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ABSTRACT

The framework of successor features (SFs) and generalized policy improvement
(GPI) yields the potential to achieve zero-shot transfer in reinforcement learning
(RL) among different tasks. However, GPI always suffers from inaccurate value
function approximation in practice, resulting in a “zero-shot” somewhat fantasti-
cal. This paper focuses on comprehending the underlying causes of inaccurate
SFs and presents a methodology for improving their accuracy. Our contribu-
tions encompass four key aspects: (i) we theoretically study the underestimation
phenomenon in SF&GPI; (ii) we introduce distributional RL into SF&GPI, and
demonstrate its effectiveness in relieving such underestimation; (iii) we show that
distributional SFs (DSFs) is provided with a lower generalization bound than orig-
inal SFs; (iv) we put forward that the performance of SFs-based algorithms can
be enhanced by incorporating DSFs. Furthermore, we verify the quality of em-
ploying DSFs on the platform of multi-objective RL (MORL). Simulation study
demonstrates the superiority of our concept in addressing underestimation chal-
lenges.

1 INTRODUCTION

Reinforcement learning (RL) (Sutton & Barto, 2018; Puterman, 2014) solves sequential decision-
making problems via a trial-and-error process interacting with the environment, which achieves
groundbreaking success in game playing (Schrittwieser et al., 2020), robotics (Kumar et al., 2021),
autonomous driving (Sallab et al., 2017).

Model-free RL algorithms, a cornerstone in the field of RL, consistently excel at solving complex
problems and achieving state-of-the-art results. However, many of these algorithms often suffer
from overestimation, which is commonly caused by inaccurate function estimation or maximization
operations, as executed by Q-learning and its variants (Fujimoto et al., 2018; Pan et al., 2020b;
Duan et al., 2022). To address this overestimation, (Fujimoto et al., 2018; Lan et al., 2020) employ
minimization operation but it brings another risk of underestimation. Consequently, those model-
free RL methods will degenerate to sub-optimal policy (Duan et al., 2022). Overcoming or even
relieving the chronic overestimation/underestimation bias has great significance in cost saving, and
has aroused great interest of scholars (Pan et al., 2020b;a; Duan et al., 2022).

Will this unpleasant thing happen in the transfer reinforcement learning (TRL) algorithms?
The scholarly exploration that overlooks this issue presumably violates the original intention of
TRL: Low sample complexity. Explosively, we take an impressive TRL method - successor features
(SFs) (Barreto et al., 2017; 2018; Carvalho et al., 2023) as an example, to study the underlying
overestimation/underestimation bias. The SFs framework is promising as it facilitates seamless
task transfer with generalized policy improvement (GPI) regardless of temporal order, seamlessly
integrating with RL.

In this paper, we theoretically expose the underestimation in SF&GPI by exploring the post-update
of the estimated parameter and the true parameter. To mitigate the underestimation bias, we incorpo-
rate the idea of distributional RL (Sobel, 1982; White, 1988; Bellemare et al., 2017) into SF&GPI,
and define distributional SFs (DSFs) and distributional GPI (DGPI), respectively. Distributional RL
captures the randomness and brings more information into value function approximation via model-
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ing distribution over return (Bellemare et al., 2017). From the view of such an approximation mech-
anism, we theoretically prove that the underestimation is mitigated by distributional SF&GPI, and
demonstrate that DSFs are provided with access to a lower generalization bound than original SFs.
They enrich our concepts mutually. Finally, we put forward that the performance of SFs-based algo-
rithms can be enhanced by incorporating DSFs. Furthermore, we employ the SF-based extension of
the optimistic linear support (SFOLS) algorithm (Alegre et al., 2022b) and the worst case policy iter-
ation (WCPI) algorithm (Zahavy et al., 2021) as the platform to verify the quality of involving DSFs.
The novel DSFs-based algorithms as the control groups are named by the Risk-sensitive Distribu-
tional SFs with Optimistic Linear Support (RDSFOLS) algorithm and the Distributional Generalized
Policy Improvement-Worst Case Policy Iteration (DGPI-WCPI) algorithm, respectively. Extensive
quantitative evaluations support our analysis.

2 BACKGROUND

We consider an Markov decision process (MDP) (Sutton & Barto, 2018; Puterman, 2014) defined by
a tuple M = (S,A, p, R, µ, γ). S and A represent the state space and the finite action space, s′ ∼
p(·|s, a) describes the transition dynamics, R : S×A×S → R is the reward function, µ is an initial
state distribution and γ ∈ [0, 1) is the discounting factor. The action-value function of the policy
π : S → A is given by Qπ(s, a) ≡ Eπ[Gt|St = s,At = a], where Eπ[·] denotes the expectation
over trajectories induced by π, and Gt =

∑∞
i=0 γ

iR(St+i, At+i, St+i+1). In the following, we
introduce preliminary background about SF&GPI and MORL. Details for distributional RL can be
found in Appendix B.

2.1 SUCCESSOR FEATURES AND GENERALIZED POLICY IMPROVEMENT

SF&GPI (Barreto et al., 2017; 2018) is a powerful technique for transfer in RL, which fully utilizes
the policies from prior tasks to identify a policy for a novel task. Thus we consider the linearly-
expressible reward function E[R(s, a, s′)] = rw(s, a, s′) = ϕ(s, a, s′)⊤w, where ϕ(s, a, s′) ∈
Rd are reward features and w ∈ Rd are weights. Let Mϕ = {(S,A, p, rw, µ, γ)|rw(s, a, s′) =
ϕ(s, a, s′)⊤w} be the set of MDPs induced by ϕ through all linearly-expressible reward functions.
The key insight of SFs is to decompose the action-value function of policy π on task w:

Qπ
w(s, a) = Eπ[

∞∑
i=0

γiϕt+i|St = s,At = a]⊤w ≡ ψπ(s, a)⊤w. (1)

Analogous to the approximation of the Q-function, we employ the parameter θ to approximate SFs
ψπ(s, a;θ). Note that SFs can be learned through any conventional RL method (Szepesvári, 2022).

The property of SFs allows for the reuse of SFs across a set of policies, thereby accelerating pol-
icy updates. Assume the agent has learned the SFs ψπj (s, a;θj) of policies Π = {πj}nj=1. For a
new task wn+1, it is practicable to evaluate all policies πj ∈ Π via generalized policy evaluation
(GPE), i.e., Qπj

wn+1(s, a;θj) = ψπj (s, a;θj)
⊤wn+1. Next, we apply generalized policy improve-

ment (GPI) to obtain a new policy
πn+1(s) = argmax

a
ψπi(s, a;θi)

⊤wn+1, i = argmax
j∈[n]

ψπj (s, b;θj)
⊤wn+1 (2)

where [n] = {1, . . . , n} and ψπj (s, b;θj)
⊤wn+1 be the action-value function of policy πj when

executed in Mn+1 ∈ Mϕ. The GPI theorem (Barreto et al., 2017) states that π is no worse than all
other training policies, i.e.,

Qπ
wn+1

(s, a) ≥ max
i
Qπi

wn+1
(s, a), for all (s, a) ∈ S ×A. (3)

However, it always acts according to the lower bound on the action-value, which tends to underes-
timate the true value (Hunt et al., 2019). In this paper, to investigate the mechanism of this phe-
nomenon, we assume π⋆ be the optimal policy in new task wn+1.

2.2 BRIDGING SUCCESSOR FEATURES AND MULTI-OBJECTIVE RL

MORL aims to tackle multiple possibly conflicting objectives, which can be modeled as a multi-
objective MDP (MOMDP) M = (S,A, p,R, µ, γ). Differing from the regular MDP M with its
scalar reward R, MOMDP’s reward functionR : S ×A× S → Rm is with m objectives.
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With the aid of SFs, an MOMDP with m = d objectives can be constructed by R(s, a, s′) =
ϕ(s, a, s′) (Alegre et al., 2022b). Consequently, the multi-objective action-value function evolves
into

qπ(s, a) = Eπ

[ ∞∑
i=0

γiRt+i|St = s,At = a

]
= Eπ

[ ∞∑
i=0

γiϕt+i|St = s,At = a

]
= ψπ(s, a).

Therefore, any algorithms capable of learning multi-objective action-value qπ(s, a) of a correspond-
ing MOMDP can be used to learn the SFs ψπ(s, a), and vice-versa. Further, the multi-objective
value vector vπ , defined as vπ := ES0∼µ[q

π(S0, π(S0))] under the initial state distribution µ, is
equal to the expected SF vector ψπ := ES0∼µ[ψ

π(S0, π(S0))]. The solution to an MOMDP is a set
of all policies such that vπ is in the Pareto frontier.

Under the relative weight w describing the importance of m objectives, let a user utility function
(or scalarization function) be a mapping from the multi-objective value vπ onto a scalar value. The
utility function is often linear, i.e., u(vπ,w) = (vπ)⊤w. According to (Roijers et al., 2013), we
can define a convex coverage set (CCS) of the Pareto frontier. Given a constantw, the MOMDP can
be decomposed by an MDP with the reward function rw(s, a, s′) = R(s, a, s′)⊤w. Further, we can
define the CCS by replacing each occurrence of vπ ∈ F with its corresponding ψπ:

CCS ≡ {vπ ∈ F | ∃w s.t. ∀vπ
′
∈ F , u(vπ,w) ≥ u(vπ

′
,w)}

= {ψπ | ∃w s.t. ∀ψπ′
, (ψπ)⊤w ≥ (ψπ′

)⊤w}

= {ψπ | ∃w s.t. ∀π′, vπw ≥ vπ
′

w },

where vπw = (ψπ)⊤w. Thus, we can exploit MORL algorithms tailored to construct CCS’s to solve
all tasks inMϕ. Through GPI, we can construct the set of optimal policies to solve all tasks inMϕ,
which is equal to CCS solving the corresponding MOMDP.

3 UNDERESTIMATION BIAS

In Section 3.1, we provide a detailed analysis from a theoretical standpoint to expose the mystery
of underestimation in the SF&GPI framework. Next, we show that DSF&DGPI not only mitigates
underestimation but also narrows the generalization bound to some extent in Section 3.2. Finally,
Section 3.3 extends the result to the scenario of MORL.

3.1 UNDERESTIMATION IN SFS TRANSFER FRAMEWORK

For a new task wn+1 (a constant weight), based on Eq. (1), the SFs-estimate ψπn+1(s′, a′;θn+1)
can be updated by minimizing the loss (y −ψπn+1(s′, a′;θi)

⊤wn+1)
2/2:

θnewn+1 = θn+1 − βγ(y −ψπn+1(s′, a′;θi)
⊤wn+1)∇θn+1Es′ [ψ

πn+1(s′, a′;θn+1)]
⊤
wn+1, (4)

where y = E
[
ϕ(s, a)⊤wn+1

]
+γEs′ [ψ

πn+1(s′, a′;θn+1)]
⊤
wn+1 is the greedy target value and β

is the learning rate. Note that the target action a′ is chosen by argmaxbψ
πn+1(s, b;θn+1)

⊤wn+1

and the current action is derived by the GPI policy in Eq. (2).

Let θtruen+1 represent the post-update parameters derived from the true current valueψπ⋆(s, a)⊤wn+1,
i.e.,

θtruen+1 = θn+1 − βγ(y −ψπ⋆(s′, a′)⊤wn+1)∇θn+1
Es′ [ψ

πn+1(s′, a′;θn+1)]
⊤
wn+1. (5)

Remark 1 We remark on the difference in parameter updating between SFs and traditional RL. In
SFs, the greedy target value with respect to θn+1 is guided by the current value (θnewn+1 is guided by
the parameter θi v.s. θtruen+1 is updated by the policy π⋆). In contrast, traditional RL leverages the
target value to guide the current value. In conclusion, SFs updates the parameter within the target
value, while traditional RL learns the parameter within the current value.
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In practical applications, SFs-estimation usually incorporates random errors εQ, which presumably
stems from function approximation and is induced by source tasks. We rewrite

ψπn+1(s, a;θi)
⊤wn+1 = ψπ⋆(s, a;θ⋆)

⊤wn+1 + εQ. (6)

Next, we state the underestimation bias of post-update SFs-estimate.

Theorem 1 Suppose that the agent has learn a policy set Π = {πj}nj=1 of tasks Mj ∈ MS ,
MS ⊂ Mϕ. For all s ∈ S, a ∈ A, let Ψ = {ψπj (s, a;θj)}nj=1 be the SFs set of Π and πn+1 be
the DGPI policy defined in Eq. (2) on task wn+1. Assume ψπn+1(s, a;θi)

⊤wn+1 satisfies Eq. (6),
then the estimation bias satisfies

∆(s′, a′) := EεQ

[
Es′

[
ψπn+1(s′, a′;θnewn+1)

]⊤
wn+1 − Es′

[
ψπn+1(s′, a′;θtruen+1)

]⊤
wn+1

]
≤ 0.

For detailed proof, please refer to Appendix C.1. Theorem 1 indicates that the estimation bias is
labeled by underestimation, which extends the analysis of (Hunt et al., 2019, Theorem 3.1).

3.2 RELIEVING UNDERESTIMATION WITH DISTRIBUTIONAL SUCCESSOR FEATURES

Distributional RL based tool DSFs is utilized to relieve underestimation in this subsection. DSFs
involves more information than the expectation of returns and subsequently learn Q-value accurately.
First, we introduce some notations.

Definition 1 (Distributional Successor Features) For a fixed features ϕ(s, a, s′) ∈ Rd and a pol-
icy π, the DSFs is a random vector that represents the sum of discounted features of the policy π,
i.e., Dπ(s, a) :=

∑∞
i=t γ

i−tϕi+1. The DSFs can be computed through dynamic programming using
a distributional Bellman operator,

T πD(s, a) := ϕ(s, a, s′) + γD(s′, a′), s′ ∼ p(·|s, a), a′ ∼ π(·|s′). (7)

Analogous to Eq. (1), for any weight vector w, the distribution over returns is denoted by

Z(s, a) = Dπ(s, a)⊤w.

Note that in the approximation of Dπ(s, a), we use the same parameter symbols as ψπ(s, a) for
convenience.

To establish the connection between Q-value and the distribution over returns, we incorporate differ-
ent risk metrics into the decision-making. Analogous to the risk-sensitive RL framework (Ma et al.,
2020; Zhou et al., 2023), we define a risk operator φ : Z → R. The risk action-value is defined
as Q(s, a) = φ[Z(s, a)]. Below, we list some common risk operators: the risk-neutral measure
function φ[·] = E[·], mean-variance (Sobel, 1982; Tamar et al., 2012; Prashanth & Ghavamzadeh,
2016), value-at-risk (VaR) (Prashanth L & Fu, 2018), Wang’s method (Wang, 2000), cumulative
probability weighting parameterization (CPW) (Tversky & Kahneman, 1992) and conditional value
at risk (CVaR) (Chow et al., 2015). Details are attached to Appendix F.3.

Based on DSFs, we can define DGPI by computing the risk action-value of transferring previous
policies to a new task.

Definition 2 (Distributional Generalized Policy Improvement) For all (s, a) ∈ S × A, let D =
{Dπ1(s, a;θ1), D

π2(s, a;θ2), . . . , D
πn(s, a;θn)} be the DSFs of a set of policies. For a novel task,

we can derive the DGPI policy πn+1(s) = argmaxa maxj∈[n] φ
[
Dπj (s, a;θj)

⊤wn+1

]
.

In contrast to the original GPI, DGPI provides more opportunities to leverage the information from
source tasks adequately. To facilitate later analysis, we make the following assumption.

Assumption 1 Suppose that the random return Zπj (s, a) = Dπj (s, a)⊤wj can be ap-
proximated by the Gaussian distribution for all wj ∈ Rd, j ∈ [n], i.e., Zπj (s, a) ∼
N (φ

[
Dπj (s, a;θj)

⊤wj

]
, σπj (s, a; ξj)

2) with parameters θj and ξj . Analogously, the random
greedy target fj = T πjD(s, a)⊤wj = ϕ(s, a, s′)⊤wj + γDπj (s′, a′)⊤wj , is approximated by
N (yjD, σ

πj (s, a; ξj)
2), where yjD = E[fj ] = E

[
ϕ(s, a, s′)⊤wj ] + γEs′ [φ[D

πj (s′, a′;θj)
⊤wj ]

]
.
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In the distributional version, we use the same symbol in Eq. (6) to represent the random error

φ
[
Dπn+1(s, a;θi)

⊤wn+1

]
= φ

[
Dπ⋆(s, a)⊤wn+1

]
+ ϵQ. (8)

Now, we formally provide the estimation bias of post-update DSFs-estimate under the Gaussian
assumption of value distribution.

Theorem 2 Suppose that Assumption 1 holds. For a new task wn+1, let

πn+1(s) = argmax
b

φ
[
Dπi(s, b;θi)

⊤wn+1

]
, i = argmax

j∈[n]

φ
[
Dπj (s, b;θj)

⊤wn+1

]
be the DGPI policy obtained from DSFs setD, and σπn+1(s, a; ξi)

2 be the variance of current value.

Denote Es′
[
φ
[
Dπnew

n+1(s′, a′;θnewn+1)
⊤wn+1

]]
and Es′

[
φ
[
Dπtrue

n+1(s′, a′;θtruen+1)
⊤wn+1

]]
by Qθnew

n+1

and Qθtrue
n+1

, respectively. Assume φ
[
Dπn+1(s, a;θi)

⊤wn+1

]
satisfies Eq. (8), then the estimate

bias of post-update Qθnew
n+1

is

∆D(s′, a′) := EϵQ

[
Qθnew

n+1
−Qθtrue

n+1

]
=

∆(s′, a′)

σπn+1(s, a; ξi)2
,

where θtruen+1 denotes the post-update parameters, which is obtained by the true current value
φ
[
Dπ⋆(s, a)⊤wn+1

]
.

For detailed proof, please refer to Appendix C.2. Theorem 2 discloses the efficiency of DSFs:

• Initial Training Stage: Due to the disorder of exploration, φ
[
Dπn+1(s, a;θi)

⊤wn+1

]
is

lack of stability, which exhibits large fluctuation in
∣∣EϵQ [ϵQ]

∣∣ and σπn+1(s, a; ξi)
2 (ab-

solute mean and variance of ϵQ). In this way, ∆D(s′, a′) generally trends towards faster
shrinkage than ∆(s′, a′). This stage implies the reduction of underestimation globally.

• Converge Training Stage: After a period of training, uniformly,
∣∣EϵQ [ϵQ]

∣∣ is relatively
small. A certain ϵQ that unexpectedly meets larger value, will be possessed with poten-
tially large variance σπn+1(s, a; ξi)

2. In other words, DSFs exhibits higher efficiency in
underestimation correction than SFs. This stage implies the reduction of underestimation
individually.

Next, we will explore the generalization bound of DSFs without any distribution assumptions.

Theorem 3 (Generalization Bound of DSFs) Given a DSFs set D, executing DGPI policy πn+1 in
task wn+1, we have

E
[
Dπ⋆(s, a)⊤wn+1

]
− φ

[
Dπn+1(s, a;θn+1)

⊤wn+1

]
≤ δφ +

2

1− γ
ϕmax min

j∈[n]
∥wn+1 −wj∥,

(9)

where δφ = E
[
Dπ⋆(s, a)⊤wn+1

]
− φ

[
Dπ⋆(s, a)⊤wn+1

]
and ϕmax = maxs,a ∥ϕ(s, a)∥.

Proof Sketch. By the triangle inequality, for any j ∈ [n], we have

E
[
Dπ⋆(s, a)⊤wn+1

]
− φ

[
Dπn+1(s, a;θn+1)

⊤wn+1

]
= E

[
Dπ⋆(s, a)⊤wn+1

]
− φ

[
Dπ⋆(s, a)⊤wn+1

]︸ ︷︷ ︸
(A)

+ φ
[
Dπ⋆(s, a)⊤wn+1

]
− φ

[
Dπj (s, a;θj)

⊤wn+1

]︸ ︷︷ ︸
(B)

+ φ
[
Dπj (s, a;θj)

⊤wn+1

]
− φ

[
Dπn+1(s, a;θn+1)

⊤wn+1

]︸ ︷︷ ︸
(C)

.

In contrast to (Barreto et al., 2017), our result is established under the risk-sensitive setting and
considers how the behavior of the risk operator affects the optimal policy in the new task, as char-
acterized by (A). In other words, (A) represents the discrepancy of the random return between the
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risk operator and the expectation operator. (B) and (C) can be dealt by Lemma 2 and Lemma 1,
respectively. For detailed proof, please refer to Appendix C.3. □

Theorem 3 affords an alternative to mitigate underestimations (if δφ < 0) caused by the limitation of
the source tasks. The scenario of “mean-variance” (φ[Z] = E[Z]− ασ[Z]) is taken as an example,
i.e., δφ = ασ[Dπ⋆(s, a)⊤wn+1]. Obviously, δφ is positively correlated with parameter α. Choosing
α < 0 leads to a lower generalization bound.

Remark 2 We remark that δφ > 0 makes no focus. Essentially, the enlargement of an upper bound
hardly provides any information on the choice of the risk operator, in contrast to reducing the upper
bound. In other words, the decrease in the upper bound indicates that the error is limited to a smaller
range, while the increase in the upper bound does not mean that the performance will deteriorate.

Generally speaking, Theorem 2 verifies the superiority of DSFs in mitigating underestimation. The-
orem 3 exhibits the potential of DSFs to reduce the generalization bound. In this way, a reasonable
scheme introduces DSFs to mitigate underestimation and simultaneously possesses a lower gener-
alization bound. The second term 2ϕmax minj∈[n] ∥wn+1 − wj∥/(1 − γ) in Eq. (9) is focused.
The agent will attain near-optimal performance, if the set of DSFs enough close to task wn+1. This
presents a crucial question: How can we construct a set of DSFs to achieve optimal transfer for any
new linearly-expressible task?

This question has been extensively explored in the MORL literature (Yang et al., 2019b; Hayes
et al., 2022). According to Section 2.2, solving this question is equivalent to constructing a CCS by
MORL methods. In the following, we will employ the DSF&DGPI technique to construct a CCS.

3.3 SUPERIOR CONVEX COVERAGE SET CONSTRUCTION FOR TRANSFER

Our goal is to construct a policy set Π along with its corresponding DSFs set D for any tasks, by
solving the following problem:

argmin
Π

Ewn+1∼Wϕ [L(πn+1,wn+1)] ,

where L(πn+1,wn+1) = E
[
(Dπ⋆)⊤wn+1

]
−φ

[
(D

πn+1

θn+1
)⊤wn+1

]
andWϕ represents the weight

set ofMϕ. Recall that the expected SFs definition in Section 2.2, the expected DSFs can be defined
as Dπ

θ := ES0∼µ[D
π(S0, π(S0);θ)] analogously. In practice, the expectation is over tasks wn+1

drawn uniformly at random from the setWϕ. Further, we can define the CCS based on the expected
DSFs Dπ

θ :

CCS = {Dπ
θ | ∃w s.t. ∀Dπ′

θ′ ,E[(Dπ
θ )

⊤w] ≥ E[(Dπ′

θ′ )⊤w]}. (10)

Theorem 4 Let Π = {πj}nj=1 be a set of policies, and D = {Dπj

θj
}nj=1 be the corresponding set of

expected DSFs forming a CCS (Eq. (10)). Then, for any given weight vectorwn+1, the DGPI policy
πn+1 is optimal with respect to wn+1: E

[
(Dπ⋆)⊤wn+1

]
= φ

[
(D

πn+1

θn+1
)⊤wn+1

]
.

For detailed proof, please refer to Appendix C.4. Theorem 4 indicates that the CCS constituted by
the expected DSFs guarantees to access ability of the optimal policy using DGPI for any given task.
However, the complete CCS is almost unachievable in real-world scenarios. At this moment, we
consider constructing a weaker ϵ-CCS, which can be induced by set max policy (SMP) πSMP

n+1 =

argmaxj∈[n] φ
[
(D

πj

θj
)⊤wn+1

]
(Zahavy et al., 2021).

Definition 3 A DSFs set D = {Dπj

θj
}nj=1 is an ϵ-CCS if E[(Dπ⋆)⊤wn+1] − vSMP

wn+1
≤ ϵ for all

wn+1 ∈Wϕ, where vSMP
wn+1

= maxj∈[n] φ
[
(D

πj

θj
)⊤wn+1

]
.

Theorem 5 Under the same assumptions as in Theorem 3. Given an ϵ1-CCS D = {Dπj

θj
}nj=1 and

a DGPI policy πn+1 executed in task wn+1 ∈ Wϕ, then the obtained DSFs set satisfies ϵ2-CCS,
where ϵ2 ≤ min

{
ϵ1, δφ + 2

1−γϕmax maxwn+1∈Wϕ minj∈[n] ∥wn+1 −wj∥
}

.
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For detailed proof, please refer to Appendix C.5. Theorem 5 discloses that DGPI narrows the in-
completeness of the CCS set, and has the prospect of converging to CCS. In addition, similar to
the analysis of Theorem 3, Theorem 5 implies that DGPI offers a greater potential to minimize the
performance gap between the learned policy and the optimal policy for the new task, as compared
to GPI (Alegre et al., 2022b).

4 IMPLEMENTATION DETAILS

In this section, we elaborate on how SFs-based algorithms incorporate DSFs. We first introduce the
procedure of learning DSFs with DGPI, and finally provide its pseudocode. Details for RDSFOLS
and DGPI-WCPI are deferred to Appendix D and Appendix E.

In Algorithm 1, we introduce an algorithm to learn DSFs with DGPI based on distributional value
networks. Let Zτ be the quantile function for the random variable Z, denoted by Zτ = F−1

Z (τ) :=
inf {z ∈ R : τ ≤ FZ(z)} (Müller, 1997). Note that τ represents the quantile fraction and it can
be generated by different methods: quantile regression DQN (QR-DQN) (Dabney et al., 2018b),
implicit quantile networks (IQN) (Dabney et al., 2018a) or fully parameterized quantile function
(FQF) (Yang et al., 2019a). Generally, the training procedure of DSFDQN is identical in structure
to SFDQN in (Barreto et al., 2017), except for the DQN update of successor features is replaced
by the distributional RL algorithm. For two ensembles of quantile fractions {τ̂j}Nj=1 and {τ̂k}Nk=1,

and policy π, the temporal difference (TD) error based on Eq. (7) is given by δjkt = ϕ⊤
t w +

γZπ
τ̂j
(St+1, At+1;θ) − Zπ

τ̂k
(St, At;θi), where Zπ(St+1, At+1;θ) = Dπ(St+1, At+1;θ)

⊤w and
τ̂ = (τk + τk+1)/2, k = 1, . . . , N . We adopt quantile regression to train Zπ

τ (s, a;θ) by minimizing
the quantile Huber loss (Huber, 1964), with threshold κ,

ρκτ (δjk) = |τ − I {δjk < 0}| Lκ (δjk)

κ
, with Lκ (δjk) =

{
1
2δ

2
jk, if |δjk| ≤ κ,

κ
(
|δjk| − 1

2κ
)
, otherwise.

Then the objective of the quantile value network is defined as

JZ(θ) =

N−1∑
j=0

N−1∑
k=0

(τj+1 − τj) ρκτ̂k
(
δtjk

)
.

According to Definition 2, a corresponding sample-based DGPI policy is obtained by N samples of
{τ̂e}Ne=1: π(s) = argmaxa maxi φ

[
Zπi

τ̂e
(s, a;θi)

]
, where Zπi

τ̂e
(s, a;θi) = Dπi(s, a;θi)

⊤w.

Algorithm 1 Learn DSFs with DGPI
1: Initialize: a set of policies Π and the corresponding DSFs set D, create Dπ parameterized by
θ; replay buffer B, weight w

2: Select initial state s from µ
3: for t=0, · · · , num step do
4: Generate quantile fraction τe
5: if Bernoulli(ϵ) = 1 then At ← Uniform(A)
6: else At ← argmaxb maxi φ

[
Dπi(St, b;θi)

⊤w
]

// DGPI
7: end if
8: Execute At and observe ϕt and St+1

9: B ← B ∪ (St, At,ϕt, St+1)
10: if St+1 is not terminal then St ← St+1

11: else select initial state St from µ
12: end if
13: Sample mini-batch {(sk, ak,ϕk, s

′
k)}Kk=1 from B

14: Generate quantile fractions τj , τk
15: a′k ← argmaxb φ

[
Dπ(s′k, b;θ)

⊤w
]

by τk
16: Update DSF by minimizing the loss JZ(θ) // Learn DSF Dπ

17: end for
18: return π,Dπ

θ

7
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5 EXPERIMENTS

To evaluate the performance of DSFs, we conduct extensive quantitative evaluations in several envi-
ronments, as shown in Fig. 1. First, Section 5.1 evaluates the efficiency of employing DSFs against
SFs-based algorithms. A series of experiments under different risk scenarios are processed in Sec-
tion 5.2. The detailed introduction for our experimental benchmark environments and additional
experiment results are listed in Appendix F.

    (a)                                            (b)                                          (c)

Figure 1: Example environments: (a) Reacher, (b) DiscreteHopper, (c) DiscreteSwimmer.

5.1 EVALUATION ON DSFS

First, we conduct a modular experiment to find the best way of quantile fraction generation. Com-
pared with fix (QR-DQN) and net (FQF), random (IQN) has better performance and fewer parame-
ters. Thus we use IQN in the following experiments. Due to space limitation, detailed comparison
is postponed to Appendix F.2.
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Figure 2: The expected return of the four algorithms over the task/reward weight distribution Wϕ.
Each algorithm is run with five different random seeds. Each iteration is evaluated after 200000
steps per task. The black dashed line exhibits the true value of the last iteration.

We verify how the performance of DSFs outperforms SFs on the platform of MORL. SFOLS (Alegre
et al., 2022b) and WCPI (Zahavy et al., 2021) are involved as two baselines for the comparison of
our RDSFOLS and DGPI-WCPI.

In Fig. 2, we assess each method using a test set of 60 tasks uniformly sampled from Wϕ. The
solid line represents the expected return (value) and the shaded region depicts the standard devia-
tion. The results indicate that both the two DSFs-based algorithms (RDSFOLS and DGPI-WCPI)
outperform SF-based methods (SFOLS and WCPI) in faster learning speed, higher return curve and
lower variance. This is consistent with the comments on DSFs efficiency after Theorem 2.

We continue to observe a stably better performance of RDSFOLS against competing methods. This
is presumably owing to the fact that RDSFOLS continuously improves its expected performances by
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Figure 3: Comparison of the RDSFOLS algorithm using different risk operators within the Discrete-
Hopper environment. Each curve is run with five seeds. (a) risk-seeking policies in DiscreteHopper,
(b) risk-averse policies in DiscreteHopper.

learning new policies, rather than converging to a sub-optimal policy set like the WCPI algorithm;
see the Reacher environment as an example.

5.2 POLICY TRAINING UNDER RISK OPERATORS

In this subsection, we investigate the influence of different risk operators on RDSFOLS. As Sec-
tion 3.2 described, we conduct a comparative analysis involving three risk-seeking learned policies
(mean-variance, Wang and VaR) in distributional RL with the risk-neutral measure function, as
shown in Fig. 3(a). Additionally, we also evaluate five risk-averse learned policies: mean-variance,
Wang, VaR, CVaR and CPW in distributional RL in Fig. 3(b). For a more detailed introduction of
the risk metric and additional results under different risk operators, please refer to Appendix F.3 and
Appendix F.4. Both risk-averse and risk-seeking methods exhibit little difference among all risk
operators, which demonstrates the robustness of RDSFOLS.

6 CONCLUSION AND DISCUSSION

In this paper, we have undertaken a theoretical investigation into the underestimation in SF&GPI.
Subsequently, we have introduced the concepts of DSFs and DGPI to tackle this challenge. The
combination of distributional RL and SF&GPI relieves such underestimation and simultaneously
narrows the generalization bound to some extent. Finally, we verify the quality of employing DSFs
on the platform of MORL. As future work, we can integrate DSFs into universal successor features
approximators (USFAs) (Borsa et al., 2018). This integration aims to enhance scalability, especially
in high-dimensional problems.

Finally, related works on SFs, distributional RL and MORL are provided in Appendix A.
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Conor F Hayes, Roxana Rădulescu, Eugenio Bargiacchi, Johan Källström, Matthew Macfarlane,
Mathieu Reymond, Timothy Verstraeten, Luisa M Zintgraf, Richard Dazeley, Fredrik Heintz,
et al. A practical guide to multi-objective reinforcement learning and planning. Autonomous
Agents and Multi-Agent Systems, 36(26):1–59, 2022.

Peter J Huber. Robust estimation of a location parameter. Annals of Mathematical Statistics, 35(1):
73–101, 1964.

10



Under review as a conference paper at ICLR 2024

Jonathan Hunt, Andre Barreto, Timothy Lillicrap, and Nicolas Heess. Composing entropic policies
using divergence correction. In International Conference on Machine Learning, pp. 2911–2920,
2019.

Jaekyeom Kim, Seohong Park, and Gunhee Kim. Constrained gpi for zero-shot transfer in re-
inforcement learning. In Advances in Neural Information Processing Systems, volume 35, pp.
4585–4597, 2022.

Ashish Kumar, Zipeng Fu, Deepak Pathak, and Jitendra Malik. Rma: Rapid motor adaptation for
legged robots. arXiv preprint arXiv:2107.04034, 2021.

Prashanth L.A. and Michael Fu. Risk-sensitive reinforcement learning: A constrained optimization
viewpoint. arXiv preprint arXiv:1810.09126, 2018.

Qingfeng Lan, Yangchen Pan, Alona Fyshe, and Martha White. Maxmin q-learning: Controlling the
estimation bias of q-learning. In International Conference on Learning Representations (ICLR).
Preprint retrieved from arXiv:2002.06487, 2020.

Yining Li, Tianpei Yang, Jianye Hao, Yan Zheng, and Hongyao Tang. Efficient deep reinforcement
learning via policy-extended successor feature approximator. In International Conference on
Distributed Artificial Intelligence, pp. 29–44. Springer, 2022.

Xiaoteng Ma, Li Xia, Zhengyuan Zhou, Jun Yang, and Qianchuan Zhao. DSAC: Distributional soft
actor critic for risk-sensitive reinforcement learning. arXiv preprint arXiv:2004.14547, 2020.

Marlos C Machado, Andre Barreto, Doina Precup, and Michael Bowling. Temporal abstraction in
reinforcement learning with the successor representation. Journal of Machine Learning Research,
24(80):1–69, 2023.

Hossam Mossalam, Yannis M Assael, Diederik M Roijers, and Shimon Whiteson. Multi-objective
deep reinforcement learning. arXiv preprint arXiv:1610.02707, 2016.

Alfred Müller. Integral probability metrics and their generating classes of functions. Advances in
Applied Probability, 29(2):429–443, 1997.

Mark Nemecek and Ronald Parr. Policy caches with successor features. In International Conference
on Machine Learning, pp. 8025–8033, 2021.

Ling Pan, Qingpeng Cai, and Longbo Huang. Softmax deep double deterministic policy gradients.
In Advances in Neural Information Processing Systems, volume 33, pp. 11767–11777, 2020a.

Ling Pan, Qingpeng Cai, Qi Meng, Wei Chen, Longbo Huang, and Tie-Yan Liu. Reinforcement
learning with dynamic Boltzmann softmax updates. In Proceedings of the Twenty-ninth Interna-
tional Joint Conference on Artificial Intelligence, IJCAI 2020, pp. 1992–1998, 2020b.

LA Prashanth and Mohammad Ghavamzadeh. Variance-constrained actor-critic algorithms for dis-
counted and average reward MDPs. Machine Learning, 105(3):367–417, 2016.

A Prashanth L and Michael Fu. Risk-sensitive reinforcement learning: A constrained optimization
viewpoint. arXiv preprint arXiv:1810.09126, 2018.

Martin L Puterman. Markov decision processes: Discrete stochastic dynamic programming. John
Wiley & Sons, 2014.

Diederik M Roijers. Multi-objective decision-theoretic planning. PhD thesis, University of Amster-
dam, 2016.

Diederik M Roijers, Peter Vamplew, Shimon Whiteson, and Richard Dazeley. A survey of multi-
objective sequential decision-making. Journal of Artificial Intelligence Research, 48:67–113,
2013.

Diederik Marijn Roijers, Shimon Whiteson, and Frans A Oliehoek. Computing convex coverage sets
for faster multi-objective coordination. Journal of Artificial Intelligence Research, 52:399–443,
2015.

11



Under review as a conference paper at ICLR 2024

Ahmad EL Sallab, Mohammed Abdou, Etienne Perot, and Senthil Yogamani. Deep reinforcement
learning framework for autonomous driving. arXiv preprint arXiv:1704.02532, 2017.

Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen Simonyan, Laurent Sifre, Simon
Schmitt, Arthur Guez, Edward Lockhart, Demis Hassabis, Thore Graepel, et al. Mastering atari,
go, chess and shogi by planning with a learned model. Nature, 588(7839):604–609, 2020.

Matthew J Sobel. The variance of discounted Markov decision processes. Journal of Applied
Probability, 19(4):794–802, 1982.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. Cambridge, MA,
USA: MIT Press, 2018.

Csaba Szepesvári. Algorithms for reinforcement learning. Springer Nature, 2022.

Aviv Tamar, Dotan Di Castro, and Shie Mannor. Policy gradients with variance related risk criteria.
In International Conference on Machine Learning, pp. 1651—-1658, 2012.
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ment learning: Novel design techniques. In 2013 IEEE symposium on adaptive dynamic pro-
gramming and reinforcement learning (ADPRL), pp. 191–199. IEEE, 2013.

Shaun S Wang. A class of distortion operators for pricing financial and insurance risks. Journal of
risk and insurance, pp. 15–36, 2000.

DJ White. Mean, variance, and probabilistic criteria in finite Markov decision processes: A review.
Journal of Optimization Theory and Applications, 56(1):1–29, 1988.

Derek Yang, Li Zhao, Zichuan Lin, Tao Qin, Jiang Bian, and Tie-Yan Liu. Fully parameterized
quantile function for distributional reinforcement learning. In Advances in Neural Information
Processing Systems, volume 32, pp. 6190–6199, 2019a.

Runzhe Yang, Xingyuan Sun, and Karthik Narasimhan. A generalized algorithm for multi-objective
reinforcement learning and policy adaptation. In Advances in neural information processing sys-
tems, volume 32, 2019b.

Tom Zahavy, Andre Barreto, Daniel J Mankowitz, Shaobo Hou, Brendan O’Donoghue, Iurii Ke-
maev, and Satinder Singh. Discovering a set of policies for the worst case reward. In International
Conference on Learning Representations (ICLR). Preprint retrieved from arXiv:2102.04323,
2021.

Yirui Zhou, Mengxiao Lu, Xiaowei Liu, Zhengping Che, Zhiyuan Xu, Jian Tang, Yangchun Zhang,
Yan Peng, and Yaxin Peng. Distributional generative adversarial imitation learning with repro-
ducing kernel generalization. Neural Networks, 165:43–59, 2023.

APPENDIX

A RELATED WORK

A.1 SUCCESSOR FEATURES

SF&GPI framework (Barreto et al., 2017; 2018), a popular approach to transfer in RL, aims to
solve target tasks efficiently with minimal or even no additional learning by exploiting features
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and policies from source tasks. Recent advancements in multi-tasking deep reinforcement learning
agents leveraging successor features show promising results in enhancing sample efficiency (Kim
et al., 2022; Machado et al., 2023).

Further, universal successor features approximators (USFAs) (Borsa et al., 2018) incorporate univer-
sal value function approximators (UVFAs) into the original successor features framework, allowing
them to process policy vectors as inputs and thus enabling the use of GPI with arbitrary approximate
policies. Then Nemecek & Parr (2021) established suboptimality bounds for assessing whether poli-
cies suffice the existing cache on a given performance threshold or if it justifies the need to learn
a new policy. Meanwhile, Filos et al. (2021) introduced the inverse temporal difference learning
(ITD) inverse RL algorithm, which simultaneously learns shared state features, alongside per-agent
successor features and weight vectors. They integrated this approach with RL and GPI, leveraging
non-rewarded demonstrations from other agents to expedite learning for the ego-agent. Recently, a
modular neural network for learning features and SFs produced by their own modules called modular
successor feature approximators (MSFA) (Carvalho et al., 2023) shows the significance of modular-
ity in enabling reward-driven SF discovery. Transferring with SF&GPI guarantees that the resulting
GPI policy performs at least as well as any of the source policies. However, GPI policy usually
performs poorly in some situations. Hunt et al. (2019) observed that GPI consistently adopts a “pes-
simistic” approach, but they did not offer a comprehensive theoretical explanation. In this paper, we
explicitly analyze the phenomenon of GPI underestimation, and introduce concepts of distributional
RL and multi-objective RL to develop a novel approach that effectively tackles this problem.

A.2 DISTRIBUTIONAL REINFORCEMENT LEARNING

Distributional RL has been extensively explored in research efforts to enhance performance, with
a key challenge being the precise approximation of the value function distribution. Recent studies
have made notable strides in addressing this challenge. Based on the framework of deep Q-network
(DQN), Bellemare et al. (2017) introduced a technique for learning quantile values (or locations),
either on a fixed uniform grid (Bellemare et al., 2017) or through sampled quantile fractions (Dab-
ney et al., 2018b). Further, Dabney et al. (2018a) proposed a sampled quantile fractions method,
called IQN. To avoid random samples, FQF (Yang et al., 2019a) parameterizes both the quantile
values and quantile fractions, creating a fully parameterized tool for approximating distributions.
Moreover, distributional RL provides a new perspective for optimizing policy by approximating the
value function under diverse risk operators (Ma et al., 2020; Théate & Ernst, 2023). Duan et al.
(2022) formally investigated the distributional return function in solving overestimation, which is
the foundation of our work. Different from their analysis in a single task, we study the behavior of
the distributional version in alleviating the underestimation problem within the SFs framework.

A.3 MULTI-OBJECTIVE REINFORCEMENT LEARNING

Multi-objective reinforcement learning (MORL) tackles sequential decision problems involving
agents with varying weights for potentially conflicting reward functions. Existing MORL algo-
rithms can be broadly categorized into two primary groups: single-policy methods and multiple-
policy methods (Van Moffaert et al., 2013).

Single-policy algorithms (Van Moffaert et al., 2013) seek to find the optimal policy by fixed weights
induced scalarization of the multi-objective problem. While these methods provide the advantage of
reduced computational cost, they usually require prior knowledge of objective weights, which can
change over time.

Multiple-policy algorithms concentrate on learning a set of policies that approximate the true Pareto
frontier. Deep optimistic linear support learning (DOL) (Mossalam et al., 2016) first applies deep
RL algorithm to solve high-dimensional multi-objective decision problems. Yang et al. (2019b)
introduced a multi-objective variant of the Bellman optimality operator, employing it to acquire a
unified parametric representation of all optimal policies within the weight space, intending to enable
few-shot adaptation of autonomous agents to new scenarios. Hayes et al. (2022) first discussed
similarities between MORL and SFs. From the perspective of optimal updating, the authors claimed
the superiority of MORL over SFs, owing to the fact that SFs constructs a scalar reward, and would
lose partial information in real-world applications. Alegre et al. (2022b) integrated the MORL and
SFs frameworks to introduce SFOLS, an extension of the optimistic linear support algorithm (Roijers
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et al., 2015; Mossalam et al., 2016). SFOLS identifies tasks to solve, forming a convex coverage
set (CCS) of SFs corresponding to their policies. Moreover, in cases where only partial CCS is
accessible, they established an upper bound on the performance of the GPI policy. Differently, our
paper provides the improvement upon a set of policies by DGPI to narrow the incompleteness of
the CCS set, and subsequently minimizes the performance gap between the DGPI policy and the
optimal policy for the new task.

B DISTRIBUTIONAL REINFORCEMENT LEARNING

Instead of a scalar value function Qπ(s, a), we estimate the distribution over returns (the law of
random variable return Zπ(s, a) =

∑∞
t=0 γ

tR(St, At)) in distributional RL. Note that Qπ(s, a) =
E[Zπ(s, a)]. As with the standard RL, the distributional Bellman operator for policy evaluation is

T πZ(s, a)
D
= R(s, a) + γZ(s′, a′), s′ ∼ p(·|s, a), a′ ∼ π(·|s′),

where U :
D
= V denotes that random variables U and V have equal probability laws. T π is proved to

be a contraction in the p-Wasserstein distance (Bellemare et al., 2017).

C PROOFS

For simplicity, we denote ψ(s, a)⊤ = φ
[
D(s, a)⊤w

]
w⊤(ww⊤)−1, where w ∈ Rd.

C.1 PROOF OF THEOREM 1

Proof. Supposing that β is sufficiently small, we can approximate the post-update Q-function effec-
tively according to the post-update parameters θnewn+1,θ

true
n+1 equations (as expressed in Eq. (4) and

Eq. (5)) and Taylor’s expansion.

Es′
[
ψπn+1(s′, a′;θnewn+1)

]⊤
wn+1

≈ Es′ [ψ
πn+1(s′, a′;θn+1)]

⊤
wn+1

− βγ(y −ψπn+1(s′, a′;θi)
⊤wn+1)∥∇θn+1Es′ [ψ

πn+1(s′, a′;θn+1)]
⊤
wn+1∥22,

Es′
[
ψπn+1(s′, a′;θtruen+1)

]⊤
wn+1

≈ Es′ [ψ
πn+1(s′, a′;θn+1)]

⊤
wn+1

− βγ(y −ψπ⋆(s′, a′)⊤wn+1)∥∇θn+1
Es′ [ψ

πn+1(s′, a′;θn+1)]
⊤
wn+1∥22.

Notice that ψπn+1(s, a;θi)
⊤wn+1 = ψπ⋆(s, a)⊤wn+1 + εQ. Then, in expectation over εQ, the

estimation bias of post-update Q-estimate Es′
[
ψπn+1(s′, a′;θnewn+1)

]⊤
wn+1 is

∆(s′, a′) = EεQ

[
Es′

[
ψπn+1(s′, a′;θnewn+1)

]⊤
wn+1 − Es′

[
ψπn+1(s′, a′;θtruen+1)

]⊤
wn+1

]
≈ βγEεQ

[
ψπn+1(s′, a′;θi)

⊤wn+1 −ψπ⋆(s′, a′)⊤wn+1

]
· ∥∇θn+1

Es′ [ψ
πn+1(s′, a′;θn+1)]

⊤
wn+1∥22

= βγEεQ [εQ] · ∥∇θn+1Es′ [ψ
πn+1(s′, a′;θn+1)]

⊤
wn+1∥22.

Previous research (Li et al., 2022; Hunt et al., 2019) showed that the DGPI policy πn+1 always acts
according to a lower bound (Eq. (3)) on the action-value. In other words, EεQ [εQ] ≤ 0. Therefore,
it is clear that ∆(s′, a′) ≤ 0. □

C.2 PROOF OF THEOREM 2

Proof. For a constant weight wn+1, we first define a greedy target yn+1
D = E[ϕ(s, a)⊤wn+1] +

γEs′
[
φ
[
Dπn+1(s′, a′;θn+1)

⊤wn+1

]]
, where a′ = argmaxbψ

πn+1(s, b;θn+1)
⊤wn+1. Sup-

pose that yn+1
D obeys a Gaussian distribution Ztarget(·|s, a). Since E[yn+1

D ] is equal to y in Eq.
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(4), it follows that Ztarget(·|s, a) = N (yn+1
D , σπn+1(s, a; ξn+1)

2). Let the current value obeys
the Gaussian distribution Z(·|s, a) = N (ψπn+1(s, a;θi)

⊤wn+1, σ
πn+1(s, a; ξi)

2).Then the DSFs-
estimate Dπn+1(s, a;θn+1) can be updated by minimizing the Kullback–Leibler (KL) divergence
DKL(Ztarget(·|s, a),Z(·|s, a)):

θnewn+1 = θn+1 − β
yn+1
D −ψπn+1(s, a;θi)

⊤wn+1

σπn+1(s, a; ξi)2
γ∇θn+1

Es′
[
φ
[
Dπn+1(s′, a′;θn+1)

⊤wn+1

]]
.

Similarly, for θtruen+1, we have

θnewn+1 = θn+1 − β
yn+1
D −ψπn+1(s, a)⊤wn+1

σπn+1(s, a; ξi)2
γ∇θn+1

Es′
[
φ
[
Dπn+1(s′, a′;θn+1)

⊤wn+1

]]
.

Again by linearizing around θn+1 using Taylor’s expansion, we obtain

Es′
[
ψπn+1(s′, a′;θnewn+1)

]⊤
wn+1

≈ Es′ [ψ
πn+1(s′, a′;θn+1)]

⊤
wn+1

− βγ
yn+1
D −ψπn+1(s, a;θi)

⊤wn+1

σπn+1(s, a; ξi)2
∥∇θn+1

Es′
[
φ
[
Dπn+1(s′, a′;θn+1)

⊤wn+1

]]
∥22,

Es′
[
ψπn+1(s′, a′;θtruen+1)

]⊤
wn+1

≈ Es′ [ψ
πn+1(s′, a′;θn+1)]

⊤
wn+1

− βγ
yn+1
D −ψπn+1(s, a)⊤wn+1

σπn+1(s, a; ξi)2
∥∇θn+1Es′

[
φ
[
Dπn+1(s′, a′;θn+1)

⊤wn+1

]]
∥22.

Therefore,

∆D(s′, a′) = EϵQ

[
Es′

[
ψπn+1(s′, a′;θnewn+1)

]⊤
wn+1 − Es′

[
ψπn+1(s′, a′;θtruen+1)

]⊤
wn+1

]
≈ βγEϵQ

[
ψπn+1(s′, a′;θi)

⊤wn+1

σπn+1(s, a; ξi)2
− ψ

π⋆(s′, a′)⊤wn+1

σπn+1(s, a; ξi)2

]
· ∥Es′

[
φ
[
Dπn+1(s′, a′;θn+1)

⊤wn+1

]]
∥22

=
βγEϵQ [ϵQ] ∥∇θn+1

Es′ [ψ
πn+1(s′, a′;θn+1)]

⊤
wn+1∥22

σπn+1(s, a; ξi)2

=
∆(s′, a′)

σπn+1(s, a; ξi)2
.

Then we complete the proof. □

C.3 PROOF OF THEOREM 3

C.3.1 SOME IMPORTANT LEMMAS FOR PROVING THEOREM 3

Lemma 1 Let π1, . . . , πn be n policies with risk action-value functions φ[Dπj (s, a;θj)
⊤wn+1],

j ∈ [n]. For a novel task wn+1, executing DGPI policy πn+1, then we have
φ[Dπn+1(s, a;θn+1)

⊤wn+1] ≥ max
j∈[n]

φ[Dπj (s, a;θj)
⊤wn+1].

Proof. For brevity we denote φmax(s, a) = maxj∈[n] φ[D
πj (s, a;θj)

⊤wn+1]. For all s ∈ S, a ∈ A
and j ∈ [n], we have

T πn+1φmax(s, a) = E
[
ϕ(s, a, s′)⊤wn+1

]
+ γEs′ [φmax(s

′, πn+1(s
′))]

= rwn+1(s, a, s
′) + γEs′

[
max

b
φmax(s

′, b)

]
≥ rwn+1

(s, a, s′) + γEs′ [φmax(s
′, πj(s

′)]

≥ rwn+1(s, a, s
′) + γEs′

[
φ
[
Dπj (s′, a′;θj)

⊤wn+1

]]
= T πjφ

[
Dπj (s, a;θj)

⊤wn+1

]
= φ

[
Dπj (s, a;θj)

⊤wn+1

]
.
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Using the contraction and monotonicity of the Bellman operator T πn+1 we have

φ
[
Dπn+1(s, a;θn+1)

⊤wn+1

]
= lim

k→∞
(T πn+1)kφmax(s, a)

≥ φ
[
Dπj (s, a;θj)

⊤wn+1

]
.

□

Lemma 2 Let ϕmax = maxs,a ∥ϕ(s, a)∥2. Then

φ[Dπ⋆(s, a)⊤wn+1]− φ[Dπj (s, a;θj)
⊤wn+1] ≤

2

1− γ
ϕmax min

j∈[n]
∥wn+1 −wj∥.

Proof. By the triangle inequality, we get

φ[Dπn+1(s, a;θn+1)
⊤wn+1]− φ[Dπj (s, a;θj)

⊤wn+1]

≤
∣∣φ[Dπn+1(s, a;θn+1)

⊤wn+1]− φ[Dπj (s, a;θj)
⊤wj ]

∣∣︸ ︷︷ ︸
(A)

+
∣∣φ[Dπj (s, a;θj)

⊤wj ]− φ[Dπj (s, a;θj)
⊤wn+1]

∣∣︸ ︷︷ ︸
(B)

. (11)

For j ∈ [n], let

ej = max
s,a

∣∣φ[Dπn+1(s, a;θn+1)
⊤wn+1]− φ[Dπj (s, a;θj)

⊤wj ]
∣∣ .

Therefore, term (A) in Eq. (11) can be processed by∣∣φ[Dπn+1(s, a;θn+1)
⊤wn+1]− φ[Dπj (s, a;θj)

⊤wj ]
∣∣

=

∣∣∣∣ϕ(s, a, s′)⊤wn+1 + γEs′

[
max

b
φ[Dπn+1(s, b;θn+1)

⊤wn+1

]
− ϕ(s, a, s′)⊤wj − γEs′

[
max

b
φ[Dπj (s, b;θj)

⊤wj ]

] ∣∣∣∣
=

∣∣∣∣ϕ(s, a, s′)⊤wn+1 − ϕ(s, a, s′)⊤wj

+ γEs′

[
max

b
φ[Dπn+1(s, b;θn+1)

⊤wn+1]−max
b
φ[Dπj (s, b;θj)

⊤wj ]

] ∣∣∣∣
≤

∣∣ϕ(s, a, s′)⊤wn+1 − ϕ(s, a, s′)⊤wj

∣∣
+ γ

∑
s′

p(s′|s, a)
∣∣∣∣max

b
φ[Dπn+1(s, b;θn+1)

⊤wn+1]−max
b
φ[Dπj (s, b;θj)

⊤wj ]

∣∣∣∣
≤ ϕmax |wn+1 −wj |+ γej . (12)

Since Eq. (12) is valid for any s, a ∈ S × A, we have shown that ej ≤ ϕmax |wn+1 −wj | + γej .
Solving for ej we obtain

ej ≤
1

1− γ
ϕmax |wn+1 −wj | . (13)

We now investigate the bound of (B) in Eq. (11). Let

e′j = max
s,a

∣∣φ[Dπj (s, a;θj)
⊤wj ]− φ[Dπj (s, a;θj)

⊤wn+1]
∣∣ .
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Then we have∣∣φ[Dπj (s, a;θj)
⊤wj ]− φ[Dπj (s, a;θj)

⊤wn+1]
∣∣

=

∣∣∣∣ϕ(s, a, s′)⊤wj + γEs′

[
max

b
φ[Dπj (s, b;θj)

⊤wj

]
− ϕ(s, a, s′)⊤wn+1 − γEs′

[
max

b
φ[Dπj (s, b;θj)

⊤wn+1]

] ∣∣∣∣
=

∣∣∣∣ϕ(s, a, s′)⊤wj − ϕ(s, a, s′)⊤wn+1

+ γEs′

[
max

b
φ[Dπj (s, b;θj)

⊤wj −max
b
φ[Dπj (s, b;θj)

⊤wn+1]

] ∣∣∣∣
≤

∣∣ϕ(s, a, s′)⊤wj − ϕ(s, a, s′)⊤wn+1

∣∣
+ γ

∑
s′

p(s′|s, a)
∣∣∣∣max

b
φ[Dπj (s, b;θj)

⊤wj −max
b
φ[Dπj (s, b;θj)

⊤wn+1]

∣∣∣∣
≤ ϕmax |wn+1 −wj |+ γe′j .

Solving e′j as above, we derive that

e′j ≤
1

1− γ
ϕmax |wn+1 −wj | . (14)

Plugging Eq. (13) and Eq. (14) into Eq. (11), we complete the proof. □

C.3.2 PROOF OF THEOREM 3

Proof. We follow the proof of (Barreto et al., 2017, Theorem 2), with additional error terms to
account for the performance difference resulting from the risk action-value as opposed to the expec-
tation value.

E
[
Dπ⋆(s, a)⊤wn+1

]
− φ

[
Dπn+1(s, a;θn+1)

⊤wn+1

]
≤ E

[
Dπ⋆(s, a)⊤wn+1

]
− φ

[
Dπ⋆(s, a)⊤wn+1

]
+ φ

[
Dπ⋆(s, a)⊤wn+1

]
− φ

[
Dπj (s, a;θj)

⊤wn+1

]
(Lemma 2)

+ φ
[
Dπj (s, a;θj)

⊤wn+1

]
− φ

[
Dπn+1(s, a;θn+1)

⊤wn+1

]
(Lemma 1)

≤ δφ +
2

1− γ
ϕmax min

j∈[n]
∥wn+1 −wj∥,

where δφ = E
[
Dπ⋆(s, a)⊤wn+1

]
− φ

[
Dπ⋆(s, a)⊤wn+1

]
. □

C.4 PROOF OF THEOREM 4

Proof. For all s, we have

φ[D
πn+1

θn+1
(s)⊤wn+1] = φ[Dπn+1(s, πn+1(s);θn+1)

⊤wn+1]

≥ max
j∈[n],a∈A

φ[Dπj (s, a;θj)
⊤wn+1]

≥ max
j∈[n]

φ[D
πj

θj
(s)⊤wn+1].

Taking the expected value with respect to the initial state distribution µ on both sides, we obtain:

ES0∼µ

[
φ[D

πn+1

θn+1
(S0)

⊤wn+1]
]
≥ ES0∼µ

[
max
j∈[n]

φ[D
πj

θj
(S0)

⊤wn+1]

]
≥ max

j∈[n]
ES0∼µ

[
φ[D

πj

θj
(S0)

⊤wn+1]
]
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Recall that Π is a set of policies and D is the corresponding set of expected DSFs, which is a CCS.
In this case, vSMP

wn+1
= E[(Dπ⋆)⊤wn+1]. Then we have

φ[(D
πn+1

θn+1
)⊤wn+1] ≥ vSMP

wn+1
= E[(Dπ⋆)⊤wn+1].

It is evident that φ[(Dπn+1

θn+1
)⊤wn+1] > E[(Dπ⋆)⊤wn+1] is not feasible. Thus we complete the

proof. □

C.5 PROOF OF THEOREM 5

According to (Zahavy et al., 2021; Alegre et al., 2022b), for all wn+1 ∈Wϕ, we can prove that

E
[
(Dπ⋆)⊤wn+1

]
− φ

[
(D

πn+1

θn+1
)⊤wn+1

]
≤ E

[
(Dπ⋆)⊤wn+1

]
− vSMP

wn+1
≤ ϵ1.

Therefore, for all wn+1 ∈Wϕ, there exists an ϵ2 such that ϵ2 ≤ ϵ1, let

E
[
(Dπ⋆)⊤wn+1

]
− φ

[
(D

πn+1

θn+1
)⊤wn+1

]
≤ ϵ2 ≤ ϵ1. (15)

By Theorem 3, for all wn+1 ∈Wϕ, (s, a) ∈ S ×A, we have

E
[
Dπ⋆(s, a)⊤wn+1

]
− φ

[
Dπn+1(s, a;θn+1)

⊤wn+1

]
≤ δφ +

2

1− γ
ϕmax min

j∈[n]
∥wn+1 −wj∥.

(16)

According to (Alegre et al., 2022b), consider a new state space S̄ = S ∪ {s̄}, where s̄ is a new
dummy initial state in which only a single action ā is available. Let d0(s) = p(s0|s̄, ā) for all
s0 ∈ µ, where d0(s0) is the original probability of the initial state being s0. Note that this does not
change the values of any policy for the states s ∈ S. Therefore,

E
[
Dπ⋆(s̄, ā)⊤wn+1

]
− φ

[
Dπn+1(s̄, ā;θn+1)

⊤wn+1

]
= E

[
Dπ⋆(s̄, π⋆(s̄))

⊤wn+1

]
− φ

[
Dπn+1(s̄, πn+1(s̄);θn+1)

⊤wn+1

]
= E[(Dπ⋆)⊤wn+1]− φ[(Dπn+1

θn+1
)⊤wn+1]

Because Eq. (16) hold for (s̄, ā), for all wn+1 ∈Wϕ we have

E[(Dπ⋆)⊤wn+1]− φ[(Dπn+1

θn+1
)⊤wn+1] ≤ δφ +

2

1− γ
ϕmax min

j∈[n]
∥wn+1 −wj∥.

In the worst case, for wn+1 ∈Wϕ, we have

E[(Dπ⋆)⊤wn+1]− φ[(Dπn+1

θn+1
)⊤wn+1] ≤ ϵ2 ≤ δφ +

2

1− γ
ϕmax max

wn+1∈Wϕ
min
j∈[n]

∥wn+1 −wj∥.

(17)

Combining Eq. (15) and Eq. (17), we complete the proof.

D ADDITIONAL IMPLEMENTATION DETAILS OF RDSFOLS

In this section, we first exhibit an overall framework of RDSFOLS in Section D.1. Algorithm 1
in Section 4 is a solver of learning DSFs with DGPI. Two additional modules (corner weights and
estimate improvement) are shown in Section D.2 and Section D.3, respectively.

D.1 CONSTRUCTING A SET OF POLICIES WITH OPTIMISTIC LINEAR SUPPORT

Algorithm 2 takes an outer loop approach in which the set of CCS is incrementally constructed by
learning DSFs (each DSFs corresponding to a task/MOMDP). It starts by inserting into a priority
queue, Q, the weights in the extrema of the weight simplex We (i.e., weights in which one compo-
nent is 1 and all others are 0), assigning them the maximum priority. For each iteration, we learn
the weight w with the largest priority and apply Algorithm 1 to learn a policy π and DSFs Dπ for
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solving task w. Following this, we recalculate corner weights and identify new weight vectors to
add to Q. Detailed corner weight computation is provided within Algorithm 3. Algorithm 2 halts
when either the priority queue Q becomes empty or the maximum number of iterations is reached.

Algorithm 2 Risk-sensitive DSFs Optimistic Linear Support (RDSFOLS)
1: Initialize: a set of policies Π and the corresponding DSFs setD; list of explored corner weights
W ; priority queue Q

2: for each extremum of the weight simplex we ∈We do
3: Add we to Q with maximum priority
4: end for
5: repeat
6: w ← pop weight with maximum priority in Q
7: Update π,Dπ

θ by Alg. 1
8: W ←W ∪w
9: if Dπ

θ /∈ D then
10: Remove from Q all w′ s.t. E

[
(Dπ

θ )
⊤w′] ≥ vSMP

w′

11: Apply Alg. 3 to obtainWc: Wc ← CornerWeights(Dπ
θ ,w,D)

12: D ← D ∪Dπ
θ ,Π← Π ∪ π

13: if w′ ∈Wc then
14: Apply Alg. 4 to get ∆(w′): ∆(w′)← EstimateImprovement(w′,D,W )
15: Q← Q ∪∆(w′)
16: end if
17: end if
18: until Q is empty
19: return Π,D

D.2 CORNER WEIGHTS

The task that RDSFOLS selects is determined by the corner weights in each iteration.

Definition 4 (Corner weights (Roijers, 2016)) Let D be a set of DSFs of policy set Π. Define the
polyhedral subspace P = {x ∈ Rd+1|D+x ≤ 0,∀k,wk ≥ 0,

∑
k wk = 1}, where D+ is a

matrix with the elements of D as row vectors, augmented by a column vector of −1’s. The vector
x = (w1, . . . , wd, φ

[
(Dπ

θ )
⊤w

]
) consists of a weight vector and a risk value at those weights. The

corner weights are the weights contained in the vertices of P.

Intuitively, corner weights are the points where the piecewise-linear and convex (PWLC) surface
changes slope. Here, PWLC represents a curve depicting the value of the SMP policy vSMP

w =
maxπ∈Π φ

[
(Dπ

θ )
⊤w

]
, as a function of the task w.

After calculating the new corner weights Wc at line 11 (in Algorithm 2), Dπ
θ is added to D at line

12. We now claim the reason why RDSFOLS can safely consider only corner weights, which is
guaranteed by the following theorem.

Theorem 6 (Cheng, 1988) The maximum value of:

max
w∈Wϕ,Dπ

θ∈CCS
min
π′∈Π

φ[(Dπ
θ )

⊤w]− φ[(Dπ′

θ′ )⊤w] = max
w∈Wϕ

φ[(Dπ⋆)⊤w]− vSMP
w

is at one of the corner weights of vSMP
w = maxπ∈Π φ[(D

π
θ )

⊤w].

Corner weights represent tasks for which the SMP policy yields values that deviate the most from
their optimal values, i.e., they are the tasks that the agent knows the least about. Theorem 6 guaran-
tees the correctness of RDSFOLS: once all corner weights have been examined, and no new DSFs
are found, the maximal improvement must be 0, then Algorithm 2 has identified the complete CCS.
Algorithm 3 shows the pseudocode for Computing the corner weights.
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Algorithm 3 Corner Weights (Roijers, 2016; Alegre et al., 2022b)
1: Input: New distributional SF vector Dπ

θ , current weight vector w, current DSFs set D.
2: LetWdel be the set of obsolete weights removed from Q in line 10 of Alg. 2
3: Wdel ←Wdel ∪w
4: Vrel ← {Dπ

θ |Dπ
θ ∈ argmaxDπ

θ∈D φ[(D
π
θ )

⊤w′] for at least one w′ ∈Wdel}
5: Brel ← the set of boundaries of the weight simplexWe involved in any w′ ∈Wdel

6: Wc ← {}
7: for each subset X of d− 1 elements from Vrel ∪Brel do
8: wc ← the weight inWe where Dπ

θ intersects with the vectors/boundaries in X
9: Add wc toWc

10: end for
11: returnWc

D.3 OPTIMISTIC MAXIMAL IMPROVEMENT

In general, there are many corner weights (candidate tasks to learn next). To determine the priority
of tasks learning, a simple heuristic for exploring these tasks is an optimistic maximal improvement
by calculating the difference between vSMP

w and an optimistic upper bound on that task’s optimal
value v̄⋆w. Notice that this heuristic only changes the order in which corner weights are explored,
and this method does not impact the optimality of RDSFOLS.

Algorithm 4 Estimate Improvement (Alegre et al., 2022b)
1: Input: New weight vector w, DSFs set D, set of weights, W , for which optimal policies are

already known.
2: Let v̄⋆w be the optimistic upper bound on v⋆w, computed by the following linear program (Dia-

mond & Boyd, 2016):

maxφ[D⊤w]

s.t. φ[D⊤w′] ≤ vSMP
w′ , for all w′ ∈W

3: ∆(w)← v̄⋆w − vSMP
w

4: return ∆(w)

E ADDITIONAL IMPLEMENTATION DETAILS OF DGPI-WCPI

In this subsection, we introduce the DGPI-WCPI algorithm, which is the control group of WCPI;
as shown in Algorithm 5. Different from WCPI, DGPI-WCPI is designed to learn a diverse set of
policies, such that the performance of the DGPI defined on that policy set will have the optimal
worst-case performance among all tasksWϕ. For details on how to compute the worst-case reward
(line 5) by solving linear programs, see (Zahavy et al., 2021, Lemma 4).

Algorithm 5 DGPI Worst Case Distributional Policy Iteration
1: Input: a set of policies Π and correspond DSFs set D; sample weight vector w̄ ∼Wϕ

2: For task w̄, update π,Dπ
θ by Alg. 1

3: D ← D ∪Dπ
θ ,Π← Π ∪ π

4: repeat
5: w̄ ← argminw∈Wϕ maxπ∈Π E[(Dπ

θ )
⊤w]

6: For task w̄, update π,Dπ
θ by Alg. 1

7: D ← D ∪Dπ
θ ,Π← Π ∪ π

8: until φ
[
(Dπ

θ )
⊤w̄

]
does not improve

9: return Π,D

20



Under review as a conference paper at ICLR 2024

F EXPERIMENT DETAILS

F.1 BENCHMARK ENVIRONMENTS

For a comprehensive evaluation, we have designed two new MORL environments with discrete
action space based on MuJoCo (Todorov et al., 2012), named DiscreteHopper and DiscreteSwim-
mer, except for classic multi-task environments like Reacher. The detailed explanation of the three
environments is as follows.

Reacher is a modification of “Reacher-v4” from PyBullet (Alegre et al., 2022a), which is a well-
known benchmark environment used in the SFs literature (Barreto et al., 2017; Gimelfarb et al.,
2021; Nemecek & Parr, 2021). The agent operates a dual-segmented arm by applying torque to the
two joints, and reward features ϕ(s, a, s′) ∈ R4 are defined as one minus the Euclidean distance
from the tip of the robotic arm to the four target position.

DiscreteHopper is a modification of “Hopper-v4”. The three-dimensional action space A ⊂
[−1,+1]3 is uniformly discretized using 21 values. The agent is a single-legged hopper, a two-
dimensional figure with four body parts, and the aim is to move it forward by applying torque to its
three hinges. We follow the reward features setting from the MO-Gym library (Alegre et al., 2022a),
which encode three different dimensional reward functions: x-axis going forward, z-axis jumping
high and action cost.

DiscreteSwimmer is a modification of “Swimmer-v3”. The two-dimensional action space A ⊂
[−1,+1]2 is discretized using seven uniform values per dimension. The swimmers aim to move
efficiently to the right in a 2D pool by using rotor torque and fluid friction. The reward features
are composed of six components. The first component “forward reward” and the second compo-
nent “control cost” continue to use the composition of the original reward. The third and fourth
components describe the changes of the position in the x-axis and y-axis, respectively. The last two
components depict the x-axis velocity and the y-axis velocity.

F.2 QUANTILE FRACTION GENERATION

For approximating the distribution SFs, we adopt quantile regression to learn quantile values. In our
work, fix (QR-DQN), random (IQN) and net (FQF) are employed to generate quantile fractions. In
particular, the quantile proposal network in FQF is designed as a two-layer fully connected network,
with each layer containing 128 units. Additionally, it operates with a learning rate of 1e-5 (Ma
et al., 2020). In Fig. 4, we provide a modular experiment and select the random method for quantile
fraction generation, as it outperforms fix and has fewer parameters than net, based on experiment
results.
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Figure 4: Comparison of quantile fraction generation methods in Reacher. Each learning curve is
averaged over five different random seeds.
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F.3 RISK OPERATORS

In this subsection, except for the risk-neutral measure function, we elaborate on the additional five
risk operators mentioned in Section 3.2.

• For mean-variance (Sobel, 1982; Tamar et al., 2012; Prashanth & Ghavamzadeh, 2016),
φ(Z) = E[Z] − β

√
V[Z], where

√
V[Z] is the standard deviation. β is set as 0.1 for

risk-averse, while -0.1 for risk-seeking.
• VaR (Prashanth L & Fu, 2018) quantifies risk as the minimum reward (maximum cost) that

could occur at a specified confidence level (Chow et al., 2015; L.A. & Fu, 2018; Ma et al.,
2020). Its explicit expression is VaRβ(Z) = minz {z|FZ(z) > β}, where β is taken as
0.25 for risk-averse and β is taken as 0.75 for risk-seeking.

The remaining three risk operators are distorted expectations. Specifically, let g(τ) be the distortion
function.

• For Wang’s method (Wang, 2000), g(τ) = Φ(Φ−1(τ) + β), where Φ and Φ−1 are the
standard Normal CDF and its inverse. β is chosen as 0.75 for risk-averse, while -0.75 for
risk-seeking.

• The risk operator CPW (Tversky & Kahneman, 1992) is only suitable for risk-averse. Its
detailed expression is g(τ) = τβ/

(
τβ + (1− τ)β

)1/β
, where β is set as 0.71 for most

closely human subjects (Ma et al., 2020).
• CVaR (Chow et al., 2015) is also a risk-averse method, where g(τ) = min {τ/β, 1}, and β

is usually taken as 0.25 for available.

F.4 POLICY TRAINING UNDER RISK OPERATORS

We compare different risk operators on benchmark environments:
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Figure 5: Comparison of the RDSFOLS algorithm using different risk operators. Each curve is run
with five seeds. (a) risk-seeking policies in Reacher, (b) risk-averse policies in Reacher. (c) risk-
seeking policies in DiscreteSwimmer, (d) risk-averse policies in DiscreteSwimmer.
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