. com/PreferredAI/pcatt/; see supplementary materials.

C4. Downstream comparison. Preliminary analysis revealed that GREEDTOK’s token sets si-
multaneously attain BPE’s compressibility and UNIGRAM’s token quality. To empirically validate
downstream performance, we pre-trained two transformer-based LLMs with 1 billion parameters
that differ only in the use of GREEDTOK or BPE as the tokenizer algorithm. Our results show that
GREEDTOK outperforms BPE in both common benchmark tasks and in bits per byte, even after
controlling for either the total dataset proportion or total training tokens.

C5. Empirical approximation of objective. Our partition cover formulation naturally relaxes to
the well-studied weighted maximum coverage problem [Kar72, CKO08] which has a simple (1 —
1/e)-approximation algorithm GREEDWMC [Hoc96]. We empirically show that GREEDTOK and
GREEDWMC achieve a comparable objective function value for large k, despite the latter being a
relaxed problem. Although a formal approximation guarantee for GREEDTOK currently escapes us,
our analysis holds for practical scenarios encountered by NLP practitioners and this empirical method
of investigating approximation guarantees may be of independent interest.

Related work. There has been a recent surge of interest in analyzing tokenization. [ZMG'23]
initiated a formal study of BPE using a bottom-up tokenization problem formulation that restricts
token construction to sequential merges of two tokens from the existing vocubulary. [KV?24] proved
that this bottom-up tokenization problem, and its more general variant,’ is APX-complete using
linear reduction [PY88] from maximum cut [Kar72] in cubic graphs. They also showed that BPE
approximates a worst-case factor of between 0.333 and 0.625 for their general variant. In a recent
concurrent work, [WBP24] showed that both the bottom-up tokenization problem formulation and
our partition cover formulation are NP-complete from the reduction of the maximum 2-satisfiability
problem. Beyond theory, empirical studies such as [LBM23] and [SFWN23] have examined the
practical downstream impact of tokenizer selection in NLP tasks. With regard to tokenizer-free
architectures [TTR ™22, YSF*23, PPR*24], our formulation draws the link to the fundamental binary
decision problem of whether to merge adjacent characters, as one can view next-byte predictions as
merging decisions.

Compared to prior and concurrent works, our NP-hardness proof (Theorem 1) is arguably simpler due
to our formulation, and we contribute a novel tokenizer that is competitive in real-world scenarios.

Outline of paper. We give our partition cover optimization formulation in Section 2, we prove that it
is NP-hard in Section 3. GREEDTOK is designed in Section 4 and Section 5 contains our empirical
evaluation against real world corpora. Finally, we conclude with some discussions in Section 6.

3Referred to as optimal merge sequence and optimal pair encoding respectively in their work.
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Notation. We use standard set notations such as |A| to represent the size of set A, and standard
asymptotic notations such as O(-). Numbers are represented with small letters, strings/words with
capital letters, and sets with bold letters. Unordered sets are denoted by {-} and ordered tuples are
denoted by (-). We describe words in plaintext, e.g., hello, or as a tuple of singletons, e.g., (h,e,1,1,0).

2 A general optimization formulation for the tokenization problem

Let 3 be a fixed alphabet , i.e., a basic character set. This may be the 26 lowercase English letters
or the full Unicode set, depending on the context. A corpus C = (W, COUNT) consists of a set of
distinct words W C X1, and a count function COUNT : W — N that indicates word frequencies.
Given aword W € X1 and a set of tokens S C X7, let PARTITION(W, S) denote the minimum
number of tokens from S that can be concatenated in sequence to form W. For example, the word
W = abc can be tokenized as ab,c but not as ac_b, despite both token sets covering the same
characters.

The goal of minimizing the total number of tokens used to represent a corpus is often referred to as
optimizing compression utility.

Problem 1 (Tokenization search problem TOK). Let X be a fixed alphabet and define the base token
set B = {(w) : w € X} as all singleton characters. Given a corpus C = (W, COUNT), a token
budget k € N.q, and a set of candidate tokens T C X, the goal is to find a subset S C T such
that [S| < kand ) ;v PARTITION(W, S UB) - COUNT(W) is minimized. Note that tokens T are
candidate substrings drawn from ¥* that may or may not correspond to actual words.

As in standard practice, we consider the corresponding decision variant to establish NP-hardness.
Once the decision variant is shown to be NP-hard, the search problem inherits this hardness, since
solving the search version yields a solution to the decision version by evaluating different thresholds
(in our case, the value /).

Problem 2 (Tokenization decision problem). With the same setup as Problem 1, and given an
additional integer threshold ¢ € Ny, determine whether there exists a subset S C T such that
IS| < kand ),y PARTITION(W, S U B) - COUNT(W) < /.

Our formulation differs subtly but significantly from prior tokenization models, such as those in
[ZMG™23, KV24]. Rather than viewing tokenization through the lens of string compression algo-
rithms, we reduce tokenization to the following question: Are two adjacent singleton symbols within
a string covered by the same token? This perspective emphasizes that tokenization is fundamentally
about selecting a compact vocabulary that fully covers the corpus without imposing algorithmic
constraints such as bottom-up merge sequences, which are artifacts of specific approaches like BPE.
We further elaborate on the implications of our formulation in Section 4.1.

3 Tokenization is NP-hard

In this section, we prove that the tokenization decision problem (Problem 2) is NP-hard by a
reduction from the vertex cover problem, which is known to be NP-hard [Kar72]. Given a graph
G = (V,E) with vertex set V and edge set E, a vertex cover is a subset S C 'V of vertices such that
SN {U,V}| > 1 forevery edge {U, V'} € E. The decision variant of the vertex cover problem asks
whether there exists a subset S of size at most k.

Theorem 1. The tokenization problem is NP-hard.

Proof. We will prove this by reducing the vertex cover problem, which is known to be NP-hard
[Kar72], to the tokenization problem. Given an arbitrary vertex cover problem instance, we show
how to construct a corresponding tokenization instance. Then, we argue that the derived tokenization
problem instance is a YES instance if and only if the original vertex cover problem instance is a YES
instance. In this proof, for clarity, we will write words W € W as a tuple of singletons instead of
usual plaintext, e.g. (h,e,11,0) instead of hello.

Construction. Consider an arbitrary vertex cover problem given by the graph G = (V, E) over
n vertices V.= {V4,...,V,} and a positive integer & € N>(. To construct an instance of the
tokenization problem, we first define the alphabet as follows: ¥ = {Vj,...,V,,, @} where Q is



an additional symbol which we will use later. So, we have B = {(V}),...,(V,), (@)}. For each
edge {V;,V;} € E withi < j, we create a word W, ; = (Q,V}, @ VJ,@) and define the set of
words as W = {W; ; : {V;,V,} € E} where each word has count 1, i.e. COUNT(W) = 1 for all
W € W. Then, we define the set of candidate tokens T = {(Q, Vz, @) : V; € V}. Finally, we
set £ = 3|W| = 3|E| and associate the parameter & in the vertex cover problem instance to the
corresponding parameter k in the tokenization problem instance. One can check that this derived
tokenization instance can be constructed in polynomial time.

Observation. Observe that every word W € W has length 5 and each token in S has length
3, so PARTITION(W, S U B) will either be 3, when there is some token in S that is a contiguous
subword of W, or 5 otherwise. For instance, given the word W; ; = (Q,Vv;,Q, Vj, @), we have
PARTITION(W; ;, S U B) = 3 if and only if at least one of (@, V;, @) or (Q, VJ, @) is chosen in S
(both could be in S). Furthermore, since all words have count 1, the tokenization problem becomes

finding S C T such that [S| < k and )y, o PARTITION(W,SUB) </ = 3|W]|.

YES instance of tokenization problem to YES instance of vertex cover. Suppose there exists a
subset S C T of tokens such that [S| < &k and } ;. PARTITION(W, S U B) < £ = 3|W/|. Then,
from the observation above, we know that this can only happen when PARTITION(W,SUB) = 3
for every W € W. This implies that for each word W ;, at least one of (@, V;, @) or (@, V;, @) is
chosen in S. Therefore, Sg = {V; € V : (Q,V;,@) € S} is a subset of size |[Sg| = [S| < k and
corresponds to a vertex cover of the original graph G.

YES instance of vertex cover to YES instance of tokenization problem. Suppose the original
vertex cover instance for graph G = (V, E) has a vertex cover Sg of size |[Sg| < k. Then, let us
define S = {(@,V;,@) € ¥t : V; € Sg} as the set of chosen tokens of size |S| = |Sg| < k.
Since Sg is a set cover for G, by construction of W, we see that PARTITION(W, S U B) = 3 for all
W € W. Therefore, ) |y oy PARTITION(W, S UB) = 3|W|. O

Example 1. Consider a vertex cover instance on a graph G = (V, E) with vertices V = {V7,..., V;}
and edges E = {{V1, Vo }, {V1, Va}, {V1, V5 }, {Va2, Va}, {Va, Va}, { V3, V5 }} where the subset S =
{V1, V3, V4} is a vertex cover of size |S| = k = 3. Fig. 1 illustrates the corresponding tokenization
problem instance created according to the construction in the proof of Theorem 1.

X ={n, Vz V37V4 Vs, @}
B = {(W1), (Va), (Va), (Va), (V5), (@)}
W = {(Q, V1 V27@) (@,V1,Q,V4,Q@),(Q,V1,Q, V5, @)

@“@ (0,V5,0,3,0), (8,15, 0,V4,0), (8,V3,0, V5, @)}

COUNT(W) 1, VWeW

{(Q,1,Q),(@,15,@), (@, V3,Q), (@,V;,@),(Q, Vs, @)}
k
3/W| =3|E| =18

T
k
L

Figure 1: An example tokenization problem instance construction according to the proof of Theorem 1.
The tokens corresponding to the vertex cover S = {V;, V3, V,} are underlined in T. A possible
tokenization of W using S U B is also given with tokens in S being underlined, showing that each
word in W only needs 3 tokens.

4 GREEDTOK: Our greedy tokenizer

Challenges in designing an efficient algorithm. In Section 3, we showed that the tokenization
problem (TOK) is NP-hard. Developing efficient algorithms for NP-hard problems typically involves
strategies that trade off between exactness, runtime, and solution quality. Since our focus is on
scalable, real-world applications, we aim for polynomial-time approximations and do not pursue
fixed-parameter tractable algorithms. Unfortunately, the common approximation strategies that are
used to design efficient algorithms for NP-hard problems with provable approximation guarantee
are not applicable here. Firstly, while submodular functions admit efficient greedy (1 — 1/e)-
approximations [NWF78], our objective is neither submodular nor supermodular (see Appendix A).
Secondly, relax-and-round methods, like those used for vertex cover [WS11], become impractical
due to the sheer scale of real-world corpora which induces large numbers of variables and constraints.



4.1 An equivalent mixed integer program formulation

To design our algorithm GREEDTOK for TOK, we begin by reformulating the problem in terms of a
mixed linear program (MIP). This serves two purposes. First, the MIP provides a straightforward
and intuitive framework that simplifies the definition and implementation of our greedy algorithm.
Second, it naturally relaxes to the well-known weighted maximum coverage problem (WMC),
which is submodular and admits a greedy (1 — 1/e)-approximation algorithm [Hoc96, Section 3.9].
Although we cannot formally establish approximation guarantees for GREEDTOK, its connection to
WMC enables empirical comparisons with GREEDWMC in TOK instances; see Section 5.3.

We define COVER(W, S) as the maximum number of adjacent singletons in word W that can be
grouped into tokens from S, with each character used at most once. For example, with W = scaredy
and S = {care, edy}, we have COVER(WW, S) = 3 from concatenating 3 adjacent singleton pairs in
“care”, constrained on the position of ‘e’ which can only be used once. Meanwhile, PARTITION (W, SU
B) = 4 via s_care,d_y. Notice that |IW| = PARTITION + COVER. This lets us rewrite the
minimization objective from Problem 1 as an equivalent maximization objective:

min Z COUNT(W) - PARTITION(W, S U B) = max Z COUNT(W) - COVER(WV, S).
wWew wew

We refer to both forms as TOK. Now, recall that W represents the set of words in the corpus where
each word W = (Wi, ..., W) € W has length |[IV] and appears with frequency COUNT(WW) >
1. Although our formulation permits any candidate token set T, identifying an optimal solution
requires considering all substrings of length > 2 within W, i.e. there is a total number of |T| <
S wew ((ng) — \W|) such substrings, where (I} ) counts all start-end pairs, and we subtract |WV|

to exclude singletons. In the following, we use the notation A C B to denote that A is a substring of
B, e.g. for C force, and adopt a 1-based indexing in the MIP below.

To formulate Problem 1 as an MIP, our goal is to choose a subset S C T of size |S| < k such that
the following objective is maximized, encoding max ;. COUNT(W) - COVER(W, S), where
cw = COUNT(W):

W1

max Z cw Z m%“ ey
i=1

wWew
with the binary variables zr € {0,1} for all tokens T' € T (Did we choose token T € T, i.e.
TeS?), m}“’/z, ... ’m\V‘[//VI*LIW\ € {0,1}, for all words W € W (Are the ith singleton W; and the
(i + 1) singleton W, 1 covered by the same token?), and m‘lde’T, . ’m\v‘[//l}lT—LIW\ € {0, 1}, for all
words W € W and tokens T’ € T (Did token T € S cover the i'" singleton W; and the (i + 1)
singleton W41 ?), under the following constraints:
° Z; zr < k.
oz > mfffl if (Wi, Wiy1) C T,

T W,T w
'Z My 41 = My 41,

o> rminl <1, YW e W,VT € T,Vi € {1,...,|W|—1}.
om) L =m0 if (Wi, Wig1, Wige) C T, YW e W,VT € T,Vi € {1,...,|W|—2}.
S ImMT <1-m S€+1,1f(Wq,WS+1)StaItST VW € W,VT € T,Vs € {2,...,|W|—1}.

me_ 1,s
> Tm WT if (W._1,W.)ends T, YW € W,VT € T,Ve € {2,...,|W|—1}.

ee+1 e 1e’

For a more thorough explanation of our MIP formulation with examples, please refer to Appendix B.

4.2 Relation to weighted maximum coverage

Like the vertex cover problem, the weighted maximum coverage problem (WMC) is NP-hard [Kar72,
WST11, Hoc96]. Given a set of elements L = {L1, ..., Ly} with weights W = {wy, ..., wy}, a
collection of subsets U = {Uj, ..., Uy} where each U; C L, and an integer budget k, the goal is to
select U" C U, such that [U’| < k, to maximize the total weights of covered elements >, ¢y w;.



With some effort, one can show that WMC admits a mixed integer program with the same objective
as Eq. (1) but with fewer constraints. Details are provided in Appendix C.

Implication. Since WMC shares the same objective as TOK but under weaker constraints, its
optimal value is at least that of TOK. As WMC admits a (1 — 1/e)-approximate greedy algorithm
(GREEDWMC), this guarantee also applies to its performance in TOK instances, although the solution
from GREEDWMC may violate tokenization constraints. Nevertheless, if GREEDTOK achieves
objective values comparable to GREEDWMUC, it suggests that GREEDTOK may offer a similar
approximation ratio for TOK despite lacking formal guarantees.

4.3 A polynomial-time greedy algorithm

We now informally describe our algorithm, GREEDTOK, which consists of two main steps: (1)
selecting a token set S from candidate substrings T, and (2) tokenizing words W using S; see
Appendix G for pseudocode and examples.

We begin by constructing the candidate token set T, considering all substrings of length > 2 within
the words W in the corpus. Then, for any S C T, let f(S) be the objective value in our MIP
formulation (see Section 4.1). Starting with S = (), we iteratively add tokens to S by selecting
7 = argmaxyemg f(SU{T'}) — f(S), subject to MIP constraints, to S until [S| = k. This process
induces a natural ordering within the tokens in S.

To tokenize a word W € W using S, we scan its singletons to identify possible matches to the
tokens in S and sort these matches by the order in which the tokens were added to S. We then iterate
through these candidate covers and, if the cover satisfies the MIP constraints, mark the corresponding
positions in a bitmask m" to cover the substring with the selected token.

A direct implementation yields a runtime of O(|T|- k- 3", v |W/|) when selecting S and O(|W |2 -
log |WW|) when tokenizing a word W. Note that this token ordering arises from the greedy nature
of GREEDTOK but is not required for solving TOK, just as merge sequences are not fundamental
to tokenization. Despite the higher asymptotic costs than BPE, we show in Section 5.1 that with
implementation optimizations, GREEDTOK is practical for real-world NLP use.

Comparing to BPE. GREEDTOK’s token order resembles the merge sequence in BPE, as both
select one token per iteration. However, GREEDTOK operates without the constraints of pairwise
merges, allowing more flexible token selection. BPE beats GREEDTOK in terms of computational
complexity, with a selection cost of O(k - >_ 1,y |W]) and per-word tokenization cost of O(|W|?)
when using the pairwise caching approach [Ope23]. However, this selection cost is a one-off cost that
does not affect downstream applications. Additionally, we empirically show that the modest overhead
of O(log |[W]) in tokenization is worth the improvements in downstream tasks; see Section 5.

Comparing to UNIGRAM. UNIGRAM’s likelihood objective £ can be interpreted as a negative
log-weighted version of TOK; see derivation in Appendix D and example where optimizing £
may yield unfavorable behavior. While both GREEDTOK and UNIGRAM freely select tokens from
T, UNIGRAM prunes T to size |S| = k, while GREEDTOK builds S up from ). Computational
complexity wise, UNIGRAM’s selection cost of O(|T| - log k - >y, cw |W]) beats GREEDTOKs but
its per-word tokenization cost of O(k - |W|) exceeds GREEDTOK’s when k >> |W|log |W|. With
large k being common in practical real-world use cases, this is one reason why UNIGRAM is often not
used in production systems despite being known to produce higher-quality tokens [BD20, SRZ"24].

S Empirical evaluation of GREEDTOK on real-world datasets

Our implementation of GREEDTOK is on C++ and accessible using Python bindings or through
HuggingFace’s API via a simple import line, enabling easy integration onto existing codebases.

5.1 Evaluating GREEDTOK’s compression

We compared GREEDTOK against BPE and UNIGRAM by measuring compression performance
across four real-world corpora at varying token budget levels |S| = k; see Table 1. We define the
singleton set B as all 256 byte values, W as the set of space-delimited UTF-8 strings (byte sequences)
extracted from each corpus, and introduce a special token to mark the start of a string following a



Table 2: This table reports the compression performance of GREEDTOK/BPE/UNIGRAM algorithms.
For UNIGRAM, we increase the input k by 75/84/108/94 respectively to account for the compulsory
character inclusion into T. GREEDTOK (GTK) outperforms BPE and UNIGRAM in larger corpora
(arXiv, PubMed, wiki), with mean improvement of 2.88% over BPE and 3.43% over UNIGRAM.

| k1000 2000 3000 4000 5000 | 2000 4000 6000 8000 10000

GTK Tokens/Word | 1.607 1.374 1268 1205 1.163 | 1.603 1397 1301 1.244 1.206

BPE Tokens/Word = 1.688 1431 1311 1241 1.194 |3 1.650 1.431 1.328 1266 1.225
GTK’s Improvement (%) | = 486 399 333 292 254 § 285 238 2.02 175 1.52
UNIGRAM Tokens/Word 1.655 1385 1.261 1.193 1.148 | ® 1.699 1465 1359 1297 1.257
GTK’s Improvement (%) 290 0.78 -051 -097 -1.30 5.63 4.63 421 4.05 4.02
GTK Tokens/Word ‘ 1.742 1475 1349 1275 1.226 ‘ 1.692 1489 1389 1326 1.283
BPE Tokens/Word i 1.837 1.551 1407 1320 1.263 | .5 1.731 1.519 1413 1347 1301
GTK’s Improvement (%) | & 512 494 415 341 289 E 226 198 171 1.53 1.37
UNIGRAM Tokens/Word 1.793 1.558 1.444 1.378 1.332 1.793 1.558 1.444 1378 1332
GTK’s Improvement (%) 6.74 492 430 396 3.88 5.62 443 384 3.75 3.70

space character. The function COUNT maps each W € W to its frequency in the corpus in UTF-8
format. The candidate token set T for GREEDTOK includes all substrings of words in W while
UNIGRAM'’s is at the character level. In contrast, BPE begins with an empty T and builds tokens
incrementally from B, depending on the final |S| = k. Thus, both GREEDTOK and BPE produce
final token sets of size |B| + k. However, in addition, we allow UNIGRAM to include frequent
(possibly multibyte) characters in the final vocabulary due to the sentencepiece implementation,
i.e. it has a final token set size larger than |B| + k.

Discussion. We see from Table 2 that GREED-

ToK consistently uses fewer tokens on average Table 1: Dataset statistics and the time taken for
to represent the same data. Since BPE relies  compute with word counts as inputs, conducted
on repeated applications of merge rules to build ith AMD EPYC 9654 @ 2.40GHz. Refer to

large tokens, this suggests that many intermedi-  Appendix F.1 for additional dataset descriptions.
ate tokens created during merging may never be

used in the final encoding, effectively wasting  pataset ‘ W] Z;’;’ cw T max [S| Time
vocabulary capacity that could be allocated to o 105K 3IM 884K 5K 65
more useful tokens. Meanwhile, we know from aryiv 881K 366M  7,626K 5K 63s
our example in Appendix D that UNIGRAM can wiki | 8,769K  2,9499M  935M 10K Iim
over-prioritize whole words at the expense of ~_PubMed | 6527K  4,149M  12IM 10K tm
informative subword tokens, and the empirical

results of Table 2 confirms our suspicion that such suboptimal scenarios are not rare.

5.2 Evaluating GREEDTOK’s language pre-training

In Appendix E, we show empirical evidence that the token sets produced by GREEDTOK more closely
resemble UNIGRAM than BPE, suggesting that they may inherit some of UNIGRAM’s favorable
token characteristics. To test this hypothesis, we pretrain two 1B-parameter language models (details
in Appendix F.2), differing only in tokenizer choice — GREEDTOK versus BPE.* Both models
use a vocabulary size of 65,536 and are trained on approximately 20% of the DCLM Dedup dataset
[TGD ™24, LFS™24], with their final token sets being 75% similar.

Table 3: The token count statistics for all three settings. GREEDTOK uses nearly 18% fewer tokens to
represent the entire DCLM Dedup dataset. The total training tokens used is around 629B tokens.

Experiment Name Tokenizer Full dataset tokens  Training tokens Dataset %
BPEM BPE 8.94 - 10" 6.29 - 10! 70.35%
Equal Tokens (GTET) GREEDTOK 7.35- 101! 6.29 - 1011 85.58%
Equal Proportion (GTEP) GREEDTOK 7.35 - 1011 5.03 - 101t 68.47%

“We use BPE as the baseline, given its status as the most widely adopted tokenizer for LLMs [KHM*23].



We compare the BPE-based model (BPEM) against two versions (GTET and GTEP) of the
GREEDTOK-based model under different training constraints, summarized in Table 3:

1. GREEDTOK Equal Tokens (GTET). Trained using the same number of tokens as BPEM. This
setting isolates the impact of denser token representations by fixing the token count.

2. GREEDTOK Equal Proportion (GTEP). Trained using the same proportion of the original
dataset as BPEM. Here, the number of training tokens differs, based on each tokenizer’s com-
pression ratio, allowing us to examine the effect of using fewer tokens from equivalent text
coverage.

Evaluation. We use the popular Language Model Evaluation Harness [GTA™24] toolkit and
their predefined evaluation settings to evaluate BPEM, GTET, and GTEP. Several popular bench-
mark sets were used for evaluation, refer to Appendix F.3 for more information.
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Figure 2: We plot the bits/byte improvement across phase 1 training for model using GREEDTOK
and BPE on different scales. The bits/byte metric is independent of tokenization and reflects true
compression performance on the underlying data. Since both GTET and GTEP are equivalent in
phase 1 for the first 100,000 steps, we examine bits/byte improvement on Wikitext with different
scales on the x-axes.

Table 4: Evaluation results on popular benchmarks. GTET/GTEP obtained better scores than BPEM.

Accuracy (normalized) Accuracy ‘ bits/byte

Hella- LAMB- Wino-
ARC-c  ARC-e Swag OBQA PIQA SciQ BoolQ COPA BADA RACE grande Avg. | Wikitext
BPEM 36.2 67.9 65.6 40.0 757 89.8 65.8 81.0 61.1 36.4 62.8 62.0 0.7066
GTEP 37.6 68.8 64.9 39.6 75.6  90.0 67.6 79.0 63.9 36.8 63.5 625 0.7028
GTET 38.3 70.0 65.7 40.6 75.8 90.5 67.7 82.0 64.6 377 62.6 63.2 0.6989

Discussion. Previous works report either similar or a decrease in performance stemming from better
compression [Gall9, GCE'24, SRZ*24, AFTT24]. One plausible explanation for these results
is that, given any sentence, a tokenizer with a lower compression rate uses more tokens, which
results in a higher number of total activations in a transformer during inference. This increase
in the effective width of the transformer’s computation circuit can increase its expressive power
[PMB24], resulting in better performance for poorer compression. However, the results in Table 4
show that GREEDTOK, compared to its BPE counterpart, has achieved better compression while
still maintaining model performance. This suggests an example of meaningful compression, with
both GTET and GTEP outperforming BPEM on the evaluated benchmarks. From Fig. 2a, when
training on equal token count, GREEDTOK is ahead. While Fig. 2b shows that, when normalized and
trained on equivalent byte-lengths of data, GREEDTOK performs comparably to BPE highlighting
the competitive modeling capacity of GREEDTOK, despite structural differences in tokenization. Our
results suggest that the higher compression rate of GREEDTOK does not negatively affect downstream
performance. Furthermore, it is even possible to achieve the same results with GREEDTOK while
using fewer tokens for training.



5.3 Towards understanding GREEDTOK’s approximability
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Figure 3: Plots showing exact diy of each problem instance at different |S| = k. As k increases, the
ratio of objectives dj,y between GREEDTOK/BPE/UNIGRAM and GREEDWMC closes to 1.

We reformulated Problem 1 into a MIP in Section 4.1 as it relaxes naturally into the maximum
coverage problem, which has a corresponding (1 — 1/¢) approximate algorithm GREEDWMC. Using
GREEDWMC on the same problem instances of similar k&, we can calculate the ratio of objectives
between GREEDTOK and GREEDWMC and define dj,g = % for each instance. Therefore,
GREEDTOK attains an objective value at least ding (1 — 1/e€) times the optimal objective of Eq. (2)

by definition, with GREEDWMC’s objective value is at least that of TOK; see Section 4.2.

Discussion. From Fig. 3, for the four selected

corpora, we plot di,s against k, observing that

as k increases, dj climbs towards 1. In ad-

dition, to ensure that the results are general- 1.00
izable to the wider internet corpus, we evalu-
ate on RefinedWeb corpus, and obtain simi-
lar findings; see Fig. 4. Empirically, GREED- 0.90
TOK achieves an objective value of at least
0.9(1 — 1/e) of the optimal for large k, relevant =
for practical NLP scenarios. With dj,g — 1, this
implies that the room for possible compression
improvements narrows. 075

6 Conclusion 0 2000 4000 . 6000 8000 10000
Figure 4: We sampled documents from
RefinedWeb corpus at a probability of 0.01
across 40 independent runs, then run GREED-
ToK. Plotting mean dj,y shows it trending
towards 1, empirically showing GREEDTOK is a
0.9(1 — 1/e)-approximate algorithm.

In this work, we showed that the tokenization
problem is NP-hard and provided a greedy algo-
rithm GREEDTOK that is a practical alternative
over incumbents BPE and UNIGRAM, and may
even be a better option for language pre-training.
Although recent works [HKM ™24, GT24] had
pushed the limits of context length, plausibly re-
ducing the importance of compression, GREED-
TOK can still offer a flexible platform to ex-
plore new alternate objectives, such as integrat-
ing NLP downstream objectives [BD20] and fairness [LBG™24] constraints into its MIP formulation.
Finally, recall that the tokenization problem has the confounding property of being neither super-
modular nor submodular. Although we show that GREEDTOK achieves an approximation ratio of at
least 0.9(1 — 1/e) for large k, a formal proof is lacking. Nevertheless, this is an intriguing theoretical
problem. We hope that our formulation of the tokenization problem and the accompanying toolkit
will be valuable for future research.

Computational feasibility. While the theoretical runtime of GREEDTOK for selecting S is O(|T| -
k- wew [W]), akey optimization is to update a token 7”s marginal contribution only when it
is being evaluated for inclusion. Empirically, we observe that this lazy evaluation strategy scales
like ©(|T| - > cw |W1), making GREEDTOK practical for large-scale NLP workloads. Table 1



summarizes the time for GREEDTOK to compute S at the largest tested size |S| = maxk (see
Section 5.1). In a larger experiment, with |[W| = 14.3M and |T| = 251M, GREEDTOK computed S
in 34 minutes using 160GB of RAM. This cost can be reduced by reducing the search space, limiting
max |W/|, filtering W, or pruning T by substring length or frequency. To benchmark encoding speed,
we tokenize a subset of the wiki corpus (70K articles, 97M words) using a vocabulary of |S| = 100K
(from c1100k_base in TIKTOKEN [Ope23]). Our current implementation of GREEDTOK achieves
700K-800K words per second per thread, and we expect further optimization is possible. These
results demonstrate that GREEDTOK is feasible for integration into modern NLP pipelines.

Future extensions. There are many tokenization techniques that augment an initial token set produced
from core tokenization algorithms like BPE and UNIGRAM. Likewise, these methods could also be
used to augment the token sets produced from GREEDTOK. For example, BPE-DRrROPOUT [PEV20]
introduces stochasticity by randomly dropping merge operations during training, yielding multiple
possible segmentations per input. While GreedTok is deterministic by default, it can be adapted
in a similar fashion: at each step, we can randomly skip adding the top token and proceed with
updating the graph accordingly. PATHPIECE [SRZ'24], an encoding algorithm, can be applied
directly to any token set, including the ones generated by GreedTok. PICKYBPE [CAKY?24] refines
BPE vocabulary by iteratively removing low-utility tokens, using a deletion criterion guided by a
hyperparameter. For encoding, it relies on a naive greedy approach or PATHPIECE. GREEDTOK can
likewise incorporate such retrospective pruning: after each token addition, evaluate and remove earlier
redundant tokens to improve vocabulary efficiency. BOUNDLESSBPE [SRTP25] and SUPERBPE
[LHH25] are contemporaneous methods that allow token merging across whitespace boundaries by
generating longer tokens from an initial BPE token set resulting in larger token sets. GREEDTOK
tokens could be used as an initial set from which these whitespace-spanning merges are constructed.
VOLT [XZG™"21] prunes an initial token set, generated via Unigram or BPE, by seeking to maximize
the entropy of subword distributions. Again, GREEDTOK could serve as an upstream tokenizer to
generate the initial candidate tokens for VOLT.

Limitations. The purpose of this work is to offer a new perspective on tokenization, with empirical
experiments to show that this theory is practical. Pretraining language models from scratch is
expensive, hence, our comparisons are limited to BPE, since it is widely adopted in current practice,
and we fixed our models to have a size of 1B parameters. Although we believe that our insights and
observed trends should generalize to larger models, more empirical confirmation at scale is needed.
Our experiments mainly use corpora that contain commonly used languages, and did not conduct
evaluations on low-resource languages, which is an important area for further exploration.
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is in Section 4.1 and Appendix B, relation to weighted maximum coverage is in Appendix C.

Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if they
appear in the supplemental material, the authors are encouraged to provide a short proof
sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented by
formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide the code for our tokenization algorithm GREEDTOK and its compression
experiments in the supplementary materials. For large language model pre-training experiment,
we detail the specifics in Appendix F.2. Additional pseudocode information is also provided in
Appendix G.

Guidelines:

The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived well by
the reviewers: Making the paper reproducible is important, regardless of whether the code
and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken to
make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways. For
example, if the contribution is a novel architecture, describing the architecture fully might
suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary
to either make it possible for others to replicate the model with the same dataset, or provide
access to the model. In general. releasing code and data is often one good way to accomplish
this, but reproducibility can also be provided via detailed instructions for how to replicate
the results, access to a hosted model (e.g., in the case of a large language model), releasing
of a model checkpoint, or other means that are appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submissions

to provide some reasonable avenue for reproducibility, which may depend on the nature of

the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how to
reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe the
architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should either
be a way to access this model for reproducing the results or a way to reproduce the model
(e.g., with an open-source dataset or instructions for how to construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors are
welcome to describe the particular way they provide for reproducibility. In the case of
closed-source models, it may be that access to the model is limited in some way (e.g.,
to registered users), but it should be possible for other researchers to have some path to
reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instructions to
faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [Yes]

Justification: We had already open-sourced our algorithm GREEDTOK and its compression
experiments/data. We made sure that it is easy to integrate GREEDTOK into existing codebases.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not including
code, unless this is central to the contribution (e.g., for a new open-source benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how to
access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new proposed
method and baselines. If only a subset of experiments are reproducible, they should state
which ones are omitted from the script and why.

» At submission time, to preserve anonymity, the authors should release anonymized versions
(if applicable).
* Providing as much information as possible in supplemental material (appended to the paper)
is recommended, but including URLs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters,
how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]
Justification: Provided in Section 5 and Appendix F.2.
Guidelines:

» The answer NA means that the paper does not include experiments.
* The experimental setting should be presented in the core of the paper to a level of detail that
is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: The algorithms are deterministic, hence for the compression experiment, we report
multiple results of using different corpora and at different k& hyperparameter. For the pre-training
experiment, we train three variants of 1B parameter language model on up to 629B tokens. It is
prohibitively expensive to train multiple of the same variants. Nevertheless, due to the large scale
of the training, we do not expect out of range results.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confidence
intervals, or statistical significance tests, at least for the experiments that support the main
claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall run
with given experimental conditions).
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8.

10.

* The method for calculating the error bars should be explained (closed form formula, call to a
library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error of the
mean.

* Itis OK to report 1-sigma error bars, but one should state it. The authors should preferably
report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality
of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or figures
symmetric error bars that would yield results that are out of range (e.g. negative error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how they
were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the experi-
ments?

Answer: [Yes]

Justification: For compression experiments, these details can be found in Section 5.1. For
pre-training experiments, these details can be found in Appendix F.2.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster, or
cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual experi-
mental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute than the
experiments reported in the paper (e.g., preliminary or failed experiments that didn’t make it
into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS
Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: There is no violation of the code.
Guidelines:

* The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

o If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consideration
due to laws or regulations in their jurisdiction).
Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative societal
impacts of the work performed?
Answer: [NA]
Justification: Our research is not tied to particular specific applications.
Guidelines:

» The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal impact
or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses (e.g.,
disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deploy-
ment of technologies that could make decisions that unfairly impact specific groups), privacy
considerations, and security considerations.
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» The conference expects that many papers will be foundational research and not tied to
particular applications, let alone deployments. However, if there is a direct path to any
negative applications, the authors should point it out. For example, it is legitimate to point
out that an improvement in the quality of generative models could be used to generate
deepfakes for disinformation. On the other hand, it is not needed to point out that a generic
algorithm for optimizing neural networks could enable people to train models that generate
Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is being
used as intended and functioning correctly, harms that could arise when the technology is
being used as intended but gives incorrect results, and harms following from (intentional or
unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks, mecha-
nisms for monitoring misuse, mechanisms to monitor how a system learns from feedback
over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release
of data or models that have a high risk for misuse (e.g., pretrained language models, image
generators, or scraped datasets)?

Answer: [NA]
Justification: This paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring that
users adhere to usage guidelines or restrictions to access the model or implementing safety
filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors should
describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do not
require this, but we encourage authors to take this into account and make a best faith effort.
Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the
paper, properly credited and are the license and terms of use explicitly mentioned and properly
respected?

Answer: [Yes]

Justification: We properly credit the original owners of assets, licenses and terms of use are
respected and mentioned, e.g. in Appendix F.1.

Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a URL.
* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of service
of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the package
should be provided. For popular datasets, paperswithcode.com/datasets has curated
licenses for some datasets. Their licensing guide can help determine the license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of the
derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to the
asset’s creators.

New assets
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Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We release an open-source code repository. The link was redacted for anonymity
reasons. These documentation can be found in the supplementary materials.

Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their sub-
missions via structured templates. This includes details about training, license, limitations,
etc.

 The paper should discuss whether and how consent was obtained from people whose asset is
used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as well as
details about compensation (if any)?

Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

» The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribution
of the paper involves human subjects, then as much detail as possible should be included in
the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or
other labor should be paid at least the minimum wage in the country of the data collector.

Institutional review board (IRB) approvals or equivalent for research with human subjects

Question: Does the paper describe potential risks incurred by study participants, whether such
risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals
(or an equivalent approval/review based on the requirements of your country or institution) were
obtained?

Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent) may
be required for any human subjects research. If you obtained IRB approval, you should
clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions and
locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines
for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or non-
standard component of the core methods in this research? Note that if the LLM is used only for
writing, editing, or formatting purposes and does not impact the core methodology, scientific
rigorousness, or originality of the research, declaration is not required.
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Answer: [NA]

Justification: Core method development in this research does not involve LLMs as any important,

original, or non-standard components. We only pretrain LLMs to evaluate the impact of our
proposed algorithm.

Guidelines:

» The answer NA means that the core method development in this research does not involve
LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for
what should or should not be described.
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A Example illustrating that Problem 1 is neither submodular nor
supermodular

In this section, we show that the objective of Problem 1 is neither submodular nor supermodular.
Using 27T to denote the powerset of T, submodular and supermodular set functions are defined as
follows:

Definition 2 (Submodular Set Function). A real-valued set function f : 2T — R is submodular if

f(AU{C}) — f(A) > f(AU{C}) — f(A)foral AC ACTandC € T\ A

Definition 3 (Supermodular Set Function). A real-valued set function f : 2T — R is supermodular
if fLAU{C}) - f(A) < f(AU{C}) — f(A)foral ACAC TandC € T\ A.

In the context of the tokenization problem, the set T represents the candidate set of all possible
tokens. Unfortunately for us, Problem 1 is neither submodular nor supermodular; see Table 5.

Table 5: The above table shows that the objective function of Problem 1 is neither supermodular
nor submodular. Suppose we wish to tokenize the word W = scaredy with candidate token set
T = {care, edy, scar, scared, dy} and singletons {s,c,a,r,e,d,y}, and the function f outputs the
smallest possible number of final tokens used to represent W, i.e. the objective function of Problem 1
on a single word corpus. Observe that X CY C T, Z € T\Y,XCY' ' CT,and Z' € T\ Y".
In case 1, using X to tokenize W results in using 4 tokens (s, care, d, y) and one can check that using
X U {Z} also results in 4 tokens. On the other hand, using Y results in 4 tokens (s, care, d, y) but
using Y U{Z} results in 2 tokens (scar, edy). Therefore, f(XU{Z})— f(X) > f(YU{Z})— f(Y)
and thus f is not supermodular. On the other hand, in case 2, using Y’ and Y’ U {Z'} to tokenize
W results in 2 tokens (scared, y) while using X U {Z'} results in 3 tokens (s, care, dy). Therefore,
FXU{Z'}) — fX) < f(Y' U{Z'}) — f(Y') and thus f is not submodular.
Single word corpus W = scaredy with COUNT(W) =1

Case 1 Case 2
X = {care} fX)=fXu{z})=4 X = {care} f(X) =
Y = {care,edy} f(Y)=4 Y’ = {care, scared} f(Y')=f(Y'U{Z'})=2
Z = scar f(Yu{z}) =2 Z' = dy fXu{z'})=3

U
0=fXU{Z}) - f(X)> f(YU{Z}) - f(Y) = =2 | -1 = f(XU{Z'}) - f(X) < f(Y U{Z}) - f(Y) =0

vV

B Mixed integer program formulation

In this section, we give full details of our mixed integer program (MIP) formulation and provide
examples for better understanding.

To formulate Problem 1 as an MIP, our goal is to choose a subset S C T of size |S| < & such that the
following objective is maximized, encoding max ) _y;, .y COUNT(W) - COVER(W, S):

wi-1

max Z cw Z m%H 2
i=1

Wew
with the following binary variables, where cyy = COUNT(W):

* zr € {0,1}, for all tokens T € T
Did we choose tokenT € T, i.e. T € S?

«mi'y, ... ’m\v‘[//VIfl-\Wl € {0, 1}, for all words W € W
Are the i*" singleton W; and the (i + 1)*" singleton W, | covered by the same token?
. mmT, ... ’mm\T—L\WI € {0,1}, for all words W € W and tokens 7' € T

Did token T € S cover the i" singleton W; and the (i + 1) singleton W; 1 ?
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under the following constraints:

ZxTSk (3)

TeT
ar > m) i if (Wi, Wip1) CT VW e W VT € T,Vi € {1,...,|W| -1}
)
meflzmml YW e W,VT € T,Vi € {1,...,|W| -1}
TT
(%)
> omii <1 YW € W,VT € T, Vi € {1,...,|W| -1}
TeT
(6)
mi =mil . (Wi, Wip, Wige) €T YW e W VT € T, Vi € {1,...,[W|—2}
@)
> omT, <1-ml, i T starts with (W, Weia) VW € W, VT € T, Vs € {2,...,[W| -1}
TeT
®)

> omh <1-m!T, if Tends with (We—1,We) VW € W, VT € T,Ve € {2,...,[W| -1}
TeT

©))

We remark that the objective Eq. (2) can be re-expressed as max ) \cp > yyew 2 ‘LVll cw mf‘j_{l ,

making Eq. (5) redundant. However, this current formulation is useful for showing how to relax TOk
to WMC later.

Now, let us interpret and explain the constraints. Eq. (3) models the constraint that we are choosing
a subset of size |S| < k. Eq. (4) models the constraint that we can only use 7" € T to cover if it is
chosen in S. Eq. (5) models the constraint that if a cover happened between two adjacent singletons,
then a relevant 7' € T must have been chosen in S. However, Eq. (6) models the constraint of only
covering two adjacent singletons with a single relevant 7' € S. Eq. (7) models the constraint of
covering the entire substring 7' € T, or leave it uncovered. Eq. (8) and Eq. (9) model the constraints
preventing the chosen substring 7" € T from sharing the cover with another partially overlapping 7.

In the following examples we succinctly write m" and m"™7T in the forms of
wowW W, W, W,T :
(M9, my3, .- m‘WI Lyw) and (mys™ mo 35, myg g ) respectively, for any word W e

‘W and token T eT.

Example 2. Consider the word W = ababa and the token 7" = aba has zp = 1,i.e. T € S C T.
If we only use T to cover singletons in W with left-to-right priority, then the resultant tokenized
form of W is aba b a. So, »"Y = (1,1,0,0), m"'T = (1,1,0,0), and mWT = (0,0,0,0) for
all T’ € T \ {T'}. Observe that the 0 bits in m" precisely denote the partitioning positions within
W . Furthermore, the constraints Eq. (6) and Eq. (7) ensure that 7" is the only token that occupies
the first two adjacent singletons, while constraints Eq. (8) and Eq. (9) prevent an invalid overlap
of T for the last two adjacent singletons. Now, suppose if we also have T = ba with zp» = 1.
Using both 7" and T" to tokenize W results in aba,_ba with m" = (1,1,0,1), m""T = (1,1,0,0),
m"W'T" =(0,0,0,1),and m"" 7" = (0,0,0,0) forall 7" € T\ {T,T"}.

Example 3. Tokenizing the word W = abcdef using only tokens S; = bc and S2 = de
yields a_bc de f. This corresponds to m" = (0,1,0,1,0), m"*1 = (0,1,0,0,0), m"W-%2 =
(0,0,0,1,0),and m":T = (0,0,0,0,0) forall T € T\ {S;,S2}. Meanwhile, tokenizing the word
W = abcdef using only token S5 = bede yields a,bede,f, corresponding to m" = (0,1,1,1,0),
mWS = (0,1,1,1,0), and m"'T = (0,0,0,0,0) forall T € T \ {S3}. Observe that using token
S5 alone directly accomplishes what a typical bottom-up pairwise merge sequence from BPE would
do: apply S; to merge ‘b’ with ‘c’, S5 to merge ‘d” with ‘e’, then S5 to merge ‘bec’ with ‘de’.
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C Relation to the weighted maximum coverage problem

In this section, we provide details on how our MIP formulation in Section 4.1 naturally relaxes into
the well known weighted maximum coverage problem (WMC).

Given a set of unique elements L = {L;,..., Ly} and their corresponding weights W =
{w1,...,wjy}, a collection of sets U = {Uy,...,Ujy|} where U € U C L, and a number £,
we want to find a subset U’ C U such that |U’| < k and the total weights of covered elements
> Licyur Wi is maximized. Formulating WMC as a mixed integer program, we have the objective:

max Z wil; (10)
L;eL
with the following variables:

e l;€{0,1}, forall L; € L
Did we choose element L; € L, i.e. is L; covered?

* uj €{0,1}, forallU; € U
Did we choose set U; € U, i.e. isU; € U'?

under the following constraints:

> wi<k (11)
U,eU

U

> o=t Ve €L (12)
L;cU;

Let us now interpret and explain the constraints. Eq. (11) limits the number of selected sets < k.
Eq. (12) ensures that if an element is covered, at least one of the sets containing the element must be
included in U’. To see that WMC is a relaxation of TOK, we first establish a mapping between the
variables between TOK and WMC:

N m%_i_l — gi
decision of covering adjacent singletons — decision of covering element
* X — Uy
decision of including T € S — decision of including U € U’
T
. m%hrl — L; € Uj
adjacent singletons in W and T' — element membership in set

"Lwewow 2w .
sum count of W with adjacent singletons — weight of element

Next, comparing the objectives, we can see that Eq. (2) and Eq. (10) have the exact same objective
when utilizing the mapping between variables. Finally, we demonstrate a relaxation of TOK’s
constraints:

* Eq. (3) and Eq. (11) are equivalent
select at most k number of T and U respectively
* Combining Eq. (4) and Eq. (5) gives us Eq. (12).
Yrer @ = Yper Migin = Ml = ZILJ,;er pj = L
* We remove the constraints Eq. (6), Eq. (7), Eq. (8), and Eq. (9).

w,T

Notice that for TOK, we disentangle Eq. (4) and Eq. (5) using the specification of m; ;/,; to enable

Eq. (6), limiting the covering of an element to one selected set.
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D TOK’s relation to UNIGRAM

Let T represent the set of all possible subword sequences. The probability of a subword sequence

-,

W = (T,...,Ty) where T € T formulated as a product of subword probabilities:
P(W) =11}, p(T;)

where Z; p(T) = 1. Since a word W in corpus D can be represented by different possible subword
sequences S(W), let W* be the most probable segmentation:

W* = argmax P(W)
Wes(W)

Since S(D;), segmentation candidates of sentence Dy, will be individual words w (based on
sentencepiece default implementation). Therefore, Unigram seeks to minimize the reduction
in likelihood £ amongst words in given corpus:

|D|

max L = Z Z log W*

s=1 WeS(Ds)

To map L to TOK’s objective of min ZXVV COUNT(W) - partition(W):

|D|

maxﬁzz Z log W*

s=1weS(Dy)

COUNT(W) - log W* (group by words)

COUNT(W) - log H%: p(W;) (choose best subword segmentation)

=Nk %P%s =M=

COUNT(W) - (log p(W;") + - - - + log p(W}iy+ ) (notice partition(W) = |W*|)

Notice that after grouping all similar words together, we get a weighted partition (log p(W;) + -+ - +
log p(Wjy+)). For TOK, itis (1 +--- 4 1) = [W*|. Maximizing L is equivalent to minimizing
negative log probability weighted partitions. Due to the presence of log, max £ is equivalent to
min weighted TOK. We can see that Unigram favors frequently occurring subwords in a non-linear
fashion. This relation is also noted in [SRZ"24], where their proposed PATHPIECE tokenization
algorithm optimizes for TOK from top-down pruning of BPE/UNIGRAM shortlisted candidates.

We present a scenario where top-down pruning is sub-optimal for compression. Given W =
{“random”, “randose”, “rosey”, “randy”}, each with a COUNT of 1, and T = W |J{“rand”, “ose”},
we wish to select S C T, where |S| = k = 2 tokens.

Table 6 shows the token pruning process of UNIGRAM and Table 7 shows the greedy approach of
GREEDTOK. For this scenario, GREEDTOK obtained a better solution with 10 partitions compared
to UNIGRAM’s 12. This scenario highlights the skew to select whole words when approaching
tokenization from a pruning angle. If such scenarios are common, then we can expect GREEDTOK to
obtain a better tokens per word ratio in our experiments (Section 5.1).
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Table 6: Top-down pruning solution for the given example using UNIGRAM, removing tokens that
results in the least decrease in £, AL, in each iteration. The same results will also be obtained when
optimizing for TOK from a top-down pruning approach. For iteration 2, b denotes the singletons

ELINT3

which are omitted. Final S = {“random”, “randose”}.

| W logW* | T COUNT  p(T) | Removing results in new segments | AL
random -1.505 | random 1 0.0312 | random random* = p(“rand”) - p(“0”) - p(“m”) | -2.056

— | randose -1.505 | randose 1 0.0312 | randose randose*= p(“rand”) - p(“‘ose”) -0.727
£ | rosey -1.505 | rosey 1 0.0312 | rosey randy* = p(‘r’) - p(“ose”) - p(‘y’) -1.806
S | randy -1.505 | randy 1 0.0312 | randy rosye* = p(“rand”) - p(‘y’) -0.727
s rand 3 0.0937 | rand None 0
= ose 2 0.0625 | ose None 0

\ Decision after iteration 1: remove “rand” and “ose”, next iteration:
« | random -1.431 | random 1 0.0370 | random  random* =%, ... p(b) -4.646
S | randose -1.431 | randose 1 0.0370 | randose random* =3, ... p(b -5.475
5 | rosey -1.431 | rosey 1 0.0370 | rosey rosey* =3, cy» P(D) -3.743
& | randy -1.431 | randy 1 0.0370 | randy randy* =37,y p(b) -3.391
[l

| Decision after iteration 2: remove “rosey” and “randy”. Total partitions =1 +1+5+5=12.

Table 7: GREEDTOK’s solution for the given example, selecting tokens that results in the highest
objective gain in each iteration. Final S = {“rand”, “rosey”} or {“rand”, “ose”}.

Iteration 1 Iteration 2
W T obj. gain | T obj. gain
random | random 5 random 2
randose | randose 6 randose 3
randy rosey 4 rosey 4
rosey randy 4 randy 1
ose 4 ose 4
rand 9
Decision | pick “rand” | pick “rosey” or “ose”

if pick “rosey”: Total partitions =3 +4 +1+2=10
if pick “ose”: Total partitions =3 +2+3 +2 =10

E Analyzing GREEDTOK’s Characteristics

After obtaining the token sets of GREEDTOK/BPE/UNIGRAM from our experiments (Section 5),
along three dimensions: 1) proportion of common tokens in a pairwise comparison, 2) proportion of
whole words and 3) UNIGRAM’s L objective (Appendix D).

UN corpus arXiv corpus PubMed corpus wiki corpus
1.0 1.0 1.0 1.0
< AAA
3 0.8 0.8 0.8 A AAAAAA Al 081aaAaAdrand
c A A A A A A A A
[ A . . A A o ¢ o o o o
X A ° ° o o o © e o o ®
So064° ° 064, ° 061 © ° 061 o °©
c .
o
€
£ 0.4 0.4 4 0.4 0.4
S o Unigram [ GreedTok
£o2 0.2 0.2 0.2 Unigram [ BPE
= A BPE[) GreedTok
0.0 = r ~ 0.0 r 0.0 T T T ~ 0.0+ T T T .'
1000 3000 5000 1000 3000 5000 2000 4000 6000 8000 10000 2000 4000 6000 8000 10000

k k k k

Figure 5: Plots showing the ratio of common tokens between token sets from GREED-
Tok/BPE/UNIGRAM. From the plots, we observe that while GREEDTOK and BPE are most
alike, GREEDTOK shares more similarties to UNIGRAM, compared to BPE.

Common tokens. To probe GREEDTOK’s token set, we analyze the common tokens from pairwise
comparison of the tokenization methods investigated. From Fig. 5, we observe that BPE (| GREED-
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TOK share a large proportion of common tokens. The remaining difference can be observed in the
greater proportion of UNIGRAM (| GREEDTOK compared to UNIGRAM () BPE. The consistent
results across the four corpora, and at different |S| = k, implies that GREEDTOK contains the
characteristics of BPE due to the high proportionality of common tokens. However, we require
further investigation into whether GREEDTOK contains UNIGRAM'’s characteristics.

UN corpus arXiv corpus 0.55 PubMed corpus 0.55 wiki corpus
§ 0.55 A A A Al 0.55 A A A A e GreedTok
§ 0501 0.50 1 . e 9707 Adaa, 0507 BPE
2 | o . A ° 451 A A Al 0454 A Unigram
207, . 045{ e R PO e N
4 0.40 4 . 0.40 1 0.404 o 0401 4 -
S ’ ¢ ° °
20357 0.35 1 0354° 03544 | °

o

3 0.30 .
=z 0.30 0.30 0.30 A
© 0.251 o
2 0.25 0.25 0.25
5 0.20

T T T T ~ 0.20 = T T T — 0.20 o T T T T 0.20 -5 T T T T
1000 2000 3000 4000 5000 1000 2000 3000 4000 5000 2000 4000 6000 800010000 2000 4000 6000 800010000
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Figure 6: Plots showing the ratio of wiki words found in the token sets from GREED-
TOK/BPE/UNIGRAM with different |S| = k. We select the top 40K frequently occuring words
excluding stop words to approximate a frequent word list. From the plots, UNIGRAM has the largest
ratio of wiki words, followed by GREEDTOK and then BPE.

Whole words. As hypothesized in Appendix D, there are scenarios that will lead UNIGRAM to
select whole words, skipping the intermediate tokens that BPE may require. To further investigate,
we approximate a 40,0000 common word list using the most frequent words appearing in wiki, and
then use it to compare to the token sets obtained. From Fig. 6, across the four corpora and at different
|S| = k, we observe that UNIGRAM has the highest proportion of whole words, then followed by
GREEDTOK and BPE respectively. With GREEDTOK selecting more whole words, compared to
BPE, suggests that GREEDTOK may also exhibit the behaviour favored by UNIGRAM.

Table 8: In this table, we report £ obtained by GREEDTOK/BPE/UNIGRAM under various |S| = k
settings. We observe that GREEDTOK, compared to BPE, achieving a closer £ to UNIGRAM.

k1000 2000 3000 4000 5000 2000 4000 6000 8000 10000
GREEDTOK (GT) £ -4.15B08 -3.85E08 -3.69E08 -3.60E08 -3.53E08 |  -5.03E10 -471EI0 -4.56E10 -447E10 -4.41E10
°
BPE £ = -437E08 -4.01E08 -3.83E08 -3.71E08 -3.63E08 | 2 -5.19E10 -4.83E10 -4.66E10 -456E10 -4.49E10
GTsImprovement (%) ©  5.08%  400%  348%  306%  271% |5 319%  261%  226%  201%  168%
UNIGRAM £ -3.90E08 -3.60E08 -3.47E08 -3.38E08 -3.33E08 -487E10 -456E10 -443E10 -4.35E10 -43IEI0
GT'’s Improvement (%) 629%  -671%  -654%  -639%  -6.09% 330%  3.05%  -281%  -258%  -2.46%
GREEDTOK (GT) £ -449E09 -4.13E09 -3.96E09 -3.85E09 -3.78E09 |  -3.76E10 -3.55EI0 -344E10 -337EI0 -332E10
BPE £ 5 474E09 434E09 4.12E09 -399E00 -3.89E00 | T -385E10 -3.62EI0 -3.50EI0 -3.42EI0 -3.37EI0
GT'sImprovement (%) &  537%  491%  399%  337%  294% |5  234%  203% 184%  156% 141%
UNIGRAM £ 432E09 -3.97E09 -3.82E09 -3.74E09 -3.68E09 361E10 -3.42E10 -332E10 -326E10 -3.22E10
GT'’s Improvement (%) 3.99%  410%  -351%  -3.00%  -2.59% 413%  370%  -357%  -335%  -3.12%

Unigram’s objective. Finally, another way that we can investigate the closeness of UNIGRAM and
GREEDTOK, is to examine the £ of their token sets. From Table 8, we observe that GREEDTOK’s £
is much closer to UNIGRAM’s L, relative to BPE’s.

Conclusion of token set investigation. From the three analyses, there are two key findings. First,
GREEDTOK’s compression ability can be explained by selecting a large proportion of tokens that
BPE selects, and further improving it by selecting what BPE could not select, i.e. some tokens
selected by UNIGRAM. Second, there are indicators that GREEDTOK may display UNIGRAM’S
pre-training quality. This is observed from GREEDTOK having a higher proportion of common tokens
and a closer £ to UNIGRAM relative to BPE. We investigate and confirm this in Section 5.2, where
we conduct language pre-training on similar models trained on BPE versus GREEDTOK tokens.
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F Additional Information

F.1 Additional Corpora Information

In this subsection, we describe the corpora used in our compression experiments and detail any
preprocessing steps.

United Nations General Debate Corpus (UN). UN [JBD17] is a collection of statements made by
various member states during the General Debate on key geopolitical issues from 1946 to 2022. This
corpus has a Creative Commons (CC) 0: Public Domain License.

aryiv. This corpus’ is a collection of abstracts of scientific publications and preprints from the
popular e-Print archive. This corpus has a CCO: Public Domain License.

Wikipedia-English (wiki). An extensive collection of English articles on a wide range of things,
concepts, and people. We extract [Att15] the text from the database dump.® We also conduct a
performance ablation with articles containing Chinese, Japanese and Korean (CJK) languages. The
texts belonging to these articles are under CC BY-SA 4.0 and GNU Free Documentation Licenses.

PubMed Central Open Access (PubMed). Similar to aryiv, PubMed’ is a repository of publica-
tions and preprints, mainly related to health, medicine, biotechnology, and pharmaceuticals. We select
the Non-Commercial Use Only subset grouped by: CC BY-NC, CC BY-NC-SA, and CC BY-NC-ND
licenses. We preprocessed the text minimally, removing citations and headers.

RefinedWeb. This corpus [PMH 23] is a filtered set of CommonCrawl [Com23] with stringent
filtering and extensive deduplication. It was used to pretrain language models with 1B and 7B
parameters. The corpus has a ODC-By 1.0 license.

DCLM full-dedup. This corpus is built from DCLM [LFS™24] using a deduplication process that
was used to build Zyda-2 [TGD"24]. This corpus is licensed under CC-by-4.

F.2 Model Pre-training Information

Our pre-training corpus is DCLM full-deduped dataset. For model training, we use the Dolomite
Engine [Mis24]. Our model architecture is a 40-layer Transformer [VSP™ 17], with embedding size
1536, MLP using SwiGLU activation [Sha20] with intermediate size of 4096, and GQA [ALTdJ 23]
layers with 12 query heads and 4 pairs of KV-heads. We used a fixed context length of 4096 tokens and
a batch size of 222 ~ 4M tokens. We train GREEDTOK and BPE tokenizers on approximately 20%
of the dataset, randomly selected. For BPE, we use the popular implementation from Huggingface’s
tokenizer APL® During training, we follow the same learning rate schedule as [SSM*24], training
on the dataset in two phases: the Power Scheduler [SSM*24] in phase 1 and a learning rate with
exponential decay in phase 2. However, our phases 1 and 2 use a similar data mixture, sampling the
first S00M documents for phase 1, and the next 100M documents for phase 2, which always use 20%
of the training iterations of phase 1. We run our experiments using NVIDIA H100 80GB HBM3
cluster, with 96 logical CPU count, training at a rate of ~400B tokens/day.

Evaluating GTET is analogous to a setting where model training is compute-constrained, and users
can use more text data for training. Conversely, evaluating GTEP is analogous to a setting where
model training is data-constrained, and users have a limited amount of text for training. In the
BPEM and GTET settings, we train the model for 125,000 and 25,000 iterations in phases 1 and 2
respectively. For GTEP, we take the model checkpoint of GTET at the 100,000th training iteration
step, followed by an additional 20,000 training iterations in phase 2.

>Available at: kaggle.com/datasets/Cornell-University/arxiv.

S Available at: https://dumps.wikimedia.org/.

" Available at: https://pmc.ncbi.nlm.nih.gov/tools/openftlist/.
8 Available at: https://github.com/huggingface/tokenizers.
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F.3 Additional Benchmark Information

We use the default settings of Language Model Evaluation Harness [GTA™24] for our bench-
mark evaluations.

ARC-Easy (ARC-e). A subset of easy questions from the Abstraction and Reasoning
Corpus (ARC) dataset [CCE™ 18] contains 2,376 grade school level multiple-choice questions
that were answered correctly with retrieval-based algorithm and a word co-occurrence algorithm.
Each question has 4 answer options.

ARC-Challenge (ARC-c). Another subset of questions from the ARC dataset, the test set comprises
1,172 grade school level multiple-choice questions that were incorrectly answered with retrieval-based
algorithm and a word co-occurrence algorithm. Similar to the easy subset, each question has 4 answer
options.

HellaSwag. This challenge set [ZHB ™ 19] evaluates sentence completion in a multiple-choice
setting. Given 4 possible answers, the correct answer completes the given sentence best. The test set
contains 10,003 question sets.

OpenBook QA (OBQA). This dataset [MCKS18] contains multiple-choice questions that require
additional reasoning and knowledge in addition to the information included in the question and its 4
answer choices. We use the main set containing 500 test question sets.

Physical Interaction: Question Answering (PIQA). This dataset [BZB'20] contains binary-
choice physical commonsense questions. Additional knowledge of how physical materials interact is
required to successfully answer the questions. We use the validation set of 2,000 question sets.

SciQ. This dataset [JW17] contains multiple-choice science questions that were crowdscourced.
Each question has 4 answer choices. We use its test subset of 1000 question sets.

BoolQ. This dataset [CLC"19] contains yes/no questions. Each question is accompanied by a
corresponding text passage. We use the validation set of 3,270 triplets of question, passage, and
answer.

Choice of Plausible Alternatives (COPA). This dataset [RBG11] seeks to evaluate commonsense
reasoning, where given a premise and two plausible causes or effects, the correct answer is the option
that is more plausible than the other. We use the validation set of 500 question sets.

LAMBADA. This dataset [PKL"16], abbreviated from LAnguage Modeling Broadened to
Account for Discourse Aspects, contains text passages with the given task of predicting the
last word of the target sentence. The task was crafted in a manner that the target word cannot be
predicted by the target sentence, requiring information from other parts of the given text passage. We
use its test set containing 5,153 text passages.

ReAding Comprehension dataset from Examinations (RACE). This dataset [LXL*17] contains
text passages with an associated multiple-choice question with four possible answer options. The
questions were collected from English examinations in China. We use the high school level test set
containing 3,498 passage-question sets.

Winogrande. This dataset [SBBC19] follows the Winograd schema [LDM11], where the task is a
fill-in-a-blank for a given sentence and two options, with additional commonsense reasoning required.
We use its test set containing 1,767 questions.

Wikitext bits/byte. We evaluate the bits/byte metric using Wikitext2 [MXBS16]. A lower value
for this metric implies that less information (bits) is required to make a correct next-token (byte)
prediction.
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G

Additional Pseudocode

Previously, in our MIP (Section 4.1), a 1-based indexing system was used. However, for implementa-
tion convenience, we use a 0-based indexing system for our pseudocodes instead. Given an ordered
sequence S, such as array A, string W, and selected tokens S, we use S; to specify an element in the
i*" index of S. However, for sequences, we use S;,; to specify the elements from the it" index up to,
but excluding, the j** of S. For example, when S = happy, we have S; = aand S; 3 = ap.

G.1 Computing S from 7

Given the COUNT function, corpus W, candidate tokens T, and an integer k, Algorithm 1 finds a
set of tokens S that maximizes the objective function with the help of subroutines Algorithm 2 and
Algorithm 3. The algorithm Algorithm 1 defines a couple of dictionaries M, P, R, and I to track the
problem state, then greedily picks the next best scoring token to cover words:

1.
2.

3.

4.

M maps each word W to its state of cover, similar to the definition in Section 4.1

P maps each token 7" to the set of its occurrences in the given word W, forall W € W, in a (W,
1) pair, where ¢ is the position index of the start of the token occurrence

R stores the net objective gain of each 7', which we use to greedily select the next best token in
Line 8

I maps each token 7" to an index, which we use to update the state of cover for all W € W at
Line 18

Algorithm 1 GREEDTOK: Computing S

Require: COUNT function, corpus words W where |WW| > 2 for all W € W, candidate tokens T,

1:

15:
16:
17:
18:
19:
20:
21:
22:
23:

integer k
Initialize dictionary M : W — NT with > State of the algorithm

M(W) = (mgy, Mg jwi—1) = (0,...,0) =0"I=1  forall W e W

Initialize dictionary P : T — (W x N)* with P(T) = {(W,i) € W x N : W; ;7| = T’} for
alT €T
> Positioning information of tokens in words
Initialize dictionary R : T — Nwith R(T) = 0forall7” € T 1 Token scores given current
state
Initialize dictionary I : T — N where I(T) =0forall T € T > Token indices in S
Initialize S as an empty sequence
Compute scores R(T') for each T' € T \ S using SCORE on current state M~ > Algorithm 3
Initialize Q as a priority queue of R
Pop next best token 7 = argmaxp . from Q and add to back of S > Skip checking first token
while |S| < k do
Pop next best token candidate 7 = argmaxpcp from Q
if new score R(7) # R(7) then > Algorithm 3
R(7) + R(7)
Push 7, R(7) back into Q
else
Append 7 to the back of S and then update I(7) = |S|
for (W,i) € P(7) do
if CANCOVER(M, 7, W, i) then
Update each entry of M(W); ;4 |- -1 to I(7) > Update states of M(7)
end if
end for
end if
end while
return S

30



Algorithm 2 CANCOVER: Check if W ;7| is coverable by T' in current state M

Require: Current state M, token 7', word W, position index ¢
1: return (i = 0 or M(W);_1 = 0) and (i + |T'| = [W|or M(W); 4 7—1 = 0)

Algorithm 3 SCORE: Calculate total number of possible covers

Require: Token T, token positions P(T"), current state M, COUNT function
1: Make a copy M’ of the state M > The original state remains unchanged
2: Initialize token score s = 0
3: for (W,i) e P(T) do
4: if CANCOVER(M', T, W, i) then
5 Add coUNT(W) - [{j € {i,...,i+|T|} : M/(W); =0}/ tos > Only add score for
non-zero entries
6: Update each entry of M'(W); ;4|71 to 1 > Mark to avoid double counting; see
Example 5
7: end if
end for
9: return s

e

The subroutine Algorithm 2 encapsulates a check of the validity of using a given token 7" to cover
W at position 4, primarily by observing if the non-start/end endpoint positions ¢ and i + |T'| were
previously covered by some other token previously; if such a token is present, then I" cannot cover
W at position ¢. Meanwhile, the subroutine Algorithm 3 calculates the score contribution by token 7',
given the current state IV, while accounting for previous covers applied from chosen tokens in S.

Example 4 (Valid coverings and two sample traces). Consider the example where T = {7} =
pa,To = ya, T3 = ap} and W = {W; = papaya, W, = impact}. Then, we have P(T}) =
{(W7y,0), (W7, 2), (W2, 2)}, indicating that the token 77 appears in W at positions 0 and 2, and in
W at position 2. Using SCORE (Algorithm 3) to update R would yield R(pa) = 3, R(ya) = 1,
and R(ap) = 1, so the greedy step Line 8 of Algorithm 1 would first select token T} to be included
into S. Initially, we have M (W; = papaya) = (0,0,0,0,0). After selecting T} into S, we have
M((Wy) = (1,0,1,0,0). Recalculating the scores using SCORE on the updated state M would yield
R(pa) = 0, R(ya) = 1, and R(ap) = 0, so the token 75 would be selected next. After selecting T
into S, we have M(W7) = (1,0, 1,0, 2) because I(T; = pa) = 1 and I(75> = ya) = 2. One can see
that the zero and non-zero locations in M indicate partition and coverage respectively. Now, ignoring
the scoring function, let us instead suppose that we selected 75 = ap, 17 = pa, and finally 75 = ya.
When we first selected T35 = ap, the state of W; = papaya will become M (W;) = (0,1,0,0,0)
with I(T3 = ap) = 1. Next, consider the token 77 = pa that appears at positions 0 and 2 of the word
W1. At position 0, we see that M(W1); ¢ |7|—1—04+2—1=1 = 1 # 0. Meanwhile, at position 2, we
have M[(W7);-1=2-1 = 1 # 0. Since there is at least one non-start/end endpoint positions already
covered by a token, we cannot further use 77 in W3. Finally, let us consider using token 75 = ya,
which appears at position 4 of W7. We see that i > 0, M(W7);_1 = 0, and ¢ + |T2| < |W1|, we can
cover W1 with T at position 4, resulting in M (W;) = (0,1, 0,0, 2) with I(ya) = 2. Note that we
do not need to check M(W1);4|1,|—1 because i + |T5| < [W1].

Example 5 (State copying and overcounting). Here, we explain why we require a copy of the
state in Algorithm 3 to avoid the overcounting of overlapping repeating substrings. Consider the
example of T} = aya, W = ayaya, and COUNT(W7) = 1, where P(T}) = {(W1,0), (W1,2)} and
M(W;) = M/'(W7) = (0,0,0,0) initially. In this case, we see that 77 would obtain a score of 1
either by covering W at position 0 (i.e. ayaya) or position 2 (i.e. ayaya), but not both positions
simultaneously (i.e. ayaya). To see how Algorithm 3 ensures this, let us suppose we considered
(W1, 0) then (W7, 2) in the for loop iteration. As the endpoints of (W7, 0) are coverable, we update
M'(W7) to (1,1,0,0). Note that M(W7) still remains unchanged as we have yet to confirm that
T is the next best token 7. With the updated state M’, we see that the next pair (W7,2) € P(T})
is an invalid cover since M'(W;)3_1-1 = 1 # 0, which prevents an overcounting. We remark that
the choice of updating entries to 1 is arbitrary (i.e. any non-zero value will work) and that one can
actually avoid explicitly making a copy of the state in implementation by performing checks in an
appropriate manner.
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Runtime complexity for computing S. Each call to CANCOVER (Algorithm 2) runs in O(1)
time. Fix an arbitrary iteration of the while loop in Algorithm 1. Each call to SCORE (Algorithm 3)
with token 7" runs in O(D _y, cw |W]) time because it iterates through each position in P(7") once
and considers if T is a valid cover for that position. While we update M(WW) during the iteration,
due to CANCOVER (Algorithm 2), each index is updated at most once to a non-zero value, i.e.
Example 5, resulting in at most O(} ;o |WW]) total number of updates. Therefore, applied across
all tokens 7' € T, k number of times, Algorithm 1 takes O(|T| - k - 3y, v |W]) time to compute
S. Empirically, we observe that our lazy strategy scales like ©(|T| - >y ey |W/]). Scores can be
greedily updated in small batches of next-best candidate tokens (Line 11 in Algorithm 1 is equivalent
to batch size 1), which typically suffices to identify the next-best token to add; we do not need to
perform |T| score updates at every iteration. As a result, the cumulative cost over iterations likely
remains much smaller than the naive bound, 3, ¢ (; , #updates; € O(|T).

Additional implementation remarks. In practice, it is possible to adopt alternative data represen-
tations. For example, instead of a dictionary, one could represent IM as a single contiguous array and
define a given word W as a position in the array. One could also use a representation of length ||
for each word instead of the (|]I¥| — 1)-sized representation discussed in Line 1 and Section 4.1. For
example, covering the word W = papaya by token 77 = pa could be represented by (1,1,1,1,0,0)
instead of (1,0, 1,0,0). However, in the (1,1, 1, 1,0, 0) representation, it is impossible to discern a
partition and one has to keep track of additional information regarding duplicates of tokens within
the same word. Furthermore, one can avoid redundant calculations of P by tracking and only
recalculating the affected 7" in words covered by the current 7.

G.2 Tokenizing a text W using S

In Algorithm 4, we describe how to encode a given text W into its token representation using the
token set S from Algorithm 1. First, in Line 1, we initialize a dictionary to map our tokens in S
according to their order of inclusion to S, and then place singleton tokens B at the back of the
sequence. Next, in Line 2, we find all possible token covers of W using tokens in S and sort them in
Line 3 according to their priority I and a left-to-right ordering in W. Using M to denote which token
covers which position index of W, we iterate through (7', ) in the sorted P and update M whenever
the token " can cover W at position 7 given earlier decisions. Note that this may mean that a later
token of longer length may overwrite the covering decision of an earlier shorter token; see Example 6.
Finally, using M, we return the 0-delineated token representation; see Example 7.

Algorithm 4 GREEDTOK: Tokenizing a given text W using S

Require: Text W, singleton tokens B, chosen token sequence S
1: Initialize dictionary I : S U B — N with

I(T) = i if T'is 4" chosen token in S
~ IS| +i if Tis i*" token in B

> Fix an arbitrary ordering to singleton tokens

2: Initialize potential cover positions P = {(7',4) : T € S, W, i) = T'}

3: Sort P based on I(T"), then position 4, with lower values having greater priority

4: Initialize state Ml = {mq 1, ..., Mw|—2,;w|-1} = (L

5: for (T,4) € P in descending sorted order of Line 3 do

6: if CANCOVER(M, T, W, i) then

7: Update each entry of M ;  7—1 to I(T)

8: end if

9: end for
10: return W delineated at positions of 0 > See Example 7

Example 6 (Overriding earlier shorter tokens). Consider the encoding of W; = abcdefg with
S = (51 =ab, Sy =cd, S5 = ef, Sy = abc, S5 = abed, Sg = efg, S7 = abcedefg). In the first three
iterations, we use Sp, Sa, and S3 to cover W, resulting in M = (1,0, 2,0, 3,0). Then, we see that
Sy does not have any valid covers and so M remains unchanged. In the fifth and sixth iterations,
notice that S7,.S3 C S5 and S3 C Sg, resulting in S5 and Sg being valid covers and M being updated
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to (5,5,5,0,6,6). Finally, since S5,Ss C S7 and S7 is a valid cover with respect to the current
state, M becomes (7,7,7,7,7,7). Now, consider another scenario of encoding W5 = abcd using
S = (Sg = ab, Sy = abc, S19 = abed), where Sg C Sy C S1g. Covering W5 using Sg results in
M = (1,0,0). Then, using Sy results in M = (2,2, 0). Finally, using Sy results in M = (3,3, 3).
In both examples, we see that covers are only overridden by proper supersets that appear later in the
ordering of S, where the largest valid cover in S for W is of size |W|. Furthermore, recall that the
token covers of any valid covering do not overlap so they jointly take up at most |TW| positions in
total. As such, we see that each position M; € M is updated at most |W| times and thus, across all
|W | positions, Algorithm 3 updates values in M a maximum of O(|W|?) times.

Example 7 (Encoding the tokenized output). If W = abcdef, S = {S; = bed, Sz = ef} and M =
(0,1,1,0,2), then W’s final tokenized output will be (a, bed, ef). If one wishes to convert the tokens
to integers with respect to token indexing, simply apply I to each token to get (I(a), I(bcd), I(ef)).

Runtime complexity for tokenizing 1/ using S. Each call to CANCOVER (Algorithm 2) runs
in O(1) time. There are at most (lVQV‘) € O(|W|?) substrings of W and so Line 2 runs in O(|W|?)
time, |P| € O(|W|?) and sorting P takes O(|W|?*log(|W|) time. Since each index can only be
overwritten when a longer token covers it, in Line 7, we see that each position in M is only updated
at most || times, and therefore a maximum of |WW|? for all positions in |P| number of iterations;
see Example 6. Thus, the entire for loop takes O(|P| + |[W|?) € O(|W|?) time to iterate through P
and to update all O(|W|) positions in M.

Additional implementation remarks. In practice, we limit the subsequence search to the maximum
token length £ = maxrp¢g |T'|, with early stopping. To reduce |W| even further, we have to go beyond
regex and identify smaller local sections within W so that we can independently tokenize these
sections. This is possible as S inadvertently learns the regex pattern and more during its construction.
This implies that we can also further infer natural separations within W where no T' € S overlaps
with another.
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