© ® N O g A~ W N =

22
23
24
25
26
27
28

29
30
31
32
33
34
35
36
37
38

39
40
41

Visual SKETCHPAD: Sketching as a Visual Chain of
Thought for Multimodal Language Models

Anonymous Author(s)

Abstract

Humans draw to facilitate reasoning: we draw auxiliary lines when solving ge-
ometry problems; we mark and circle when reasoning on maps; we use sketches
to amplify our ideas and relieve our limited-capacity working memory. However,
such actions are missing in current multimodal language models (LMs). Current
chain-of-thought and tool-use paradigms only use text as intermediate reasoning
steps. In this work, we introduce SKETCHPAD, a framework that gives multimodal
LM:s a visual sketchpad and tools to draw on the sketchpad. The LM conducts
planning and reasoning according to the visual artifacts it has drawn. Different from
prior work, which uses text-to-image models to enable LMs to draw, SKETCHPAD
enables LMs to draw with lines, boxes, marks, etc., which is closer to human
sketching and better facilitates reasoning. SKETCHPAD can also use specialist
vision models during the sketching process (e.g., draw bounding boxes with ob-
ject detection models, draw masks with segmentation models), to further enhance
visual perception and reasoning. We experiment on a wide range of math tasks
(including geometry, functions, graph, chess) and complex visual reasoning tasks.
SKETCHPAD substantially improves performance on all tasks over strong base
models with no sketching, yielding an average gain of 12.7% on math tasks, and
8.6% on vision tasks. GPT-40 with SKETCHPAD sets a new state of the art on all
tasks, including V' *Bench (80.3%), BLINK spatial reasoning (83.9%), and visual
correspondence (80.8%). We will release all code and data.

1 Introduction

Sketching is a fundamental human activity, serving as a versatile tool for communication [[11],
ideation [44], and problem-solving [43]. Unlike written language, sketches have the advantage of
conveying visuo-spatial ideas directly, for example by using spatial relations on paper to convey
spatial relations or other more abstract relationships in the world. Sketches are so fundamental that
we use them to teach school children how to solve geometry problems by drawing support lines, to
aid engineers conveying prototypes, to support architects creating blueprints, and to allow scientists
like us to convey scientific contributions (see Figure|[T).

As multimodal language models (LMs) 134} 138} 27, 126l 12| 131145, [7] (30} 137,16} 5] have begun to mature,
we now expect them to solve tasks like the ones mentioned above, i.e., ones where people draw
intermediate sketches to simplify reasoning. In recent benchmarks on complex geometry and math
problems (e.g., Geometry3K [31]], IsoBench [8]), models are given images of diagrams and asked
questions requiring symbolic grounding and spatial understanding, where intermediate sketches
like auxiliary lines can enhance reasoning. Even benchmarks in computer vision (e.g., BLINK [9],
V#*Bench [47])now have a similar flavor. Specialist vision models can be viewed as sketching on
natural images. For example, object detection is plotting bounding boxes around objects; depth
estimation is drawing colormaps according to depth. Unfortunately, current LMs lack a scaffold for
using sketch-based reasoning when solving tasks.

In this paper, we introduce Visual SKETCHPAD: a framework that provides multimodal LMs
with the tools necessary to generate intermediate sketches to reason over tasks. Inspired by
textual chain-of-thought reasoning in LMs [46,57]], SKETCHPAD prompts the underlying visual LM

Submitted to 38th Conference on Neural Information Processing Systems (NeurIPS 2024). Do not distribute.

42
43
44
45
46
47
48
49

50
51
52
53
54
55
56
57
58
59
60
61
62

63

64
65
66
67
68
69

70
71
72
73

Geometry Math Function
Prove the angles of 3 H Is £ A
SA6C s to 1807 SketchPad + GPT40 i SR SketchPad + GPT40
. { oo i
A ; ?‘Y Draw line DE parallel to AC || f)=0.14|x| =509 | & "Lt the function
A c H o B E : H T
GPT-40 N . GPT-4o
Start by assuming, 44 is congruent to 42, and 45 is
e CONFRIERS @ 2B, Al 85, eufl 4 It is convex for x>0 convex because line between any
form a straight angle = 180°. So N N
180°. We’ll introduce NN agd - go e but concave for x<@ two points lie above the graph.
a new angle, <4 .. / x
(@) (b)
Visual Search Spatial Reasoning
i i i A T/ Are there cookies | 2 T
P s e yPe of - SketchPad + GPT-4o i '¢ stacked on other ! [4] SketchPad + GPT-4o
; ; ; cookies? ;
i) Use slidi dow t %3
N | Gl Use sliging windou v 5 | 5fuse segnentation & masking
i i i ; A ¥ Cookies 2 and 5 seem
: : : B to overlap. Need to
| TSN, B : . «. analyze their depth
0 19 I see a board in patch 2 5 N
GPT-40 28 T anis and will zoom in (°°h GPT-40 Geeguzsgd=rchicstination
. X The zoomed-in image Warmer colors
The sign in the image R No indicate closer
reads “ceremonial “corepower YOGA”. So p:ox)mlty, Suggsstlng
paehe. AT @ cogy 5 S X (rey e Suacked on
(©) (d)

Figure 1: SKETCHPAD equips GPT-4 with the ability to generate intermediate sketches to reason
over tasks. Given a visual input and query, such as proving the angles of a triangle equal 180°,
SKETCHPAD enables the model to draw auxiliary lines which help solve the geometry problem.

to produce visual artifacts as part of a chain of mixed textual, programmatic, and visual reasoning.
For example, to prove that the angles of triangles sum up to 180 degrees in Figure[I](a), SKETCHPAD
enables agents to modify the diagram by introducing a new auxiliary line. This new line, along
with new annotated angles, provides the critical information to solve the geometry task. Similarly,
SKETCHPAD improves models’ spatial reasoning for computer vision. To determine if there are
cookies stacked on top of other cookies in the image (Figure [Tb), the model first produces an
intermediate depth estimate. By analyzing the depth estimate, which reveals cookies overlapping at
different depths, the model is able to correctly answer that the cookies are indeed stacked.

We demonstrate the effectiveness of visual SKETCHPAD across a wide range of mathematics and
computer vision tasks. For math, we tackle problems including (1) geometry [31], (2) mathematical
functions, (3) graph algorithms, and (4) strategy games [8]]. Across all four categories of mathe-
matical tasks, SKETCHPAD consistently improves the baseline GPT-40 performance, yielding an
average gain of 12.7%. For computer vision, we tackle diverse tasks including (1) depth, (2) spatial
reasoning, (3) jigwaw, (4) visual correspondence, (5) semantic correspondence, as well as questions
from (6) the MMVP and (7) the V*Bench benchmarks [9} 40, 47]]. For this domain, SKETCHPAD
enables models to generate segmentation masks, crop images, draw bounding boxes, zoom into image
regions, overlay images, etc. Similar to math, SKETCHPAD shows consistent improvements across
all seven types of computer vision tasks. For example, GPT-40, augmented with SKETCHPAD, sees
14.3% improvement on V*Bench, 12.1%, and 9.7% improvements on BLINK’s depth and semantic
correspondence tasks, setting a new state of the arts across all tasks.We hope SKETCHPAD opens up
new research opportunities toward more capable and interpretable multimodal intelligence.

2 Visual SKETCHPAD

shows examples of how SKETCHPAD works. Our framework requires no finetuning or
training. Multimodal LMs, out of the box, can be prompted to sketch using our framework. The
SKETCHPAD model solves tasks by iteratively interacting with an environment. Given a multimodal
query g consisting of both visual and textual components, the model generates a sequence of
thoughts, actions, and receievs observations to gather the necessary information toanswer the query.
SKETCHPAD follows a three-step process at each time step t:

Thought: Given the current multimodal context c;, the model reasons over c;, generating text to
support future reasoning. For example, for a geometry problem, the LM may decide to draw an
auxiliary line between two points. For a computer vision problem, the LM may decide to draw a
bounding box around an object and mark the box with a number.

74
75
76
77

78
79
80
81

82

83
84
85
86
87

88
89
90
91
92
93
94
95
96
97

98

99
100
101
102
103
104

105
106
107
108
109

Geometry Graph Connectivity

e
S

Given «BCJ=105°, " va " Is there a path between node ,gacency _ 3 i, E_‘ E Ei
(KEF=105°. Find .EIC = & o 0.and node 4 in the graph? ~ matzix olalel)
RN
1 1,0, 0, 0]

THOUGHT 1: | need to draw an auxiliary Line IX parallel to Line BD THOUGHT 1:We can use the networkx library to plot the graph

ACTION 1: 2} Draw the aux. line using Python Code ACTION 1: Z'# Call Python Ploting tool

6= m_numpy_matrix(np.array(adjacency_matrix),
create_using=nx.DiGraph)

OBSERVATION 1
K

B
I gz fo) e o pon A tSbaLs-Tzve)
X = x_I + 100

X

X

OBSERVATION 1

efine auxiliary point X for the Line IX

X = y7I + slope bd * (x.X - x_I)
lot the auxiliary line IX in red color
‘red') ..

ax.plot([x.T, xX], [y.T, y.X], ‘T

"
x_:
v
x
v
#

THOUGHT 2: Given ~BCJ = .KEF = 105°, their supplementary angles,
2KEH = 2DCJ = 180° - 105° = 75°. Given BD parallel to IX, it follows
that <EIX = <KEH, and 2XIC = 2DCJ, both measuring 75°. Therefore, THOUGHT 2: From the graph, | saw there is a path between node 0 and
ZEIC = 4EIX + 2XIC = 150° node 4.

(@) (b)

Figure 2: Overview of SKETCHPAD. Given a multimodal query, the SKETCHPAD agent generates
a sketching plan to address the query (Thought), and then synthesizes a program to create visual
sketches (Action). By analyzing the resulting sketches (Observation), which serve as a visual
representation of the reasoning process, the model generates a final response to the query.

Action: Based on the thought, the model executes action a;. In SKETCHPAD, this action can
manipulate multimodal content. For example, the model can write Python codes to realize the
proposed Thought. The action is executed; in this case, the generated code will be compiles and
executed. We describe this step in detail in §

Observation: Based on the action a;, SKETCHPAD’s environment returns a new observation oy 1.
The context is updated to ¢;11 = (¢, at, 0441). The model iterates with the thought, action, observa-
tion steps for time step ¢ + 1, reasoning over its prior sketches. The LLM can also choose to return a
final answer and terminate the reasoning process.

3 Experimental Results

Experimental setups on math tasks. we experiment with SKETCHPAD on four complex math-
ematical tasks : (1) geometry, (2) mathematical functions, (3) graph algorithms, and (4) game
strategies. Details of our evaluation tasks and the tools employed for visual reasoning are as in
We evaluate the performance of SKETCHPAD on multimodal LMs with API access, including
gpt-4-turbo-2024-04-29 and gpt-40-2024-05-13.

Main results on math tasks. As shown in SKETCHPAD consistently improves base
model performance across all tasks, with an average improvement of 18.8% for GPT-40 and 13.5%
for GPT-4 Turbo. In particular, we observe large gains on graph algorithms such as maximum
flow and connectivity. For instance, GPT-40 with SKETCHPAD achieves an accuracy of 66.3% on
the maximum flow problem, improving over the base model by 41.3%. Similarly, SKETCHPAD
substantially improves the performance on mathematical functions, with GPT-4 Turbo achieving
over 90% accuracy and GPT-40 over 88% accuracy on convexity and parity classification tasks.
Furthermore, we observe notable gains (~ 20%) on game strategies. Overall, these results highlight
the effectiveness of SKETCHPAD in enhancing the reasoning capabilities of multimodal language
models across diverse domains.

Experimental setups on computer vision tasks. We experiment with SKETCHPAD on complex
visual reasoning tasks. Recent work (BLINK) [9] finds that many core visual perception abilities are
still missing from existing multimodal LMs—even though many computer vision specialist models
possess such abilities. Also, SoM [51]] shows that drawing segmentation masks on images unleashes
the strong visual grounding ability of GPT-4V. We generalize these ideas with SKETCHPAD, allowing
LMs to use specialist vision models to sketch. Details of these modules are in Details of the
tasks and vision specialists we used are in §D}

Computer vision tasks results. Table [2| shows the performance of our SKETCHPAD and base-
lines. SKETCHPAD consistently improves base model performance across all tasks. GPT-40 with
SKETCHPAD sets the new state-of-the-art results on all tasks. SKETCHPAD is particularly effective
on V*Bench, yielding 18.5% accuracy improvement for GPT-4 Turbo and 14.3% improvement
for GPT-4o0, surpassing the previous state of the art SEAL [47] which used a visual search model

110
111
112
113
114
115
116
117
118

119

120
121
122
123
124
125
126
127
128

‘ Geometry Graph Math Game

Model l Geometry Maxflow Isomorphism Connectivity = Convexity Parity =~ Winner ID
Prior LLMs without visual inputs
Gemini-Pro \ 15.6 47.7 50.0 87.9 48.2 8.1
Claude 3 OPUS \ 56.3 50.0 82.0 93.0 77.6 74.4
Mixtral 8x7B [18] \ 8.6 50.0 62.5 69.1 41.7 7.4
LLaMA-2-70B [41] \ 18.0 50.0 50.0 74.2 333 12.4
Latest multimodal LLMs + Visual Sketchpad
GPT-4 Turbo 37.5 32.8 62.5 66.0 57.0 80.5 50.4
+ Sketchpad 45.8 63.3 64.2 95.1 93.1 93.1 74.3
+8.3 +30.5 +1.7 +29.1 +25.4 +12.6 +23.9
GPT-40 62.5 25.0 50.8 96.1 87.2 84.4 61.1
+ Sketchpad 66.7 66.3 65.3 98.1 90.1 88.1 81.2
+4.2 +41.3 +14.5 +2.0 +2.9 +3.7 +20.1

Table 1: Accuracy scores on geometry problems, graph algorithms, mathematical functions, and
game. SKETCHPAD Yyields large performance gains across all tasks and outperform all baselines.

Model ‘ V*Bench MMVP Depth Spatial Jigsaw Vis. Corr. ~ Sem. Corr.
Prior multimodal LLMs

LLaVA-1.5-7B [25] 48.7 - 524 61.5 11.3 25.6 23.0
LLaVA-1.5-13B [25]] - 24.7 53.2 67.8 58.0 29.1 324
LLaVA-NeXT-34B [26] - - 67.7 74.8 54.7 30.8 23.7
Claude 3 OPUS [1] - - 47.6 58.0 327 36.6 252
Gemini-Pro [38] 48.2 40.7 40.3 74.8 57.3 424 26.6
GPT-4V-preview [34] 55.0 38.7 59.7 72.7 70.0 337 28.8

Previous state of the art 754 47 493[10] 67.7[26] 76.2[39] 70.0 [34] 42.438] 33.1 [45]
Latest multimodal LLMs + Visual Sketchpad

GPT-4 Turbo 52.5 71.0 66.1 68.5 64.7 48.8 30.9
+ Sketchpad 71.0 73.3 68.5 80.4 68.5 52.3 42.4
+18.5 +2.3 +2.4 +11.9 +3.8 +3.5 +11.5
GPT-40 66.0 85.3 71.8 72.0 64.0 73.3 48.6
+ Sketchpad 80.3 86.3 83.9 81.1 70.7 80.8 58.3
+14.3 +1.0 +12.1 +9.1 +6.7 +7.5 +9.7

Table 2: Accuracy on complex visual reasoning tasks. SKETCHPAD enhances both GPT-4 Turbo
and GPT-4o performance, establishing new SOTA performance levels on all the tasks.

specifically trained for this task. On BLINK tasks, SKETCHPAD on average yields 6.6% absolute
accuracy gain for GPT-4 Turbo and 9.0% gain for GPT-4o0. Interestingly, despite the fact that all
modules in SKETCHPAD work on a single image, the LMs also get substantial improvement on
multi-image tasks, including jigsaw puzzles, visual correspondence, and semantic correspondence.
Finally, GPT-4o0, the LM with stronger multimodal ability than GPT-4 Turbo, benefits more from
SKETCHPAD. For example, on the relative depth task, GPT-4o0 gets 12.1% accuracy improvement,
while GPT-4 Turbo only gets 2.4%, showing that GPT-4o is better at understanding the depth map
SKETCHPAD generated. Overall, our experiments show that SKETCHPAD is an effective way to
improve multimodal LMs’ performance on visual reasoning tasks. More analysis are in §E}

4 Conclusion

We present Visual SKETCHPAD, a framework that provides multimodal LMs with the tools necessary
to generate intermediate sketches to reason over tasks. For complex mathematical reasoning tasks,
SKETCHPAD Yyields large performance gains, by visualizing auxiliary lines, math functions, graphs,
and games during reasoning. For visual reasoning tasks, we add vision specialists to SKETCHPAD.
The LM can call these specialists during reasoning, observing the visualization of these specialists’
predictions and then conduct further planning and reasoning. Experiments show that SKETCHPAD
enhances the LMs’ performance across all tasks, and sets new state-of-the-art results. Ultimately,
SKETCHPAD represents a step toward endowing LMs with complementary strengths of language and
vision to tackle increasingly complex reasoning challenges.

129

130
131

132
133
134
135

136
137
138

139
140
141

142
143
144
145
146
147
148
149
150

151
152
153

154
155
156

157
158
159

160
161
162

163
164
165

166

167
168
169

170
171
172

173
174
175
176

References

(1]

(2]

(3]

(4]

(5]

(6]

(71

(8]

(9]

[10]

[11]
[12]

[13]

[14]

Introducing the next generation of claude. https://www.anthropic.com/news/
claude-3-family, March 2024.

Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc, Antoine Miech, lain Barr, Yana Hasson,
Karel Lenc, Arthur Mensch, Katherine Millican, Malcolm Reynolds, et al. Flamingo: a visual
language model for few-shot learning. Advances in Neural Information Processing Systems,
35:23716-23736, 2022.

Jinze Bai, Shuai Bai, Shusheng Yang, Shijie Wang, Sinan Tan, Peng Wang, Junyang Lin, Chang
Zhou, and Jingren Zhou. Qwen-vl: A versatile vision-language model for understanding,
localization, text reading, and beyond, 2023.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877-1901, 2020.

Xi Chen, Josip Djolonga, Piotr Padlewski, Basil Mustafa, Soravit Changpinyo, Jialin Wu,
Carlos Riquelme Ruiz, Sebastian Goodman, Xiao Wang, Yi Tay, Siamak Shakeri, Mostafa
Dehghani, Daniel Salz, Mario Lucic, Michael Tschannen, Arsha Nagrani, Hexiang Hu, Mandar
Joshi, Bo Pang, Ceslee Montgomery, Paulina Pietrzyk, Marvin Ritter, AJ Piergiovanni, Matthias
Minderer, Filip Pavetic, Austin Waters, Gang Li, Ibrahim Alabdulmohsin, Lucas Beyer, Julien
Amelot, Kenton Lee, Andreas Peter Steiner, Yang Li, Daniel Keysers, Anurag Arnab, Yuanzhong
Xu, Keran Rong, Alexander Kolesnikov, Mojtaba Seyedhosseini, Anelia Angelova, Xiaohua
Zhai, Neil Houlsby, and Radu Soricut. Pali-x: On scaling up a multilingual vision and language
model, 2023.

Zhe Chen, Jiannan Wu, Wenhai Wang, Weijie Su, Guo Chen, Sen Xing, Zhong Muyan, Qinglong
Zhang, Xizhou Zhu, Lewei Lu, et al. Internvl: Scaling up vision foundation models and aligning
for generic visual-linguistic tasks. arXiv preprint arXiv:2312.14238, 2023.

Wenliang Dai, Junnan Li, Dongxu Li, Anthony Meng Huat Tiong, Junqi Zhao, Weisheng
Wang, Boyang Li, Pascale Fung, and Steven Hoi. Instructblip: Towards general-purpose
vision-language models with instruction tuning, 2023.

Deqing Fu*, Ghazal Khalighinejad*, Ollie Liu*, Bhuwan Dhingra, Dani Yogatama, Robin Jia,
and Willie Neiswanger. IsoBench: Benchmarking multimodal foundation models on isomorphic
representations, 2024.

Xingyu Fu, Yushi Hu, Bangzheng Li, Yu Feng, Haoyu Wang, Xudong Lin, Dan Roth, Noah A
Smith, Wei-Chiu Ma, and Ranjay Krishna. Blink: Multimodal large language models can see
but not perceive. arXiv preprint arXiv:2404.12390, 2024.

Peng Gao, Renrui Zhang, Chris Liu, Longtian Qiu, Siyuan Huang, Weifeng Lin, Shitian Zhao,
Shijie Geng, Ziyi Lin, Peng Jin, et al. Sphinx-x: Scaling data and parameters for a family of
multi-modal large language models. arXiv preprint arXiv:2402.05935, 2024.

Vinod Goel. Sketches of thought. MIT press, 1995.

Dirk Groeneveld, 1z Beltagy, Pete Walsh, Akshita Bhagia, Rodney Kinney, Oyvind Tafjord,
Ananya Harsh Jha, Hamish Ivison, lan Magnusson, Yizhong Wang, et al. Olmo: Accelerating
the science of language models. arXiv preprint arXiv:2402.00838, 2024.

Tanmay Gupta and Aniruddha Kembhavi. Visual programming: Compositional visual reasoning
without training. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 14953-14962, 2023.

Sirui Hong, Mingchen Zhuge, Jonathan Chen, Xiawu Zheng, Yuheng Cheng, Ceyao Zhang,
Jinlin Wang, Zili Wang, Steven Ka Shing Yau, Zijuan Lin, Liyang Zhou, Chenyu Ran, Lingfeng
Xiao, Chenglin Wu, and Jiirgen Schmidhuber. Metagpt: Meta programming for a multi-agent
collaborative framework, 2023.

https://www.anthropic.com/news/claude-3-family
https://www.anthropic.com/news/claude-3-family
https://www.anthropic.com/news/claude-3-family

177
178
179

180
181

182
183
184

185
186
187
188

189
190
191

192
193

194
195
196
197

198
199
200
201

202
203
204

205
206
207

208
209

210
211

212

213
214
215

216
217
218

219
220
221

222
223
224
225

[15] Cheng-Yu Hsieh, Si-An Chen, Chun-Liang Li, Yasuhisa Fujii, Alexander Ratner, Chen-Yu Lee,
Ranjay Krishna, and Tomas Pfister. Tool documentation enables zero-shot tool-usage with large
language models. arXiv preprint arXiv:2308.00675, 2023.

[16] Yushi Hu, Hang Hua, Zhengyuan Yang, Weijia Shi, Noah A Smith, and Jiebo Luo. Promptcap:
Prompt-guided task-aware image captioning. arXiv preprint arXiv:2211.09699, 2022.

[17] Yushi Hu, Otilia Stretcu, Chun-Ta Lu, Krishnamurthy Viswanathan, Kenji Hata, Enming
Luo, Ranjay Krishna, and Ariel Fuxman. Visual program distillation: Distilling tools and
programmatic reasoning into vision-language models. arXiv preprint arXiv:2312.03052, 2023.

[18] Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh
Chaplot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile
Saulnier, Lélio Renard Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut
Lavril, Thomas Wang, Timothée Lacroix, and William EI Sayed. Mistral 7b, 2023.

[19] Carlos E Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik
Narasimhan. Swe-bench: Can language models resolve real-world github issues? arXiv preprint
arXiv:2310.06770, 2023.

[20] Apoorv Khandelwal, Ellie Pavlick, and Chen Sun. Analyzing modular approaches for visual
question decomposition. arXiv preprint arXiv:2311.06411, 2023.

[21] Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson,
Tete Xiao, Spencer Whitehead, Alexander C Berg, Wan-Yen Lo, et al. Segment anything. In
Proceedings of the IEEE/CVF International Conference on Computer Vision, pages 4015-4026,
2023.

[22] Jing Yu Koh, Robert Lo, Lawrence Jang, Vikram Duvvur, Ming Chong Lim, Po-Yu Huang,
Graham Neubig, Shuyan Zhou, Ruslan Salakhutdinov, and Daniel Fried. Visualwebarena:
Evaluating multimodal agents on realistic visual web tasks. arXiv preprint arXiv:2401.13649,
2024.

[23] Feng Li, Hao Zhang, Peize Sun, Xueyan Zou, Shilong Liu, Jianwei Yang, Chunyuan Li, Lei
Zhang, and Jianfeng Gao. Semantic-sam: Segment and recognize anything at any granularity.
arXiv preprint arXiv:2307.04767, 2023.

[24] Dingning Liu, Xiaomeng Dong, Renrui Zhang, Xu Luo, Peng Gao, Xiaoshui Huang, Yongshun
Gong, and Zhihui Wang. 3daxiesprompts: Unleashing the 3d spatial task capabilities of gpt-4v.
arXiv preprint arXiv:2312.09738, 2023.

[25] Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae Lee. Improved baselines with visual
instruction tuning, 2023.

[26] Haotian Liu, Chunyuan Li, Yuheng Li, Bo Li, Yuanhan Zhang, Sheng Shen, and Yong Jae Lee.
Llava-next: Improved reasoning, ocr, and world knowledge, January 2024.

[27] Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning, 2023.

[28] Shilong Liu, Hao Cheng, Haotian Liu, Hao Zhang, Feng Li, Tianhe Ren, Xueyan Zou, Jianwei
Yang, Hang Su, Jun Zhu, et al. Llava-plus: Learning to use tools for creating multimodal agents.
arXiv preprint arXiv:2311.05437, 2023.

[29] Shilong Liu, Zhaoyang Zeng, Tianhe Ren, Feng Li, Hao Zhang, Jie Yang, Chunyuan Li, Jianwei
Yang, Hang Su, Jun Zhu, et al. Grounding dino: Marrying dino with grounded pre-training for
open-set object detection. arXiv preprint arXiv:2303.05499, 2023.

[30] Jiasen Lu, Christopher Clark, Sangho Lee, Zichen Zhang, Savya Khosla, Ryan Marten, Derek
Hoiem, and Aniruddha Kembhavi. Unified-io 2: Scaling autoregressive multimodal models
with vision, language, audio, and action. arXiv preprint arXiv:2312.17172, 2023.

[31] Pan Lu, Ran Gong, Shibiao Jiang, Liang Qiu, Siyuan Huang, Xiaodan Liang, and Song-Chun
Zhu. Inter-gps: Interpretable geometry problem solving with formal language and symbolic
reasoning. In The 59th Annual Meeting of the Association for Computational Linguistics (ACL),
2021.

226
227
228

229
230
231
232
233

234

235
236
237

238
239
240

241

242
243
244

254

274

[32] Zixian Ma, Weikai Huang, Jieyu Zhang, Tanmay Gupta, and Ranjay Krishna. m&m’s: A
benchmark to evaluate tool-use for multi-step multi-modal tasks. In Synthetic Data for Computer
Vision Workshop@ CVPR 2024, 2024.

[33] Soroush Nasiriany, Fei Xia, Wenhao Yu, Ted Xiao, Jacky Liang, Ishita Dasgupta, Annie Xie,
Danny Driess, Ayzaan Wahid, Zhuo Xu, Quan Vuong, Tingnan Zhang, Tsang-Wei Edward Lee,
Kuang-Huei Lee, Peng Xu, Sean Kirmani, Yuke Zhu, Andy Zeng, Karol Hausman, Nicolas
Heess, Chelsea Finn, Sergey Levine, and Brian Ichter. Pivot: Iterative visual prompting elicits
actionable knowledge for vlms. 2024.

[34] OpenAl. Gpt-4 technical report, 2023.

[35] Aleksandar Shtedritski, Christian Rupprecht, and Andrea Vedaldi. What does clip know about a
red circle? visual prompt engineering for vlms. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 11987-11997, 2023.

[36] Didac Suris, Sachit Menon, and Carl Vondrick. Vipergpt: Visual inference via python execution
for reasoning. Proceedings of IEEE International Conference on Computer Vision (ICCV),
2023.

[37] Chameleon Team. Chameleon: Mixed-modal early-fusion foundation models. 2024.

[38] Gemini Team, Rohan Anil, Sebastian Borgeaud, Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu,
Radu Soricut, Johan Schalkwyk, Andrew M Dai, Anja Hauth, et al. Gemini: a family of highly
capable multimodal models. arXiv preprint arXiv:2312.11805, 2023.

[39] InternLM Team. Internlm: A multilingual language model with progressively enhanced
capabilities. https://github.com/InternlLM/InternLM, 2023.

[40] Shengbang Tong, Zhuang Liu, Yuexiang Zhai, Yi Ma, Yann LeCun, and Saining Xie. Eyes wide
shut? exploring the visual shortcomings of multimodal llms. arXiv preprint arXiv:2401.06209,
2024.

[41] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei,
Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas
Blecher, Cristian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes,
Jeremy Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony
Hartshorn, Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian
Khabsa, Isabel Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut
Lavril, Jenya Lee, Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov,
Pushkar Mishra, Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta,
Kalyan Saladi, Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiao-
qing Ellen Tan, Binh Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng
Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien
Rodriguez, Robert Stojnic, Sergey Edunov, and Thomas Scialom. Llama 2: Open foundation
and fine-tuned chat models, 2023.

[42] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei,
Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas
Blecher, Cristian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes,
Jeremy Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony
Hartshorn, Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian
Khabsa, Isabel Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut
Lavril, Jenya Lee, Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov,
Pushkar Mishra, Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta,
Kalyan Saladi, Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiao-
qing Ellen Tan, Binh Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng
Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien
Rodriguez, Robert Stojnic, Sergey Edunov, and Thomas Scialom. Llama 2: Open foundation
and fine-tuned chat models, 2023.

[43] Barbara Tversky and Masaki Suwa. Thinking with sketches. 2009.

https://github.com/InternLM/InternLM

277
278
279

280
281
282

283
284
285

286
287

289
290

291
292
293
294

295
296
297

298

300

301
302

303
304
305

306
307
308

309
310
311
312

313
314

315

317

[44] Barbara Tversky, Masaki Suwa, Maneesh Agrawala, Julie Heiser, Chris Stolte, Pat Hanrahan,
Doantam Phan, Jeff Klingner, Marie-Paule Daniel, Paul Lee, et al. Sketches for design and
design of sketches. Human Behaviour in Design: Individuals, Teams, Tools, pages 79-86, 2003.

[45] Weihan Wang, Qingsong Lv, Wenmeng Yu, Wenyi Hong, Ji Qi, Yan Wang, Junhui Ji, Zhuoyi
Yang, Lei Zhao, Xixuan Song, et al. Cogvlm: Visual expert for pretrained language models.
arXiv preprint arXiv:2311.03079, 2023.

[46] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le,
Denny Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models.
Advances in neural information processing systems, 35:24824-24837, 2022.

[47] Penghao Wu and Saining Xie. V*: Guided visual search as a core mechanism in multimodal
Ilms. ArXiv, abs/2312.14135, 2023.

[48] Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu, Shaokun Zhang, Erkang Zhu, Beibin Li,
Li Jiang, Xiaoyun Zhang, and Chi Wang. Autogen: Enabling next-gen llm applications via
multi-agent conversation framework. arXiv preprint arXiv:2308.08155, 2023.

[49] Tianbao Xie, Danyang Zhang, Jixuan Chen, Xiaochuan Li, Siheng Zhao, Ruisheng Cao, Toh Jing
Hua, Zhoujun Cheng, Dongchan Shin, Fangyu Lei, et al. Osworld: Benchmarking multimodal
agents for open-ended tasks in real computer environments. arXiv preprint arXiv:2404.07972,
2024.

[50] An Yan, Zhengyuan Yang, Wanrong Zhu, Kevin Lin, Linjie Li, Jianfeng Wang, Jianwei Yang,
Yiwu Zhong, Julian McAuley, Jianfeng Gao, et al. Gpt-4v in wonderland: Large multimodal
models for zero-shot smartphone gui navigation. arXiv preprint arXiv:2311.07562, 2023.

[51] Jianwei Yang, Hao Zhang, Feng Li, Xueyan Zou, Chunyuan Li, and Jianfeng Gao. Set-of-mark
prompting unleashes extraordinary visual grounding in gpt-4v. arXiv preprint arXiv:2310.11441,
2023.

[52] Lihe Yang, Bingyi Kang, Zilong Huang, Xiaogang Xu, Jiashi Feng, and Hengshuang Zhao.
Depth anything: Unleashing the power of large-scale unlabeled data. In CVPR, 2024.

[53] Zhengyuan Yang*, Linjie Li*, Jianfeng Wang*, Kevin Lin*, Ehsan Azarnasab*, Faisal Ahmed*,
Zicheng Liu, Ce Liu, Michael Zeng, and Lijuan Wang. Mm-react: Prompting chatgpt for
multimodal reasoning and action. 2023.

[54] Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629,
2022.

[55] Andy Zeng, Maria Attarian, Brian Ichter, Krzysztof Choromanski, Adrian Wong, Stefan Welker,
Federico Tombari, Aveek Purohit, Michael Ryoo, Vikas Sindhwani, et al. Socratic models:
Composing zero-shot multimodal reasoning with language. arXiv preprint arXiv:2204.00598,
2022.

[56] Jieyu Zhang, Ranjay Krishna, Ahmed H Awadallah, and Chi Wang. Ecoassistant: Using llm
assistant more affordably and accurately. arXiv preprint arXiv:2310.03046, 2023.

[57] Zhuosheng Zhang, Aston Zhang, Mu Li, Hai Zhao, George Karypis, and Alex Smola. Mul-
timodal chain-of-thought reasoning in language models. arXiv preprint arXiv:2302.00923,
2023.

319

320

321

322

323

324

325

326

327

Appendices

[A"Related Work|

B~ Sketching via Code Generation|

I[C_Math tasks details|

[D Computer Vision tasks details|

ID.1 " Vision Specialists as Sketching Tools in SKETCHPAD|

[E More Analysis|

G D Stics

[H_Costs

10

10

10

11
11

12

13

18

18

328

329
330

331
332
333
334
335
336
337
338

339
340
341
342
343

344
345
346
347
348

349

350
351

352
353
354
355
356
357
358
359

360
361
362
363
364
365
366
367

368

369
370
371
372

374
375

A Related Work

SKETCHPAD generalizes recent work on multimodal tool-use and visual prompting. We also place
our work within the larger sphere exploring LMs as agents.

Visual programming and tool-use. With the advancement of LMs [4} 34} 38, 142} [12]], researchers
have demonstrated the possiblity of decomposing complex vision tasks into simpler substeps that
can each be solved using vision tools [53, |55 [17,16]. Among them, the most relevant to us are
Visprog [13] and ViperGPT [36]. They use LMs to generate Python code, which sequencially invokes
specialized vision tools. These methods share a common problem that the multimodal modules
follow a pre-defined plan outlined by the LM. By contrast, SKETCHPAD allows LMs to change their
plan according to the intermediate visual artifacts, yielding better performance and robustness when
solving complex multimodal tasks.

Visual prompting. Recent work shows that multimodal models can be augmented by visual prompts
added to natural images [35]]. For example, SoM [31] shows that adding labeled segmentation masks
on images unleashes GPT-4V’s visual grounding ability. Prior work also reports similar findings in
3D [24] and Robotics [33]. SKETCHPAD is a generalized framework for all these methods, allowing
LMs to decide what visual prompting to use as part of the multimodal reasoning process.

LMs as agents. Recent work has started to treat LMs as agents that can both reason and act [54,
32, 148]]. Researchers have applied this idea to software engineering [[19, 56, [14], robotics [33],
vision [28 53], and GUI navigation [50} 22| 49]. SKETCHPAD can also be viewed as an agent that
accepts multimodal inputs and outputs. One big difference is that SKETCHPAD can create visual
artifacts to facilitate reasoning, while prior LM agents only generate texts during reasoning.

B Sketching via Code Generation

The core component of SKETCHPAD is sketching, which enables the LM to generate visual sketches
by synthesizing programs that call different specialist vision models or Python plotting packages.

Program Generation. Similar to recent works like ViperGPT and VPD [13}136/ [17], SKETCHPAD
enables LMs to sketch through code generation. The LM is provided, through a prompt, with
a detailed description of the available tools that can generate multimodal content (an example
prompt and description can be found in §F). The prompt includes Python function signatures and
docstrings [15]] for these modules, but does not contain their full implementation. The LM generates
Python code in a code block, using the provided tools, which, when executed, generates new image
and text outputs. A special display function allows the LM to visualize the sketch image in the next
observation 0, 1.

Modules for sketching. SKETCHPAD uses various tools to facilitate the sketching process, depending
on the task at hand. For mathematical tasks, SKETCHPAD uses common Python packages like
matplotlib and networkx for plotting (see §3). For vision tasks, the LM leverages specialist
vision models during the sketching process. These models include detection tools that draw bounding
boxes on the image, as well as segmentation and marking tools (inspired by SoM [51]) that draw
colorful masks on the image and use numbers to label segments. We find these specialists possess
essential perception skills for visual reasoning tasks, and SKETCHPAD is an effective way to combine
them into a multimodal LM (see §D.T).

C Math tasks details

Geometry Problems. Drawing auxiliary lines in geometry diagrams is often helpful for problem-
solving. For example, in[Figure 2| (a), when asked to find ZEIC, the LM plans to draw an auxiliary
line I X parallel to BD, allowing it to use the properties of parallel lines to determine ZEIC'. To
evaluate the effectiveness of SKETCHPAD, we use the problems from the Geometry3K dataset [31]].

To realize the line drawing process, SKETCHPAD takes a geometry diagram and its corresponding
matplotlib code as input. The model then proposes and modifies the code to generate auxiliary
lines, and executes the modified code to visualize the updated diagram with the added lines.

10

376
377
378

380

381

382
383
384
385

386
387
388

389

390
391

392

393
394
395

396
397
398
399
400
401
402

403

404

411

412
413

414
415
416

417
418
419

420
421

Mathematical functions. Understanding mathematical functions is crucial for various applications
in science, engineering, and economics. We focus on two tasks related to mathematical functions
from the IsoBench datasets [8]]:

* Classifying parity aims to determine whether a function is even, odd, or neither. Even
functions satisfy f(—z) = f(x) for all =, while odd functions satisfy f(—z) = —f(z).

* Identifying convexity/concavity aims to determine whether a function is convex or concave.

Existing LMs can only analyze functions and attempt to prove their properties analytically. [ﬂ
However, SKETCHPAD enables them to visually sketch functions to solve problems more efficiently.
For instance, to determine the convexity of the function in[Figure Tp, SKETCHPAD allows the model
to plot the function using matplotlib, and visually inspect its overall shape.

Graph algorithms. Many real-world problems, such as those related to computer networks and
transportation systems, can be formulated as graph problems. We evaluate SKETCHPAD on three
graph problems from IsoBench [8]:

* Graph connectivity determines whether there exists a path between two vertices in a graph.

* Maximum flow aims to find the maximum amount of flow that can be sent through a network
from a source vertex to a sink vertex, subject to capacity constraints on the edges.

* Graph isomorphism tests whether two graphs are structurally equivalent.

Given an adjacency matrix of a graph like in [Figure 2(b), SKETCHPAD can draw the actual graph
structure, using using Python’s networkx library, enabling direct visual reasoning about graph
properties and relationships.

Game strategies. Chess games can be represented in various formats, including visual board states
and textual move notations. Given only the textual move notations, SKETCHPAD can draw the visual
representations of the chess board to analyze positions and formulate strategies. We evaluate the
performance of SKETCHPAD on the winnder identification task from the IsoBench datasets [8]] that
aims to find the outcome of a chess game (win for White, win for Black, or draw) based on the final
board state. To create the graphical board, SKETCHPAD uses Python’s chess library to draw the
board from the Forsyth-Edwards Notation (FEN) of chess.

D Computer Vision tasks details

Tasks. We experiment with a wide range of complex visual reasoning tasks: (1) V*Bench [47].
This benchmark contains questions about small items in an image. (2) MMVP benchmark from
Eyes Wide Shut [40]. This benchmark contains visual questions specially designed to reveal the
visual shortcomings of CLIP-based multimodal LMs. (3) BLINK [9]. This benchmark contains
visual perception tasks that are easy for humans, but post significant challenge for multimodal
LMs. Specifically, we experiment with relative depth, spatial reasoning, jigsaw puzzle, visual
correspondence, and semantic correspondence tasks. More details of each task are in §G|

D.1 Vision Specialists as Sketching Tools in SKETCHPAD

LMs can use the following modules to sketch and manipulate images. We wrap these modules into
Python functions that the LMs can call. Refer to §F for the function definitions.

Detection. This module takes an image and a simple text query (e.g., “cat”) as input. We run the
Grounding-DINO [29] open-vocabulary objection detection model and plot the detected bounding
boxes (together with a number label) on the image. It also returns the bounding box coordinates.

Segmentation. This module takes an image as input and returns an image with colorful segmentation
masks on it. Each mask also has a number label. We follow the implementation of SoM [31]. The
underlying segmentation models are SegmentAnything [21] and Semantic-SAM [23]].

Depth estimation. This module takes an image as input and returns a depth map. The underlying
model is DepthAnything [52].

"For humans, the analytical approach is the correct way to tackle these tasks. However, we observe that LMs
are not good at analytical reasoning in math. They make errors when deducing f(—x) and derivatives.

11

422
423
424
425

426
427
428

429

430
431
432
433
434
435
436
437
438
439
440
441
442

443
444
445
446
447
448
449
450
451
452

454
455

Relative depth

Which point is closer to
the camera, A or B?

THOUGHT 1: | can use a depth estimation tool that provides a depth

map with colors indicating distances.

THOUGHT 2: The depth map uses colors from purple (farther) to yellow
(closer). | need to overlay the original image with the depth map

ACTION 1: Z¥ Call depth estimation

depth_map = depth(image)
display(depth_map)

ACTION 2: ¥ Call overlay

overlay = overlay_images(depth_map, image) »
display(overlay)

THOUGHT 3: It is evident that point B, in the yellow region, is closer to
the camera compared to point A, which is in the purple region

(@)

Visual Search

Tell me the number of that
player who is shooting

e
THOUGHT 1: | need to detect the players in the image and zoom in on
the player who is shooting to see the number clearly
ACTION 1: ‘?Y Call object detection

3 ;
new_img, boxes = detection(image_1, ["player"]) » E
display(new_img.annotated_image)

THOUGHT 2: From the image, Player2 seems to be shooting. | need to
zoom in on this player to see the number on their jersey clearly

B
ﬁ

THOUGHT 3: From the zoomed-in image, | can clearly see that the
number of the player who is shooting is 8

(b)

[=9?
ACTION 2: 2¥ Call overlay
shooter = boxes[1]
zoomed = zoom_in_image_by_bbox(image_1, shooter)
display(zoomed)

Figure 3: Examples of SKETCHPAD applied to vision tasks. The figure shows actual outputs generated
by SKETCHPAD. By contrast, the baseline GPT-40 model cannot answer these questions correctly.

Visual search via sliding window. This module mimics how humans search for small items on an
image. It takes a text query as input and runs a sliding window over the image. The window size is
1/3 of the image size, and the step size is 2/9 of the image size (so an image will have 4 x 4 = 16
windows). It returns a sequence of image patches in which the query is detected.

Other image manipulation modules. Other modules include (1) zoom-in and crop, which takes an
image and a bounding box as input and returns the image patch inside the box; (2) Overlay images,
which takes two images and alpha values as input, and returns the overlayed image.

E More Analysis

How many times is each vision specialist used? We count the number of times each vision
specialist is used in each task, as shown in Figure @ Here we choose the four tasks that achieve
the largest improvement: V *Bench, relative depth, spatial reasoning, and semantic correspondence.
We observe that (1) the use of vision specialist is task-dependent, and the two LMs analyzed
utilize similar tools. For example, for V*, which needs to locate small objects, the LMs mainly use
detection, sliding window search, and zoom-in, similar to how people would search. For the relative
depth task, both models rely on depth estimation. For spatial reasoning, the LMs use detection
and segmentation to facilitate visual reasoning. (2) GPT-4o likes to use more tools. GPT-4o0 uses
the vision specialists more often than GPT-4 Turbo. Also, the two LMs behave differently for
the semantic correspondence tasks. GPT-4o uses the segmentation module for 40% of the task
instances, while GPT-4 Turbo uses the detection module for less than 20% of times, and rarely use
the segmentation module. This difference may explain the performance gap between the two LMs
(58.3% v.s. 42.4%) on this task.

Comparison with visual prompting and tool-use frameworks. In Table[3] we compare SKETCH-
PAD with the visual prompting framework SoM [51]] and the LLM tool-use framework Visprog [13].
Details of these methods can be found in §A] For a fair comparison, we make the following adap-
tations: (1) we find that prompting LMs with SoM images can hurt performance, likely because
the visual prompts confuse the model. To make a stronger baseline, we prompt the LM with both
the original image and the SoM image (full prompt in §F), which we refer as “SoM + orig.” (2)
We replace the LM and VQA modules in Visprog with the corresponding GPT-4 model. (3) Since
baseline methods are developed on single-image tasks, we compare SKETCHPAD on such tasks. From
Table 3] we can see that SKETCHPAD is the only framework that yields consistent improvement
on all tasks. SoM can boost spatial reasoning ability, as the authors reported. However, it can hurt the
performance on other tasks, even in the “SoM + orig.” setting. Visprog performs worse than the base
LM on all the tasks. As prior work [20}17] suggests, one possible reason is that the vision modules
themselves have errors, and the error propagates when the modules are composed by a program.

12

456
457
458
459

461
462
463
464
465
466
467

468

470

471
472

473
474
475
476
477

478

479

480

GPT-40 Tool-Use Frequency

== Detection Model 1% MMVP Depth Spatial
I = S ph_Sp
= o GPT-4 Turbo | 525 71.0 66.1 68.5
SoM 420 607 58.9 783
SoM +orig. | 51.3 743 66.9 79.7
- Visprog 33.2 16.3 67.8 53.8
=" P Sketchpad 71.0 73.3 68.5 80.4
GPT-4 Turbo Tool-Use Frequency
= Detection GPT-40 66.0 853 71.8 72.0
- = : SoM 490 707 629 832
us = Sliding window SoM + orig. 68.1 84.0 75.0 82.5
" S Visprog 324 173 46.8 37.8

nnnnnn

Table 3: Comparison with other augmenta-
tion frameworks for multimodal LMs on single-
image tasks. For fair comparison, we modify
the original Visprog framework by replac-
ing the LM and VQA components with the cor-
responding GPT-4 model.

Figure 4: Percentage of times GPT-40 and GPT-
4 Turbo use a visual module in SKETCHPAD
when solving V*Bench, relative depth, spatial
reasoning, and semantic correspondence tasks.

Why does SKETCHPAD work? First, vision is a versatile and informational interface that
complements language. Dense information like depth and segmentation cannot be described easily
through language [9]. In a broader perspective, humans have developed many visualization techniques
that are direct, efficient, and informational. SKETCHPAD provides LMs the opportunity to use them.
Second, in SKETCHPAD, multimodal LMs can plan and reason based on the intermediate visual
artifacts they created. In contrast, in prior modular vision work [13] [51]], multimodal modules
follow a predefined plan by either humans or code. SKETCHPAD is much more flexible and robust
to errors. For example, suppose object detection makes an error. The LM can (in principle) find
the error by viewing the bounding boxes, and change its following plans, but prior methods cannot.
Third, as discussed next, the plans of multimodal LMs are similar to human plans, and therefor
likely benefit from the fact that the underlying LMs have seen data with similar reasoning patterns
during pretraining.

Do LMs have the same plans as humans? We conduct a human study on all geometry problems
and 10 problems on each vision task. On geometry, humans draw the same auxiliary line as GPT-4o0
80% of the time. On vision, we show 2 human subjects the full plan of GPT-40, which they rate is
valid in 92.8% of instances. Most errors are caused by failures in the vision specialists (e.g., fail to
detect an object) and mistakes in simple visual questions answering, rather than planning.

Model Geometry Maxflow Convexity Winner ID
LLaVA-NeXT-13B 11.1 7.8 50.39 5.8

+ oracle Sketchpad 222 10.2 50.0 36.7
LLaVA-NeXT-34B 26.1 0.8 81.6 49.0

+ oracle Sketchpad 28.3 14.1 87.1 494

Table 4: Open-source LLaVA models’ performance on math tasks. The oracle Sketchpad uses the
visual artifact generated in the last action of GPT-40 + SKETCHPAD as inputs.

Experiments on open-source models. Can sketches like diagrams, plots, and auxiliary lines
facilitate existing open-source multimodal LMs? To answer this question, we conduct the experiments
in Table] We use the visual artifacts generated in the last action of GPT-40 + SKETCHPAD
experiment as the image input for open-source LLaVA-NEXT models [26]. We can see that this
oracle SKETCHPAD brings consistent improvement to math tasks and boosts mathematical reasoning.

F Prompts

- Code: 1. merge math into Yushi’ code]_ws

Here we provide our prompts for math tasks as in Figures[5and [6]

13

PROMPT

You are given a real-valued, scalar function f(z).

YOUR TASK is to determine whether f(z) is an convex function or concave function.
Definition of a convex function: A function such that

Vo,y,0 <t <1, ftz + (1 = t)y) < tf(x) + (1= 1)f(y)

Definition of a concave function: A function such that
Vo,y,0 <t <1, f(tz+ (1 —t)y) > tf(z) + (1 1) f(y)

Here is the expression of f(z), defined for all x>0. Here is the expression of

f(=@):
f(z) =7.57 — 0.08 * Abs(x)

Respond with ‘convex’ or ‘concave’ first on whether the function f (x) is convex or
concave, based on the definitions and your observation of the function. You can
generate matplotlib code to visualize the function.

If you can get the answer, please reply with ANSWER: <your answer>, extract the
final answer in FINAL ANSWER: <final answer> and ends with TERMINATE in the RESULT.
Answer:

Figure 5: Prompt for the Math Convexity task. We follow the similar prompt format to [8], except
prompting the models to write the code to generate images.

PROMPT

You are given an adjacency matrix of a graph and two query nodes.

YOUR TASK is to find if there is a path between the two nodes.

Definition of connectivity: In an undirected graph G, two vertices u and v are
called connected if G contains a path from u to v. A path in a graph is a finite
sequence of edges which joins a sequence of vertices.

In the query example, the nodes and the adjacency matrix are zero-indexed.

Query Example:

Adjacency Matrix:

(o, o, o, o, o, 1, 0, 0, 01,

(o, o, 1, 0o, o, 0, 1, 0, 01,
(o, 1, o, o, 1, 0, 0, 0, 0],
(o, o, o, 0, 0, 0, 0, 0, 01,
(o, o, 1, o, o, 0o, o, 0, 0l,
(1, o, 0, 0, 0, 0, 1, 0, 11,
(o, 1, o, o, o, 1, o, 0, 0],
(o, o, o, 0o, 0, 0, 0, 0, 01,
(o, o, o, 0, 0, 1, 0, 0, 0]]

Query nodes indices (zero-indexed): 4 and 0

Respond with ‘yes’ or ‘no’ first on whether the query nodes are connected or not in
the graph.

If there is a path, first provide the path as a sequence of vertices (nodes), and
then explain your reasoning. You can use networkx to draw the graph. If there is
no path, explain why in details.

Answer (start with ’yes’ or ’no’): If you can get the answer, please reply with
ANSWER: <your answer>, extract the final answer in FINAL ANSWER: <final answer> and
ends with TERMINATE in the RESULT.

Answer:

Figure 6: Prompt for the Graph Connectivity task. We follow the similar prompt format to [8]], except
prompting the models to write the code to generate images.

14

481
482

Here we provide the prompts for GPT-40 + SKETCHPAD tackles a visual search problem. For
simplicity, we omitted the coding parts for tools besides detection and sliding window.

SYSTEM PROMPT: You are a helpful multimodal AI assistant.

Solve tasks using your vision, coding, and language skills.

The task can be free-form or multiple-choice questions.

You can answer the user’s question about images. If you are not sure, you can
coding

You are coding in a Python jupyter notebook environment.

You can suggest python code (in a python coding block) for the user to execute. In
a dialogue, all your codes are executed with the same jupyter kernel, so you can use
the variables, working states.. in your earlier code blocks. Solve the task step
by step if you need to.

The task may be a vision-language task and require several steps. You can write
code to process images, text, or other data in a step. Give your code to the

user to execute. The user may reply with the text and image outputs of the code
execution. You can use the outputs to proceed to the next step, with reasoning,
planning, or further coding.

If a plan is not provided, explain your plan first. Be clear which step uses code,
and which step uses your language skill.

When using code, you must indicate the script type in the code block. The user
cannot provide any other feedback or perform any other action beyond executing the
code you suggest. The user can’t modify your code. So do not suggest incomplete
code which requires users to modify. Don’t use a code block if it’s not intended to
be executed by the user.

Don’t include multiple code blocks in one response. Do not ask users to copy and
paste the result. Instead, use ’print’ function for the output when relevant.

Check the execution result returned by the user.

All images should be stored in PIL Image objects. The notebook has imported ’Image’
from ’PIL’ package and ’display’ from ’IPython.display’ package. If you want to
read the image outputs of your code, use ’display’ function to show the image in the
notebook. The user will send the image outputs to you.

If the result indicates there is an error, fix the error and output the code again.
Suggest the full code instead of partial code or code changes. If the error can’t
be fixed or if the task is not solved even after the code is executed successfully,
analyze the problem, revisit your assumption, collect additional info you need, and
think of a different approach to try.

For each turn, you should first do a "THOUGHT", based on the images and text you
see. If you think you get the answer to the intial user request, you can reply with
"ANSWER: <your answer>" and ends with "TERMINATE".

ROLE: User:

Here are some tools that can help you. All are python codes. They are in tools.py
and will be imported for you.

The images has their own coordinate system. The upper left corner of the image is
the origin (0, 0). All coordinates are normalized, i.e., the range is [0, 1].

A1l bounding boxes are in the format of [x, y, w, h], which is a python list. x is
the horizontal coordinate of the upper-left corner of the box, y is the vertical
coordinate of that cormer, w is the box width, and h is the box height.

Notice that you, as an AI assistant, is not good at locating things and describe
them with coordinate. You can use tools to generate bounding boxes.

You are also not good at answering questions about small visual details in the
image. You can use tools to zoom in on the image to see the details. Below are the
tools in tools.py:

15

‘“‘python

class AnnotatedImage:

A class to represent an annotated image. It contains the annotated image and the
original image.

def __init__(self, annotated_image: Image.Image, original_image:
Image . Image=None) :

self.annotated_image = annotated_image

self.original_image = original_image

def detection(image, objects):

"""Object detection using Grounding DINO model. It returns the annotated image and
the bounding boxes of the detected objects.

The text can be simple noun, or simple phrase (e.g., ’bus’, ’red car’). Cannot be
too hard or the model will break.

The detector is not perfect, it may wrongly detect objects or miss some objects.
Also, notice that the bounding box label might be out of the image boundary.

You should use the output as a reference, not as a ground truth.

When answering questions about the image, you should double-check the detected
objects.

Args:

image (PIL.Image.Image): the input image

objects (List[str]): a list of objects to detect. Each object should be a simple
noun or a simple phrase. Should not be hard or abstract concepts like "text" or
"number" .

Returns:

output_image (AnnotatedImage): the original image, annotated with bounding boxes.
Each box is labeled with the detected object, and an index.

processed boxes (List): 1listthe bounding boxes of the detected objects

Example:

image = Image.open("sample_img.jpg")

output_image, boxes = detection(image, ["bus"])
display(output_image.annotated_image)

print(boxes) # [[0.24, 0.21, 0.3, 0.4], [0.6, 0.3, 0.2, 0.3]]

you need to double-check the detected objects. Some objects may be missed or
wrongly detected.

def sliding_window_detection(image, objects):

"""Use this when you are searching for objects in the image, but the objects are not
detected by the object detection model.

In that case, the most common reason is that the object is too small such that both
the vision-language model and the object detection model fail to detect it.

This function tries to detect the object by sliding window search.

With the help of the detection model, it tries to detect the object in the zoomed-in
patches.

The function returns a list of annotated images that may contain at leas one of the
objects, annotated with bounding boxes.

It also returns a list of a list of bounding boxes of the detected objects.

Args:

image (PIL.Image.Image): the input image

objects (List[str]): a list of objects to detect. Each object should be a simple
noun or a simple phrase. Should not be hard or abstract concepts like "text" or
"number" .

Returns:

possible_patches (List[AnnotatedImage]): a list of annotated zoomed-in images that
may contain the object, annotated with bounding boxes.

possible_boxes (List[List[List[Float]]]): For each image in possible_patches, a
list of bounding boxes of the detected objects.

The coordinates are w.r.t. each zoomed-in image. The order of the boxes is the
same as the order of the images in possible_patches. ‘¢

16

GOAL #: Based on the above tools, I want you to reason about how to solve the

USER REQUEST # and generate the actions step by step (each action is a python
jupyter notebook code block) to solve the request.

You may need to use the tools above to process the images and make decisions based
on the visual outputs of the previous code blocks.

Your visual ability is not perfect, so you should use these tools to assist you in
reasoning about the images.

The jupyter notebook has already executed the following code to import the necessary
packages:

‘“‘python

from PIL import Image

from IPython.display import display

from tools import *

(X33

REQUIREMENTS #:

1. The generated actions can resolve the given user request # USER REQUEST #
perfectly. The user request is reasonable and can be solved. Try your best to
solve the request.

2. The arguments of a tool must be the same number, modality, and format specified
in # TOOL LIST #;

3. If you think you got the answer, use ANSWER: <your answer> to provide the
answer, and ends with TERMINATE.

4. All images in the initial user request are stored in PIL Image objects named
image_1, image_2, ..., image_n. You can use these images in your code blocks. Use
display() function to show the image in the notebook for you too see.

5. Use as few tools as possible. 0Only use the tools for the use cases written in
the tool description. You can use multiple tools in a single action.

6. You must return an answer with the choice letter if the user request is a
multiple-choice question.

7. When detection tool failed to detect an object, you can use the
sliding_window_detection tool to search for the object.

8. Bounding boxes may be wrong and misled you. When answering questions about
small objects in bounding boxes, you should zoom in on the object to see the
details.

9. Segmentation and marking tool can help you better reason about the
relationship between objects. Example use cases are spatial reasoning (e.g.,
left/right/above/below/on) and counting.

[Examples]

USER REQUEST :

Figure 7: The first-turn inputs we give to the LLM for computer vision tasks

17

w3 G Dataset statistics

484 Table E] and E] show the statistics of the datasets we used, including IsoBench [§]], BLINK [9],
485 MMVP [40], and V*Bench [47].

Dataset \ size partition representation
Math Parity 383 val code
Math Convexity 255 val code
Graph Maxflow 128 val array
Graph Connectivity | 128 val array
Graph Isomorphism | 128 val array
Winner ID 257 val FEN

Table 5: IsoBench [8]] data statistics.

Dataset ‘ size partition input
V*Bench 257 - Single Image
MMVP 300 - Single Image
BLINK Relative Depth 124 val Single Image
BLINK Spatial Relation 143 val Single Image
BLINK Jigsaw Puzzle 150 val Multiple Images
BLINK Visual Correspondence 172 val Multiple Images

BLINK Semantic Correspondence | 139 val Multiple Image

Table 6: Vision tasks data statistics.

s H Costs

The cost of running each task using GPT-4o is in Table[7]

Dataset | tokens per sample =~ GPT-4o cost per sample
Math Parity 2994 $0.015
Math Convexity 2211 $0.011
Graph Connectivity 2819 $0.014
Graph Isomorphism 3143 $0.016
V*Bench 26647 $0.133
MMVP 11870 $0.059
BLINK Relative Detph 14078 $0.070
BLINK Spatial Relation 12848 $0.064
BLINK Jigsaw Puzzle 13206 $0.066
BLINK Visual Correspondence 16988 $0.085
BLINK Semantic Correspondence 11508 $0.058

Table 7: The cost of running SKETCHPAD on each task.
487

18

	Introduction
	Visual Sketchpad
	Experimental Results
	Conclusion
	Related Work
	Sketching via Code Generation
	Math tasks details
	Computer Vision tasks details
	Vision Specialists as Sketching Tools in Sketchpad

	More Analysis
	Prompts
	Dataset statistics
	Costs

