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Abstract

This paper proposes a continual world model that improves robustness by prospectively simulating the consequences of a
model’s own predictions and rehearsing on those counterfactual trajectories. The setting is bionic limb behavior modeling, where
a predictor f maps recent residual–body sensor histories to desired prosthetic joint profiles across multiple locomotion tasks (e.g.,
level walking, stairs, ramps). The core contribution multitask prospective rehearsal (MPR) couples f with a learned prospective
dynamics model g(xk, yk) ≈ xk+1 that forecasts the next sensor state given the current state and an action (predicted joint profile).
By rolling g forward on f ’s own outputs to generate counterfactual inputs x̂k+1 = g(xk, ŷk), and pairing these with the future
target yk+1, the method creates error-aware rehearsal data that explicitly conditions f to correct the distribution shift it induces.
This enables continual, multitask adaptation without online environment interaction or access to expert labels at deployment.

Methodologically, MPR integrates three components. (1) Multitask decomposition: a shared temporal backbone fs is
followed by lightweight task-specific heads ft, balancing transfer of common structure with per-task specialization. (2) Continual
adaptation with evolving heads and rehearsal: when a new task arrives, a new head is added and both fs and prior heads
are updated using a task-balanced reservoir of rehearsal data drawn from previous tasks. Unlike conventional replay, the rehearsal
buffer contains both original validation samples and prospective samples synthesized by g from the model’s own rollouts, at a
fixed buffer budget to avoid confounding gains with data volume. (3) Prospective modeling and joint objectives: training
alternates between (a) supervised learning of f on observed and prospective inputs with targets yk and yk+1, and (b) system
identification of g via a one-step prediction loss Lg =

∑
k∥xk+1 − g(xk, yk)∥22. Algorithmically, for each time step in a held-out

validation split, MPR computes ŷk = f(xk−T :k), synthesizes x̂k+1 = g(xk, ŷk), and appends (x̂k+1, yk+1) to the rehearsal set used
to update both fs and all ft.

A simple theoretical analysis clarifies the need for such counterfactual rehearsal: even if f is Lipschitz, imitation-learning
errors can compound exponentially over time because the predictor’s actions alter future inputs. By minimizing the one-step
model error and training f on g’s rollouts, MPR aims to keep the induced input drift within a small constant bound, thereby
mitigating compounding error. This prospective, model–based rehearsal plays a role analogous to imagination-augmented planning
in model–based RL, but is trained entirely offline and without rewards, crucial for safety-critical human-machine interaction.

Empirically, the framework is model-agnostic and is evaluated across three real-world motion datasets. Beyond improved
accuracy and reduced forgetting relative to regularization, architecture, and replay-based baselines, MPR enhances robustness:
gains grow with Jensen-Shannon divergence between train and test distributions, and the method confers resilience to FGSM
adversarial perturbations and additive noise. A pilot exoskeleton study further indicates improved stability (lower Lyapunov
exponents) of model-driven foot kinematics. Collectively, these results support counterfactual, dynamics-aware rehearsal as a
principled mechanism for continual learning under covariate shift in safety-critical imitation learning.

Figure 1: (A) Performance comparison of our counterfactual-interaction-based prospective and conventional rehearsal strategies
across different strengths, τ , of adversarial perturbations. (B) Performance of linear and non-linear probing on downstream lo-
comotion task classification. Prospective rehearsal training performs best across the board. (C) Comparison of the performance
of continual models with conventional and prospective rehearsal for different levels of input noise. Prospective rehearsal training
outperforms the conventional model.
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