IMAGE GENERATION FROM CONTEXTUALLY CONTRA-DICTORY PROMPTS

Anonymous authors

Paper under double-blind review

Figure 1: Our method addresses contextual contradictions in text-to-image generation. These contradictions arise when one concept implicitly conflicts with another due to the model's learned associations. For example, if a concept like "butterfly" is strongly entangled with "flowers", it may conflict with another concept in the prompt such as "bee's hive", leading the model to ignore or distort part of the semantic meaning.

ABSTRACT

Text-to-image diffusion models excel at generating high-quality, diverse images from natural language prompts. However, they often fail to produce semantically accurate results when the prompt contains concept combinations that contradict their learned priors. We define this failure mode as contextual contradiction, where one concept implicitly negates another due to entangled associations learned during training. To address this, we propose a stage-aware prompt decomposition framework that guides the denoising process using a sequence of proxy prompts. Each proxy prompt is constructed to match the semantic content expected to emerge at a specific stage of denoising, while ensuring contextual coherence. To construct these proxy prompts, we leverage a large language model (LLM) to analyze the target prompt, identify contradictions, and generate alternative expressions that preserve the original intent while resolving contextual conflicts. By aligning prompt information with the denoising progression, our method enables fine-grained semantic control and accurate image generation in the presence of contextual contradictions. Experiments across a variety of challenging prompts show substantial improvements in alignment to the textual prompt.

1 Introduction

Text-to-image diffusion models have demonstrated remarkable capabilities in generating high-quality and diverse visual content from natural language prompts (Rombach et al., 2022; Ramesh et al., 2021; Ho et al., 2020). However, achieving precise semantic alignment between the generated image and the conditioning prompt remains an open challenge.

This issue becomes particularly pronounced when the target prompt lies outside the model's training distribution, such as prompts that combine semantically plausible yet statistically uncommon or unconventional concepts. For example, as shown in Figure 1, generating an image from the prompt "A butterfly is in a bee's hive" often results in a butterfly on a flower. This is due to the model's prior that entangles butterflies with flowers, which implicitly contradicts the notion of a bee's hive.

We refer to this phenomenon as *Contextual Contradiction*, a conflict between two concepts that arises not from direct semantic opposition, but from the model's associations learned dur-

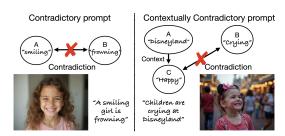


Figure 2: On the left is a direct contradiction, since a girl cannot smile and frown at the same time. On the right is a contextual contradiction: while Disneyland and crying are not directly opposed, the model's prior associates Disneyland with happiness, which conflicts with crying.

ing training. More precisely, we say that concept A contextually contradicts concept B if the model's prior entangles A with concept C, and B contradicts C (see Figure 2). In Figure 1, we illustrate this with a blowing dragon, which stands in contextual contradiction with the water due to its entanglement with fire.

The phenomenon of contextual contradiction in text-to-image models relates to the broader issue of spurious correlations in deep learning. Models often exploit shortcuts, relying on correlations in the training data that are statistically strong but semantically misleading (Geirhos et al., 2020). In this paper, we identify a similar bias in generative models: contextual contradictions occur when prompts combine concepts that individually align with the model's priors but conflict when combined, revealing the model's reliance on such correlations rather than robust compositional reasoning.

To address this issue, we introduce *Stage-Aware Prompting (SAP)*, which builds on the observation that the denoising process follows a coarse-to-fine progression, during which different semantic attributes (e.g., background, pose, shape, and texture) emerge at distinct stages (Chefer et al., 2023; Balaji et al., 2022; Patashnik et al., 2023). Our key idea is to guide the model at each stage of denoising with the information most relevant to the type of content being formed at that point. To achieve this, we decompose the original prompt into a sequence of proxy prompts, each aligned with the attributes expected at a specific stage and designed to avoid contextual contradictions.

Ensuring that proxy prompts preserve the original intent while avoiding contextual contradictions requires a broad understanding of the real world. For example, it involves understanding that a bear is entangled with specific poses, such as walking on all fours or standing upright, which in turn, contradicts the handstand pose. To achieve this, SAP leverages a large language model (LLM) to analyze the target prompt, identify contextual contradictions, and construct suitable proxy prompts.

We demonstrate that, by using in-context examples and prompting the LLM to follow a reasoning process through a brief explanation, it can identify contextually contradictory concepts in a prompt and determine the appropriate stage of denoising at which each attribute should be introduced. It can also suggest alternative, non-conflicting concepts that preserve the intended attributes and use them to construct stage-specific proxy prompts. In doing so, the LLM effectively guides the model toward the intended meaning of the original prompt.

Through extensive experiments, we demonstrate the effectiveness of SAP in generating images from contextually contradictory text prompts. By introducing prompt information at targeted stages, SAP generates precise combinations of semantic attributes while avoiding undesired entanglement. Compared to previous methods, SAP's stage-dependent prompt decomposition leads to more faithful and semantically aligned generations.

2 RELATED WORK

Learned Spurious Correlations Machine learning models are known to be sensitive to spurious correlations in their training data (Geirhos et al., 2020; McCoy et al., 2019; Ye et al., 2024), leading to performance drops when training-time associations do not hold at test time. Prior work has extensively studied this in discriminative vision tasks, showing, for example, that recognition models tend to rely heavily on background cues (Singh et al., 2020; Xiao et al., 2021; Beery et al., 2018).

In our work, we show that text-to-image models exhibit similar behavior. When given contextually contradictory prompts – combinations of concepts that conflict with correlations seen during training – diffusion models often fail to generate images that accurately reflect the prompt. We evaluate this behavior using the Whoops! dataset (Bitton-Guetta et al., 2023), which contains prompts constructed by first describing two co-occurring elements, and then replacing one with a less compatible alternative. This results in scenarios that are unlikely to occur in the real world.

Semantic Alignment in Text-to-Image Synthesis Text-to-image models often struggle to fully capture the semantic intent of input prompts, particularly when prompts involve complex or internally conflicting concepts. Previous works have analyzed common failure cases and proposed targeted improvements across various stages of the generation pipeline, including enhanced text embedding representations (Rassin et al., 2022; Feng et al., 2022; Tunanyan et al., 2023), refined attention mechanisms Dahary et al. (2024), guidance strategies that leverage attention maps for loss heuristics (Chefer et al., 2023; Rassin et al., 2023; Meral et al., 2024; Agarwal et al., 2023) and dynamic guidance scheduling via annealed classifier-free guidance (Yehezkel et al., 2025). Despite these advances, existing methods often fail to handle prompts containing contradictory concepts arising from the model's learned associations. Our work directly addresses this underexplored challenge, focusing on contextually contradictory prompts.

Multi-Prompt Conditioning Techniques Conditioning diffusion models on multiple prompts has emerged as an effective strategy for improving control and compositionality. One line of work, primarily focused on personalization, introduces distinct learned tokens at different layers of the model and at various denoising timesteps (Alaluf et al., 2023; Voynov et al., 2023). This design allows each token to capture different attributes of the personalized concept, leading to improved identity preservation. Other approaches vary the prompt across timesteps to modulate specific visual properties, such as object shape (Liew et al., 2022; Patashnik et al., 2023), or alternate between rare and frequent object descriptions to improve attribute binding (Park et al., 2024). Fine-grained spatial control has also been achieved by assigning sub-prompts to separate image regions (Yang et al., 2024). Additionally, some methods leverage multiple diffusion models, each conditioned on different prompt attributes, and combine their outputs into a unified prediction (Liu et al., 2022; Bar-Tal et al., 2023). Unlike most prior works, we focus on utilizing multiple prompts to settle internal semantic tension, where concept combinations lead to contextual contradictions.

LLM-Guided Diffusion LLMs have demonstrated strong capabilities in language understanding. They also capture broad world knowledge through large-scale training on diverse text. Recent approaches have leveraged these capabilities to guide diffusion model generation, often incorporating planning and reasoning to improve semantic alignment (Yang et al., 2024; Park et al., 2024; Hu et al., 2024). In our work, we employ LLMs with in-context learning to identify contextual contradictions, generate proxy prompts, and determine the corresponding timestep ranges for conditioning, while encouraging reasoning through brief explanatory outputs.

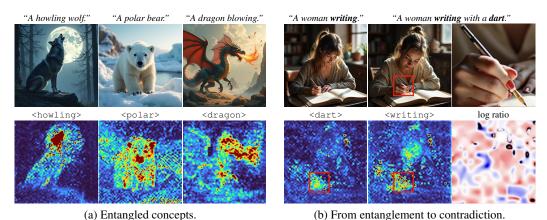


Figure 3: (a) By examining attention maps, we observe that textual tokens embed contextual associations, leading to the generation of concepts not explicitly mentioned in the prompt. For example, the token 'howling' encourages the presence of the moon, as indicated by its strong attention connection. (b) In prompts with contextual contradictions, two tokens may overlap in attending to the same region, as seen with 'dart' and 'writing'. The token 'writing' dominates this region, as shown in the log-ratio map, where red areas indicate stronger attention to 'writing' relative to 'dart'.

Figure 4: Coarse-to-fine denoising with stage-aware prompting. We show x_0 predictions at initial, intermediate, and final steps. A is the target prompt, B a suitable proxy, and C an unsuitable proxy. Using A alone locks in night and moon despite "midday". Using B first and then switching to A preserves a daytime layout and later adapts the identities to wolf and bat. Using C first sets a layout without a flying object, so the final image fails to produce the intended subjects.

3 From Entangled Concepts to Contextual Contradictions

Diffusion models inherit strong distributional biases from their training data, where objects are frequently tied to specific contexts. For example, prompts like "a duck" almost always result in water backgrounds, and "a polar bear" appears in snow. These reflect entangled concepts, learned associations that go beyond the explicit text. While often helpful, such priors hinder generation when prompts require unusual or contradictory combinations.

To study this effect, we analyze attention maps (Figure 3a), which indicate the spatial regions influenced (attended) by each token. We find that text tokens often attend not only to the image regions directly corresponding to the object but also to contextually linked elements. For example, in "a howling wolf", the token 'howling' influences both the mouth and the moon. Similarly, 'dragon' attends to flames even when fire is not mentioned. These patterns reveal that the model encodes distributional correlations beyond literal semantics.

These distributional correlations contribute to the difficulty of generating images with *contextual contradictions*. For example, when generating an image from the prompt "a woman writing with a dart", the model fails to replace the pen with a dart. The attention maps shed light on this failure: both 'writing' and 'dart' attend to the same spatial area (the hand/tool), but 'writing' dominates (see log-ratio maps in Figure 3b), suppressing the influence of 'dart'. This reflects a failure mode in which entrenched associations override less familiar ones, preventing proper integration of conflicting concepts.

4 STAGE AWARE PROMPTING (SAP)

In this section, we begin by analyzing the coarse-to-fine behavior of the denoising process (Section 4.1). Building on the insights from our analysis, we introduce our training-free framework for resolving contextual contradictions in text-to-image generation. As illustrated in Figure 5, our approach consists of two main components: (i) prompt decomposition (Section 4.2, top part of the figure), and (ii) stage-aware prompt injection (Section 4.3, bottom part of the figure). In the following, we describe each of these components.

4.1 Coarse-to-Fine Denoising

Diffusion models generate images in a coarse-to-fine manner: early steps determine low-frequency structures, while high-frequency details emerge in later steps (Hertz et al., 2022; Balaji et al., 2022; Chefer et al., 2023; Patashnik et al., 2023). From this behavior, we draw two key observations: (i) *Irreversibility of details*. As denoising progresses, the model sequentially commits to different levels of detail, beginning with layout and overall shape. Once these are formed, they cannot be revised in later stages, even if they conflict with the prompt. (ii) *Flexibility in high-frequency details*. In early stages, high-frequency details are absent and unaffected by the prompt, enabling flexible guidance without influence on fine details.

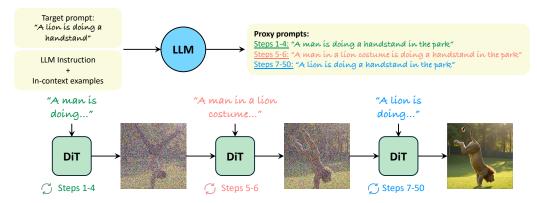


Figure 5: SAP generates images from contextually contradictory prompts using time-dependent proxy prompts. (Top) A large language model (LLM) decomposes the target prompt into a sequence of proxy prompts with corresponding timestep intervals. (Bottom) These proxy prompts are injected into the diffusion process at their designated intervals to guide generation.

As shown in Section 3, contextual contradictions stem from concept entanglement in the diffusion prior. Since different concepts emerge at different levels of detail during the coarse-to-fine denoising process, they can be decomposed across the denoising stages. We illustrate this in Figure 4 by examining the model's x_0 predictions across denoising steps. In the top-left row, the prompt "a howling wolf and a flying bat at midday" shows that early steps already impose entangled nighttime and moon structures, contradicting "midday". In the bottom-left row, starting with a proxy prompt containing "dog" and "bird" (instead of "wolf" and "bat", respectively) and later switching to the target prompt produces a correct midday scene with the intended objects. The bottom-left row demonstrates both the *irreversibility of coarse details* (the scene remains daytime) and the flexibility of high-frequency details (the object identities adapt). The top-right row highlights the importance of selecting an appropriate proxy prompt. Since rats do not fly, the layout determined in early steps lacks a flying object, resulting in a sitting wolf with bat wings.

These observations motivate a stage-aware prompting strategy that fixes structural decisions early while keeping later attributes flexible. Building on this, we now describe the two main components of our method: prompt decomposition and stage-aware prompt injection.

4.2 PROMPT DECOMPOSITION

Given a prompt P that contains contextually contradictory concepts, we aim to construct a sequence of proxy prompts $\{p_1, p_2, ..., p_n\}$ and corresponding timestep intervals $\{I_1, I_2, ..., I_n\}$ that together reflect the intended semantics of P. Each proxy prompt p_i is designed to (i) preserve the relevant semantics of P for attributes typically formed during its interval I_i , which is crucial due to the *irreversibility of details*, and (ii) avoid contradictions likely to emerge at that stage, leveraging the *flexibility in high-frequency details*. This decomposition conditions the diffusion model on contextually coherent content that evolves in tandem with the coarse-to-fine denoising process.

To generate proxy prompts and their intervals, we use a large language model (LLM) that detects contextual contradictions and proposes suitable substitutes for conflicting concepts. It also infers the appropriate staging of these concepts within the proxy prompts. We implement this using a structured prompt template containing instructional text, in-context examples, and explanations of contextual contradictions. The examples demonstrate both successful decompositions and cases requiring no decomposition, enabling the LLM to generalize. The full instruction prompt is provided in the Appendix (see Table 7).

In-context Examples. Our in-context examples (Table 8) take a target prompt as input and output proxy prompts with timestep intervals, along with a brief explanation of the contradiction. Requiring the LLM to provide this explanation encourages reasoning about conflicts and ensures coherent substitutions. These examples were created by identifying contextually contradictory prompts that fail under the base model (FLUX) and manually decomposing them into proxy prompts with corresponding intervals. The explanations were auto-generated by an LLM. We include 20 examples that demonstrate diverse strategies for handling contradictions. We next elaborate on one of the most frequent strategies in our method.

283 284

285

286

287

288

289

290 291

292

293

294

295

296

297

298

299

300

301

302 303

304

305

306

307

308

309

310

311

312 313

314 315

316

317

318 319

320

321

322

323

cate when the foreground object is introduced.

Figure 6: Early insertion of the foreground al- Figure 7: Effect of interval assignment. Introlows the model to allocate more space to it, while ducing the full prompt too early fails to disenlate insertion confines the object within the ex- tangle contextual contradictions, while introducisting layout, making it appear smaller (e.g., the ing it too late alters only fine details. Top proxy: snowman introduced at Step 5). Step labels indi- "A pillow fort in a bedroom"; bottom proxy "A mother duck guards three ducklings".

Concept Substitution. In this strategy, a conflicting concept is temporarily replaced with a structurally appropriate proxy (Figure 4). A simpler alternative is to omit the conflicting concept, but introducing an object only in later stages without a placeholder can distort its perceived size or cause it to be omitted entirely. In Figure 6, we demonstrate this by comparing decompositions that differ only in when the second interval begins. The first proxy specifies the background, while the second adds the foreground. Introducing the foreground early allows the model to allocate more space, whereas delaying it constrains the layout and produces a smaller object. Substitution resolves these issues and yields stable layouts. In Figure 7, we show the effect of misplacing intervals across denoising stages. Using two proxies with different intervals, where the second is the full prompt, we observe two failure modes: introducing the full prompt too early prevents disentangling contradictions, while introducing it too late alters only fine details. Earlier in Figure 4 we illustrated the importance of careful proxy selection.

STAGE-AWARE PROMPT INJECTION

Given a sequence of proxy prompts $\{p_1, p_2, ..., p_n\}$, their corresponding timestep intervals $\{I_1, I_2, ..., I_n\}$, and a text-to-image (T2I) diffusion model, we condition the model using different prompts throughout the denoising process. At each timestep t, we apply the prompt p_i such that $t \in I_i$. By aligning each proxy prompt with its interval, the denoising process is guided by concepts appropriate to the level of detail emerging at that stage. This enables gradual image construction while avoiding conflicts with the model's learned priors. The injection mechanism integrates seamlessly into existing inference pipelines without architectural modifications and is compatible with a range of pretrained diffusion models.

EXPERIMENTS AND RESULTS

In this section, we evaluate SAP through qualitative (Section 5.1) and quantitative (Section 5.2) comparisons. We further conduct ablation studies (Section 5.3) on component contributions and robustness, followed by a discussion on the limitations of our method.

Implementation Details. We use FLUX.1 [dev] (Labs, 2024) as the base T2I model and GPT-40 (Achiam et al., 2023) for prompt decomposition. In all experiments, inference is performed using T=50 steps and the LLM is restricted to at most three proxies per prompt. Baseline hyperparameters follow their original papers or implementations, with T=50 steps for fair comparison. To further demonstrate robustness, we also report results with SD3.0 using the same LLM-generated proxy prompts and intervals.

Figure 8: Qualitative comparison of SAP with baseline methods. Our method resolves contextual contradictions, whereas baselines struggle to produce text-aligned images. Additional examples are provided in the Appendix.

Baselines. We compare SAP against the following approaches: (1) base models FLUX-dev (denoted by FLUX) (Labs, 2024) and SD3.0 (Esser et al., 2024); (2) R2F (Park et al., 2024), a training-free method reported under three settings: SD3.0 (original), FLUX-schnell (official), and our reimplementation on FLUX; (3) Annealing Guidance (Yehezkel et al., 2025), which trains a small MLP to predict the classifier-free guidance scale at each step; and (4) Ella (Hu et al., 2024), a fine-tuned model on SD1.5.

Datasets. We evaluate SAP using three datasets: Whoops! (Bitton-Guetta et al., 2023), Whoops-Hard, and ContraBench. *Whoops!* consists of 500 prompts paired with commonsense-defying images, designed to test visual reasoning and compositional understanding. While relevant to our task, many of its prompts are relatively easy for modern T2I models and do not consistently expose model limitations.

To address this, we curate *Whoops-Hard*, a subset of 100 particularly difficult prompts from Whoops!, providing a stronger benchmark for evaluating current state-of-the-art models. To further probe semantic alignment under contradictory conditions, we introduce *ContraBench*, a curated set of 40 prompts capturing contextual contradictions. The dataset was constructed in two steps: (1) ChatGPT generated candidate prompts based on the definition of contextual contradictions, and (2) human annotators filtered them to retain only those that clearly expressed contradictions. The full prompt lists for both datasets are provided in the Appendix (Tables 10 and 11).

5.1 QUALITATIVE RESULTS

Figures 8, 11 and 12 present qualitative comparisons on the Whoops! and ContraBench datasets. Across both benchmarks, baseline methods consistently exhibit characteristic failure modes when handling contradictory prompts. In contrast, SAP successfully generates challenging cases such as a blue Shrek or a monkey juggling tiny elephants (Figure 8). In addition to FLUX, SAP also improves SD3 generations under contradictory prompts (Figure 9).

For SD3 and FLUX, contradictory prompts expose conflicts with learned priors, resulting in prompt misalignment. Ella and Annealing Guidance, not designed for contradictions, perform less effectively on such cases. R2F alternates between prompts at predefined timesteps, a strategy designed for attribute binding rather than addressing contextual contradictions. While it can reinforce rare concepts, it does not align prompts with the stages at where semantic features emerge during denoising. As a result, it often produces hybrid concepts that merge incompatible elements from conflicting concept (see the bodybuilder in Figure 9 and the owl and SpongeBob in Figure 11).

In contrast, SAP produces semantically coherent outputs by introducing proxy prompts at denoising stages where corresponding features emerge. This enables effective handling of conflicting concepts.

Table 1: Quantitative evaluation on various benchmarks using the GPT-40 vision-language model. We report average alignment, where alignment reflects how well the image matches the prompt semantics, independent of visual quality. SAP achieves the best results, regardless of the base model.

	Benchmarks			
Models	Whoops	Whoops- Hard	Contra- Bench	
SD3.0	82.63	55.73	57.5	
FLUX	78.85	44.3	57.16	
Ella	69.09	45.19	55.16	
Annealing	79.59	59.06	58.33	
R2F	83.50	57.06	59.16	
$R2F_{schnell}$	79.58	54.80	59.33	
$R2F_{FLUX}$	48.68	32.80	25.33	
$SAP_{SD3.0}$	85.87	64.40	65.33	
SAP	<u>85.10</u>	<u>62.13</u>	66.16	

Table 2: User study results. Win rates of SAP in text-image alignment and image quality, compared against each baseline method.

	SD3	FLUX	Ella	Annealing	R2F
Alignment	70%	81%	81%	73%	75%
Quality	72%	63%	74%	79%	68%

"A bodybuilder balancing on pointe shoes."

Figure 9: SAP is robust to the base model, as shown by the results obtained with SAP_{SD3} .

Across both benchmarks, SAP consistently generates coherent images for contradictory prompts. Robustness is further demonstrated in Figure 13, comparing generations across multiple seeds.

5.2 QUANTITATIVE RESULTS

We evaluate prompt alignment using GPT-40 vision–language model (VLM). For each generated image, GPT-40 assigns a score from 1–5 based on adherence to the prompt. Scores are averaged across three fixed random seeds per prompt and scaled to 20–100. The evaluation prompt is provided in the Appendix (Table 12).

As shown in Table 1, SAP outperforms all baselines across the three benchmarks. Between the base models, SD3.0 tends to yield stronger alignment under contradictions, while FLUX offers higher visual quality (Figure 8). SAP improves both backbones, enhancing prompt adherence while maintaining the visual fidelity of the underlying models (Figures 8 and 9).

User study. VLM-based metrics often miss subtle semantic inconsistencies and do not adequately assess image quality. To complement them, we conducted a user study evaluating both prompt adherence and overall visual appearance. We randomly sampled 24 prompts from the Whoops! and ContraBench benchmarks. For each prompt, participants compared two images, one generated by SAP and the other by a baseline, and answered: (1) which most accurately reflected the prompt, and (2) which had higher visual quality. In total, we collected responses from 61 users, yielding 1,464 individual evaluations. Table 2 summarizes the win rates of SAP against each baseline.

These results highlight the superiority of our approach in handling contextually contradictory prompts, achieving both stronger prompt alignment and higher visual quality.

5.3 Ablation Studies

We evaluate SAP through ablations that assess design choices in prompt decomposition and robustness under different conditions, including interval perturbations and alternative LLMs. Additional results on noncontradictory prompts are in the Appendix.

Table 3: Ablation on Whoops-Hard. We evaluate our prompt decomposition method by (1) removing in-context examples, (2) removing the explanation requirement, and (3) limiting decomposition to two proxy prompts.

	static	w/o in-context	w/o reasoning	2 proxy	Full
Alignment	44.3	48.0	46.46	60.26	62.13

Prompt decomposition components. We conduct ablations on the Whoops-Hard benchmark, where each variant isolates a design choice to quantify its effect on alignment within our method

Table 4: Effect of perturbing LLM-predicted timestep intervals. Boundaries are uniformly shifted within window w. $SAP_{w=i}$ denotes evaluation with window i.

	3		
Models	Whoops	Whoops- Hard	Contra- Bench
FLUX	78.85	44.3	57.16
$\begin{array}{c} SAP \\ SAP_{w=3} \\ SAP_{w=5} \end{array}$	85.10 84.18 81.46	62.13 62.06 58.46	66.16 65.5 62.5

Table 5: Performance of SAP when combined with different LLMs, comparing GPT-40 and Llama-3.1-8B-Instruct.

	Benchmarks		
Models	Whoops	Whoops- Hard	Contra- Bench
FLUX	78.85	44.3	57.16
$SAP_{GPT4o} \\ SAP_{Llama3.1}$	85.10 80.52	62.13 59.53	66.16 61.16

(Table 3). In-context examples significantly improve the LLM's ability to decompose contradictory prompts, leading to better text-image alignment. Removing the explanation requirement impairs reasoning and causes a notable drop, showing that generating explicit explanations encourages more coherent semantic decisions. Restricting decomposition to two proxies performs close to the full method, while allowing up to three proxies provides extra flexibility for harder cases and yields further gains.

Robustness to LLM-predicted timestep intervals. Our method relies on LLM-predicted intervals to schedule proxy prompts, but these boundaries do not require exact placement. The earlier results (Figure 7) highlight that placing proxy prompts at the wrong *stage* of denoising (e.g., too early or too late) can harm alignment. Here we show that within the correct coarse stage, the method is robust to moderate boundary shifts. Specifically, we perturb interval boundaries while keeping the proxy prompts fixed, uniformly shifting them within windows of varying size. As shown in Table 4, small shifts of up to ± 1 step (window=3) have almost no effect on alignment, and even larger shifts of up to ± 2 steps (window=5) cause only minor degradation, despite representing a substantial perturbation relative to the full method effective range (\sim 12 steps; see Table 7). These results confirm that SAP is sensitive to the stage at which information is introduced, but largely insensitive to exact step boundaries within that stage.

Robustness across LLMs. Since our framework hinges on LLM-driven prompt decomposition, we further examined its robustness under different language models. We evaluated both a proprietary model (GPT-4o) and a comparatively lightweight open-source alternative (LLaMA-3.1-8B-Instruct). While GPT-4o delivers the strongest performance, the smaller LLaMA-3.1-8B-Instruct still yields consistent improvements over the baseline (see Table 5).

Limitations. In the figure to the right, we present three failure cases of our method on examples from the Whoops! benchmark. Since our approach relies on guiding the model through text alone, it cannot control properties that the underlying model inherently struggles with, such as generating specific quantities or enforcing precise orientations.

"A bouquet of flowers is upside down in a vase"

"A white glove has 6 fingers"

"The shadow of a cat is facing the opposite direction"

6 CONCLUSIONS

We introduced a training-free framework for resolv-

ing contextual contradictions in text-to-image generation, cases where seemingly plausible prompts fail due to strong, hidden model biases. At its core, our method leverages the coarse-to-fine generation process to separate contradictions across denoising stages, enabling faithful rendering of prompts that would otherwise yield semantically inconsistent outputs. The introduction of proxy prompts steers the generative process in line with the model's priors, enabling it to resolve conflicts and preserve semantic fidelity without the need for retraining or fine-tuning.

We argue that since our approach already leverages the broad world knowledge of vision–language models, integrating them more tightly with generative models holds promise for addressing contextual contradictions directly. As a next step, we plan to explore emerging compound architectures that combine VLMs and generative models, with the aim of understanding how to effectively harness them to resolve conflicts in open-ended generation.

7 ETHICS STATEMENT

Our work contributes to improving the semantic alignment of text-to-image models under contradictory or biased prompts. As a consequence, our method enhances users' ability to control generative models and faithfully render contradictory concepts. While this provides positive benefits, such as reducing unintended biases and enabling more inclusive image generation, it also increases the potential for misuse, including the creation of harmful, misleading, or inappropriate content. As with any advance in generative modeling, these dual-use concerns highlight the importance of responsible deployment, safeguards, and continued ethical oversight to ensure that such improvements contribute positively to society.

REFERENCES

- Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report. arXiv preprint arXiv:2303.08774, 2023.
- Aishwarya Agarwal, Srikrishna Karanam, KJ Joseph, Apoorv Saxena, Koustava Goswami, and Balaji Vasan Srinivasan. A-star: Test-time attention segregation and retention for text-to-image synthesis. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pp. 2283–2293, 2023.
- Yuval Alaluf, Elad Richardson, Gal Metzer, and Daniel Cohen-Or. A neural space-time representation for text-to-image personalization. *ACM Transactions on Graphics (TOG)*, 42(6):1–10, 2023.
- Yogesh Balaji, Seungjun Nah, Xun Huang, Arash Vahdat, Jiaming Song, Qinsheng Zhang, Karsten Kreis, Miika Aittala, Timo Aila, Samuli Laine, et al. ediff-i: Text-to-image diffusion models with an ensemble of expert denoisers. *arXiv preprint arXiv:2211.01324*, 2022.
- Omer Bar-Tal, Lior Yariv, Yaron Lipman, and Tali Dekel. Multidiffusion: Fusing diffusion paths for controlled image generation. 2023.
- Sara Beery, Grant Van Horn, and Pietro Perona. *Recognition in Terra Incognita*, pp. 472–489. Springer International Publishing, 2018. ISBN 9783030012700. doi: 10.1007/978-3-030-01270-0_28. URL http://dx.doi.org/10.1007/978-3-030-01270-0_28.
- Nitzan Bitton-Guetta, Yonatan Bitton, Jack Hessel, Ludwig Schmidt, Yuval Elovici, Gabriel Stanovsky, and Roy Schwartz. Breaking common sense: Whoops! a vision-and-language benchmark of synthetic and compositional images. In 2023 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 2616–2627. IEEE, October 2023. doi: 10.1109/iccv51070.2023. 00247. URL http://dx.doi.org/10.1109/ICCV51070.2023.00247.
- Hila Chefer, Yuval Alaluf, Yael Vinker, Lior Wolf, and Daniel Cohen-Or. Attend-and-excite: Attention-based semantic guidance for text-to-image diffusion models. *ACM transactions on Graphics (TOG)*, 42(4):1–10, 2023.
- Omer Dahary, Or Patashnik, Kfir Aberman, and Daniel Cohen-Or. Be yourself: Bounded attention for multi-subject text-to-image generation. In *European Conference on Computer Vision*, pp. 432–448. Springer, 2024.
- Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Müller, Harry Saini, Yam Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, et al. Scaling rectified flow transformers for high-resolution image synthesis. In *Forty-first international conference on machine learning*, 2024.
- Weixi Feng, Xuehai He, Tsu-Jui Fu, Varun Jampani, Arjun Akula, Pradyumna Narayana, Sugato Basu, Xin Eric Wang, and William Yang Wang. Training-free structured diffusion guidance for compositional text-to-image synthesis. *arXiv preprint arXiv:2212.05032*, 2022.

- Robert Geirhos, Jörn-Henrik Jacobsen, Claudio Michaelis, Richard Zemel, Wieland Brendel, Matthias Bethge, and Felix A. Wichmann. Shortcut learning in deep neural networks. *Nature Machine Intelligence*, 2(11):665–673, November 2020. ISSN 2522-5839. doi: 10.1038/s42256-020-00257-z. URL http://dx.doi.org/10.1038/s42256-020-00257-z.
 - Amir Hertz, Ron Mokady, Jay Tenenbaum, Kfir Aberman, Yael Pritch, and Daniel Cohen-Or. Prompt-to-prompt image editing with cross attention control. *arXiv preprint arXiv:2208.01626*, 2022.
 - Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. *arXiv* preprint *arxiv*:2006.11239, 2020.
 - Xiwei Hu, Rui Wang, Yixiao Fang, Bin Fu, Pei Cheng, and Gang Yu. Ella: Equip diffusion models with llm for enhanced semantic alignment. *arXiv* preprint arXiv:2403.05135, 2024.
 - Black Forest Labs. Flux. https://github.com/black-forest-labs/flux, 2024.
 - Jun Hao Liew, Hanshu Yan, Daquan Zhou, and Jiashi Feng. Magicmix: Semantic mixing with diffusion models. *arXiv preprint arXiv:2210.16056*, 2022.
 - Nan Liu, Shuang Li, Yilun Du, Antonio Torralba, and Joshua B Tenenbaum. Compositional visual generation with composable diffusion models. In *European Conference on Computer Vision*, pp. 423–439. Springer, 2022.
 - Tom McCoy, Ellie Pavlick, and Tal Linzen. Right for the wrong reasons: Diagnosing syntactic heuristics in natural language inference. In *Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics*. Association for Computational Linguistics, 2019. doi: 10.18653/v1/p19-1334. URL http://dx.doi.org/10.18653/v1/P19-1334.
 - Tuna Han Salih Meral, Enis Simsar, Federico Tombari, and Pinar Yanardag. Conform: Contrast is all you need for high-fidelity text-to-image diffusion models. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 9005–9014, 2024.
 - Dongmin Park, Sebin Kim, Taehong Moon, Minkyu Kim, Kangwook Lee, and Jaewoong Cho. Rare-to-frequent: Unlocking compositional generation power of diffusion models on rare concepts with llm guidance. *arXiv preprint arXiv:2410.22376*, 2024.
 - Or Patashnik, Daniel Garibi, Idan Azuri, Hadar Averbuch-Elor, and Daniel Cohen-Or. Localizing object-level shape variations with text-to-image diffusion models. In *Proceedings of the IEEE/CVF international conference on computer vision*, pp. 23051–23061, 2023.
 - Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec Radford, Mark Chen, and Ilya Sutskever. Zero-shot text-to-image generation, 2021. URL https://arxiv.org/abs/2102.12092.
 - Royi Rassin, Shauli Ravfogel, and Yoav Goldberg. Dalle-2 is seeing double: Flaws in word-to-concept mapping in text2image models. *arXiv preprint arXiv:2210.10606*, 2022.
 - Royi Rassin, Eran Hirsch, Daniel Glickman, Shauli Ravfogel, Yoav Goldberg, and Gal Chechik. Linguistic binding in diffusion models: Enhancing attribute correspondence through attention map alignment. *Advances in Neural Information Processing Systems*, 36:3536–3559, 2023.
 - Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-resolution image synthesis with latent diffusion models. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 10684–10695, 2022.
 - Krishna Kumar Singh, Dhruv Mahajan, Kristen Grauman, Yong Jae Lee, Matt Feiszli, and Deepti Ghadiyaram. Don't judge an object by its context: Learning to overcome contextual bias. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, June 2020. doi: 10.1109/cvpr42600.2020.01108. URL http://dx.doi.org/10.1109/cvpr42600.2020.01108.

- Hazarapet Tunanyan, Dejia Xu, Shant Navasardyan, Zhangyang Wang, and Humphrey Shi. Multi-concept t2i-zero: Tweaking only the text embeddings and nothing else. arXiv preprint arXiv:2310.07419, 2023. Andrey Voynov, Qinghao Chu, Daniel Cohen-Or, and Kfir Aberman. p+: Extended textual condi-tioning in text-to-image generation. arXiv preprint arXiv:2303.09522, 2023. Kai Yuanqing Xiao, Logan Engstrom, Andrew Ilyas, and Aleksander Madry. Noise or signal: The role of image backgrounds in object recognition. In International Conference on Learning Rep-resentations, 2021. URL https://openreview.net/forum?id=gl3D-xY7wLq. Ling Yang, Zhaochen Yu, Chenlin Meng, Minkai Xu, Stefano Ermon, and Bin Cui. Mastering text-to-image diffusion: Recaptioning, planning, and generating with multimodal llms. In Forty-first International Conference on Machine Learning, 2024.
 - Wenqian Ye, Guangtao Zheng, Xu Cao, Yunsheng Ma, and Aidong Zhang. Spurious correlations in machine learning: A survey. *arXiv preprint arXiv:2402.12715*, 2024.
 - Shai Yehezkel, Omer Dahary, Andrey Voynov, and Daniel Cohen-Or. Navigating with annealing guidance scale in diffusion space. *arXiv preprint arXiv:2506.24108*, 2025.

A ADDITIONAL RESULTS

Improved realism. SAP generates photorealistic and semantically coherent images for prompts with atypical attribute combinations (Figure 10). In contrast, FLUX often defaults to cartoon-like renderings, even when photorealism is explicitly requested, revealing a contextual contradiction between fantastical content and realistic style. By using contradiction-free proxy prompts, SAP avoids these biases and produces realistic outputs regardless of whether photorealism is explicitly required in the prompt.

Non-contradictory prompts. To ensure applicability in general text-to-image scenarios, we verify that our method does not negatively affect prompts without contextual contradictions. We find that including even a single non-contradictory in-context example is sufficient for the LLM to default to using the full prompt in such cases. We evaluate this behavior using GPT-40 alignment scores on the PartiPrompts-Simple benchmark, which contains simple, non-contradictory prompts (Table 6).

Additional qualitative comparisons. Figures 11 and 12 present additional qualitative comparisons of our method, while Figure 13 shows results across multiple seeds.

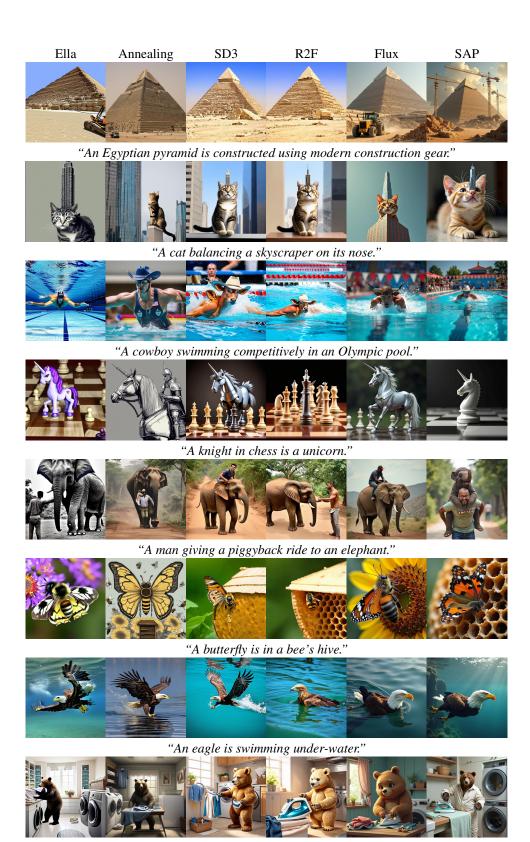
Table 6: Alignment performance on the PartiPrompts-simple benchmark, which contains simple, non-contradictory prompts. Scores are computed using GPT-40 vision-language model. Our method achieves comparable performance to the base model, indicating no degradation on regular prompts.

Models	PartiPrompts-simple	
FLUX	93.46	
SAP	93.06	

SAP

Figure 10: FLUX tends to generate realistic images by default. However, when given unrealistic prompts, it often produces cartoon-like samples, even when explicitly prompted with a "photorealistic" style. In contrast, our method, which gradually resolves such prompts through coherent proxy stages, consistently generates realistic and semantically aligned images.

Figure 11: Qualitative comparison. Our method consistently generates text-aligned images for contextually contradicting prompts.



"A photorealistic image of a bear ironing clothes in a laundry room"

Figure 12: Qualitative comparison. Our method consistently generates text-aligned images for contextually contradicting prompts.

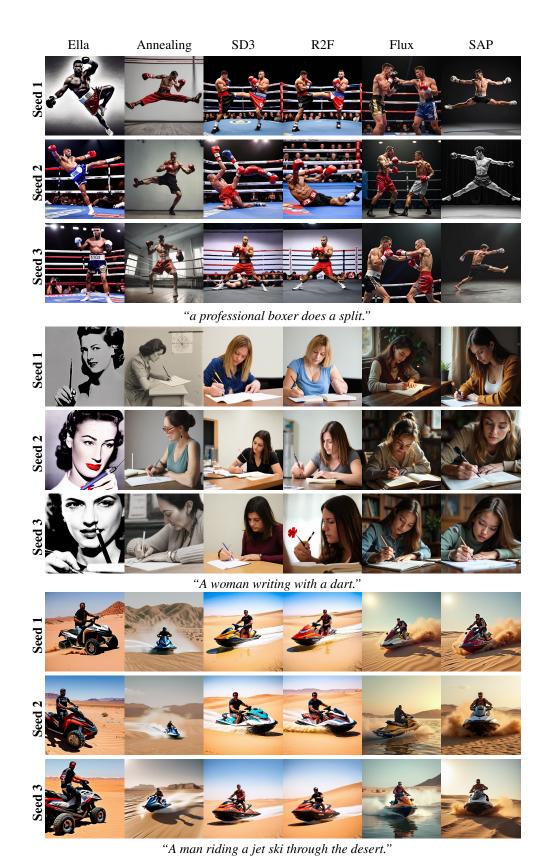


Figure 13: Qualitative comparison across multiple seeds. Our method consistently generates textaligned images for contextually contradicting prompts.

B LLM Instruction for Prompt Decomposition

Tables 7 and 8 detail the full LLM instruction used for our method's decomposition, along with the corresponding in-context examples. In a single inference pass, our method detects contextual contradictions, generates proxy prompts, and assigns timestep intervals.

Table 9 presents examples of our LLM input prompts, along with the corresponding output explanations and the decomposition into proxy prompts and timestep intervals.

Table 7: Full LLM prompt instruction SAP, used to decompose prompts by denoising stages.

<System Prompt>

 You are an expert assistant in time step dependent prompt conditioning for diffusion models.

Your task is to decompose a complex or contextually contradictory prompt into up to **three** intermediate prompts that align with the model's denoising stages — from background layout to object identity to fine detail. Only introduce prompt transitions when needed.

Diffusion Semantics (Low \rightarrow High Frequency Progression):

Steps 0–2: Scene layout and dominant color regions (e.g., sky, forest, sand tone)

Steps 3–6: Object shape, size, pose, and position

Steps 7–10: Object identity, material, and surface type (e.g., glass vs. rubber)

Steps 11-13+: Fine features and local details (e.g., tattoos, insects, facial detail)

Since denoising progresses from coarse to fine, it is crucial to stabilize large-scale visual structures (such as body shape, pose, and background) before introducing small or semantically charged elements (such as facial details, objects in hand, or surreal features).

Substitution Strategy:

- 1. Begin with high-level layout (background, geometry).
- 2. Use **placeholder concepts** if needed to stabilize layout before detailed insertions.
- 3. Substitutes must match in shape, size, and visual function.
- 4. Replace placeholders as soon as fidelity permits.
- 5. Do not maintain substitutions longer than needed.
- 6. If the prompt is visually coherent, return a **single prompt** with no decomposition.

Output Format:

- **a. Explanation:** A short sentence explaining why decomposition is needed.
- b. Final dictionary:

```
{
  "prompts_list": [
    "<prompt1>",
    "<prompt2>",
    "...",
    "<target prompt>"
],
  "switch_prompts_steps": [<step1>, <step2>, ...]
}
```

- The length of switch_ prompts_steps should be one less than prompts_list. - Do not include any text outside this structure.

918 919 920 921 Table 8: In-context examples SAP, illustrating reasoning steps and prompt decomposition across 922 denoising stages. 923 924 **Input:** A polar bear in a desert 925 a. Explanation: A polar bear is common in snowy scenes, not deserts. Since no suitable object proxy exists, 926 the prompt starts with the desert alone before introducing the unlikely animal. 927 b. Final dictionary: 928 929 "prompts_list": [930 "A desert", "A polar bear in a desert" 931 932 "switch_prompts_steps": [2] 933 934 935 **Input:** A fox in a nursery 936 a. Explanation: A fox is uncommon in indoor scenes. Starting with a dog, then a visually similar breed (Shiba 937 Inu), provides a natural proxy before introducing the fox in a childlike setting. 938 b. Final dictionary: 939 940 "prompts_list": [941 "A dog in a nursery", "A Shiba Inu dog in a nursery", 942 "A fox in a baby room" 943], 944 "switch_prompts_steps": [4, 7] 945 946 947 Input: A shoes tree in the meadow 948 a. Explanation: Treating a "shoes tree" like an "apple tree" allows the model to build structure and object 949 layout using familiar patterns. Introducing apples first grounds the scene in a biologically plausible layout before shifting to the surreal concept of shoes as fruit-like objects. 951 b. Final dictionary: 952 953 "prompts_list": ["tree in the meadow", 954 A tree full of apples, in the meadow", 955 "A tree full of shoes in the meadow" 956 957 "switch_prompts_steps": [4,8] 958 959 **Input:** A red sports car parked on a mountain road 960 961 a. Explanation: This is a realistic and visually coherent scene, so no decomposition is needed. 962 b. Final dictionary: 963 964 "prompts_list": [965 "A red sports car parked on a mountain road" 966

"switch_prompts_steps": []

Table 9: Prompt decompositions of contradictory prompts using SAP.

Original Prompt	Explanation	Prompt Sequence	Switch Step(s)
A grown man has a baby's pacifier in his mouth.	The grown man is established first for structure, while the pacifier, being a small but semantically significant detail, is added once the main identity is resolved.	A grown man with a small object in his mouth A grown man has a baby's pacifier in his mouth	4
A dragon is blowing water.	Dragons are more commonly depicted blowing fire. A proxy of white smoke is visually similar to water mist in texture, stabilizing the emission process before resolving the surreal water emission.	A dragon blowing white smoke A dragon blowing water	3
A pizza with grape toppings.	Pizza with traditional toppings stabilizes the geometry and color before introducing the visually similar yet un- usual grape topping.	A pizza with pepperoni toppings A pizza with grape toppings	3
A coin floats on the surface of the water.	Coins typically sink in water, not float. Starting with a leaf—an object that naturally floats—ensures that this behavior within the scene is handled correctly before introducing the coin.	A leaf floats on the surface of the water A coin floats on the surface of the water	4
A cockatoo parrot swimming in the ocean.	Cockatoos are birds and naturally do not swim; starting with a simple bird on water stabilizes position and motion. Progressing to a duck, before introducing the cockatoo parrot, eases the transition into the final surreal visual.	A duck swimming in the ocean A parrot swimming in the ocean A cockatoo parrot swimming in the ocean	3, 6
Shrek is blue.	Shrek is a distinct character with a recognizable green color. Using a simple blue ogreinitially sets the stage for a color change before fully introducing Shrek to ensure visual coherence.	A blue ogre Shrek is blue	3
A professional boxer does a split.	Professional boxers are typically shown in athletic stances related to fighting, not performing a split. Starting with a gymnast performing a split supports the action, introducing a boxer in similar attire balances identity shift without disrupting the pose.	A gymnast performing a split A boxer performing a split A professional boxer doing a split	3, 6

C PROVIDED BENCHMARKS

We describe the construction of *ContraBench* and *Whoops-Hard* in the main text (Section 5). Here, we provide the full lists of prompts for these benchmarks in Table 10 and Table 11, respectively.

Table 10: ContraBench. A curated benchmark of 40 contradictory prompts for evaluating text-to-image models.

ID	Prompt	ID	Prompt
1	A professional boxer does a split	21	A mosquito pulling a royal carriage through Times Square
2	A bear performing a handstand in the park	22	A grandma is ice skating on the roof
3	A bodybuilder balancing on point shoes	23	A baseball player backswing a yellow ball with a golf club
4	A chicken is smiling	24	A house with a circular door
5	A cruise ship parked in a bathtub	25	A photorealistic image of a bear ironing clothes in a laundry roon
6	A man giving a piggyback ride to an elephant	26	A pizza being used as an umbrella in the rain
7	A zebra climbing a tree	27	A cubist lion hiding in a photorealistic jungle
8	A coffee machine dispensing glitter	28	A cowboy swimming competitively in an Olympic pool
9	A vending machine in a human running posture	29	A realistic photo of an elephant wearing slippers
10	A ballerina aggressively flipping a table	30	A computer mouse eating a piece of cheese
11	A bathtub floating above a desert in a tornado	31	A horse taking a selfie with a smartphone
12	A monkey juggles tiny elephants	32	A sheep practicing yoga on a mat
13	A woman has a marine haircut	33	A snake eating a small golden guitar
14	A tower with two hands	34	A soccer field painted on a grain of rice
15	An archer is shooting flowers with a bow	35	A snake with feet
16	A muscular ferret in the woods	36	A woman brushing her teeth with a paintbrush
17	A barn built atop a skyscraper rooftop	37	A horse with a hump
18	A cat balancing a skyscraper on its nose	38	A hyperrealistic unicorn made of origami
19	A cow grazing on a city rooftop	39	A library printed on a butterfly's wings
20	A fireplace burning inside an igloo	40	A photorealistic photo of SpongeBob SquarePants dancing ballet

Table 11: Whoops-Hard. A curated subset of 100 challenging prompts from the Whoops! benchmark.

ID	Prompt	ID	Prompt
1	A bouquet of flowers is upside down in a vase	51	A Japanese tea ceremony uses coffee instead of tea
2	A man is welding without a mask	52	A wagon is being pushed from behind by two opposite facing horses
3	A man eats hamburgers in a baby chair	53	The Girl with a Pearl Earring wears a golden hoop earring
4	A turn right street sign with a left turn arrow	54	A chandelier is hanging low to the ground
5	Goldilocks sleeps with four bears	55	The portrait of the Mona Lisa depicts a stern male face
6	A cake wishes a happy 202nd birthday	56	A car with the steering wheel right in the middle of the dashboard
7	Children are unhappy at Disneyland	57	A pagoda sits in front of the Eiffel Tower
8	An orange carved as a Jack O'Lantern	58	A man without protection next to a swarm of bees
9	A pen is being sharpened in a pencil sharpener	59	A kiwi bird in a green bamboo forest
10	Steve Jobs demonstrating a Microsoft tablet	60	The Sphinx is decorated like a sarcophagus outside a Mayan temple
11	Shrek is blue	61	A butterfly is in a bee's hive
12		62	A rainbow colored tank
13		63	Movie goers nibble on vegetables instead of popcorn
14	Vikings ride on public transportation	64	A grown man has a baby's pacifier in his mouth
15	A gift wrapped junked car	65	A full pepper shaker turned upside down with nothing coming out
16		66	The Tiger King, Joe Exotic, poses with an adult saber-tooth tiger
17		67	A scale is balanced with one side full and the other empty
18	Michelangelo's David is covered by a fig leaf	68	A pizza box is full of sushi
19		69	A man wearing a dog recovery cone collar while staring at his dog
20		70	A woman's mirror reflection is wearing different clothes
21	A train on asphalt	71	A woman using an umbrella made of fishnet in the rain
22		72	A field of sunflowers with pink petals
23	3 1 6 17 61	73	An eagle swimming under water
24		74	A woman stands in front of a reversed reflection in a mirror
25	1	75	Stars visible in the sky with a bright afternoon sun
26	,	76	A car with an upside down Mercedes-Benz logo
27		77	An owl perched upside down on a branch
28	1 1 00 31	78	A man in a wheelchair ascends steps
29	1 2 1 1 2	79	Bach using sound mixing equipment
30	C C	80	A steam train on a track twisted like a roller coaster
31	A cat chasing a dog down the street	81	Roman centurions fire a cannon
32		82	A crab with four claws
33		83	Elon Musk wearing a shirt with a Meta logo
34		84	A compass with North South South West points
35		85	A glass carafe upside down with contents not pouring
36		86	Princess Diana standing in front of her grown son, Prince Harry
37	2 11	87	A children's playground set in the color black
38		88	A mug of hot tea with a plastic straw
39	- I	89	A whole pomegranate inside a corked glass bottle
40		90	Belle from Beauty and the Beast about to kiss the Frog Prince
41	A place setting has two knives	91	A person's feet facing opposite directions
42		92	A bowl of cereal in water
43		93	A boy playing frisbee with a porcelain disk
44	2 2 2	94	A chef prepares a painting
45	1 0	95	A dragon blowing water
46	2 2	96 97	The lip of a pitcher on the same side as the handle
47 48		97 98	Greta Thunberg holding a disposable plastic cup
	1 7	98 99	A fortune teller predicting the future with a basketball
49		99 100	A balloon lifting up a package
50	A hockey player drives a golf ball down the ice	100	Bruce Lee in a yellow leotard and tutu practicing ballet

D VLM EVALUATION

We utilize GPT-40 to assess alignment between prompts and their generated images. The instruction prompt provided to the VLM is shown in Table 12.

Table 12: VLM instruction for evaluation. Used by GPT-40 to score semantic alignment of generated images.

You are an assistant evaluating an image on how well it aligns with the meaning of a given text prompt.

The text prompt is: "{prompt}"

PROMPT ALIGNMENT (Semantic Fidelity)

Evaluate only the *meaning* conveyed by the image — ignore visual artifacts.

Focus on:

- Are the correct objects present and depicted in a way that clearly demonstrates their intended roles and actions from the prompt?
- Does the scene illustrate the intended situation or use-case in a concrete and functional way, rather than through symbolic, metaphorical, or hybrid representation?
- If the described usage or interaction is missing or unclear, alignment should be penalized.
- Focus strictly on the presence, roles, and relationships of the described elements not on rendering quality.

Score from 1 to 5:

- 5: Fully conveys the prompt's meaning with correct elements
- 4: Mostly accurate main elements are correct, with minor conceptual or contextual issues
- 3: Main subjects are present but important attributes or actions are missing or wrong
- 2: Some relevant components are present, but key elements or intent are significantly misrepresented
- 1: Does not reflect the prompt at all

Respond using this format:

```
### ALIGNMENT SCORE: <score>
### ALIGNMENT EXPLANATION: <explanation>
```

E USE OF LARGE LANGUAGE MODELS (LLMS)

In preparing this paper, we used a large language model (GPT) as an assistive tool for improving grammar, clarity, and wording at the sentence level. In addition, as described in the main text, we employed LLMs in our method and evaluation:

- 1. Method: As part of our proposed method (Figure 5), an LLM was employed to decompose target prompts into time-dependent proxy prompts (Section 4.2).
- 2. Benchmark construction: As described in Section 5, ChatGPT was used to generate initial candidate prompts for ContraBench.
- 3. Evaluation: As explained in Section 5.2, a vision-language model (VLM) was used to assist in evaluating the prompt alignment of the generated outputs.

Beyond these uses, LLMs were not involved in research ideation, experimental design, or the interpretation of results.