
Neural Conservation Laws:
A Divergence-Free Perspective

Jack Richter-Powell
Vector Institute

jack.richter-powell@mcgill.ca

Yaron Lipman
Meta AI

ylipman@meta.com

Ricky T. Q. Chen
Meta AI

rtqichen@meta.com

Abstract

We investigate the parameterization of deep neural networks that by design satisfy
the continuity equation, a fundamental conservation law. This is enabled by
the observation that any solution of the continuity equation can be represented
as a divergence-free vector field. We hence propose building divergence-free
neural networks through the concept of differential forms, and with the aid of
automatic differentiation, realize two practical constructions. As a result, we can
parameterize pairs of densities and vector fields that always exactly satisfy the
continuity equation, foregoing the need for extra penalty methods or expensive
numerical simulation. Furthermore, we prove these models are universal and so can
be used to represent any divergence-free vector field. Finally, we experimentally
validate our approaches by computing neural network-based solutions to fluid
equations, solving for the Hodge decomposition, and learning dynamical optimal
transport maps.

1 Introduction

Modern successes in deep learning are often attributed to the expressiveness of black-box neural
networks. These models are known to be universal function approximators [Hornik et al., 1989]—but
this flexibility comes at a cost. In contrast to other parametric function approximators such as Finite
Elements [Schroeder and Lube, 2017], it is hard to bake exact constraints into neural networks.
Existing approaches often resort to penalty methods to approximately satisfy constraints—but these
increase the cost of training and can produce inaccuracies in downstream applications when the
constraints are not exactly satisfied. For the same reason, theoretical analysis of soft-constrained
models also becomes more difficult. On the other hand, enforcing hard constraints on the architecture
can be challenging, and even once enforced, it is often unclear whether the model remains sufficiently
expressive within the constrained function class.

In this work, we discuss an approach to directly bake in two constraints into deep neural networks: (i)
having a divergence of zero, and (ii) exactly satisfying the continuity equation. One of our key
insights is that the former directly leads into the latter, so the first portion of the paper focuses on
divergence-free vector fields. These represent a special class of vector fields which have widespread
use in the physical sciences. In computational fluid dynamics, divergence-free vector fields are used
to model incompressible fluid interactions formalized by the Euler or Navier-Stokes equations. In
R3 we know that the curl of a vector field has a divergence of zero, which has seen many uses in
graphics simulations (e.g., Eisenberger et al. [2018]). Perhaps less well-known is that lurking behind
this fact is the generalization of divergence and curl through differential forms [Cartan, 1899], and
the powerful identity d2 = 0. We first explore this generalization, then discuss two constructions
derived from it for parmaterizing divergence-free vector fields. While this approach has been partially
discussed previously [Barbarosie, 2011, Kelliher, 2021], it is not extensively known and to the best of
our knowledge has not been explored by the machine learning community.

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

b

A = Jb − JT
b

eq. (7)

A1 A2

v = div(A)

eq. (4)

v

Figure 1: Divergence-free vector fields v : Rd → Rd can be constructed from an antisymmetric
matrix field A : Rd → Rd×d or an arbitrary vector field b : Rd → Rd. Jb represents the Jacobian
matrix of b, and A1 and A2 are the first and second rows of A. Color denotes divergence.

Concretely, we derive two approaches—visualized in Figure 1—to transform sufficiently smooth
neural networks into divergence-free neural networks, made efficient by automatic differentiation and
recent advances in vectorized and composable transformations [Bradbury et al., 2018, Horace He,
2021]. Furthermore, both approaches can theoretically represent any divergence-free vector field.

We combine these new modeling tools with the observation that solutions of the continuity equation—
a partial differential equation describing the evolution of a density under a flow —can be characterized
jointly as a divergence-free vector field. As a result, we can parameterize neural networks that, by
design, always satisfy the continuity equation, which we coin Neural Conservation Laws (NCL).
While prior works either resorted to penalizing errors [Raissi et al., 2019] or numerically simulating
the density given a flow [Chen et al., 2018], baking this constraint directly into the model allows us
to forego extra penalty terms and expensive numerical simulations.

2 Constructing divergence-free vector fields

We will use the notation of differential forms in Rn for deriving the divergence-free and universality
properties of our vector field constructions. We provide a concise overview of differential forms in
Appendix A. For a more extensive introduction see e.g., Do Carmo [1998], Morita [2001]. Without
this formalism, it is difficult to show either of these two properties; however, readers who wish to
skip the derivations can jump to the matrix formulations in equation 4 and equation 7.

Let us denote Ak(Rn) as the space of differential k-forms, d : Ak(Rn) → Ak+1(Rn) as the exterior
derivative, and ⋆ : Ak(Rn) → An−k(Rn) as the Hodge star operator that maps each k-form to an
(n-k)-form. Identifying a vector field v : Rd → Rd as a 1-form, v =

∑n
i=1 vidxi, we can express

the divergence div(v) as the composition d ⋆ v.

To parameterize a divergence-free vector field v : Rn → Rn, we note that by the fundamental
property of the exterior derivative, taking an arbitrary (n-2)-form µ ∈ An−2(Rn) we have that

0 = d2µ = d(dµ) (1)
and since ⋆ is its own inverse up to a sign, it follows that

v = ⋆dµ (2)
is divergence free. We write the parameterization v = ⋆dµ explicitly in coordinates. Since a basis for
An−2(Rn) can be chosen to be ⋆(dxi ∧ dxj), we can write µ = 1

2

∑n
i,j=1 µij ⋆ (dxi ∧ dxj), where

µji = −µij Now a direct calculation shows that up to a constant sign (see Appendix-A.1)

⋆ dµ =

n∑
i=1

 n∑
j=1

∂µij

∂xj

 dxi. (3)

This formula is suggestive of a simple matrix formulation: If we let A : Rn → Rn×n be the anti-
symmetric matrix-valued function where Aij = µij then the divergence-free vector field v = ⋆dµ
can be written as taking row-wise divergence of A, i.e.,

v =

div(A1)
...

div(An)

 . (4)

2

However, this requires parameterizing O(n2) functions. A more compact representation, which starts
from a vector field, can also be derived. The idea behind this second construction is to model µ
instead as µ = δν, where ν ∈ An−1(Rn). Putting this together with equation 2 we get that

v = ⋆dδν (5)

is a divergence-free vector field. To provide equation 5 in matrix formulation we first write ν ∈
An−1(Rn) in the (n-1)-form basis, i.e., ν =

∑n
i=1 νi ⋆ dxi. Then a direct calculation provides up to

a constant sign

δν =
1

2

n∑
i,j=1

[
∂νi
∂xj

− ∂νj
∂xi

]
⋆ (dxi ∧ dxj) (6)

So, given an arbitrary vector field b : Rn → Rn, and denoting Jb as the Jacobian of b, we can
construct A as

A = Jb − JT
b . (7)

where Jb denotes the Jacobian of b.

To summarize, we have two constructions for divergence-free vector fields v:

Matrix-field: (equations 2 and 4) v is represented using an anti-symmetric matrix field A.
Vector-field: (equations 5 and 4+7) v is represented using a vector field b.

0 100 200 300 400 500 600 700 800
Dimension

0

100

200

300

400

Ti
m

e
(m

s) matrix-field
vector-field

Figure 2: Compute times.

As we show in the next section, these two approaches are maximally
expressive (i.e., universal), meaning they can approximate arbitrary
smooth divergence-free vector fields. However, empirically these
two constructions can exhibit different practical trade-offs. The
matrix-field construction has a computational advantage as it requires
one less Jacobian computation, though it requires more components—
O(n2) vs. O(n)—to represent than the vector-field construction.
This generally isn’t a concern as all components can be computed in
parallel. However, the vector-field construction can make it easy to
bake in additional constraints; an example of this is discussed in Section 7.1, where a non-negativity
constraint is imposed for modeling continuous-time probability density functions. In Figure 2 we
show wallclock times for evaluating the divergence-free vector field based on our two constructions.
Both exhibit quadratic scaling (in function evaluations) with the number of dimensions due to
the row-wise divergence in equation 4, while the vector-field construction has an extra Jacobian
computation.

2.1 Universality

Both the matrix-field and vector-field representations are universal, i.e. they can model arbitrary
divergence-free vector fields. The main tool in the proof is the Hodge decomposition theorem [Morita,
2001, Berger, 2003]. For simplicity we will be working on a periodic piece of Rn, namely the torus
Tn = [−M,M]n/ ∼ where ∼ means identifying opposite edges of the n-dimensional cube, and
M > 0 is arbitrary. Vector fields with compact support can always be encapsulated in Tn with M > 0
sufficiently large. As Tn is locally identical to Rn, all the previous definitions and constructions hold.
Theorem 2.1. The matrix and vector-field representations are universal in T, possibly only missing
a constant vector field.

A formal proof of this result is in Appendix B.1.

3 Neural Conservation Laws

We now discuss a key aspect of our work, which is parameterizing solutions of scalar conservation
laws. Conservation laws are a focal point of mathematical physics and have seen applications in
machine learning, with the most well known examples being conserved scalar quantities often referred
to as density, energy, or mass. Formally, a conservation law can be expressed as a first-order PDE

3

written in divergence form as ∂ρ
∂t + div(j) = 0, where j is known as the flux, and the divergence is

taken over spatial variables. In the case of the continuity equation, there is a velocity field u which
describes the flow and the flux is equal to the density times the velocity field:

∂ρ

∂t
+ div(ρu) = 0 (8)

where ρ : Rn → R+ and u : Rn → Rn. One can then interpret the equation to mean that u
transports ρ(0, ·) to ρ(t, ·) continuously – without teleporting, creating or destroying mass. Such
an interpretation plays a key role in physics simulations as well as the dynamic formulation of
optimal transport [Benamou and Brenier, 2000]. In machine learning, the continuity equation appears
in continuous normalizing flows [Chen et al., 2018]—which also have been used to approximate
solutions to dynamical optimal transport. [Finlay et al., 2020, Tong et al., 2020, Onken et al., 2021]
These, however, only model the velocity u and rely on numerical simulation to solve for the density
ρ, which can be costly and time-consuming.

Instead, we observe that equation 8 can be expressed as a divergence-free vector field by augmenting
the spatial dimensions with the time variable, resulting in a vector field v that takes as input (t, x)
and outputs (ρ, ρu). Then equation 8 is equivalent to

div(v) = div
(

ρ
ρu

)
=

∂ρ

∂t
+ div(ρu) = 0 (9)

where the divergence operator is now taken with respect to the joint system (t, x), i.e. ∂
∂t +

∑n
i=1

∂
∂xi

.
We thus propose modeling solutions of conservation laws by parameterizing the divergence-free vector
field v. Specifically, we parameterize a divergence-free vector field v and set v1 = ρ and v2:n+1 = ρu,
allowing us to recover the vector field as u = v2:n+1

ρ , assuming ρ ̸= 0. This allows us to enforce the
continuity equation at an architecture level. Compared to simulation-based modeling approaches, we
completely forego such computationally expensive simulation procedures. Code for our experiments
are available at https://github.com/facebookresearch/neural-conservation-law.

4 Related Works

Baking in constraints in deep learning Existing approaches to enforcing constraints in deep
neural networks can induce constraints on the derivatives, such as convexity [Amos et al., 2017] or
Lipschitz continuity [Miyato et al., 2018]. More complicated formulations involve solving numerical
problems such as using solutions of convex optimization problems [Amos and Kolter, 2017], solutions
of fixed-points iterations [Bai et al., 2019], and solutions of ordinary differential equations [Chen
et al., 2018]. These models can help provide more efficient approaches or alternative algorithms for
handling downstream applications such as constructing flexible density models [Chen et al., 2019,
Lu et al., 2021] or approximating optimal transport paths [Tong et al., 2020, Makkuva et al., 2020,
Onken et al., 2021]. However, in many cases, there is a need to solve a numerical problem in which
the solution may only be approximated up to some numerical accuracy; for instance, the need to
compute the density flowing through a vector field under the continuity equation [Chen et al., 2018].

Applications of differential forms Differential forms and more generally, differential geometry,
have been previously applied in manifold learning—see e.g. Arvanitidis et al. [2021] and Bronstein
et al. [2017] for an in-depth overview. Most of the applications thus far have been restricted to 2 or 3
dimensions—either using identities like div ◦ curl = 0 in 3D for fluid simulations [Rao et al., 2020],
or for learning geometric invariances in 2D images or 3D space [Gerken et al., 2021, Li et al., 2021].

Conservation Laws in Machine Learning [Sturm and Wexler, 2022] previously explored discrete
analogs of conservation laws by conserving mass via a balancing operation in the last layer of a neural
network. [Müller, 2022] utilizes a wonderful application of Noether’s theorem to model conservation
laws by enforcing symmetries in a Lagrangian represented by a neural network.

5 Neural approximations to PDE solutions

As a demonstration of our method, we apply it to neural-based PDE simulations of fluid dynamics.
First, we apply it to modelling inviscid fluid flow in the open ball B ⊆ R3 with free slip boundary

4

conditions, then to a 2d example on the flat Torus T2, but with more complex initial conditions.
While these are toy examples, they demonstrate the value of our method in comparison to existing
approaches—namely that we can exactly satisfy the continuity equation and preserve exact mass.

The Euler equations of incompressible flow The incompressible Euler equations [Feynman et al.,
1989] form an idealized model of inviscid fluid flow, governed by the system of partial differential
equations1

∂ρ
∂t + div(ρu) = 0, ∂u

∂t +∇uu = ∇p
ρ , div(u) = 0 (10)

in three unknowns: the fluid velocity u(t, x) ∈ R3, the pressure p(t, x), and the fluid density ρ(t, x).
While the fluid velocity and density are usually given at t = 0, the initial pressure is not required.
Typically, on a bounded domain Ω ⊆ Rn, these are supplemented by the free-slip boundary condition
and initial conditions

u · n = 0 on ∂Ω u(0, x) = u0 and ρ(0, x) = ρ0 on Ω (11)
The density ρ plays a critical role since in addition to being a conserved quantity, it influences the
dynamics of the fluid evolution over time. In numerical simulations, satisfying the continuity equation
as closely as possible is desirable since the equations in (10) are coupled. Error in the density feeds
into error in the velocity and then back into the density over time. In the finite element literature,
a great deal of effort has been put towards developing conservative schemes that preserve mass
(or energy in the more general compressible case)—see Guermond and Quartapelle [2000] and the
introduction of Almgren et al. [1998] for an overview. But since the application of physics informed
neural networks (PINNs) to fluid problems is much newer, conservative constraints have only been
incorporated as penalty terms into the loss [Mao et al., 2020, Jin et al., 2021].

5.1 Physics informed neural networks

Physics Informed Neural Networks (PINNs; Raissi et al. [2019, 2017]) have recently received renewed
attention as an application of deep neural networks. While using neural networks as approximate
solutions to PDE had been previously explored (e.g in Lagaris et al. [1998]), modern advances in
automatic differentiation algorithms have made the application to much more complex problems
feasible [Raissi et al., 2019]. The “physics” in the name is derived from the incorporation of physical
terms into the loss function, which consist of adding the squared residual norm of a PDE. For example,
to train a neural network ϕ = [ρ, p, u] to satisfy the Euler equations, the standard choice of loss to fit
to is

LF =
∥∥∥ut +∇uu+ ∇p

ρ

∥∥∥2
Ω

Ldiv = ∥div(u)∥Ω LI = ∥u(0, ·)− u0(·)∥2Ω + ∥ρ(0, ·)− ρ0(·)∥Ω

LCont =
∥∥∥∂ρ

∂t + div(ρu)
∥∥∥2
Ω

LG = ∥u · n∥2∂Ω Ltotal = γ · [LF , LI , Ldiv, LCont, LG]

where γ = (γF , γI , γdivγCont, γG) denotes suitable coefficients (hyperparameters). The loss term
LG ensures fluid does not pass through boundaries, when they are present. Similar approaches were
taken in [Mao et al., 2020] and [Jagtap et al., 2020] for related equations. While schemes of this
nature are very easy to implement, they have the drawback that since PDE terms are only penalized
and not strictly enforced, one cannot make guarantees as to the properties of the solution.

To showcase the ability of our method to model conservation laws, we will parameterize the density
and vector field as v = [ρ, ρu], as detailed in Section 3. This means we can omit the term LCont as
described in Section 5.1 from the training loss. The divergence penalty, Ldiv remains when modeling
incompressible fluids, since u is not necessarily itself divergence-free – it is v = [ρ, ρu] which is
divergence free. In order to stablize training, we can modify the loss terms LF , LG, LI to avoid
division by ρ. This is detailed in Appendix B.2.

5.2 Incompressible variable density inside the 3D unit ball

We first construct a simple example within a bounded domain, specifically, we will consider the Euler
equations inside B(0, 1) ⊆ R3, with the initial conditions

ρ(0, x) = 3/2− ∥x∥2 v(0, x) = (−2, x0 − 1, 1/2) (12)
1The convective derivative appearing in equation 10, ∇uu(x) = limh→0

u(x+hu(x))−u(x)
h

= [Du](u) is
also often written as (∇ · u)u.

5

t = 0.00 t = 0.25 t = 0.50

(a) Incompressible baseline

t = 0.00 t = 0.25 t = 0.50

(b) Neural Conservation Law (Ours)

Figure 3: Exactly satisfying the continuity equation yields much better performance than only
satisfying the incompressible (divergence-free) condition of the vector field, even though both
approaches obtain very small loss values. 2D slices of the learned solution of u and ρ are shown.

As a baseline, we compare against a parameterization that uses the divergence-free vector field only
for the incompressible constraint. This is equivalent to the curl approach described in Rao et al.
[2020]; another neural network is used to parameterize ρ. In contrast, our generalized formulation
of divergence-free fields allow us to model the continuity equation exactly, as in this case, [ρ, ρu]
is 4 dimensional. We parameterize our method using v = [ρ, ρu], as detailed in Section 3, with the
vector-field approach from Section 2.

The results for training both networks are shown in Figure 3. Surprisingly, even though both
architectures signficantly improve the training loss after a comparable number of iterations (see
Appendix C), the curl approach fails to advect the density accurately, whereas our NCL approach
evolves the density as it should given the initial conditions.

5.3 Incompressible variable density flow on T2

As a more involved experiment, we model the Euler equations on the flat 2-Torus T2. This is
parameterized by a multilayer perceptron pre-composed with the periodic embedding ι : [0, 1]2 → T2

ι(x, y) = [cos(2πx), sin(2πx), cos(2πy), sin(2πy)]

The continuity equation is enforced exactly, using the method detailed in Section 3, so the LCont term
is omitted from Ltotal. The initial velocity and density are

ρ0(x, y) = (z1 + z3)
2 + 1 v0(x, y) = [ez3 , ez1/2]

where z = θ(x, y, 1). Here we used the matrix-field parameterization as referred to in Section 2, for
the simple reason that it performed better empirically. We also include the harmonic component from
Hodge decomposition, which is just a constant vector field, to ensure we have full universality. Full
methodology for the experiment is detailed in Appendix C. The results of evolving the flow for time
t ∈ [0, 1/3] are shown in Figure 4, as well as a comparison with a reference finite element solution
generated by the conservative splitting method from [Guermond and Quartapelle, 2000]. In general,
our model fits the initial conditions well and results in fluid-like movement of the density, however
small approximation errors can accumulate from simulating over a longer time horizon. To highlight
this, we also plotted the best result we were able to achieve with a standard PINN. Although the
PINN made progress minimizing the loss, it was unable to properly model the dynamics of the fluid
evolution. While this failure can likely be corrected by tuning the γ constant (see Section 5.1), we
were unable to find a combination that fit the equation correctly. By contrast, our NCL model worked
with the first configuration we tried.

6 Learning the Hodge decomposition

Using our divergence-free models, we can also learn the Hodge decomposition of a vector field itself.
Informally, the Hodge decomposition states that any vector field can be expressed as the combination

6

PI
N

N
N

C
L

FE
M

t=0.0 t=0.1 t=0.25 t=0.3
(a) Learned density function

0 50000100000150000200000250000300000350000400000

Iteration

100

101

102

Tr
ai

ni
ng

 L
os

s

PINN
NCL

(b) Convergence of training loss

0 50000100000150000200000250000300000350000400000

Iteration

10 1

100

|
* |

2 PINN
NCL

(c) Comparison to FEM solution

Figure 4: While both PINN and NCL models minimize the training loss effectively and fit the initial
conditions, the PINN fails to learn the dynamics of the advected density. When compared to a gold
standard FEM solution, our NCL model nicely exhibits linear convergence to the solution.

of a gradient field (i.e. gradient of a scalar function) and a divergence-free field. There are many
scenarios where a neural network modelling a vector field should be a gradient field (theoretically),
such as score matching [Song and Ermon, 2019], Regularization by Denoising [Hurault et al., 2022],
amortized optimization [Xue et al., 2020], and meta-learned optimization [Andrychowicz et al., 2016].
Many works, however, have reported that parameterizing such a field as the gradient of a potential
hinders performance, and as such they opt to use an unconstrained vector field. Learning the Hodge
decomposition can then be used to remove any extra divergence-free, i.e. rotational, components of
the unconstrained model.

As a demonstration of the ability of our model to scale in dimension, we construct a synthetic
experiment where we have access to the ground truth Hodge decomposition. This provides a
benchmark to validate the accuracy of our method. To do so, we construct the target field v̂ as

v̂ = ∇w + η (13)

where η is a fixed divergence-free neural network, and w is a fixed scalar network. We use the same
embedding from Section 5.3, but extended to Tn, for n ∈ {25, 50, 100}. We then parameterize
another divergence-free model vθ which has a different architecture than the target η. Inspired by the
Hodge decomposition, we propose using the following objective for training:

ℓ(θ) = ∥Jv̂−vθ − [Jv̂−vθ]
T∥F (14)

where Jv̂−vθ denotes the Jacobian of v̂ − vθ. In the notation of differential forms, this corresponds to
minimizing ∥δ(v̂ − vθ)∥F , which when zero implies vθ = v̂ + δµ, where µ is an arbitrary n-form.
However, since vθ is divergence-free, it must hold δµ = −∇w, i.e. the left-over portion of v̂ − vθ is
exactly ∇w, because the Hodge decomposition is an orthogonal direct sum [Warner, 1983].

0 1000 2000 3000 4000 5000
Wall Clock Time (s)

0.05

0.10

0.15

1 n
||v

||2

n=25
n=50
n=100

Figure 5: L2 to ground truth.

For evaluation, we plot the squared L2 norm to the ground
truth η against wall clock time. While this demonstration is
admittedly artificial, it serves to show that our model scales ef-
ficiently to moderately high dimensions – significantly beyond
those achievable using grid based discretizations of divergence-
free fields (see Bhatia et al. [2013] for an overview of such
methods). The results are shown in Figure 5. While larger
dimensions are more costly, we are still able to recover the
ground truth in dimensions up to 100.

7

7 Dynamical optimal transport

The calculation of optimal transport (OT) maps between two densities of interest p0 and p1 serves
as a powerful tool for computing distances between distributions. Moreover, the inclusion of
OT into machine learning has inspired multiple works on building efficient or stable generative
models [Arjovsky et al., 2017, Tong et al., 2020, Makkuva et al., 2020, Huang et al., 2020, Finlay
et al., 2020, Rout et al., 2021, Rozen et al., 2021]. In particular, we are interested in the dynamical
formulation of Benamou and Brenier [2000], which is a specific instance where the transport map is
characterized through a vector field. Specifically, we wish to solve the optimization problem

min
ρ,u

∫ 1

0

∫
M

∥u(t, x)∥2ρ(t, x) dxdt (15)

subject to the terminal constraints, ρ(0, ·) = p0(·) and ρ(1, ·) = p1(·), as well as remaining non-
negative ρ ≥ 0 on the domain and satisfying the continuity equation ∂ρ

∂t + div(ρu) = 0.

In many existing cases, the models for estimating either ρ and equation 15 are completely decoupled
from the generative model or transport map [Arjovsky et al., 2017, Makkuva et al., 2020], or in
some cases ρ would be computed through numerical simulation and equation 15 estimated through
samples [Chen et al., 2018, Finlay et al., 2020, Tong et al., 2020]. These approaches may not be ideal
as they require an auxiliary process to satisfy or approximate the continuity equation.

In contrast, our NCL approach allows us to have access to a pair of ρ and u that always satisfies the
continuity equation, without the need for any numerical simulation. As such, we only need to match
the terminal conditions, and will automatically have access to a vector field u that transports mass
from ρ(0, ·) to ρ(1, ·). In order to find an optimal vector field, we can then optimize u with respect to
the objective in equation 15.

7.1 Parameterizing non-negative densities with subharmonic functions

In this setting, it is important that our density is non-negative for the entire domain and within the
time interval between 0 and 1. Instead of adding another loss function to satisfy this condition, we
show how we can easily bake this condition into our model through the vector-field parameterization.

Recall for the vector-field parameterization of the continuity equation, we have a vector field bθ(y)
with y = [t, x], for t ∈ [0, 1], x ∈ Rn. This results in the parameterization

ρ = div
(

∂b1
∂x − ∂b2:n+1

∂t

T
)

for i = 1, . . . , n+ 1. (16)

We now make the adjustment that ∂b2:n+1

∂t = 0. This condition does not reduce the expressivity of the
formulation, as ρ can still represent any density function. Interestingly, this modification does imply
that ρ = ∇2b1 with ∇2 being the Laplacian operator, so that satisfying the boundary conditions is
equivalent to solving a time-dependent Poisson’s equation ∇2b1(t, ·) = pt.

Furthermore, the class of subharmonic functions is exactly the set of functions g that satisfies
∇2g(0, ·) ≥ 0. In one dimension, this corresponds to the class of convex functions but is a strict
generalization of convex functions in higher dimensions. With this in mind, we propose using the
parameterization

b1(t, x) =

K∑
k=1

wk(t)ϕ(ak(t)x+ bk(t)) where ϕ(z) = 1
4π

(
log(∥z∥2) + E1(∥z∥

2
/4)

)
(17)

with E1 being the exponential integral function, and wk, ak ∈ R+ and bk ∈ Rn are free functions
of t. This a weighted sum of generalized linear models, where the choice of nonlinear function ϕ is
chosen because it is the exact solution to the Poisson’s equation for a standard normal distribution
when n = 2, i.e. ∇2ϕ = N (0, I), while for n ≥ 2 this remains a subharmonic function. As such,
this can be seen as a generalization of a mixture model, which are often referenced to be universal
density approximators, albeit requiring many mixture components [Goodfellow et al., 2016].

8

(a) Circles←→ Pinwheel (b) Pinwheel←→ 8Gaussians

Figure 6: Learned approximation to the dynamical optimal transport map. (top) Density ρ. (mid)
Transformed samples in orange, with samples from p0 and p1 in blue. (bottom) Learned vector field.

0 200 400 600 800 1000 1200 1400
Wallclock time (s)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Es
tim

at
ed

 W
2 2 Minimax NCL

(a) Circles↔ Pinwheel

0 200 400 600 800 1000 1200 1400
Wallclock time (s)

0.20

0.22

0.24

0.26

0.28

0.30

Es
tim

at
ed

 W
2 2 Minimax NCL

(b) Pinwheel↔ 8Gaussians

0 200 400 600 800 1000 1200 1400
Wallclock time (s)

0.10

0.12

0.14

0.16

0.18

0.20

0.22

0.24

Es
tim

at
ed

 W
2 2 Minimax NCL

(c) 8Gaussians↔ Circles

Figure 7: Neural Conservation Laws on approximating dynamical optimal transport converges in
minutes. The alternative minimax formulation tends to underestimate the Wasserstein distance.
Dashed line is an estimate from a discrete OT algorithm. Shaded regions denote standard deviation.

7.2 Experiments

We experiment with pairs of 2D densities (visualized in Figure 6) and fit a pair of (ρ, u) to equation 15
while satisfying boundary conditions. Specifically, we train with the loss

min
ρ,u

λEx∼p̃0 [|ρ(0, x)− p0(x)|] + λEx∼p̃1 [|ρ(1, x)− p1(x)|] +
∫ 1

0

∫
M

∥u(t, x)∥2ρ(t, x) dxdt
(18)

where p̃i is a mixture between pi and a uniform density over a sufficiently large area, for i = 0, 1,
and λ is a hyperparameter. We use a batch size of 256 and set K=128 (from equation 17). Qualitative
results are displayed in Figure 6, which include interpolations between pairs of densities.

Furthermore, we can use the trained models to estimate the Wasserstein distance, by transforming
samples from p0 through the learned vector field to time t=1. We do this for 5000 samples and
compare the estimated value to (i) one estimated by that of a neural network trained through a
minimax optimization formulation [Makkuva et al., 2020], and (ii) one estimated by that of a discrete
OT solver [Bonneel et al., 2011] based on kernel density approximation and interfaced through the
pot library [Flamary et al., 2021].

Estimated squared Wasserstein distance as a function of wallclock time are shown in Figure 7. We
see that our estimated values roughly agree with the discrete OT algorithm. However, the baseline
minimax approach consistently underestimates the optimal transport distance. This is an issue with
the minimax formulation not being able to cover all of the modes, and has been commonly observed
in the literature (e.g. Salimans et al. [2016], Che et al. [2017], Srivastava et al. [2017]). Moreover,
in order to stabilize minimax optimization in practice, Makkuva et al. [2020] made use of careful
optimization tuning such as reducing momentum [Radford et al., 2016]. In contrast, our NCL
approach is a simple optimization problem.

9

8 Conclusion

We proposed two constructions for building divergence-free neural networks from an original uncon-
strained smooth neural network, where either an original matrix field or vector field is parameterized.
We found both to be useful in practice: the matrix field approach is generally more flexible, while
the vector field approach allows the addition of extra constraints such as a non-negativity constraint.
We combined these methods with the insight that the continuity equation can reformulated as a
divergence-free vector field, and this resulted in a method for building deep neural networks that are
constrained to always satisfy the continuity equation, which we refer to as Neural Conservation Laws.

Currently, these models are difficult to scale due to extensive use of automatic differentiation for
computing divergence of neural networks. It may be possible to combine our approach with parame-
terizations that provide cheap divergence computations [Chen and Duvenaud, 2019]. Nevertheless,
the development of efficient batching and automatic differentiation tools is an active research area, so
we expect these tools to improve as development progresses.

Acknowledgements

We acknowledge the Python community [Van Rossum and Drake Jr, 1995, Oliphant, 2007] and
the core set of tools that enabled this work, including PyTorch [Paszke et al., 2019], functorch
[Horace He, 2021], torchdiffeq [Chen, 2018], JAX [Bradbury et al., 2018], Flax [Heek et al., 2020],
Hydra [Yadan, 2019], Jupyter [Kluyver et al., 2016], Matplotlib [Hunter, 2007], numpy [Oliphant,
2006, Van Der Walt et al., 2011], and SciPy [Jones et al., 2014]. Jack Richter-Powell would also like
to thank David Duvenaud and the Vector Institute for graciously supporting them over the last year.

References
A. S. Almgren, J. B. Bell, P. Colella, L. H. Howell, and M. L. Welcome. A Conservative Adaptive

Projection Method for the Variable Density Incompressible Navier–Stokes Equations. Journal of
Computational Physics, 142(1):1–46, May 1998. ISSN 00219991. doi:10.1006/jcph.1998.5890.
URL https://linkinghub.elsevier.com/retrieve/pii/S0021999198958909.

B. Amos and J. Z. Kolter. Optnet: Differentiable optimization as a layer in neural networks. In
International Conference on Machine Learning, pages 136–145. PMLR, 2017.

B. Amos, L. Xu, and J. Z. Kolter. Input convex neural networks. In International Conference on
Machine Learning, pages 146–155. PMLR, 2017.

M. Andrychowicz, M. Denil, S. Gomez, M. W. Hoffman, D. Pfau, T. Schaul, B. Shillingford, and
N. De Freitas. Learning to learn by gradient descent by gradient descent. Advances in neural
information processing systems, 29, 2016.

M. Arjovsky, S. Chintala, and L. Bottou. Wasserstein generative adversarial networks. In International
conference on machine learning, pages 214–223. PMLR, 2017.

G. Arvanitidis, L. K. Hansen, and S. Hauberg. Latent Space Oddity: on the Curvature of
Deep Generative Models, Dec. 2021. URL http://arxiv.org/abs/1710.11379. Number:
arXiv:1710.11379 arXiv:1710.11379 [stat].

S. Bai, J. Z. Kolter, and V. Koltun. Deep equilibrium models. Advances in Neural Information
Processing Systems, 32, 2019.

C. Barbarosie. Representation of divergence-free vector fields. Quarterly of applied mathematics, 69
(2):309–316, 2011.

J.-D. Benamou and Y. Brenier. A computational fluid mechanics solution to the monge-kantorovich
mass transfer problem. Numerische Mathematik, 84(3):375–393, 2000.

M. Berger. A panoramic view of riemannian geometry. 2003.

10

H. Bhatia, G. Norgard, V. Pascucci, and P.-T. Bremer. The helmholtz-hodge decomposition—a
survey. IEEE Transactions on Visualization and Computer Graphics, 19(8):1386–1404, 2013.
doi:10.1109/TVCG.2012.316.

N. Bonneel, M. Van De Panne, S. Paris, and W. Heidrich. Displacement interpolation using lagrangian
mass transport. In Proceedings of the 2011 SIGGRAPH Asia conference, pages 1–12, 2011.

J. Bradbury, R. Frostig, P. Hawkins, M. J. Johnson, C. Leary, D. Maclaurin, G. Necula, A. Paszke,
J. VanderPlas, S. Wanderman-Milne, and Q. Zhang. JAX: composable transformations of
Python+NumPy programs, 2018. URL http://github.com/google/jax.

M. M. Bronstein, J. Bruna, Y. LeCun, A. Szlam, and P. Vandergheynst. Geometric deep learning:
going beyond euclidean data. IEEE Signal Processing Magazine, 34(4):18–42, 2017.

É. Cartan. On certain differential expressions and the pfaff problem. In Scientific Annals of the
ŚchoolNormal Superior, volume 16, pages 239–332, 1899.

T. Che, Y. Li, A. P. Jacob, Y. Bengio, and W. Li. Mode regularized generative adversarial networks.
International Conference on Learning Representations, 2017.

R. T. Q. Chen. torchdiffeq, 2018. URL https://github.com/rtqichen/torchdiffeq.

R. T. Q. Chen and D. K. Duvenaud. Neural networks with cheap differential operators. Advances in
Neural Information Processing Systems, 32, 2019.

R. T. Q. Chen, Y. Rubanova, J. Bettencourt, and D. K. Duvenaud. Neural ordinary differential
equations. Advances in neural information processing systems, 31, 2018.

R. T. Q. Chen, J. Behrmann, D. K. Duvenaud, and J.-H. Jacobsen. Residual flows for invertible
generative modeling. Advances in Neural Information Processing Systems, 32, 2019.

M. P. Do Carmo. Differential forms and applications. Springer Science & Business Media, 1998.

M. Eisenberger, Z. Lähner, and D. Cremers. Divergence-Free Shape Interpolation and Correspon-
dence, Oct. 2018. URL http://arxiv.org/abs/1806.10417. Number: arXiv:1806.10417
arXiv:1806.10417 [cs].

R. Feynman, R. Leighton, and M. Sands. The Feynman Lectures on Physics: Commemorative
Issue. Advanced book program. Addison-Wesley, 1989. ISBN 978-0-201-50064-6. URL https:
//books.google.ca/books?id=UHp1AQAACAAJ.

C. Finlay, J.-H. Jacobsen, L. Nurbekyan, and A. M. Oberman. How to train your neural ode. arXiv
preprint arXiv:2002.02798, 2020.

R. Flamary, N. Courty, A. Gramfort, M. Z. Alaya, A. Boisbunon, S. Chambon, L. Chapel, A. Corenflos,
K. Fatras, N. Fournier, L. Gautheron, N. T. Gayraud, H. Janati, A. Rakotomamonjy, I. Redko,
A. Rolet, A. Schutz, V. Seguy, D. J. Sutherland, R. Tavenard, A. Tong, and T. Vayer. Pot:
Python optimal transport. Journal of Machine Learning Research, 22(78):1–8, 2021. URL
http://jmlr.org/papers/v22/20-451.html.

J. E. Gerken, J. Aronsson, O. Carlsson, H. Linander, F. Ohlsson, C. Petersson, and D. Persson.
Geometric deep learning and equivariant neural networks, 2021. URL https://arxiv.org/
abs/2105.13926.

I. Goodfellow, Y. Bengio, and A. Courville. Deep learning. MIT press, 2016.

J.-L. Guermond and L. Quartapelle. A Projection FEM for Variable Density Incompressible
Flows. Journal of Computational Physics, 165(1):167–188, Nov. 2000. ISSN 00219991.
doi:10.1006/jcph.2000.6609. URL https://linkinghub.elsevier.com/retrieve/pii/
S0021999100966099.

J. Heek, A. Levskaya, A. Oliver, M. Ritter, B. Rondepierre, A. Steiner, and M. van Zee. Flax: A
neural network library and ecosystem for JAX, 2020. URL http://github.com/google/flax.

11

R. Z. Horace He. functorch: Jax-like composable function transforms for pytorch. https://github.
com/pytorch/functorch, 2021.

K. Hornik, M. Stinchcombe, and H. White. Multilayer feedforward networks are universal approxi-
mators. Neural networks, 2(5):359–366, 1989.

C.-W. Huang, R. T. Q. Chen, C. Tsirigotis, and A. Courville. Convex potential flows: Univer-
sal probability distributions with optimal transport and convex optimization. arXiv preprint
arXiv:2012.05942, 2020.

J. D. Hunter. Matplotlib: A 2d graphics environment. Computing in science & engineering, 9(3):90,
2007.

S. Hurault, A. Leclaire, and N. Papadakis. Gradient step denoiser for convergent plug-and-play.
International Conference on Learning Representations, 2022.

A. D. Jagtap, E. Kharazmi, and G. E. Karniadakis. Conservative physics-informed neural networks on
discrete domains for conservation laws: Applications to forward and inverse problems. Computer
Methods in Applied Mechanics and Engineering, 365:113028, June 2020. ISSN 00457825.
doi:10.1016/j.cma.2020.113028. URL https://linkinghub.elsevier.com/retrieve/pii/
S0045782520302127.

X. Jin, S. Cai, H. Li, and G. E. Karniadakis. NSFnets (Navier-Stokes Flow nets): Physics-informed
neural networks for the incompressible Navier-Stokes equations. Journal of Computational
Physics, 426:109951, Feb. 2021. ISSN 00219991. doi:10.1016/j.jcp.2020.109951. URL http:
//arxiv.org/abs/2003.06496. arXiv: 2003.06496.

E. Jones, T. Oliphant, and P. Peterson. {SciPy}: Open source scientific tools for {Python}. 2014.

J. Kelliher. Stream functions for divergence-free vector fields. Quarterly of Applied Mathematics, 79
(1):163–174, 2021.

T. Kluyver, B. Ragan-Kelley, F. Pérez, B. E. Granger, M. Bussonnier, J. Frederic, K. Kelley, J. B.
Hamrick, J. Grout, S. Corlay, et al. Jupyter notebooks-a publishing format for reproducible
computational workflows. In ELPUB, pages 87–90, 2016.

I. E. Lagaris, A. Likas, and D. I. Fotiadis. Artificial neural networks for solving ordinary and partial
differential equations. IEEE transactions on neural networks, 9(5):987–1000, 1998.

C. Li, W. Wei, J. Li, J. Yao, X. Zeng, and Z. Lv. 3dmol-net: learn 3d molecular representation using
adaptive graph convolutional network based on rotation invariance. IEEE Journal of Biomedical
and Health Informatics, 2021.

C. Lu, J. Chen, C. Li, Q. Wang, and J. Zhu. Implicit normalizing flows. arXiv preprint
arXiv:2103.09527, 2021.

A. Makkuva, A. Taghvaei, S. Oh, and J. Lee. Optimal transport mapping via input convex neural
networks. In International Conference on Machine Learning, pages 6672–6681. PMLR, 2020.

Z. Mao, A. D. Jagtap, and G. E. Karniadakis. Physics-informed neural networks for high-speed
flows. Computer Methods in Applied Mechanics and Engineering, 360:112789, Mar. 2020.
ISSN 00457825. doi:10.1016/j.cma.2019.112789. URL https://linkinghub.elsevier.com/
retrieve/pii/S0045782519306814.

T. Miyato, T. Kataoka, M. Koyama, and Y. Yoshida. Spectral normalization for generative adversarial
networks. arXiv preprint arXiv:1802.05957, 2018.

S. Morita. Geometry of differential forms. Number 201. American Mathematical Soc., 2001.

E. H. Müller. Exact conservation laws for neural network integrators of dynamical systems, 2022.
URL https://arxiv.org/abs/2209.11661.

T. E. Oliphant. A guide to NumPy, volume 1. Trelgol Publishing USA, 2006.

12

T. E. Oliphant. Python for scientific computing. Computing in Science & Engineering, 9(3):10–20,
2007.

D. Onken, S. Wu Fung, X. Li, and L. Ruthotto. Ot-flow: Fast and accurate continuous normalizing
flows via optimal transport. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 35, 2021.

A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein,
L. Antiga, et al. Pytorch: An imperative style, high-performance deep learning library. In Advances
in neural information processing systems, pages 8026–8037, 2019.

A. Radford, L. Metz, and S. Chintala. Unsupervised representation learning with deep convolutional
generative adversarial networks. International Conference on Learning Representations, 2016.

M. Raissi, P. Perdikaris, and G. E. Karniadakis. Physics Informed Deep Learning (Part I): Data-driven
Solutions of Nonlinear Partial Differential Equations, Nov. 2017. URL http://arxiv.org/abs/
1711.10561. Number: arXiv:1711.10561 arXiv:1711.10561 [cs, math, stat].

M. Raissi, P. Perdikaris, and G. E. Karniadakis. Physics-informed neural networks: A deep
learning framework for solving forward and inverse problems involving nonlinear partial dif-
ferential equations. Journal of Computational Physics, 378:686–707, 2019. ISSN 0021-
9991. doi:https://doi.org/10.1016/j.jcp.2018.10.045. URL https://www.sciencedirect.com/
science/article/pii/S0021999118307125.

C. Rao, H. Sun, and Y. Liu. Physics-informed deep learning for incompressible laminar flows.
Theoretical and Applied Mechanics Letters, 10(3):207–212, 2020.

L. Rout, A. Korotin, and E. Burnaev. Generative modeling with optimal transport maps. arXiv
preprint arXiv:2110.02999, 2021.

N. Rozen, A. Grover, M. Nickel, and Y. Lipman. Moser flow: Divergence-based generative modeling
on manifolds. Advances in Neural Information Processing Systems, 34, 2021.

T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford, and X. Chen. Improved techniques
for training gans. Advances in neural information processing systems, 29, 2016.

P. W. Schroeder and G. Lube. Pressure-robust analysis of divergence-free and conforming FEM for
evolutionary incompressible navier–stokes flows. Journal of Numerical Mathematics, 25(4), dec
2017. doi:10.1515/jnma-2016-1101. URL https://doi.org/10.1515%2Fjnma-2016-1101.

Y. Song and S. Ermon. Generative modeling by estimating gradients of the data distribution. Advances
in Neural Information Processing Systems, 32, 2019.

A. Srivastava, L. Valkov, C. Russell, M. U. Gutmann, and C. Sutton. Veegan: Reducing mode
collapse in gans using implicit variational learning. Advances in neural information processing
systems, 30, 2017.

P. O. Sturm and A. S. Wexler. Conservation laws in a neural network architecture: enforcing the
atom balance of a julia-based photochemical model (v0.2.0). Geoscientific Model Development, 15
(8):3417–3431, 2022. doi:10.5194/gmd-15-3417-2022. URL https://gmd.copernicus.org/
articles/15/3417/2022/.

A. Tong, J. Huang, G. Wolf, D. Van Dijk, and S. Krishnaswamy. Trajectorynet: A dynamic optimal
transport network for modeling cellular dynamics. In International Conference on Machine
Learning, pages 9526–9536. PMLR, 2020.

S. Van Der Walt, S. C. Colbert, and G. Varoquaux. The numpy array: a structure for efficient
numerical computation. Computing in Science & Engineering, 13(2):22, 2011.

G. Van Rossum and F. L. Drake Jr. Python reference manual. Centrum voor Wiskunde en Informatica
Amsterdam, 1995.

F. Warner. Foundations of Differentiable Manifolds and Lie Groups. Graduate Texts in Mathe-
matics. Springer, 1983. ISBN 9780387908946. URL https://books.google.ca/books?id=
iaeUqc2yQVQC.

13

T. Xue, A. Beatson, S. Adriaenssens, and R. Adams. Amortized finite element analysis for fast PDE-
constrained optimization. In H. D. III and A. Singh, editors, Proceedings of the 37th International
Conference on Machine Learning, volume 119 of Proceedings of Machine Learning Research,
pages 10638–10647. PMLR, 13–18 Jul 2020.

O. Yadan. Hydra - a framework for elegantly configuring complex applications. Github, 2019. URL
https://github.com/facebookresearch/hydra.

14

