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Abstract

Humans draw to facilitate reasoning: we draw auxiliary lines when solving ge-1

ometry problems; we mark and circle when reasoning on maps; we use sketches2

to amplify our ideas and relieve our limited-capacity working memory. However,3

such actions are missing in current multimodal language models (LMs). Current4

chain-of-thought and tool-use paradigms only use text as intermediate reasoning5

steps. In this work, we introduce SKETCHPAD, a framework that gives multimodal6

LMs a visual sketchpad and tools to draw on the sketchpad. The LM conducts7

planning and reasoning according to the visual artifacts it has drawn. Different from8

prior work, which uses text-to-image models to enable LMs to draw, SKETCHPAD9

enables LMs to draw with lines, boxes, marks, etc., which is closer to human10

sketching and better facilitates reasoning. SKETCHPAD can also use specialist11

vision models during the sketching process (e.g., draw bounding boxes with ob-12

ject detection models, draw masks with segmentation models), to further enhance13

visual perception and reasoning. We experiment on a wide range of math tasks14

(including geometry, functions, graph, chess) and complex visual reasoning tasks.15

SKETCHPAD substantially improves performance on all tasks over strong base16

models with no sketching, yielding an average gain of 12.7% on math tasks, and17

8.6% on vision tasks. GPT-4o with SKETCHPAD sets a new state of the art on all18

tasks, including V ∗Bench (80.3%), BLINK spatial reasoning (83.9%), and visual19

correspondence (80.8%). We will release all code and data.20

1 Introduction21

Sketching is a fundamental human activity, serving as a versatile tool for communication [11],22

ideation [44], and problem-solving [43]. Unlike written language, sketches have the advantage of23

conveying visuo-spatial ideas directly, for example by using spatial relations on paper to convey24

spatial relations or other more abstract relationships in the world. Sketches are so fundamental that25

we use them to teach school children how to solve geometry problems by drawing support lines, to26

aid engineers conveying prototypes, to support architects creating blueprints, and to allow scientists27

like us to convey scientific contributions (see Figure 1).28

As multimodal language models (LMs) [34, 38, 27, 26, 2, 3, 45, 7, 30, 37, 6, 5] have begun to mature,29

we now expect them to solve tasks like the ones mentioned above, i.e., ones where people draw30

intermediate sketches to simplify reasoning. In recent benchmarks on complex geometry and math31

problems (e.g., Geometry3K [31], IsoBench [8]), models are given images of diagrams and asked32

questions requiring symbolic grounding and spatial understanding, where intermediate sketches33

like auxiliary lines can enhance reasoning. Even benchmarks in computer vision (e.g., BLINK [9],34

V*Bench [47])now have a similar flavor. Specialist vision models can be viewed as sketching on35

natural images. For example, object detection is plotting bounding boxes around objects; depth36

estimation is drawing colormaps according to depth. Unfortunately, current LMs lack a scaffold for37

using sketch-based reasoning when solving tasks.38

In this paper, we introduce Visual SKETCHPAD: a framework that provides multimodal LMs39

with the tools necessary to generate intermediate sketches to reason over tasks. Inspired by40

textual chain-of-thought reasoning in LMs [46, 57], SKETCHPAD prompts the underlying visual LM41
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Prove the angles of 
△ABC sum to 180°

Geometry

Start by assuming, 
for contradiction, 
that the sum is not 
180°. We’ll introduce 
a new angle, ∠4 …

GPT-4o

f(x) = 0.14 x − 5.09

(a) (b)

∠4 is congruent to ∠2, and ∠5 is 
congruent to ∠3. ∠1, ∠4, and ∠5 
form a straight angle = 180°. So 
∠1, ∠2, ∠3 add up to 180°.

Draw line DE parallel to AC

SketchPad + GPT-4o Is f(x) an convex 
function?

It is convex for x>0 
but concave for x<0

GPT-4o

SketchPad + GPT-4o

convex because line between any 
two points lie above the graph.

Plot the function

What is the type of 
the shop?

The sign in the image 
reads “ceremonial 
matcha,”. it’s a cafe.

GPT-4o

Use sliding_window to 
find the board

SketchPad + GPT-4o

Math Function

I see a board in patch 2 
and 3 and will zoom in

The zoomed-in image 
shows the text 
“corepower YOGA”. So 
it’s a yoga studio

Visual Search
 Are there cookies 
stacked on other 

cookies?

No

GPT-4o

Use segmentation & marking

SketchPad + GPT-4o

Use depth estimation

Spatial Reasoning

Cookies 2 and 5 seem 
to overlap. Need to 
analyze their depth

Warmer colors 
indicate closer 
proximity, suggesting 
they are stacked on 
cooler-colored ones.

(c) (d)
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Figure 1: SKETCHPAD equips GPT-4 with the ability to generate intermediate sketches to reason
over tasks. Given a visual input and query, such as proving the angles of a triangle equal 180°,
SKETCHPAD enables the model to draw auxiliary lines which help solve the geometry problem.

to produce visual artifacts as part of a chain of mixed textual, programmatic, and visual reasoning.42

For example, to prove that the angles of triangles sum up to 180 degrees in Figure 1 (a), SKETCHPAD43

enables agents to modify the diagram by introducing a new auxiliary line. This new line, along44

with new annotated angles, provides the critical information to solve the geometry task. Similarly,45

SKETCHPAD improves models’ spatial reasoning for computer vision. To determine if there are46

cookies stacked on top of other cookies in the image (Figure 1b), the model first produces an47

intermediate depth estimate. By analyzing the depth estimate, which reveals cookies overlapping at48

different depths, the model is able to correctly answer that the cookies are indeed stacked.49

We demonstrate the effectiveness of visual SKETCHPAD across a wide range of mathematics and50

computer vision tasks. For math, we tackle problems including (1) geometry [31], (2) mathematical51

functions, (3) graph algorithms, and (4) strategy games [8]. Across all four categories of mathe-52

matical tasks, SKETCHPAD consistently improves the baseline GPT-4o performance, yielding an53

average gain of 12.7%. For computer vision, we tackle diverse tasks including (1) depth, (2) spatial54

reasoning, (3) jigwaw, (4) visual correspondence, (5) semantic correspondence, as well as questions55

from (6) the MMVP and (7) the V*Bench benchmarks [9, 40, 47]. For this domain, SKETCHPAD56

enables models to generate segmentation masks, crop images, draw bounding boxes, zoom into image57

regions, overlay images, etc. Similar to math, SKETCHPAD shows consistent improvements across58

all seven types of computer vision tasks. For example, GPT-4o, augmented with SKETCHPAD, sees59

14.3% improvement on V*Bench, 12.1%, and 9.7% improvements on BLINK’s depth and semantic60

correspondence tasks, setting a new state of the arts across all tasks.We hope SKETCHPAD opens up61

new research opportunities toward more capable and interpretable multimodal intelligence.62

2 Visual SKETCHPAD63

Figure 2 shows examples of how SKETCHPAD works. Our framework requires no finetuning or64

training. Multimodal LMs, out of the box, can be prompted to sketch using our framework. The65

SKETCHPAD model solves tasks by iteratively interacting with an environment. Given a multimodal66

query q consisting of both visual and textual components, the model generates a sequence of67

thoughts, actions, and receievs observations to gather the necessary information toanswer the query.68

SKETCHPAD follows a three-step process at each time step t:69

Thought: Given the current multimodal context ct, the model reasons over ct, generating text to70

support future reasoning. For example, for a geometry problem, the LM may decide to draw an71

auxiliary line between two points. For a computer vision problem, the LM may decide to draw a72

bounding box around an object and mark the box with a number.73
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THOUGHT 1: I can use a depth estimation tool that provides a depth 
map with colors indicating distances.

THOUGHT 2: The depth map uses colors from purple (farther) to yellow 
(closer). I need to overlay the original image with the depth map

Which point is closer to 
the camera, A or B?

ACTION 1:        Call depth estimation

depth_map = depth(image) 
display(depth_map)

ACTION 2:        Call overlay

overlay = overlay_images(depth_map, image) 
display(overlay)

THOUGHT 3: It is evident that point B, in the yellow region, is closer to 
the camera compared to point A, which is in the purple region

Relative depth

Tell me the number of that 
player who is shooting

Visual Search

(a)

THOUGHT 1: I need to detect the players in the image and zoom in on 
the player who is shooting to see the number clearly

THOUGHT 2: From the image, Player2 seems to be shooting. I need to 
zoom in on this player to see the number on their jersey clearly

ACTION 1:        Call object detection

ACTION 2:        Call overlay

THOUGHT 3: From the zoomed-in image, I can clearly see that the 
number of the player who is shooting is 8

(b)

new_img, boxes = detection(image_1, ["player"]) 
display(new_img.annotated_image)

shooter = boxes[1] 
zoomed = zoom_in_image_by_bbox(image_1, shooter) 
display(zoomed)

Graph ConnectivityGeometry

Given ∠BCJ=105°, 
∠KEF=105°. Find ∠EIC

THOUGHT 1: I need to draw an auxiliary Line IX parallel to Line BD

ACTION 1:        Draw the aux. line using Python Code

Is there a path between node 
0 and node 4 in the graph?

THOUGHT 1:We can use the networkx library to plot the graph

    [0, 0, 0, 0, 0, 1, 0, 0, 0], 
    [0, 0, 1, 0, 0, 0, 1, 0, 0], 
    [0, 1, 0, 0, 1, 0, 0, 0, 0], 
    [0, 0, 0, 0, 0, 0, 0, 0, 0], 
    [0, 0, 1, 0, 0, 0, 0, 0, 0], 
    [1, 0, 0, 0, 0, 0, 1, 0, 1], 
    [0, 1, 0, 0, 0, 1, 0, 0, 0], 
    [0, 0, 0, 0, 0, 0, 0, 0, 0], 
    [0, 0, 0, 0, 0, 1, 0, 0, 0] 

adjacency 
matrix

=

ACTION 1:        Call Python Ploting tool
G = nx.from_numpy_matrix(np.array(adjacency_matrix), 
create_using=nx.DiGraph) 
pos = nx.spring_layout(G) 
nx.draw(G, pos, with_labels=True)

THOUGHT 2: From the graph, I saw there is a path between node 0 and 
node 4.

OBSERVATION 1 

OBSERVATION 1 
# Define auxiliary point X for the line IX 
x_I = points[“I”][0] 
y_I = points["I"][1] 
x_X = x_I + 100 
y_X = y_I + slope_bd * (x_X - x_I) 
# Plot the auxiliary line IX in red color 
ax.plot([x_I, x_X], [y_I, y_X], ‘red') …

THOUGHT 2: Given ∠BCJ = ∠KEF = 105°, their supplementary angles, 
∠KEH = ∠DCJ = 180° - 105° = 75°.  Given BD parallel to IX, it follows 
that ∠EIX = ∠KEH, and ∠XIC = ∠DCJ, both measuring 75°. Therefore, 
∠EIC = ∠EIX + ∠XIC = 150°

(a) (b)

A

B

B

A

Figure 2: Overview of SKETCHPAD. Given a multimodal query, the SKETCHPAD agent generates
a sketching plan to address the query (Thought), and then synthesizes a program to create visual
sketches (Action). By analyzing the resulting sketches (Observation), which serve as a visual
representation of the reasoning process, the model generates a final response to the query.

Action: Based on the thought, the model executes action at. In SKETCHPAD, this action can74

manipulate multimodal content. For example, the model can write Python codes to realize the75

proposed Thought. The action is executed; in this case, the generated code will be compiles and76

executed. We describe this step in detail in §77

Observation: Based on the action at, SKETCHPAD’s environment returns a new observation ot+1.78

The context is updated to ct+1 = (ct, at, ot+1). The model iterates with the thought, action, observa-79

tion steps for time step t+ 1, reasoning over its prior sketches. The LLM can also choose to return a80

final answer and terminate the reasoning process.81

3 Experimental Results82

Experimental setups on math tasks. we experiment with SKETCHPAD on four complex math-83

ematical tasks : (1) geometry, (2) mathematical functions, (3) graph algorithms, and (4) game84

strategies. Details of our evaluation tasks and the tools employed for visual reasoning are as in85

§C. We evaluate the performance of SKETCHPAD on multimodal LMs with API access, including86

gpt-4-turbo-2024-04-29 and gpt-4o-2024-05-13.87

Main results on math tasks. As shown in Table 1, SKETCHPAD consistently improves base88

model performance across all tasks, with an average improvement of 18.8% for GPT-4o and 13.5%89

for GPT-4 Turbo. In particular, we observe large gains on graph algorithms such as maximum90

flow and connectivity. For instance, GPT-4o with SKETCHPAD achieves an accuracy of 66.3% on91

the maximum flow problem, improving over the base model by 41.3%. Similarly, SKETCHPAD92

substantially improves the performance on mathematical functions, with GPT-4 Turbo achieving93

over 90% accuracy and GPT-4o over 88% accuracy on convexity and parity classification tasks.94

Furthermore, we observe notable gains (∼ 20%) on game strategies. Overall, these results highlight95

the effectiveness of SKETCHPAD in enhancing the reasoning capabilities of multimodal language96

models across diverse domains.97

Experimental setups on computer vision tasks. We experiment with SKETCHPAD on complex98

visual reasoning tasks. Recent work (BLINK) [9] finds that many core visual perception abilities are99

still missing from existing multimodal LMs—even though many computer vision specialist models100

possess such abilities. Also, SoM [51] shows that drawing segmentation masks on images unleashes101

the strong visual grounding ability of GPT-4V. We generalize these ideas with SKETCHPAD, allowing102

LMs to use specialist vision models to sketch. Details of these modules are in §D.1. Details of the103

tasks and vision specialists we used are in §D.104

Computer vision tasks results. Table 2 shows the performance of our SKETCHPAD and base-105

lines. SKETCHPAD consistently improves base model performance across all tasks. GPT-4o with106

SKETCHPAD sets the new state-of-the-art results on all tasks. SKETCHPAD is particularly effective107

on V ∗Bench, yielding 18.5% accuracy improvement for GPT-4 Turbo and 14.3% improvement108

for GPT-4o, surpassing the previous state of the art SEAL [47] which used a visual search model109
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Geometry Graph Math Game

Model Geometry Maxflow Isomorphism Connectivity Convexity Parity Winner ID
Prior LLMs without visual inputs
Gemini-Pro \ 15.6 47.7 50.0 87.9 48.2 8.1
Claude 3 OPUS \ 56.3 50.0 82.0 93.0 77.6 74.4
Mixtral 8x7B [18] \ 8.6 50.0 62.5 69.1 41.7 7.4
LLaMA-2-70B [41] \ 18.0 50.0 50.0 74.2 33.3 12.4
Latest multimodal LLMs + Visual Sketchpad
GPT-4 Turbo 37.5 32.8 62.5 66.0 57.0 80.5 50.4
+ Sketchpad 45.8 63.3 64.2 95.1 93.1 93.1 74.3

+8.3 +30.5 +1.7 +29.1 +25.4 +12.6 +23.9
GPT-4o 62.5 25.0 50.8 96.1 87.2 84.4 61.1
+ Sketchpad 66.7 66.3 65.3 98.1 90.1 88.1 81.2

+4.2 +41.3 +14.5 +2.0 +2.9 +3.7 +20.1

Table 1: Accuracy scores on geometry problems, graph algorithms, mathematical functions, and
game. SKETCHPAD yields large performance gains across all tasks and outperform all baselines.

Model V ∗Bench MMVP Depth Spatial Jigsaw Vis. Corr. Sem. Corr.
Prior multimodal LLMs
LLaVA-1.5-7B [25] 48.7 - 52.4 61.5 11.3 25.6 23.0
LLaVA-1.5-13B [25] - 24.7 53.2 67.8 58.0 29.1 32.4
LLaVA-NeXT-34B [26] - - 67.7 74.8 54.7 30.8 23.7
Claude 3 OPUS [1] - - 47.6 58.0 32.7 36.6 25.2
Gemini-Pro [38] 48.2 40.7 40.3 74.8 57.3 42.4 26.6
GPT-4V-preview [34] 55.0 38.7 59.7 72.7 70.0 33.7 28.8
Previous state of the art 75.4 [47] 49.3 [10] 67.7 [26] 76.2 [39] 70.0 [34] 42.4 [38] 33.1 [45]
Latest multimodal LLMs + Visual Sketchpad
GPT-4 Turbo 52.5 71.0 66.1 68.5 64.7 48.8 30.9
+ Sketchpad 71.0 73.3 68.5 80.4 68.5 52.3 42.4

+18.5 +2.3 +2.4 +11.9 +3.8 +3.5 +11.5
GPT-4o 66.0 85.3 71.8 72.0 64.0 73.3 48.6
+ Sketchpad 80.3 86.3 83.9 81.1 70.7 80.8 58.3

+14.3 +1.0 +12.1 +9.1 +6.7 +7.5 +9.7

Table 2: Accuracy on complex visual reasoning tasks. SKETCHPAD enhances both GPT-4 Turbo
and GPT-4o performance, establishing new SOTA performance levels on all the tasks.

specifically trained for this task. On BLINK tasks, SKETCHPAD on average yields 6.6% absolute110

accuracy gain for GPT-4 Turbo and 9.0% gain for GPT-4o. Interestingly, despite the fact that all111

modules in SKETCHPAD work on a single image, the LMs also get substantial improvement on112

multi-image tasks, including jigsaw puzzles, visual correspondence, and semantic correspondence.113

Finally, GPT-4o, the LM with stronger multimodal ability than GPT-4 Turbo, benefits more from114

SKETCHPAD. For example, on the relative depth task, GPT-4o gets 12.1% accuracy improvement,115

while GPT-4 Turbo only gets 2.4%, showing that GPT-4o is better at understanding the depth map116

SKETCHPAD generated. Overall, our experiments show that SKETCHPAD is an effective way to117

improve multimodal LMs’ performance on visual reasoning tasks. More analysis are in §E.118

4 Conclusion119

We present Visual SKETCHPAD, a framework that provides multimodal LMs with the tools necessary120

to generate intermediate sketches to reason over tasks. For complex mathematical reasoning tasks,121

SKETCHPAD yields large performance gains, by visualizing auxiliary lines, math functions, graphs,122

and games during reasoning. For visual reasoning tasks, we add vision specialists to SKETCHPAD.123

The LM can call these specialists during reasoning, observing the visualization of these specialists’124

predictions and then conduct further planning and reasoning. Experiments show that SKETCHPAD125

enhances the LMs’ performance across all tasks, and sets new state-of-the-art results. Ultimately,126

SKETCHPAD represents a step toward endowing LMs with complementary strengths of language and127

vision to tackle increasingly complex reasoning challenges.128
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A Related Work328

SKETCHPAD generalizes recent work on multimodal tool-use and visual prompting. We also place329

our work within the larger sphere exploring LMs as agents.330

Visual programming and tool-use. With the advancement of LMs [4, 34, 38, 42, 12], researchers331

have demonstrated the possiblity of decomposing complex vision tasks into simpler substeps that332

can each be solved using vision tools [53, 55, 17, 16]. Among them, the most relevant to us are333

Visprog [13] and ViperGPT [36]. They use LMs to generate Python code, which sequencially invokes334

specialized vision tools. These methods share a common problem that the multimodal modules335

follow a pre-defined plan outlined by the LM. By contrast, SKETCHPAD allows LMs to change their336

plan according to the intermediate visual artifacts, yielding better performance and robustness when337

solving complex multimodal tasks.338

Visual prompting. Recent work shows that multimodal models can be augmented by visual prompts339

added to natural images [35]. For example, SoM [51] shows that adding labeled segmentation masks340

on images unleashes GPT-4V’s visual grounding ability. Prior work also reports similar findings in341

3D [24] and Robotics [33]. SKETCHPAD is a generalized framework for all these methods, allowing342

LMs to decide what visual prompting to use as part of the multimodal reasoning process.343

LMs as agents. Recent work has started to treat LMs as agents that can both reason and act [54,344

32, 48]. Researchers have applied this idea to software engineering [19, 56, 14], robotics [33],345

vision [28, 53], and GUI navigation [50, 22, 49]. SKETCHPAD can also be viewed as an agent that346

accepts multimodal inputs and outputs. One big difference is that SKETCHPAD can create visual347

artifacts to facilitate reasoning, while prior LM agents only generate texts during reasoning.348

B Sketching via Code Generation349

The core component of SKETCHPAD is sketching, which enables the LM to generate visual sketches350

by synthesizing programs that call different specialist vision models or Python plotting packages.351

Program Generation. Similar to recent works like ViperGPT and VPD [13, 36, 17], SKETCHPAD352

enables LMs to sketch through code generation. The LM is provided, through a prompt, with353

a detailed description of the available tools that can generate multimodal content (an example354

prompt and description can be found in §F). The prompt includes Python function signatures and355

docstrings [15] for these modules, but does not contain their full implementation. The LM generates356

Python code in a code block, using the provided tools, which, when executed, generates new image357

and text outputs. A special display function allows the LM to visualize the sketch image in the next358

observation ot+1.359

Modules for sketching. SKETCHPAD uses various tools to facilitate the sketching process, depending360

on the task at hand. For mathematical tasks, SKETCHPAD uses common Python packages like361

matplotlib and networkx for plotting (see §3). For vision tasks, the LM leverages specialist362

vision models during the sketching process. These models include detection tools that draw bounding363

boxes on the image, as well as segmentation and marking tools (inspired by SoM [51]) that draw364

colorful masks on the image and use numbers to label segments. We find these specialists possess365

essential perception skills for visual reasoning tasks, and SKETCHPAD is an effective way to combine366

them into a multimodal LM (see §D.1).367

C Math tasks details368

Geometry Problems. Drawing auxiliary lines in geometry diagrams is often helpful for problem-369

solving. For example, in Figure 2 (a), when asked to find ∠EIC, the LM plans to draw an auxiliary370

line IX parallel to BD, allowing it to use the properties of parallel lines to determine ∠EIC. To371

evaluate the effectiveness of SKETCHPAD, we use the problems from the Geometry3K dataset [31].372

To realize the line drawing process, SKETCHPAD takes a geometry diagram and its corresponding373

matplotlib code as input. The model then proposes and modifies the code to generate auxiliary374

lines, and executes the modified code to visualize the updated diagram with the added lines.375
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Mathematical functions. Understanding mathematical functions is crucial for various applications376

in science, engineering, and economics. We focus on two tasks related to mathematical functions377

from the IsoBench datasets [8]:378

• Classifying parity aims to determine whether a function is even, odd, or neither. Even379

functions satisfy f(−x) = f(x) for all x, while odd functions satisfy f(−x) = −f(x).380

• Identifying convexity/concavity aims to determine whether a function is convex or concave.381

Existing LMs can only analyze functions and attempt to prove their properties analytically. 1382

However, SKETCHPAD enables them to visually sketch functions to solve problems more efficiently.383

For instance, to determine the convexity of the function in Figure 1b, SKETCHPAD allows the model384

to plot the function using matplotlib, and visually inspect its overall shape.385

Graph algorithms. Many real-world problems, such as those related to computer networks and386

transportation systems, can be formulated as graph problems. We evaluate SKETCHPAD on three387

graph problems from IsoBench [8]:388

• Graph connectivity determines whether there exists a path between two vertices in a graph.389

• Maximum flow aims to find the maximum amount of flow that can be sent through a network390

from a source vertex to a sink vertex, subject to capacity constraints on the edges.391

• Graph isomorphism tests whether two graphs are structurally equivalent.392

Given an adjacency matrix of a graph like in Figure 2(b), SKETCHPAD can draw the actual graph393

structure, using using Python’s networkx library, enabling direct visual reasoning about graph394

properties and relationships.395

Game strategies. Chess games can be represented in various formats, including visual board states396

and textual move notations. Given only the textual move notations, SKETCHPAD can draw the visual397

representations of the chess board to analyze positions and formulate strategies. We evaluate the398

performance of SKETCHPAD on the winnder identification task from the IsoBench datasets [8] that399

aims to find the outcome of a chess game (win for White, win for Black, or draw) based on the final400

board state. To create the graphical board, SKETCHPAD uses Python’s chess library to draw the401

board from the Forsyth-Edwards Notation (FEN) of chess.402

D Computer Vision tasks details403

Tasks. We experiment with a wide range of complex visual reasoning tasks: (1) V ∗Bench [47].404

This benchmark contains questions about small items in an image. (2) MMVP benchmark from405

Eyes Wide Shut [40]. This benchmark contains visual questions specially designed to reveal the406

visual shortcomings of CLIP-based multimodal LMs. (3) BLINK [9]. This benchmark contains407

visual perception tasks that are easy for humans, but post significant challenge for multimodal408

LMs. Specifically, we experiment with relative depth, spatial reasoning, jigsaw puzzle, visual409

correspondence, and semantic correspondence tasks. More details of each task are in §G.410

D.1 Vision Specialists as Sketching Tools in SKETCHPAD411

LMs can use the following modules to sketch and manipulate images. We wrap these modules into412

Python functions that the LMs can call. Refer to §F for the function definitions.413

Detection. This module takes an image and a simple text query (e.g., “cat”) as input. We run the414

Grounding-DINO [29] open-vocabulary objection detection model and plot the detected bounding415

boxes (together with a number label) on the image. It also returns the bounding box coordinates.416

Segmentation. This module takes an image as input and returns an image with colorful segmentation417

masks on it. Each mask also has a number label. We follow the implementation of SoM [51]. The418

underlying segmentation models are SegmentAnything [21] and Semantic-SAM [23].419

Depth estimation. This module takes an image as input and returns a depth map. The underlying420

model is DepthAnything [52].421

1For humans, the analytical approach is the correct way to tackle these tasks. However, we observe that LMs
are not good at analytical reasoning in math. They make errors when deducing f(−x) and derivatives.
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THOUGHT 1: I can use a depth estimation tool that provides a depth 
map with colors indicating distances.

THOUGHT 2: The depth map uses colors from purple (farther) to yellow 
(closer). I need to overlay the original image with the depth map

Which point is closer to 
the camera, A or B?

ACTION 1:        Call depth estimation

depth_map = depth(image) 
display(depth_map)

ACTION 2:        Call overlay

overlay = overlay_images(depth_map, image) 
display(overlay)

THOUGHT 3: It is evident that point B, in the yellow region, is closer to 
the camera compared to point A, which is in the purple region

Relative depth

Tell me the number of that 
player who is shooting

Visual Search

(a)

THOUGHT 1: I need to detect the players in the image and zoom in on 
the player who is shooting to see the number clearly

THOUGHT 2: From the image, Player2 seems to be shooting. I need to 
zoom in on this player to see the number on their jersey clearly

ACTION 1:        Call object detection

ACTION 2:        Call overlay

THOUGHT 3: From the zoomed-in image, I can clearly see that the 
number of the player who is shooting is 8

(b)

new_img, boxes = detection(image_1, ["player"]) 
display(new_img.annotated_image)

shooter = boxes[1] 
zoomed = zoom_in_image_by_bbox(image_1, shooter) 
display(zoomed)

Graph ConnectivityGeometry

Given ∠BCJ=105°, 
∠KEF=105°. Find ∠EIC

THOUGHT 1: I need to draw an auxiliary Line IX parallel to Line BD

ACTION 1:        Draw the aux. line using Python Code

Is there a path between node 
0 and node 4 in the graph?

THOUGHT 1:We can use the networkx library to plot the graph

    [0, 0, 0, 0, 0, 1, 0, 0, 0], 
    [0, 0, 1, 0, 0, 0, 1, 0, 0], 
    [0, 1, 0, 0, 1, 0, 0, 0, 0], 
    [0, 0, 0, 0, 0, 0, 0, 0, 0], 
    [0, 0, 1, 0, 0, 0, 0, 0, 0], 
    [1, 0, 0, 0, 0, 0, 1, 0, 1], 
    [0, 1, 0, 0, 0, 1, 0, 0, 0], 
    [0, 0, 0, 0, 0, 0, 0, 0, 0], 
    [0, 0, 0, 0, 0, 1, 0, 0, 0] 

adjacency 
matrix

=

ACTION 1:        Call Python Ploting tool
G = nx.from_numpy_matrix(np.array(adjacency_matrix), 
create_using=nx.DiGraph) 
pos = nx.spring_layout(G) 
nx.draw(G, pos, with_labels=True)

THOUGHT 2: From the graph, I saw there is a path between node 0 and 
node 4.

OBSERVATION 1 

OBSERVATION 1 
# Define auxiliary point X for the line IX 
x_I = points[“I”][0] 
y_I = points["I"][1] 
x_X = x_I + 100 
y_X = y_I + slope_bd * (x_X - x_I) 
# Plot the auxiliary line IX in red color 
ax.plot([x_I, x_X], [y_I, y_X], ‘red') …

THOUGHT 2: Given ∠BCJ = ∠KEF = 105°, their supplementary angles, 
∠KEH = ∠DCJ = 180° - 105° = 75°.  Given BD parallel to IX, it follows 
that ∠EIX = ∠KEH, and ∠XIC = ∠DCJ, both measuring 75°. Therefore, 
∠EIC = ∠EIX + ∠XIC = 150°

(a) (b)

A

B

B

A

Figure 3: Examples of SKETCHPAD applied to vision tasks. The figure shows actual outputs generated
by SKETCHPAD. By contrast, the baseline GPT-4o model cannot answer these questions correctly.

Visual search via sliding window. This module mimics how humans search for small items on an422

image. It takes a text query as input and runs a sliding window over the image. The window size is423

1/3 of the image size, and the step size is 2/9 of the image size (so an image will have 4× 4 = 16424

windows). It returns a sequence of image patches in which the query is detected.425

Other image manipulation modules. Other modules include (1) zoom-in and crop, which takes an426

image and a bounding box as input and returns the image patch inside the box; (2) Overlay images,427

which takes two images and alpha values as input, and returns the overlayed image.428

E More Analysis429

How many times is each vision specialist used? We count the number of times each vision430

specialist is used in each task, as shown in Figure 4. Here we choose the four tasks that achieve431

the largest improvement: V ∗Bench, relative depth, spatial reasoning, and semantic correspondence.432

We observe that (1) the use of vision specialist is task-dependent, and the two LMs analyzed433

utilize similar tools. For example, for V ∗, which needs to locate small objects, the LMs mainly use434

detection, sliding window search, and zoom-in, similar to how people would search. For the relative435

depth task, both models rely on depth estimation. For spatial reasoning, the LMs use detection436

and segmentation to facilitate visual reasoning. (2) GPT-4o likes to use more tools. GPT-4o uses437

the vision specialists more often than GPT-4 Turbo. Also, the two LMs behave differently for438

the semantic correspondence tasks. GPT-4o uses the segmentation module for 40% of the task439

instances, while GPT-4 Turbo uses the detection module for less than 20% of times, and rarely use440

the segmentation module. This difference may explain the performance gap between the two LMs441

(58.3% v.s. 42.4%) on this task.442

Comparison with visual prompting and tool-use frameworks. In Table 3, we compare SKETCH-443

PAD with the visual prompting framework SoM [51] and the LLM tool-use framework Visprog [13].444

Details of these methods can be found in §A. For a fair comparison, we make the following adap-445

tations: (1) we find that prompting LMs with SoM images can hurt performance, likely because446

the visual prompts confuse the model. To make a stronger baseline, we prompt the LM with both447

the original image and the SoM image (full prompt in §F), which we refer as “SoM + orig.” (2)448

We replace the LM and VQA modules in Visprog with the corresponding GPT-4 model. (3) Since449

baseline methods are developed on single-image tasks, we compare SKETCHPAD on such tasks. From450

Table 3, we can see that SKETCHPAD is the only framework that yields consistent improvement451

on all tasks. SoM can boost spatial reasoning ability, as the authors reported. However, it can hurt the452

performance on other tasks, even in the “SoM + orig.” setting. Visprog performs worse than the base453

LM on all the tasks. As prior work [20, 17] suggests, one possible reason is that the vision modules454

themselves have errors, and the error propagates when the modules are composed by a program.455
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Figure 4: Percentage of times GPT-4o and GPT-
4 Turbo use a visual module in SKETCHPAD
when solving V ∗Bench, relative depth, spatial
reasoning, and semantic correspondence tasks.

Model V ∗ MMVP Depth Spatial

GPT-4 Turbo 52.5 71.0 66.1 68.5
SoM 42.0 60.7 58.9 78.3
SoM + orig. 51.3 74.3 66.9 79.7
Visprog 33.2 16.3 67.8 53.8
Sketchpad 71.0 73.3 68.5 80.4

GPT-4o 66.0 85.3 71.8 72.0
SoM 49.0 70.7 62.9 83.2
SoM + orig. 68.1 84.0 75.0 82.5
Visprog 32.4 17.3 46.8 37.8
Sketchpad 80.3 86.3 83.9 81.1

Table 3: Comparison with other augmenta-
tion frameworks for multimodal LMs on single-
image tasks. For fair comparison, we modify
the original Visprog [13] framework by replac-
ing the LM and VQA components with the cor-
responding GPT-4 model.

Why does SKETCHPAD work? First, vision is a versatile and informational interface that456

complements language. Dense information like depth and segmentation cannot be described easily457

through language [9]. In a broader perspective, humans have developed many visualization techniques458

that are direct, efficient, and informational. SKETCHPAD provides LMs the opportunity to use them.459

Second, in SKETCHPAD, multimodal LMs can plan and reason based on the intermediate visual460

artifacts they created. In contrast, in prior modular vision work [13, 36, 51], multimodal modules461

follow a predefined plan by either humans or code. SKETCHPAD is much more flexible and robust462

to errors. For example, suppose object detection makes an error. The LM can (in principle) find463

the error by viewing the bounding boxes, and change its following plans, but prior methods cannot.464

Third, as discussed next, the plans of multimodal LMs are similar to human plans, and therefor465

likely benefit from the fact that the underlying LMs have seen data with similar reasoning patterns466

during pretraining.467

Do LMs have the same plans as humans? We conduct a human study on all geometry problems468

and 10 problems on each vision task. On geometry, humans draw the same auxiliary line as GPT-4o469

80% of the time. On vision, we show 2 human subjects the full plan of GPT-4o, which they rate is470

valid in 92.8% of instances. Most errors are caused by failures in the vision specialists (e.g., fail to471

detect an object) and mistakes in simple visual questions answering, rather than planning.472

Model Geometry Maxflow Convexity Winner ID
LLaVA-NeXT-13B 11.1 7.8 50.39 5.8
+ oracle Sketchpad 22.2 10.2 50.0 36.7
LLaVA-NeXT-34B 26.1 0.8 81.6 49.0
+ oracle Sketchpad 28.3 14.1 87.1 49.4

Table 4: Open-source LLaVA models’ performance on math tasks. The oracle Sketchpad uses the
visual artifact generated in the last action of GPT-4o + SKETCHPAD as inputs.

Experiments on open-source models. Can sketches like diagrams, plots, and auxiliary lines473

facilitate existing open-source multimodal LMs? To answer this question, we conduct the experiments474

in Table 4. We use the visual artifacts generated in the last action of GPT-4o + SKETCHPAD475

experiment as the image input for open-source LLaVA-NEXT models [26]. We can see that this476

oracle SKETCHPAD brings consistent improvement to math tasks and boosts mathematical reasoning.477

F Prompts478

- Code: 1. merge math into Yushi’ code ]−WS479

Here we provide our prompts for math tasks as in Figures 5 and 6.480
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PROMPT
You are given a real-valued, scalar function f(x).
YOUR TASK is to determine whether f(x) is an convex function or concave function.
Definition of a convex function: A function such that

∀x, y, 0 ≤ t ≤ 1, f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y)

Definition of a concave function: A function such that

∀x, y, 0 ≤ t ≤ 1, f(tx+ (1− t)y) ≥ tf(x) + (1− t)f(y)

Here is the expression of f(x), defined for all x>0. Here is the expression of
f(x):

f(x) = 7.57− 0.08 ∗Abs(x)

Respond with ‘convex’ or ‘concave’ first on whether the function f (x) is convex or
concave, based on the definitions and your observation of the function. You can
generate matplotlib code to visualize the function.
If you can get the answer, please reply with ANSWER: <your answer>, extract the
final answer in FINAL ANSWER: <final answer> and ends with TERMINATE in the RESULT.
Answer:

Figure 5: Prompt for the Math Convexity task. We follow the similar prompt format to [8], except
prompting the models to write the code to generate images.

PROMPT
You are given an adjacency matrix of a graph and two query nodes.
YOUR TASK is to find if there is a path between the two nodes.
Definition of connectivity: In an undirected graph G, two vertices u and v are
called connected if G contains a path from u to v. A path in a graph is a finite
sequence of edges which joins a sequence of vertices.
In the query example, the nodes and the adjacency matrix are zero-indexed.
Query Example:
Adjacency Matrix:
[[0, 0, 0, 0, 0, 1, 0, 0, 0],
[0, 0, 1, 0, 0, 0, 1, 0, 0],
[0, 1, 0, 0, 1, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 1, 0, 0, 0, 0, 0, 0],
[1, 0, 0, 0, 0, 0, 1, 0, 1],
[0, 1, 0, 0, 0, 1, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 1, 0, 0, 0]]
Query nodes indices (zero-indexed): 4 and 0
Respond with ‘yes’ or ‘no’ first on whether the query nodes are connected or not in
the graph.
If there is a path, first provide the path as a sequence of vertices (nodes), and
then explain your reasoning. You can use networkx to draw the graph. If there is
no path, explain why in details.
Answer (start with ’yes’ or ’no’): If you can get the answer, please reply with
ANSWER: <your answer>, extract the final answer in FINAL ANSWER: <final answer> and
ends with TERMINATE in the RESULT.
Answer:

Figure 6: Prompt for the Graph Connectivity task. We follow the similar prompt format to [8], except
prompting the models to write the code to generate images.

14



Here we provide the prompts for GPT-4o + SKETCHPAD tackles a visual search problem. For481

simplicity, we omitted the coding parts for tools besides detection and sliding window.482

SYSTEM PROMPT: You are a helpful multimodal AI assistant.
Solve tasks using your vision, coding, and language skills.
The task can be free-form or multiple-choice questions.
You can answer the user’s question about images. If you are not sure, you can
coding
You are coding in a Python jupyter notebook environment.
You can suggest python code (in a python coding block) for the user to execute. In
a dialogue, all your codes are executed with the same jupyter kernel, so you can use
the variables, working states.. in your earlier code blocks. Solve the task step
by step if you need to.
The task may be a vision-language task and require several steps. You can write
code to process images, text, or other data in a step. Give your code to the
user to execute. The user may reply with the text and image outputs of the code
execution. You can use the outputs to proceed to the next step, with reasoning,
planning, or further coding.
If a plan is not provided, explain your plan first. Be clear which step uses code,
and which step uses your language skill.
When using code, you must indicate the script type in the code block. The user
cannot provide any other feedback or perform any other action beyond executing the
code you suggest. The user can’t modify your code. So do not suggest incomplete
code which requires users to modify. Don’t use a code block if it’s not intended to
be executed by the user.
Don’t include multiple code blocks in one response. Do not ask users to copy and
paste the result. Instead, use ’print’ function for the output when relevant.
Check the execution result returned by the user.
All images should be stored in PIL Image objects. The notebook has imported ’Image’
from ’PIL’ package and ’display’ from ’IPython.display’ package. If you want to
read the image outputs of your code, use ’display’ function to show the image in the
notebook. The user will send the image outputs to you.
If the result indicates there is an error, fix the error and output the code again.
Suggest the full code instead of partial code or code changes. If the error can’t
be fixed or if the task is not solved even after the code is executed successfully,
analyze the problem, revisit your assumption, collect additional info you need, and
think of a different approach to try.
For each turn, you should first do a "THOUGHT", based on the images and text you
see. If you think you get the answer to the intial user request, you can reply with
"ANSWER: <your answer>" and ends with "TERMINATE".

ROLE: User:
Here are some tools that can help you. All are python codes. They are in tools.py
and will be imported for you.
The images has their own coordinate system. The upper left corner of the image is
the origin (0, 0). All coordinates are normalized, i.e., the range is [0, 1].
All bounding boxes are in the format of [x, y, w, h], which is a python list. x is
the horizontal coordinate of the upper-left corner of the box, y is the vertical
coordinate of that corner, w is the box width, and h is the box height.
Notice that you, as an AI assistant, is not good at locating things and describe
them with coordinate. You can use tools to generate bounding boxes.
You are also not good at answering questions about small visual details in the
image. You can use tools to zoom in on the image to see the details. Below are the
tools in tools.py:
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“‘python
class AnnotatedImage:
# A class to represent an annotated image. It contains the annotated image and the
original image.
def __init__(self, annotated_image: Image.Image, original_image:
Image.Image=None):
self.annotated_image = annotated_image
self.original_image = original_image

def detection(image, objects):
"""Object detection using Grounding DINO model. It returns the annotated image and
the bounding boxes of the detected objects.
The text can be simple noun, or simple phrase (e.g., ’bus’, ’red car’). Cannot be
too hard or the model will break.
The detector is not perfect, it may wrongly detect objects or miss some objects.
Also, notice that the bounding box label might be out of the image boundary.
You should use the output as a reference, not as a ground truth.
When answering questions about the image, you should double-check the detected
objects.
Args:
image (PIL.Image.Image): the input image
objects (List[str]): a list of objects to detect. Each object should be a simple
noun or a simple phrase. Should not be hard or abstract concepts like "text" or
"number".
Returns:
output_image (AnnotatedImage): the original image, annotated with bounding boxes.
Each box is labeled with the detected object, and an index.
processed boxes (List): listthe bounding boxes of the detected objects
Example:
image = Image.open("sample_img.jpg")
output_image, boxes = detection(image, ["bus"])
display(output_image.annotated_image)
print(boxes) # [[0.24, 0.21, 0.3, 0.4], [0.6, 0.3, 0.2, 0.3]]
# you need to double-check the detected objects. Some objects may be missed or
wrongly detected.
"""

def sliding_window_detection(image, objects):
"""Use this when you are searching for objects in the image, but the objects are not
detected by the object detection model.
In that case, the most common reason is that the object is too small such that both
the vision-language model and the object detection model fail to detect it.
This function tries to detect the object by sliding window search.
With the help of the detection model, it tries to detect the object in the zoomed-in
patches.
The function returns a list of annotated images that may contain at leas one of the
objects, annotated with bounding boxes.
It also returns a list of a list of bounding boxes of the detected objects.
Args:
image (PIL.Image.Image): the input image
objects (List[str]): a list of objects to detect. Each object should be a simple
noun or a simple phrase. Should not be hard or abstract concepts like "text" or
"number".
Returns:
possible_patches (List[AnnotatedImage]): a list of annotated zoomed-in images that
may contain the object, annotated with bounding boxes.
possible_boxes (List[List[List[Float]]]): For each image in possible_patches, a
list of bounding boxes of the detected objects.
The coordinates are w.r.t. each zoomed-in image. The order of the boxes is the
same as the order of the images in possible_patches. “‘
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# GOAL #: Based on the above tools, I want you to reason about how to solve the
# USER REQUEST # and generate the actions step by step (each action is a python
jupyter notebook code block) to solve the request.
You may need to use the tools above to process the images and make decisions based
on the visual outputs of the previous code blocks.
Your visual ability is not perfect, so you should use these tools to assist you in
reasoning about the images.
The jupyter notebook has already executed the following code to import the necessary
packages:
“‘python
from PIL import Image
from IPython.display import display
from tools import *
“‘
# REQUIREMENTS #:
1. The generated actions can resolve the given user request # USER REQUEST #
perfectly. The user request is reasonable and can be solved. Try your best to
solve the request.
2. The arguments of a tool must be the same number, modality, and format specified
in # TOOL LIST #;
3. If you think you got the answer, use ANSWER: <your answer> to provide the
answer, and ends with TERMINATE.
4. All images in the initial user request are stored in PIL Image objects named
image_1, image_2, ..., image_n. You can use these images in your code blocks. Use
display() function to show the image in the notebook for you too see.
5. Use as few tools as possible. Only use the tools for the use cases written in
the tool description. You can use multiple tools in a single action.
6. You must return an answer with the choice letter if the user request is a
multiple-choice question.
7. When detection tool failed to detect an object, you can use the
sliding_window_detection tool to search for the object.
8. Bounding boxes may be wrong and misled you. When answering questions about
small objects in bounding boxes, you should zoom in on the object to see the
details.
9. Segmentation and marking tool can help you better reason about the
relationship between objects. Example use cases are spatial reasoning (e.g.,
left/right/above/below/on) and counting.

[Examples]

USER REQUEST :

Figure 7: The first-turn inputs we give to the LLM for computer vision tasks
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G Dataset statistics483

Table 5 and 6 show the statistics of the datasets we used, including IsoBench [8], BLINK [9],484

MMVP [40], and V ∗Bench [47].485

Dataset size partition representation

Math Parity 383 val code
Math Convexity 255 val code
Graph Maxflow 128 val array
Graph Connectivity 128 val array
Graph Isomorphism 128 val array
Winner ID 257 val FEN

Table 5: IsoBench [8] data statistics.

Dataset size partition input

V ∗Bench 257 - Single Image
MMVP 300 - Single Image
BLINK Relative Depth 124 val Single Image
BLINK Spatial Relation 143 val Single Image
BLINK Jigsaw Puzzle 150 val Multiple Images
BLINK Visual Correspondence 172 val Multiple Images
BLINK Semantic Correspondence 139 val Multiple Image

Table 6: Vision tasks data statistics.

H Costs486

The cost of running each task using GPT-4o is in Table 7.

Dataset tokens per sample GPT-4o cost per sample

Math Parity 2994 $0.015
Math Convexity 2211 $0.011
Graph Connectivity 2819 $0.014
Graph Isomorphism 3143 $0.016
V ∗Bench 26647 $0.133
MMVP 11870 $0.059
BLINK Relative Detph 14078 $0.070
BLINK Spatial Relation 12848 $0.064
BLINK Jigsaw Puzzle 13206 $0.066
BLINK Visual Correspondence 16988 $0.085
BLINK Semantic Correspondence 11508 $0.058

Table 7: The cost of running SKETCHPAD on each task.
487
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