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ABSTRACT

In the realm of time series analysis, tackling the phenomenon of concept drift poses
a significant challenge. Concept drift – characterized by the evolving statistical
properties of time series data, affects the reliability and accuracy of conventional
analysis models. This is particularly evident in co-evolving scenarios where in-
teractions among variables are crucial. This paper presents Drift2Matrix, a novel
framework that leverages kernel-induced self-representation for adaptive responses
to concept drift in time series. Drift2Matrix employs a kernel-based learning mech-
anism to generate a representation matrix, encapsulating the inherent dynamics
of co-evolving time series. This matrix serves as a key tool for identification
and adaptation to concept drift by observing its temporal variations. Further-
more, Drift2Matrix effectively identifies prevailing patterns and offers insights into
emerging trends through pattern evolution analysis. Our empirical evaluation of
Drift2Matrix across various datasets demonstrates its effectiveness in handling the
complexities of concept drift. This approach introduces a novel perspective in the
theoretical domain of co-evolving time series analysis, enhancing adaptability and
accuracy in the face of dynamic data environments. Code is available at GitHub1.

1 INTRODUCTION

Co-evolving time series data analysis plays a crucial role in diverse sectors including finance,
healthcare, and meteorology. Within these areas, multiple time series evolve simultaneously and
interact with one another, forming complex, dynamic systems. The evolving statistical properties
of such data present significant analytical challenges. A particularly pervasive issue is concept drift
Lu et al. (2018b); Yu et al. (2024), which refers to shifts in the underlying data distribution over
time, thereby undermining the effectiveness of static models. Miyaguchi & Kajino (2019); You et al.
(2021).

Traditional time series approaches commonly rely on the assumptions of stationarity and linear
relationships. Methods such as ARIMA and VAR Box (2013), for instance, perform well in circum-
stances with stable and predictable dynamics. However, their effectiveness decreases when dealing
with non-stationary data, particularly in the presence of concept drift. Conversely, machine learning
methodologies Li et al. (2022); Wen et al. (2020), such as diverse neural network architectures Ho et al.
(2022); Li et al. (2023); Yang et al. (2024), offer more flexibility but often require large amounts of
data and face difficulties in terms of interpretability and adaptability, especially in dynamic contexts.

The evolving study has steered the field towards more adaptive and dynamic models. Methods
like change point detection Deldari et al. (2021); Liu et al. (2023) and online learning algorithms
Huang et al. (2022); Zhang et al. (2024) are designed to detect shifts in patterns. Nonetheless, these
methods are typically restricted to detecting structural breaks or focusing on univariate series, rather
than tracking and predicting subtle, ongoing changes in concepts, which limits their applicability in
real-world co-evolving time series. In the complex environments, where multiple time series evolve
and interact simultaneously, capturing the nonlinear relationships among variables is criticalMarcotte
et al. (2023); Bayram et al. (2022). Despite recent advancements Matsubara & Sakurai (2019); Li

1https://anonymous.4open.science/r/Drift2Matrix-main-86B7
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Drift2Matrix - Ecosystem

(b) Representation matrix (n×n) under each window

(c) Discovered concepts

(a) Original time series

(d) Visualizing concept drift in co-evolving time series: colored segment and distribution dynamics
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Figure 1: Modeling power of Drift2Matrix for co-evolving time series: Drift2Matrix treats the time
series as an ecosystem - �, and automatically identifies, tracks, and predicts dynamic concepts
without prior knowledge. (a) Original time series; (b) Drift2Matrix-generated representation matrix
with distinct concepts (C1-C5) in block diagonal form. The red star marks S1, and purple dashed
lines trace S1’s concept drift over time; (c) Identified concepts within the series; (d) Concept drift
(red dashed lines) and forecasted trends (grey areas).

et al. (2022); Wen et al. (2024), most multivariate models define the concept as a collective behavior
of streaming data, falling short in their ability to capture the dynamics of individual series and their
interactions. This limitation impairs the models’ capability to discover and interpret the complex
interdependencies among variables, thereby constraining their effectiveness in scenarios that involve
multiple time series, such as city-wide electricity usage or road traffic forecasting. This raises a
critical question – Can we identify underlying concepts from co-evolving time series and leverage
their nonlinear relationships to predict concepts that have not appeared in a single series?

To tackle these challenges, we introduce Drift2Matrix, a framework designed for the dynamic com-
plexities of co-evolving time series data. Drift2Matrix employs a kernel-induced self-representation
method, adept at capturing the intricate interdependencies and the evolving natures of such data. Our
approach, which transforms time series into a matrix format capable of adapting to concept drift,
offers a robust and flexible solution for co-evolving time series analysis amidst non-linear interactions
and shifting distributions.

Preview of Our Results. Fig. 1 showcases our Drift2Matrix results to a 500-dimensional (n =
500) co-evolving time series (Fig. 1 (a)). Treating the dataset as an interconnected ecosystem �,
Drift2Matrix allows for comprehensive analysis through three key objectives: identifying concepts,
tracking their drift, and forecasting future trend.

(O1) Concept identification: Fig. 1 (b) displays the heatmap of Drift2Matrix-generated representation
matrix (n × n) over time2. This matrix showcases a block diagonal structure, where each block
represents a unique concept (e.g., C1 - C5), with brightness in the heatmap indicating series correlation
strength. Variations of the block structure over time underscore the dynamic correlations within the
time series, indicating the presence and evolution of concepts. An extended analysis of these matrices
facilitates the identification of the total number of concepts and their pattern (Fig. 1 (c)).

(O2) Dynamic concept drift: Tracking the transitions of time series within the Drift2Matrix-generated
matrices provides insights into the trajectory of concept drift. Fig. 1 (d) illustrates the concept drift
process over time for each of the 3 example series. Red dashed lines in the figure mark the points
where concept drift occurs, exemplified by the transition of Series 1 from Concept 4 to Concept 2 and
subsequent shifts. This process can also be observed in the representation matrix shown in Fig. 1 (b),
where the red star marks the position of Series 1 (S1), and the purple dashed lines trace how S1 shifts
over time, further illustrating the process of tracking its transition between concepts.

(O3) Forecasting: The grey areas in Fig. 1 (d) represent the forecasted series distribution and
values. These forecasts, denoted by dashed lines matching the colors of the concepts, align closely

2Drift2Matrix autonomously determines the optimal segments in a domain-agnostic manner.
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with the actual series trend (solid grey lines). A significant forecast for Series 1 includes the
emergence of Concept 1, previously undetected. This predictive capability stems from Drift2Matrix’s
ecosystem perspective of the co-evolving time series, leveraging a probabilistic model of the nonlinear
interactions among series to anticipate the emergence and evolution of new concepts.

Contributions. Drift2Matrix represents more than a mere solution – it is a paradigm shift in
co-evolving time series analysis. This framework introduces a new perspective on modeling and
interpreting complex, interrelated co-evolving time series. Drift2Matrix has the following desirable
properties:

1. Drift2Matrix introduces a novel, kernel-induced approach for modeling complex interdependencies,
enhancing understanding of underlying dynamics, and can be easily integrated into most deep learning
backbones.

2. Drift2Matrix is adaptive, with the capability to identify and respond to concept drift autonomously,
without prior knowledge about concept.

3. Drift2Matrix transforms concept drift into a matrix optimization problem and enhances inter-
pretability, offering a new perspective into the evolving dynamics of co-evolving time series.

2 THE LANDSCAPE OF CONCEPT DRIFT

Concept Drift. Concept drift in time series refers to the scenario where the statistical properties of
the target variable, or the joint distribution of the input-output pairs, change over time. These drifts
primarily exhibit in two manners Ren et al. (2018); Kim et al. (2021): the first is characterized by
subtle, ongoing changes, reflecting the evolving dynamics of the time series, while the second arises
from sudden shifts caused by structural breaks in the relationships among time series. Both gradual
and abrupt changes can significantly disrupt model performance if not detected and adapted to in a
timely manner, as they challenge the stability and accuracy of predictive models.

Challenges in Co-evolving Scenarios. Recent advances in time series analysis have led to progress
in addressing concept drift. Dish-TS Fan et al. (2023) offers a general approach for alleviating
distribution shift in time series forecasting by normalizing model inputs and outputs to better handle
distribution changes. Similarly, Cogra’s application of the Sequential Mean Tracker (SMT) adjusts
to changes in data distribution, improving forecast accuracy Miyaguchi & Kajino (2019). Despite
these strides, these methodologies exhibit limitations when applied to co-evolving time series, where
interdependencies between series introduce additional complexity. In such scenarios, a shift in one
variable can propagate through the network of interrelations, affecting the entire system. DDG-DA Li
et al. (2022) for data distribution generation has been adapted to better suit co-evolving scenarios,
addressing the unique challenges presented by the interplay of multiple data streams under concept
drift conditions. However, this method defines the concept as a collective behavior represented by
co-evolving time series rather than capturing the dynamics of individual series and their interactions.
Notably, even the most recent deep learning methods that mention concept drift, such as OneNet
Wen et al. (2024) and FSNet Pham et al. (2022), primarily aim to mitigate the impact of concept drift
on forecasting rather than addressing the challenges of adaptive concept identification and dynamic
concept drift. They achieve this by incorporating an ensemble of models with diverse data biases or
by refining network parameters for better adaptability. Due to the space limit, more related works
about concept-drift, representation learning on times series and motivation are left in the Appendix A.

3 PRELIMINARIES

Problem Definition. Consider a co-evolving time series dataset S = S1, S2, . . . , SN ∈ RT×N , with
N being the number of variables and T represents the total number of time steps. Our goal is to (1)
to automatically identify a set of latent concepts C = C1,C2, . . . ,Ck, where k represents the total
number of distinct concepts; (2) to track the evolution and drift of these concepts across time; and (3)
to predict future concepts.

Concept. Throughout this paper, a concept is defined as the profile pattern of a cluster of similar
subseries, observed within a specific segement/window. Here, the term “profile pattern” refers to
a subseries, the vector representation of which aligns with the centroid of similar subseries. We
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use a tunable hyperparameter ρ, to differentiate profile patterns and modulate whether concept drift
is gradual (smaller ρ, more concepts) or abrupt (larger ρ, fewer concepts). For a more detailed
mathematical definition, please refer to Appendix A.

Notation. We denote matrices by boldface capital letters, e.g., M. MT, M−1, Tr(M) indicate
the transpose, inverse and trace of matrix M, respectively. diag(M) refers to a vector with its i-th
element being the i-th diagonal element of M.

3.1 SELF-REPRESENTATION LEARNING IN TIME SERIES

Time series often manifest recurring patterns. One feasible way to capture these inherent patterns is
through self-representation learning Bai & Liang (2020). This approach models each series as a linear
combination of others, formulated as S = SZ or Si =

∑
j SjZij , where Z is the self-representation

coefficient matrix. In multiple time series, high Zij values indicate similar behaviors or concepts
between Si and Sj . The learning objective function is:

min
Z

1

2
||S− SZ||2 +Ω(Z), s.t. Z = ZT ≥ 0,diag(Z) = 0 (1)

where Ω(·) is a regularization term on Z. The ideal representation Z should group data points with
similar patterns, represented as block diagonals in Z, each block signifying a specific concept. The
number of blocks, k, corresponds to the distinct concepts.

3.2 KERNEL TRICK FOR MODELING TIME SERIES

Addressing nonlinear relationships in co-evolving time series, especially in the presence of concept
drift, can be challenging for linear models. Kernelization techniques overcome this by mapping data
into higher-dimensional spaces using suitable kernel functions. This facilitates the identification of
concepts within these transformed spaces. The process is facilitated by the “kernel trick”, which
employs a nonlinear feature mapping, Φ(S): Rd → H, to project data S into a kernel Hilbert
spaceH. Direct knowledge of the transformation Φ is not required; instead, a kernel Gram matrix
K = Φ(S)⊤Φ(S) is used.

4 DRIFT2MATRIX

This section introduces the fundamental concepts and design philosophy of Drift2Matrix. Our
objective is to identify significant concept trends and encapsulate them into a succinct yet powerful
and adaptive representative model.

4.1 KERNEL-INDUCED REPRESENTATION LEARNING

To model concepts, we propose kernel-induced representation learning to cluster subseries retrieved
using a sliding window technique. We begin with a simple case, where we treat the entire series as a
single window. Given a collection of time series S = (S1, . . . , SN ) ∈ RT×N as described in Eq. 1,
its linear self-representation Z would make the inner product SZ come close to S. Nevertheless, the
objective function in Eq. 1 may not efficiently handle nonlinear relationships inherent in time series.
A solution involves employing “kernel tricks” to project the time series into a high-dimensional
RKHS. Building upon this kernel mapping, we present a new kernel representation learning strategy,
with the ensuing self-representation objective:

min
Z

1

2
||Φ(S)− α

2
Φ(S)Z||2 = min

Z

1

2
Tr(K− αKZ+ ZTKZ), s.t. Z = ZT ≥ 0,diag(Z) = 0

(2)
Here, the mapping function Φ(·) needs not be explicitly identified and is typically replaced by a
kernel K subject to K = Φ(S)⊤Φ(S). It’s noteworthy that the parameter α is key to preserving the
local manifold structure of time series during this projection, further explained in Sec. 5.2.

Ideally, we aspire to achieve the matrix Z having k block diagonals under some proper permutations
if time series S contains k concepts. To this end, we add a regularization term to Z and define the
kernel objective function as:

min
Z

1

2
Tr(K−αKZ+ ZTKZ) + γ||Z||

k
, s.t. Z = ZT ≥ 0,diag(Z) = 0 (3)

4
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where γ > 0 balances the loss function with regularization term, ||Z||
k

=
∑N

i=N−k+1 λi(LZ) and

λi(LZ) contains the eigenvalues of Laplacian matrix LZ corresponding to Z in decreasing order.
Here, the regularization term is equal to 0 if and only if Z is k-block diagonal (see Theorem 4.1 for
details). Based on the learned high-quality matrix Z (containing the block diagonal structure), we
can easily group the time series into k concepts using traditional spectral clustering technology Ng
et al. (2001). The detailed method of estimating the number of concepts k is provided in Appendix B.
To solve Eq. 3, which is a nonconvex optimization problem, we leverage the Augmented Lagrange
method with Alternating Direction Minimization strategy to propose a specialized method for solving
the nonconvex kernel self-representation optimization (see Appendix C.3).

Theorem 4.1 If the multiple time series S contains k distinct concepts, then min
∑N

i=N−k+1 λi(LZ)
is equivalent to Z being k-block diagonal.

Proof 4.2 Due to the fact that Z = ZT ≥ 0, the corresponding Laplacian matrix LZ is pos-
itive semidefinite, i.e., LZ ⪰ 0, and thus λi(LZ) ≥ 0 for all i. The optimal solution of
min

∑N
i=N−k+1 λi(LZ) is that all elements of λi(LZ) are equal to 0, which means that the k

smallest eigenvalues are 0. Combined with the Laplacian matrix property, it’s evident that the multi-
plicity k of the zero eigenvalues in Laplacian matrix LZ matches the count of connected components
(or blocks) present in Z, and thus the soundness of Theorem 1 has been proved.

4.2 ADAPTATION TO CONCEPT DRIFT

For b sliding windows {W1, . . . ,Wb}3, Drift2Matrix constructs individual kernel representations
for each window. Let’s consider k distinct concepts identified across these windows, denoted as
Cc∈[1,k] = {C1, · · · ,Ck}. It is important to know that the concepts identified from the subseries Sp

within the p-th (p ∈ [1, b]) window may differ from those in other windows. This reveals the variety
of concepts in time series and the demand for a dynamic representation.

For two consecutive windows Wp and Wp+1, the effective probability of a suddenly switching in
concept from Cr to Cm can be calculated for series Si as follows:

P (Cr → Cm|Wp →Wp+1, Si) =

∑
ζ Ψ

r,ζ
p,p+1Λ

ζ,m
p,p+1∑

ζ1

∑
ζ2
Ψζ1,ζ2

p,p+1Λ
ζ1,ζ2
p,p+1

(4)

where ζ1, ζ2 ∈ {1, · · · , k} and

Ψr,m
p,p+1 =

η (Cr → Cm|T r (Si|Wp))

|T r(Si|Wp)|
,

Λr,m
p,p+1 =

p−1∑
l=1

min{η(Cr,Wl), η(Cm,Wl+1)}
max{η(Cr,Wl), η(Cm,Wl+1)}

(5)

Here, the trajectory T r (Si|Wp) represents the sequence of concepts exhibited by series Si over time.
The term η (Cr → Cm|T r (Si|Wp)) counts the occurrences of the sequence Cr,Cm within this
trajectory. η(Cr,Wl) (resp. η(Cm,Wl+1)) denotes the number of series exhibiting concept Cr (resp.
Cm) at window Wl (resp. Wl+1).

Notably, the component Ψr,m
p,p+1 gauges the immediate risk of observing concept Cm after the prior

concept Cr. Meanwhile, Λr,m
p,p+1 quantifies the likelihood of transitions between concepts within the

entire dataset S. Consequently, Eq. 4 integrates both the immediate risk for a single series and the
collective concept of series in S.

In the event that the exhibited concept of Si in Wp is Cr and the most probable concept switch goes
to one of the concepts Cm, we can estimate the series value based on the previous realized value
observed and the concept predicted. The predicted values of Si under the window Wp+1 can be
calculated as:

Pre Si =

p∑
l=1

∆(Rm|Si,Wl) · τp−l+1 · {Si|Wl} (6)

3The window size is determined through a heuristic method that balances the granularity of concept identifi-
cation with the representational capacity of Drift2Matrix. For details, see Sec. 6.1 and Appendix D.
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where the indicator function ∆(Cm|Si,Wl) indicates whether Si belongs to Cm under window Wl,
and {Si|Wl} is the subseries value of Si within window Wl. τp−l+1 ∈ (0, 1) is the weight value
that modulates the contribution of {Si|Wl} to generate predicted values. In this context, we simply
require

∑p
l=1 τ

p−l+1 = 1, which implies that the subseries closer to the predicted window is deemed
more significant.

4.3 INTEGRATION INTO DEEP LEARNING BACKBONES

One of the key strengths of Drift2Matrix is its flexibility, which allows it to be easily integrated into
most modern deep learning backbones. Here, we take Autoencoder-Drift2Matrix (Auto-D2M) as an
example, which comprises an Encoder, a Kernel Representation Layer, and a Decoder.

Encoder: The encoder maps input S into a latent representation space. Specifically, the encoder
performs a nonlinear transformation HΘe

= EncoderΘe
(S), where HΘe

represents the latent repre-
sentations.

Kernel Representation Layer: Implemented as a fully connected layer without bias and non-linear
activations, this layer captures intrinsic relationships among the latent representations and ensures
that each latent representation can be expressed as a combination of others Φ(HΘe

) = Φ(HΘe
)Θs,

where Θs ∈ Rn×n is the self-representation coefficient matrix. Each column θs,i of Θs represents
the weights used to reconstruct the i-th latent representation from all latent representations. To
promote sparsity in Θs and highlight the most significant relationships, we introduce an ℓ1 norm
regularization: Lkernel(Θs) = ∥Θs∥1.

Decoder: The decoder reconstructs the input from the refined latent representations ŜΘd
=

DecoderΘd
(ĤΘe

), where ŜΘd
represents the reconstructed time series segments.

Loss Function: Training involves minimizing a loss function that combines reconstruction loss,
self-representation regularization, and a temporal smoothness constraint:

L(Θ) =
1

2
∥S− ŜΘd

∥2F + λ1∥Θs∥1 + λ2∥Φ(HΘe
)− Φ(HΘe

)Θs∥2F ,

where Θ = {Θe,Θs,Θd} includes all learnable parameters, with λ1, λ2, and λ3 balancing the
different loss components. Specifically, λ1 promotes sparsity in the self-representation Θs, and λ2

preserves the self-representation property.

5 THEORETICAL ANALYSIS

5.1 BEHAVIOR OF THE REPRESENTATION MATRIX

The core of Drift2Matrix is the kernel representation matrix Z, which encapsulates the relationships
and concepts within time series. Without loss of generality, let S = [S(1),S(2), · · · ,S(k)] be ordered
according to their concept. Ideally, we wish to obtain a representation Z such that each point is
represented as a combination of points belonging to the same concept, i.e., S(i) = S(i)Z(i). In this
case, Z in Eq. 1 has the k-block diagonal structure (up to permutations), i.e.,

Z =


Z(1) 0 · · · 0
0 Z(2) · · · 0
...

...
. . .

...
0 0 · · · Z(k)

 (7)

This representation reveals the underlying structure of S, with each block Z(i) in the diagonal
representing a specific concept. k represents the number of blocks, which is directly associated
with the number of distinct concept. Though we assume that S = [S(1),S(2), · · · ,S(k)] is ordered
according to the true membership for the simplicity of discussion, the input matrix in Eq. 2 can be
S̃ = SP, where P can be any permutation matrix which reorders the columns of S.

Theorem 5.1 In Drift2Matrix, the representation matrix obtained for a permuted input data is
equivalent to the permutation-transformed original representation matrix. Let Z be feasible to
Φ(S) = Φ(S)Z, then Z̃ = PTZP is feasible to Φ(S̃) = Φ(S̃)Z̃. (See Appendix C.1 for proof.)
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5.2 KERNEL-INDUCED REPRESENTATION

The kernel-induced representation in Drift2Matrix is a key step that reveals nonlinear relationships
among co-evolving time series in a high-dimensional space. This approach transforms complex,
intertwined patterns in the original time series, which may not be discernible in low-dimensional
spaces, into linearly separable entities in the transformed space. Essentially, it allows for a deeper and
more nuanced understanding of the dynamics hidden within complex time series structures. Through
kernel transformation, previously obscured correlations and patterns become discernible, enabling
more precise and insightful analysis of co-evolving time series data.

Additionally, our kernel-induced representation not only projects the time series into a high-
dimensional space but also preserves the local manifold structure of the time series in the original
space. This preservation ensures that the intrinsic geometric and topological characteristics of the
data are not lost during transformation. Our goal is to ensure that, once the time series are mapped
into a higher-dimensional space, the integrity of the identified concepts remains consistent with the
structure of the original space, without altering the distribution or shape of these concepts.

Theorem 5.2 Drift2Matrix reveals nonlinear relationships among series in a high-dimensional space
while simultaneously preserving the local manifold structure of series. (See Appendix C.2 for proof.)

6 EXPERIMENTS

This section presents our experiments to evaluate the effectiveness of Drift2Matrix. The experiments
were designed to answer the following questions:

(Q1) Effectiveness: How well does Drift2Matrix identify and track concept drift?

(Q2) Accuracy: How accurately does Drift2Matrix forecast future concept and series value?

(Q3) Scalability: How does Drift2Matrix perform in online forecasting scenarios?

6.1 DATA AND EXPERIMENTAL SETUP

The data utilized in our experiments consists of a synthetic dataset (SyD) constructed to allow the
controllability of the structures/numbers of concepts and the availability of ground truth, as well
as several real-life datasets: GoogleTrend Music Player dataset (MSP), Customer electricity load
(ELD) data, Chlorine concentration data (CCD), Earthquake data (EQD), Electrooculography signal
(EOG), Rock dataset (RDS), two financial datasets (Stock1 & Stock2), four ETT (ETTh1, ETTh2,
ETTm1, ETTm2), Traffic and Weather datasets. In our kernel representation learning process, we
chose the Gaussian kernel function. Detailed information about these datasets and the setup of the
kernel function can be found in Appendix F. The source code is public to the research community4.

In the learning process, a fixed window slides over all the series and generates subseries under different
windows. Then, we learn a kernel representation for the subseries in each window. Given our focus
on identifying concepts and concept drift, varying window sizes actually demonstrate Drift2Matrix’s
ability to extend across multi-scale time series. Specifically, smaller window sizes represent a
low-scale perspective, uncovering short-term subtle concept variations (fluctuations), while larger
window sizes (high-scale) reflect overall concept trends (moderation). In this paper, we employ MDL
(Minimum Description Length) techniques Rissanen (1998) on the segment-score obtained through
our kernel-induced representation to determine a window size 5 that establishes highly similar or
repetitive concepts across different windows (see Appendix D). Although adaptively determining a
domain-agnostic window size forms a part of our work, to ensure fairness in comparison, all models,
including Drift2Matrix, were evaluated using the same window size settings in our experiments.

6.2 Q1: EFFECTIVENESS

Drift2Matrix’s forecasting effectiveness is evaluated through its ability to identify important concepts.
Due to space limitations, here we only describe our results for the SyD and Stock1 datasets, the
outputs with the other datasets are shown in Appendix H.2. Our method for automatically estimating

4https://anonymous.4open.science/r/Drift2Matrix-main-86B7
5For ETT, Traffic, and Weather datasets, we consider sizes of 96, 192, 336, and 720, following the standard

settings used by most methods.
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the optimal size of the sliding windows to obtain suitable concepts is detailed in Appendix D. The
method allows obtaining window sizes of 78 and 17 for Synthetic and Stock1, respectively (see
Fig 5). The Drift2Matrix output of SyD has already been presented in Fig. 1 of Sec. 1. As already
seen, our method automatically captures typical concepts in a given co-evolving time series (Fig. 1
(b-c)), and dynamic concept drifts (Fig. 1 (d)). Drift2Matrix views co-evolving time series as an
ecosystem, enabling precise detection of interconnected dynamics and drifts. This also facilitates
forecasting future concepts and values (The grey areas in Fig. 1 (d)).

 C4  C4  C4  C4  C4  C2  C4

 C1  C1  C1  C1  C1  C2  C1

 C3  C3  C1  C1  C1  C2  C1

MRK

MU

ETSY

Predict

(b) Number of series exhibiting concepts and t-SNE visualization in each window 

(c) Examples of concept prediction and series forecasts for subsequent window 

(a) Discovered concepts

Figure 2: Visualized results on Stock1.

Fig. 2(a) illustrates various con-
cepts identified in the Stock1
dataset, revealing patterns of mar-
ket volatility. These discovered
concepts are meaningful as they en-
capsulate different market behav-
iors, such as steady trends, spikes,
or dips, corresponding to distinct
phases in market activity. For ex-
ample, Concept 4 represents stable
periods with low volatility, while
Concepts 2 and 5 capture moments
of sudden market fluctuations or
high-risk events. Additionally, the
subtle differences between Con-
cepts 2 and 5 highlight the model’s
ability to detect gradual drifts in
market behavior. Using these con-
cepts, we trace series exhibiting
concept drift over different win-
dows. For the purpose of illustra-
tion, in Fig. 2(b), we plot the heatmap of each concept across different windows and their correspond-
ing 2D visualizations using t-Distributed Stochastic Neighbor Embedding (t-SNE) Van der Maaten &
Hinton (2008). Darker heatmap cells indicate more prevalent concepts. The exclusive appearance
of C2 and C5 in the 6th window, absent in the preceding ones, denotes significant changes and
fluctuations in the financial markets – i.e., possibly induced by the COVID-19 pandemic. Fig. 2(c)
shows the concept drifts and predictions for three random stocks (NASDAQ: MRK, MU and ETSY)
from Stock1, demonstrating Drift2Matrix’s ability to track and forecast concept drifts.

6.3 Q2: ACCURACY

For real datasets, we lack the ground truth for validating the obtained concepts. Instead, we validate
the value and gain of the discovered concepts for time series forecasting as they are employed
in the forecasting formula Eq. 6. In this section, we evaluate the forecasting performance of the
proposed model against seventeen different models, utilizing the Root Mean Square Error (RMSE)
as an evaluative metric. Due to space limitations, we only present results for seven comparison
models here; the complete experimental results can be found in the Appendix H.3. These seven
models include four forecasting models (ARIMA Box (2013), KNNR Chen & Paschalidis (2019),
INFORMER Zhou et al. (2021), and a ensemble model N-BEATS Oreshkin et al. (2019)), and
three are concept-drift models (Cogra Miyaguchi & Kajino (2019), OneNet Wen et al. (2024) and
OrBitMap Matsubara & Sakurai (2019)). For the existing methods, we use the codes released by the
authors, and the details of the parameter settings can be found in Appendix G.

Table 1 shows the forecasting performance of the models. We see that our model consistently
outperforms the other models, achieving the lowest forecasting error on most datasets. ARIMA has
the ability to capture seasonality patterns within time series; however, when the various seasonalities
are noncontiguous, the models face difficulties in capturing complex, nonlinear dynamic interactions
between time series. N-BEATS, a state-of-the-art deep learning model, while generally effective due
to its ensemble-based architecture, does not consistently perform as well as Drift2Matrix or OneNet,
particularly in capturing concept drift across multiple time series. OneNet, like N-BEATS, achieves
good results due to its ensemble-based strengths. However, Drift2Matrix achieves comparable
results. Notably, Drift2Matrix is not primarily designed as a forecasting model; rather, it focuses
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Table 1: Models’ forecasting performance, in terms of RMSE
Datasets Horizon Forecasting models Concept-aware models

ARIMA KNNR INFORMER N-BEATS Cogra OneNet OrbitMap Drift2Matrix Auto-D2M
SyD 78 1.761 1.954 0.966 0.319 1.251 0.317 0.635 0.315 0.313
MSP 31 6.571 4.021 2.562 0.956 2.898 0.751 1.244 0.663 0.659
ELD 227 2.458 2.683 2.735 1.593 2.587 1.101 1.835 1.644 1.669
CCD 583 8.361 6.831 3.746 1.692 3.604 1.298 1.753 1.387 1.392
EQD 50 5.271 3.874 4.326 1.681 3.949 1.386 1.386 1.392 1.388
EOG 183 3.561 3.452 4.562 2.487 4.067 1.337 3.251 1.198 1.191
RDS 69 6.836 6.043 5.682 2.854 5.135 1.865 4.571 1.699 1.689
Stock1 (×10−2) 17 2.635 2.348 2.127 1.035 2.137 0.923 1.003 0.878 0.902
Stock2 (×10−2) 11 2.918 2.761 1.064 0.607 1.367 0.312 0.747 0.303 0.317

ETTh1

96 1.209 0.997 0.966 0.933 0.909 0.916 0.909 0.913 0.907
192 1.267 1.034 1.005 1.023 0.996 0.975 0.991 0.979 0.977
336 1.297 1.057 1.035 1.048 1.041 1.028 1.039 1.018 1.015
720 1.347 1.108 1.088 1.115 1.095 1.082 1.083 1.073 1.085

ETTh2

96 1.216 0.944 0.943 0.892 0.901 0.889 0.894 0.885 0.879
192 1.250 1.027 1.015 0.979 0.987 0.968 0.976 0.977 0.970
336 1.335 1.111 1.088 1.040 1.065 1.039 1.052 1.044 1.037
720 1.410 1.210 1.146 1.101 1.131 1.119 1.120 1.115 1.121

ETTm1

96 0.997 0.841 0.853 0.806 0.780 0.777 0.778 0.781 0.777
192 1.088 0.898 0.898 0.827 0.819 0.813 0.810 0.805 0.801
336 1.025 0.886 0.885 0.852 0.838 0.819 0.820 0.822 0.819
720 1.070 0.921 0.910 0.903 0.890 0.859 0.868 0.864 0.854

ETTm2

96 0.999 0.820 0.852 0.804 0.824 0.812 0.821 0.810 0.802
192 1.072 0.874 0.902 0.829 0.849 0.830 0.832 0.825 0.824
336 1.117 0.905 0.892 0.852 0.854 0.841 0.842 0.847 0.839
720 1.176 0.963 0.965 0.897 0.921 0.896 0.906 0.886 0.876

Traffic

96 1.243 1.006 0.895 0.893 0.898 0.884 0.883 0.880 0.874
192 1.253 1.021 0.910 0.920 0.908 0.883 0.895 0.888 0.880
336 1.260 1.028 0.916 0.895 0.922 0.901 0.908 0.937 0.926
720 1.285 1.060 0.968 0.949 0.964 0.940 0.946 0.932 0.923

Weather

96 1.013 0.814 0.800 0.752 0.759 0.745 0.744 0.737 0.742
192 1.021 0.867 0.861 0.798 0.793 0.776 0.775 0.771 0.769
336 1.043 0.872 0.865 0.828 0.825 0.801 0.806 0.791 0.786
720 1.096 0.917 0.938 0.867 0.863 0.833 0.841 0.840 0.832

While forecasting series task is not our main focus, we provide a comparison of Drift2Matrix with other models.
Results for the extended Auto-D2M, are included but not part of the comparison. Complete experimental results
can be found in the Appendix H.3.

on uncovering concepts and tracking concept drift. This unique focus allows Drift2Matrix to excel
in identifying complex, dynamic interactions within time series data. Meanwhile, OrbitMap, while
also concept-aware, is hindered by its necessity for predefined concepts and struggles with handling
multiple time series.

6.4 Q3: SCALABILITY
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Figure 3: Online forecasting results on Stock2

To further illustrate the predictive scal-
ability of Drift2Matrix, we employed it
for one of the most challenging tasks in
time series analysis – i.e., online fore-
casting, leveraging the discovered con-
cepts. For this task, our objective is
to forecast upcoming unknown future
events, at any given moment, while dis-
carding redundant information. This ap-
proach is inherently aligned with online
learning paradigms, where the model
continually learns and adapts to new
data points, making it highly pertinent
in the dynamic landscape of financial
markets. We conducted tests on the
Stock2 dataset.

Fig. 3 illustrates the online forecast-
ing examples on four stocks (NASDAQ:
CSX, ULTA, UNP and BK) and show-
cases snapshots at several time-stamps.
The original data at the top of Fig. 3(a)
elucidates the daily volatility fluctuations for these four stocks. The lower part of Fig. 3(a) unveils
the outcomes for online forecasting, showcasing how our model anticipates series behavior over

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

time. For stock ULTA, depicted by the green line, all the compared models, including our model,
encounter challenges in predicting the abnormal behavior of the first high volatility (Fig. 3(b-1)) due
to the absence of antecedent knowledge. However, post encountering this anomalous behavior, our
model accurately anticipates the timing of the second anomalous high-volatility behavior (Fig. 3(b-2))
and the ensuing volatility behavior, attributing to Drift2Matrix’s ability to model concept drift by
leveraging the interrelations among multiple time series. Specifically, for a single-series concept drift
model, it is impossible to predict the second anomalous behavior accurately if there is no periodic
pattern in it; whereas for our model, since our concept drift is based on correlations between series,
when other series start to show some anomalous volatility behavior (albeit small), our model is also
able to predict the next volatility of multiple time series in a holistic way.

6.5 ADDITIONAL EXPERIMENTS

Further experiments and ablation studies can be found in Appendix H, including

• Appendix H.1: We evaluate Drift2Matrix’s ability to handle noise or outliers, demonstrating
its robustness.

• Appendix H.2: We expanded the model’s evaluation to include the other datasets like MSP,
ELD, CCD, EQD, EOG, and RDS. For each dataset, distinct concepts exhibited by co-evolving
series were identified, demonstrating the model’s robustness in concept identification across
various datasets.

• Appendix H.3: A complete result comparing our model with other models, providing a
comprehensive view of the model’s performance across all datasets.

• Appendix H.4: A comparative analysis was conducted between our model and the N-BEATS
model on Stock1 and Stock2 datasets. This comparison highlighted the limitations of
N-BEATS in capturing complex concept transitions within multiple time series.

• Appendix H.5: The model’s application to motion segmentation on the Hopkins155 database
was explored. This case study demonstrated the model’s effectiveness in handling different
types of sequences and its adaptability to various motion concepts.

• Appendix H.6: A comprehensive analysis of RMSE values across all datasets was presented,
showcasing our model’s superior performance in comparison to other models.

• Appendix H.7: A comprehensive analysis of complexity and execution time Evaluation.
• Appendix H.8: Detailed ablation studies were conducted to validate the efficacy of various

components of the Drift2Matrix’s kernel representation learning, including regularizations,
kernel-based methods, and different kernel functions. These studies provided insights into
the model’s performance under different configurations and conditions.

7 CONCLUSION

In this work, we devised a principled method for identifying and modeling intricate, non-linear
interactions within an ecosystem of multiple time series. The method enables us to predict both
concept drift and future values of the series within this ecosystem. One noteworthy feature of the
proposed method is its ability to identify and handle multiple time series dominated by concepts. This
is accomplished by devising a kernel-induced representation learning, from which the time-varying
kernel self-representation matrices and the block-diagonal property are utilized to determine concept
drift. The proposed method adeptly reveals diverse concepts in the series under investigation without
requiring prior knowledge. This work opens up avenues for further research into time series analysis,
particularly regarding concept drift mechanisms in multi-series ecosystems.

Despite its strengths, Drift2Matrix has a limitation when applied to time series with few variables. For
example, converting a dataset with five variables into a 5x5 matrix makes block diagonal regularization
less effective. Conversely, larger datasets, like those with 500 variables, benefit significantly from our
method, enabling the identification of nonlinear relationships and concept drift. This characteristic is
somewhat counterintuitive compared to most existing time series models that often focus on single or
low-dimensional (few variables) time series forecasting, such as sensor data streams. Despite this
limitation, we believe it underscores Drift2Matrix’s unique appeal. It addresses a gap in handling
concept drift in time series with a large number of variables, offering excellent interpretability and
reduced computational complexity.
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Étienne Marcotte, Valentina Zantedeschi, Alexandre Drouin, and Nicolas Chapados. Regions of
reliability in the evaluation of multivariate probabilistic forecasts. arXiv preprint arXiv:2304.09836,
2023.

Yasuko Matsubara and Yasushi Sakurai. Regime shifts in streams: Real-time forecasting of co-
evolving time sequences. In ACM SIGKDD, pp. 1045–1054, 2016.

Yasuko Matsubara and Yasushi Sakurai. Dynamic modeling and forecasting of time-evolving data
streams. In ACM SIGKDD, pp. 458–468, 2019.

Kohei Miyaguchi and Hiroshi Kajino. Cogra: Concept-drift-aware stochastic gradient descent
for time-series forecasting. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 33, pp. 4594–4601, 2019.

Andrew Ng, Michael Jordan, and Yair Weiss. On spectral clustering: Analysis and an algorithm.
Advances in neural information processing systems, 14, 2001.

Feiping Nie, Xiaoqian Wang, and Heng Huang. Clustering and projected clustering with adaptive
neighbors. In Proceedings of ACM SIGKDD, pp. 977–986, 2014.

Boris N Oreshkin, Dmitri Carpov, Nicolas Chapados, and Yoshua Bengio. N-beats: Neural basis
expansion analysis for interpretable time series forecasting. arXiv preprint arXiv:1905.10437,
2019.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Quang Pham, Chenghao Liu, Doyen Sahoo, and Steven CH Hoi. Learning fast and slow for online
time series forecasting. arXiv preprint arXiv:2202.11672, 2022.

Siqi Ren, Bo Liao, Wen Zhu, and Keqin Li. Knowledge-maximized ensemble algorithm for different
types of concept drift. Information Sciences, 430:261–281, 2018.

Jorma Rissanen. Stochastic complexity in statistical inquiry, volume 15. World scientific, 1998.

Gilbert W Stewart. Matrix perturbation theory. 1990.

Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of machine
learning research, 9(11), 2008.

Ulrike Von Luxburg. A tutorial on spectral clustering. Statistics and computing, 17(4):395–416,
2007.

Xue Wang, Tian Zhou, Qingsong Wen, Jinyang Gao, Bolin Ding, and Rong Jin. Card: Channel aligned
robust blend transformer for time series forecasting. In The Twelfth International Conference on
Learning Representations, 2023.

Geoffrey I Webb, Roy Hyde, Hong Cao, Hai Long Nguyen, and Francois Petitjean. Characterizing
concept drift. Data Mining and Knowledge Discovery, 30(4):964–994, 2016.

Qingsong Wen, Zhe Zhang, Yan Li, and Liang Sun. Fast robuststl: Efficient and robust seasonal-trend
decomposition for time series with complex patterns. In Proceedings of the 26th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining, pp. 2203–2213, 2020.

Qingsong Wen, Weiqi Chen, Liang Sun, Zhang Zhang, Liang Wang, Rong Jin, Tieniu Tan, et al.
Onenet: Enhancing time series forecasting models under concept drift by online ensembling.
Advances in Neural Information Processing Systems, 36, 2024.

Gerald Woo, Chenghao Liu, Doyen Sahoo, Akshat Kumar, and Steven Hoi. Etsformer: Exponential
smoothing transformers for time-series forecasting. arXiv preprint arXiv:2202.01381, 2022.

Haixu Wu, Tengge Hu, Yong Liu, Hang Zhou, Jianmin Wang, and Mingsheng Long. Timesnet:
Temporal 2d-variation modeling for general time series analysis. In The eleventh international
conference on learning representations, 2022.

Zhijian Xu, Ailing Zeng, and Qiang Xu. FITS: Modeling time series with $10k$ parameters. In The
Twelfth International Conference on Learning Representations, 2024.

Ling Yang and Shenda Hong. Unsupervised time-series representation learning with iterative bilinear
temporal-spectral fusion. In International conference on machine learning, pp. 25038–25054.
PMLR, 2022.

Shuo Yang, Xinran Zheng, Jinze Li, Jinfeng Xu, Xingjun Wang, and Edith CH Ngai. Recda: Concept
drift adaptation with representation enhancement for network intrusion detection. In Proceedings
of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pp. 3818–3828,
2024.

Xiaoyu You, Mi Zhang, Daizong Ding, Fuli Feng, and Yuanmin Huang. Learning to learn the future:
Modeling concept drifts in time series prediction. In Proceedings of the 30th ACM International
Conference on Information & Knowledge Management, pp. 2434–2443, 2021.

En Yu, Jie Lu, Bin Zhang, and Guangquan Zhang. Online boosting adaptive learning under concept
drift for multistream classification. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 38, pp. 16522–16530, 2024.

Ailing Zeng, Muxi Chen, Lei Zhang, and Qiang Xu. Are transformers effective for time series
forecasting? In Proceedings of the AAAI conference on artificial intelligence, volume 37, pp.
11121–11128, 2023.

Kun Zhan, Chaoxi Niu, Changlu Chen, Feiping Nie, Changqing Zhang, and Yi Yang. Graph structure
fusion for multiview clustering. IEEE Transactions on Knowledge and Data Engineering, 31(10):
1984–1993, 2018.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

YiFan Zhang, Weiqi Chen, Zhaoyang Zhu, Dalin Qin, Liang Sun, Xue Wang, Qingsong Wen, Zhang
Zhang, Liang Wang, and Rong Jin. Addressing concept shift in online time series forecasting:
Detect-then-adapt. arXiv preprint arXiv:2403.14949, 2024.

Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang.
Informer: Beyond efficient transformer for long sequence time-series forecasting. In Proceedings
of the AAAI conference on artificial intelligence, volume 35, pp. 11106–11115, 2021.

Tian Zhou, Ziqing Ma, Qingsong Wen, Xue Wang, Liang Sun, and Rong Jin. Fedformer: Frequency
enhanced decomposed transformer for long-term series forecasting. In International conference on
machine learning, pp. 27268–27286. PMLR, 2022.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Supplementary Materials for: Drift2Matrix

In this document, we have gathered all the results and discussions that, due to page limitations, were
not included in the main manuscript.

Appendix

A Extended Related Work and Motivation

B Estimating the Number of Concepts

C Proofs and Optimization

D Domain Agnostic Window Size Selection

E Algorithm of Drift2Matrix

F Detail of Datasets and Experimental setup

G Parameters Setting of Comparing Methods

H Additional Experiments

A EXTENDED RELATED WORK AND MOTIVATION

Concept drift models. Co-evolving time series analysis, by its nature, entails the simultaneous ob-
servation and interpretation of interdependent data streams Cavalcante et al. (2016). This complexity
is further heightened when concept drift is introduced into the model Webb et al. (2016). In such
scenarios, a shift in one variable can propagate through the network of interrelations, affecting the
entire co-evolving system. Matsubara et al. Matsubara & Sakurai (2016) put forth the RegimeCast
model, which learns potential patterns within a designated time interval in a co-evolving environ-
ment and predicts the subsequent pattern most likely to emerge. While the approach can forecast
following patterns, it is not designed to account for any interdependencies between them. In their
subsequent work Matsubara & Sakurai (2019), the authors introduced the deterministic OrbitMap
model to capture the temporal transitions across displayed concepts. Notably, this approach relies on
pre-labeled concepts (known beforehand). DDG-DA Li et al. (2022) for data distribution generation
has been adapted to better suit co-evolving scenarios, addressing the unique challenges presented by
the interplay of multiple data streams under concept drift conditions. However, this method defines
the concept as a collective behavior represented by co-evolving time series, rather than capturing the
dynamics of individual series and their interactions. While acknowledging that deep learning has
made significant advances in time series field, we must also note that most of these progress aims at
improving accuracy. For example, OneNet Wen et al. (2024) addresses the concept drift problem
by integrating an ensemble of models that share different data biases and learning to dynamically
combine forecasts from these models for enhanced prediction. It maintains two forecasting models
focusing on temporal correlation and cross-variable dependency, trained independently and dynami-
cally adjusted during testing; FSNet Pham et al. (2022), on the other hand, is designed to quickly
adapt to new or recurring patterns in non-stationary environments by enhancing a neural network
backbone with two key components: an adapter for recent changes and an associative memory for
recurrent patterns. Dish-TS Fan et al. (2023) offers a general approach for alleviating distribution
shift in time series forecasting by normalizing model inputs and outputs to better handle distribution
changes. Similarly, Cogra’s application of the Sequential Mean Tracker (SMT) adjusts to changes in
data distribution, improving forecast accuracy Miyaguchi & Kajino (2019).

Representation Learning on TS. Representation learning on time series (TS) has gained significant
attention due to its potential in uncovering underlying patterns and features essential for various
downstream tasks. T-Rep Fraikin et al. (2023) leverages time-embeddings for time series representa-
tion. This method focuses on capturing temporal dependencies and variations through time-specific
embeddings. TimesURL Liu & Chen (2024) employs self-supervised contrastive learning to create
representations for time series. BTSF Yang & Hong (2022) is an unsupervised method for time series
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representation learning that iteratively fuses temporal and spectral information. The bilinear fusion
mechanism allows the model to capture both temporal dynamics and spectral characteristics of the
time series. Timemae Cheng et al. (2023) leverages self-supervised learning to learn representations
of time series using decoupled masked autoencoders. This method focuses on reconstructing the
time series data by masking certain parts of the input and learning to predict the missing information.
While the aforementioned methods have advanced time series representation learning, they have
several limitations. Many approaches assume linear relationships, limiting their ability to capture
complex, non-linear dependencies inherent in co-evolving time series. Additionally, techniques
heavily reliant on specific features, such as spectral characteristics, may not generalize well across
diverse datasets. The computational complexity of some advanced representation learning methods
poses challenges for scalability, especially when applied to large, co-evolving datasets. Moreover,
these methods often focus on representation learning for single time series or treat co-evolving time
series as a data stream, rather than uncovering the intricate non-linear relationships among series.

Table 2: Capabilities of approaches.
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Multiple time series - - - - ✓ - ✓ - ✓
Time series compression ✓ - ✓ ✓ - ✓ - - ✓

Domain agnostic segmentation - - - ✓ - - - - ✓
Concept identification
(non-linear interaction) - - - - - - - - ✓

Concept trajectory tracking - - ✓ ✓ - - - - ✓
Mitigating Concept Drift Impact - - ✓ ✓ - ✓ ✓ ✓ ✓

Forecasting - ✓ - ✓ ✓ ✓ ✓ ✓ ✓

Motivation. Our work aims to propose a
novel perspective on concept evaluation in
co-evolving time series. Eschewing tradi-
tional methods that rely on latent variable
dynamics, we delve into the inherent be-
havior of the time series. Our proposed
Drift2Matrix, with its nonlinear mapping,
is adept at capturing the ever-changing con-
cepts, offering insights into their intricacies
and forecasting potential concept drift. The
comparison of our Drift2Matrix framework
with the recent advances in deep learning methods, is given from the following three perspectives:

• Focus of Research. While acknowledging the rapid developments in deep learning for
time series forecasting, it’s crucial to point out that most of these advancements concentrate
predominantly on forecasting accuracy. Notably, even the most recent deep learning methods
that mention concept drift, such as OneNet Wen et al. (2024) and FSNet Pham et al. (2022),
primarily aim to mitigate the impact of concept drift on forecasting. They achieve this
by incorporating an ensemble of models with diverse data biases or by refining network
parameters for better adaptability. In contrast, Drift2Matrix focuses on the challenges of
adaptive concept identification and dynamic concept drift in co-evolving time series. Our
model delves deeper into the inherent structure of time series data, enabling a more nuanced
understanding and handling of concept drift by dynamically identifying and adapting to new
concepts as they emerge.

• Interpretability. Drift2Matrix introduces kernel-induced representation to reveal nonlinear
relationships in time series, substantially boosting both adaptability and interpretability of
the model. In particular, Drift2Matrix transforms time series data into a matrix format,
where its block diagonal structure intuitively maps out distinct concepts. Conversely, while
methods like feature importance scoring and attention mechanisms aim to improve deep
learning models’ interpretability, they often rely on post-hoc analysis of the model’s internal
mechanisms.

• Example of Financial Market. Financial time series analysis transcends mere forecasting;
it demands interpretability that builds trust and supports applications like portfolio manage-
ment. Drift2Matrix excels in this regard, offering clear insights into market dynamics beyond
the conventional categories of bull, bear, or sideways markets. It adeptly captures a wide
array of market scenarios, identifying distinct concepts driven by various factors—whether
it’s value versus growth or the interplay between small and large caps. For in-depth case
studies, including analyses of the Stock1 and Stock2 datasets, please refer to Sec 6.2 & 6.4.

Formal Mathematical Definition of Concepts. For window Wp, the r-th concept is defined as
the vector representation of subseries corresponding to the r-th block, Z(r)

p , in the representation
matrix Zp. Specifically, it aligns with the centroid of similar subseries, represented as Cr,p =

Centroid
(
{Si | Si ∈ Z

(r)
p }

)
.To differentiate and refine similar or repeated concepts across different
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windows, two concepts Cr,p and Cs,p+1 are considered distinct if ||Cr,p − Cs,p+1|| F 2 > ρ, where
ρ is a tunable hyperparameter that regulates the granularity of concept.

B ESTIMATING THE NUMBER OF CONCEPTS

In time series analysis, accurately identifying the number of concepts, such as periods of varying
volatility in financial market, stages of a disease in medical monitoring, or climatic patterns in
meteorology, is crucial. These concepts offer insights for data-driven decision-making, understanding
underlying dynamics, and predicting future behaviors. While estimating the number of concepts
is generally challenging, our kernel-induced representation learning approach offers a promising
solution. Leveraging the block-diagonal structure of the self-representation matrix produced by our
method, we can effectively estimate the number of concepts. According to the Laplacian matrix
property Von Luxburg (2007), a strictly block-diagonal matrix Z allows us to determine the number
of concepts k by first calculating the Laplacian matrix of Z (LZ) and then counting the number of
zero eigenvalues of LZ. Although the dataset is not always clean or noise-free (as is often the case in
practice), we propose an eigengap thresholding approach to estimating the number of concepts. This
approach estimates the number of concepts k̂ as:

k̂ = argmin
i

{i|g(σi) ≤ τ}N−1
i=1 (8)

Where 0 < τ < 1 is a parameter and g(·) is an exponential eigengap operator defined as:

g(σi) = eλi+1 − eλi (9)

Here, λi
N
i=1 are the eigenvalues of LZ in increasing order. The eigengap, or the difference between

the ith and (i+1)th eigenvalues, plays a crucial role. According to matrix perturbation theory Stewart
(1990), a larger eigengap indicates a more stable subspace composed of the selected k eigenvectors.
Thus, the number of concepts can be determined by identifying the first extreme value of the eigengap
6.

C PROOFS AND OPTIMIZATION

C.1 PERMUTATION INVARIANCE OF REPRESENTATION MATRIX IN SEQMATRIX

Theorem C.1 In Drift2Matrix, the representation matrix obtained for a permuted input data is
equivalent to the permutation-transformed original representation matrix. Specifically, let Z be
feasible to Φ(S) = Φ(S)Z, then Z̃ = PTZP is feasible to Φ(S̃) = Φ(S̃)Z̃.

Proof C.2 Given a permutation matrix P, consider the self-representation matrix Z̃ for the permuted
data matrix SP. The objective for SP becomes:

min
Z̃

∥∥∥Φ(SP)− Φ(SP)Z̃
∥∥∥2 +Ω(Z̃), s.t. Z̃ = Z̃T ≥ 0, diag(Z̃) = 0 (10)

By the properties of kernel functions and permutation matrices, we have Φ(SP) = Φ(SP ). Substi-
tuting this into the objective function for Z̃, we have:

min
Z̃

∥∥∥Φ(SP)− Φ(S)PZ̃
∥∥∥2 +Ω(Z̃) s.t. Z̃ = Z̃T ≥ 0, diag(Z̃) = 0 (11)

Since P is a permutation matrix,PPT = I, the identity matrix. We apply the transformation PZ̃PT

to the objective function:

min
Z̃

∥∥∥Φ(S)− Φ(S)PZ̃PT
∥∥∥2 +Ω(Z̃) s.t. Z̃ = Z̃T ≥ 0, diag(Z̃) = 0 (12)

6In this paper, we simply initialize the number of concepts for each window as 3 to obtain the initial representation Z, and then estimate k.
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For the function to be minimized, PZ̃PT must be the optimal representation matrix for S, which is Z.
Therefore, PZ̃PT = Z, or equivalently, Z̃ = PTZP.

This result shows that the self-representation matrix Z for S transforms to PTZP for the permuted
data matrix SP, demonstrating the invariance of the representation matrix under permutations of the
data matrix.

C.2 MANIFOLD STRUCTURE PRESERVATION IN DRIFT2MATRIX

Theorem C.3 Drift2Matrix reveals nonlinear relationships among time series in a high-dimensional
space while simultaneously preserving the local manifold structure of series.

Proof C.4 Optimization problem Eq. 3 can be converted to the form of a matrix trace:

min
Z

1

2
Tr(K− 2KZ+ ZTKZ) + γ||Z||

k
, (13)

In the above, the negative term −Tr(KZ) can be transformed into

min
Z
−Tr(KZ) = min

Z

N∑
i=1

N∑
j=1

−Φ(Si)
TΦ(Sj)Zij = min

Z

N∑
i=1

N∑
j=1

−K(Si,Sj)Zij (14)

where K(Si,Sj) indicates the similarity between Si and Sj in kernel space. It can be seen from
Eq. 14 that a large similarity (small distance) K(Si,Sj) tends to cause a large Zij , and vice
versa. This is in fact an kernel extension of preserving local manifold structure in linear space, i.e.,
minZ

∑N
i=1

∑N
j=1 ||Xi −Xj ||2Zij Nie et al. (2014); Zhan et al. (2018). Suppose a small weight is

given to this negative term, which means that the self-representation of the data will take into account
the contribution of all other data. Conversely, it will only consider the contribution of other data that
are nearest neighbours to the data, thus further enhancing the sparsity of the self-representation Z
while maintaining the local manifold structure.

C.3 OPTIMIZATION OF NONCONVEX PROBLEM

The optimization problem of Eq. 3 can be solved by the Augmented Lagrange method with Alternating
Direction Minimization strategy Lin et al. (2011). Normally, we require Z in Eq. 3 to be nonnegative
and symmetric, which are necessary for defining the block diagonal regularizer. However, the
restrictions on Z will limit its representation capability. Thus, we introducing an intermediate-term
V and transform Eq. 3 to:

min
Z,V

1

2
Tr(K+VTKV)− αTr(KV) +

β

2
||V − Z||2 + γ||Z||

k
,

= min
Z,V

1

2
||Φ(S)− α

2
Φ(S)V||2 + β

2
||V − Z||2 + γ||Z||

k

s.t. Z = ZT ≥ 0,diag(Z) = 0,1TZ = 1T

(15)

The above two models Eq. 3 and Eq. 15 are equivalent when β > 0 is sufficiently large. As will be
seen in optimization, another benefit of the relaxation term ||Z−V||2 is that it makes the objective
function separable. More importantly, the subproblems for updating Z and V are strongly convex,
making the final solutions unique and stable.

Consider that ||Z||
k

=
∑N

i=N−k+1 λi(LZ) is a nonconvex term. Drawing from the eigenvalue

summation property presented in Dattorro (2010), we reformulate it as
∑N

i=N−k+1 λi(LZ) =
minW < LZ,W >, where 0 ⪯ W ⪯ I,Tr(W) = k, see Appendix A for detail. So Eq. 15 is
equivalent to

min
Z,V,W

1

2
||Φ(S)− α

2
Φ(S)V||2 + β

2
||V − Z||2

+ γ < Diag(Z1)− Z,W >

s.t. Z = ZT ≥ 0,diag(Z) = 0, 0 ⪯W ⪯ I,Tr(W) = k

(16)
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Eq. 16 contains three variables. Due to the fact that W is independent of V, it is possible to combine
them into a single super-variable denoted as {W,V}, while treating {Z} as the remaining variable.
Consequently, we can iteratively update {W,V} and Z to solve Eq. 16.

First, we set Z = Zi, and update {Wi+1,Vi+1} by

{Wi+1,Vi+1} =arg min
W,V

1

2
||Φ(S)− α

2
Φ(S)V||2

+
β

2
||V − Z||2

+ γ < Diag(Z1)− Z,W >

s.t. 0 ⪯W ⪯ I,Tr(W) = k

This process is tantamount to independently updating Wi+1 and Vi+1:

Wi+1 =argmin
W

< Diag(Z1)− Z,W >,

s.t. 0 ⪯W ⪯ I,Tr(W) = k
(17)

and
Vi+1 = argmin

V

1

2
||Φ(S)− α

2
Φ(S)V||2 + β

2
||V − Z||2 (18)

Then, setting W = Wi+1 and V = Vi+1, we update Z by

Zi+1 = argmin
Z

β

2
||V − Z||2 + γ < Diag(Z1)− Z,W >

s.t. Z = ZT ≥ 0,diag(Z) = 0

(19)

The three subproblems presented in Eq. 17-Eq. 19 are convex and possess explicit solutions. For
Eq. 17, Wi+1 = UUT, where U ∈ RN×k is composed of the k eigenvectors corresponding to the
smallest k eigenvalues of Diag(Z1)− Z. For Eq. 18, the solution is straightforwardly derived as:

Vi+1 = (Φ(S)⊤Φ(S) + βI)−1(αΦ(S)⊤Φ(S) + βZ)

= (K+ βI)−1(αK+ βZ)
(20)

Eq. 19 is equivalent to

Zi+1 = argmin
Z

1

2
||Z−V +

γ

β
(diag(W)1T −W)||2

s.t.Z = ZT ≥ 0,diag(Z) = 0

(21)

The solution to this problem can be expressed in closed form as follows.

Proposition C.5 Consider the matrix A ∈ Rn×n. Let’s denote Â = A− Diag(diag(A)). With this
definition, the solution to the following optimization problem:

min
Z

1

2
∥Z−A∥2, s.t. diag(Z) = 0,Z ≥ 0,Z = Z⊤, (22)

is given by Z∗ =
[(

Â+ Â⊤
)
/2
]
+

.

Proof C.6 It is evident that problem Eq. 22 is equivalent to

min
Z

1

2
∥Z− Â∥2, s.t. Z ≥ 0,Z = Z⊤. (23)

The constraint Z = Z⊤ suggests that ∥Z− Â∥2 =
∥∥∥Z− Â⊤

∥∥∥2.

Thus
1

2
∥Z− Â∥2 =

1

4
∥Z− Â∥2 + 1

4

∥∥∥Z− Â⊤
∥∥∥2

=
1

2

∥∥∥∥∥Z− Â+ Â⊤

2

∥∥∥∥∥
2

+ c(Â)
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where c(Â) only depends on Â. Hence Eq. 23 is equivalent to

min
Z

1

2

∥∥∥Z− (
Â+ Â⊤

)
/2
∥∥∥2 , s.t. Z ≥ 0,Z = Z⊤,

which has the solution Z∗ =
[(

Â+ Â⊤
)
/2
]
+

.

D DOMAIN AGNOSTIC WINDOW SIZE SELECTION

To segment time series, a fixed window slides over all the series and generates b non-overlapping
segments for each of the N time series. A kernel representation for N subseries under each segmen-
tation is then learned to model concept behaviors. The quality of the representation heavily hinges
on the quality of the time series segmentation. To this end, we aim to find the optimal window size
to ensure that the representation learning algorithm identifies as many highly similar or repetitive
clusters across different segments7 as possible. The repetitiveness facilitates the generation of similar
concepts at different windows for tracking. Note that the number of identified concepts may vary
across windows. We propose a heuristic solution involving the segmentation of a segment-score
function, defined as:

WS(w) =
1

w
·max {Cp, 1 ≤ p ≤ b} (24)

Here, w is the window size, b is the number of non-overlapping segments, and Cp is the number
of concepts that can be discovered within window p using Eq. 8 and Eq. 9. This implies that
max{Cp, 1 ≤ p ≤ b} corresponds to the maximum number of concepts observed in S. This score
measures the concept-consistency – i.e., how the whole time series varies with various segmentation
size. A small segmentation size w (more segments) leads to a high concept-consistency score WS(·)
indicating the presence of non-repeating concepts over time: time series is unstable when looking
through a narrow segmentation. Conversely, a larger segmentation size (fewer segments) leads to
a lower concept-consistency score, which corresponds to the cases with highly repetitive concepts.
Broadly speaking, the WS(·) decreases and converges to zero when the segmentation size is too
large to identify concepts.

Inspired by Bouguessa & Wang (2008), we suggest employing the Minimum Description Length
(MDL) principle to determine the optimal window size within the available range. The core concept
of the MDL principle revolves around encoding input data based on a specific model, with the aim of
choosing the encoding that yields the shortest code length Rissanen (1998). Let WS be the set of all
WS(w) values for each window size in the available range. The MDL-selection strategy employed
in our work bears resemblance to the MDL-pruning method described in Agrawal et al. (2005);
Bouguessa & Wang (2008), where the data is split into two subsets (sparse and dense subsets), with
one subset being discarded. In our case, we aim to divide WS into two groups E and F . Here, E
encompasses the greater values of WS, while the group F encompasses the lower values. Following
that, the border separating the two groups is chosen in order to get the optimal window size that
minimizes the Minimum Description Length (MDL) criteria. The objective function can be defined
according to the MDL criteria:

J(w) = min
w

log2(µE) +
∑

WS(w)∈E

log2(|WS(w)− µE |)

+ log2(µF ) +
∑

WS(w)∈F

(|WS(w)− µF |)
(25)

In this equation, µE , µF are the means of groups E and F , respectively. The optimal window size w
can be found by iterating over each possible value within the range of window sizes and calculating
J2(w). See Fig. 4 for an illustration. With a given sliding window of size w,the time series can be
segmented into consecutive subseries, each spanning a length of w. Thus, we can represent S as a
union of these subseries: S =

⋃b
p=1 Sp. To ascertain the count of concepts k, we tally the distinct

profile patterns present across all windows, from W1 to Wb. Fig. 5 exhibits the selected window sizes
for the respective datasets: the length of 78 (resp., 31, 227, 583, 50, 183, 69, 17) window used for the
SyD (resp., MSP, ELD, CCD, EQD, EOG, RDS, Stock1) data.

7In this paper, the terms “segment” and “window” are used interchangeably to refer to the same concept of dividing time series into
non-overlapping intervals for analysis.
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Figure 4: Partitioning of WS into two sets E and F . The optimal window size is determined by the
size corresponding to the border.
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Figure 5: The best window size (red line) for the eight data sets

E ALGORITHM OF DRIFT2MATRIX

Algorithm 1 Drift2Matrix: Nonlinear concept identification
1: Input: A set of subseries S = {Si}Ni=1, window sizes P
2: Output: Optimal window size w and a set of representations Z = {Zp}bp=1
3: w ← First value in P , WS← ∅
4: Scanning:
5: for each window Wp in P do
6: Obtain the set of subseries Sp

7: Update Zp, using Eq. 21
8: Estimate concepts based on Eq. 8, Eq. 9
9: Calculate the window score WS(w) using Eq. 25

10: Z ← Z ∪ {Zp}
11: WS←WS ∪WS(w)
12: end for
13: Iteration:
14: while —new WS(w) − previous WS(w)— ≥ ϵ do
15: w ← Next value in P
16: Update WS(w) and Zp for the new w
17: end while
18: Determine the optimal window w based on WS
19: Store the set of representations Z
20: Discovering Concepts:
21: Identify distinct concepts C from Z
22: Set number of concepts k ← |C|

In this section, we delve into the detailed implementation of the Drift2Matrix algorithm, an ap-
proach designed for nonlinear concept identification and forecasting in co-evolving time series. The

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Drift2Matrix algorithm operates in two distinct phases, each encapsulated in its own algorithmic
structure.

The first phase, outlined in Algorithm 1, focuses on nonlinear concept identification. It takes a set
of subseries and a range of window sizes as input to determine the optimal window size and a set
of kernel-based representations. This phase involves scanning across different windows to estimate
the concepts and evaluate window scores, leading to the identification of distinct concepts within the
time series data.

The second phase, presented in Algorithm 2, builds upon the outputs of the first phase. It utilizes
the optimal window size and the representations obtained to forecast the most probable concepts
and the associated series values for each series within the time series data. This involves calculating
transition probabilities between concepts and determining the most likely concept transitions, which
are then used to forecast future values of the series.

Algorithm 2 Drift2Matrix: Forecasting Concept and Series Values
1: Input: Optimal window size w and a set of representations Z = {Zp}bp=1 from Algorithm 1.
2: Output: Predicted concepts and series values Pre Si for each series Si.
3: for each window Wp and Wp+1 in Z do
4: for each series Si in S do
5: Calculate transition probabilities P (Cr → Cm|Wp →Wp+1, Si) using Eq. 4.
6: Identify the concept Cm with the highest transition probability from Cr.
7: end for
8: end for
9: for each series Si in S do

10: for p = 1 to (length of Z)− 1 do
11: Determine the most probable concept switch from Cr to Cm.
12: Calculate predicted values Pre Si under window Wp+1 using Eq. 6.
13: end for
14: end for

F DETAIL OF DATASETS AND EXPERIMENTAL SETUP

We collected eight real-life datasets from various areas. The MSP dataset from online music player
GoogleTrend event stream8 contains 20 time series, each for the Google queries on a music-player
spanning 219 months from 2004 to 2022. The Electricity dataset ELD comprises 1462 daily electricity
load diagrams for 370 clients, extracted from UCI9. From the UCR’s public repository10, we obtained
four time-series datasets – i.e., Chlorine concentration CCD, Earthquake EQD, Electrooculography
signal EOG, and Rock dataset RDS. From Yahoo finance 11, we collected two datasets on stock. The
dataset Stock1, encompasses daily OHLCV (open, high, low, close, volume) data for 503 S&P
500 stocks, spanning from 2012-01-04 to 2022-06-22. Meanwhile, Stock2 provides intra-day
OHLCV data during market hours for 467 S&P 500 stocks, covering the period from 2017-05-16 to
2017-12-06. The four ETT (Electricity Transformer Temperature) datasets12 consist of two hourly-
level datasets (ETTh1, ETTh2) and two 15-minute-level datasets (ETTm1, ETTm2), each containing
seven oil and load features of electricity transformers from July 2016 to July 2018. The Traffic
dataset13 describes road occupancy rates with hourly data recorded by sensors on San Francisco
freeways from 2015 to 2016, while the Weather dataset14 includes 21 weather indicators such as
air temperature and humidity, recorded every 10 minutes in Germany throughout 2020.

8
http://www.google.com/trends/

9
https://archive.ics.uci.edu/ml/datasets/

10
https://www.cs.ucr.edu/%7Eeamonn/time_series_data_2018

11
https://ca.finance.yahoo.com/

12https://github.com/zhouhaoyi/ETDataset
13http://pems.dot.ca.gov
14https://www.bgc-jena.mpg.de/wetter/
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Table 4: Computing Resources Used for Experiments
Component Specification
CPU Intel(R) Core(TM) i7-9800X CPU @ 3.80GHz, 8 cores, 16 threads
Memory 125 GB RAM
GPUs 2x NVIDIA GeForce RTX 2080 Ti, each with 11 GB memory
GPU Driver Version: 545.23.08 (CUDA 12.3)
Operating System Ubuntu 22.04.4 LTS (GNU/Linux 6.5.0-45-generic x86 64)
Repetitions All experiments repeated 3 times with different seeds

For stock datasets, the value of interest we aim to predict is the implied volatility of each stock15.
Given that true volatility remains elusive, we approximated it using an estimator grounded in
realized volatility. We employed the conventional volatility estimator Li & Hong (2011), defined
as: Vt =

√∑n
t=1(rt)

2, where rt = ln(ct/ct−1) and ct represents the closing price at time t. For
Stock1, we utilized daily data to gauge monthly volatility, while for Stock2, we used 1-hour
intra-day data to determine daily volatility. We conducted online forecasting tests on the Stock2
dataset, segmenting the time series with an 11-day sliding window. Given the constrained intra-day
data span (7 months) and our volatility forecasting strategy, extending the sliding window would
compromise the available data for assessment. At any time point t, the observable data encompasses
a period quadruple the window size preceding time t, e.g., at time point t=110, our model is trained
with S [66 : 109] and forecasts S [110 : 121].

Table 3: Data statistics
Data # of series Length of series
SyD 500 780

Real

MSP 20 219
ELD 370 1,462
CCD 166 3,480
EQD 139 512
EOG 362 1,250
RDS 50 2,844
Stock1 503 126
Stock2 467 143
ETTh1 7 17,420
ETTh2 7 17,420
ETTm1 7 69,680
ETTm2 7 69,680
Traffic 862 17,544
Weather 21 52,696

Furthermore, we crafted a Synthetic SyD dataset com-
prising 500 simulated time series, each generated by a
combination of following five nonlinear functions. The
synthetic dataset allows the controllability of the struc-
tures/numbers of concepts and the availability of ground
truth. To make a 780-steps long time series, we randomly
choose one of the five functions ten times; every time,
this function produces 78 sequential values – which are
considered a concept. Table 3 summarizes the statistics of
the datasets.

g1(t) = cos (4πt/5) + cos(π(t− 50)) + t/100

g2(t) = sin (πt/3− 3)− sin (πt/6) + t/100

g3(t) = 1− sin (πt/2− 3)× cos (π(t− 3)/6)× cos(π(t− 13)) + t/100

g4(t) = sin (πt/2− 3)× cos (π(t− 3)/6)× cos(π(t− 13)) + t/100

g5(t) = cos (3πt/5) + sin (2πt/5− t) + t/100

Figure 6: The effect of parameters α, β on SyD

In the kernel representation learning pro-
cess, we used the Gaussian kernel of
the form K(Si, Sj) = exp(−||Si −
Sj ||2/d2max), where dmax is the maxi-
mal distance between series. Parameters
α, γ in Eq. 3 and β in Eq. 15 are selected
over [2,4,6,8,10,20], [0.1,0.4,0.8,1,4,10]
and [5,10,20,40,60,100] respectively
and set to be α = 4, γ = 0.8, β = 60
for the best performance. Fig. 6 shows the impact of varying α and β on the SyD dataset, while
the effect of γ can be found in Fig. 17. Table 4 summarizes the computing resources used for our
experiments.

Our learning mode of kernel-induced representation can be summarized in two ways depending on
the specific scenario:

- When applied to a new time series dataset, Drift2Matrix first re-adaptively determines the
most suitable segmentation size W1, . . . ,Wb and learns the concept profiles within each

15We chose to validate our model through forecasting volatility as it provides a quantifiable and objective
measure to assess the model’s capability to understand and adapt to market changes, rather than through
investment decisions or predicting market trends, which could be influenced by subjective interpretations and
external market conditions and fall outside the purview of this study.
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segment through kernel-induced representation. This ensures optimal alignment for concept
identification.

- When receiving new data points in an online learning setting (with a fixed segmentation
size), Drift2Matrix quickly updates the kernel representation matrix for the new segment,
enabling efficient adaptation without recalculating the segmentation size.

For both modes, the subsequent steps remain the same: by counting the number of distinct profiles
across all segments, we determine the number of distinct concepts present in the entire co-evolving
time series dataset. Based on these discovered concepts, we can predict concept drift probabili-
ties—both within a single series and through joint probabilities across the ecosystem.

G PARAMETERS SETTING OF COMPARING METHODS

For all comparison methods, we set the observable historical data and prediction steps to be the same
as for Drift2Matrix. For the ARIMA model, we determined the optimal parameter set using AIC; for
the INFORMER model, we configured it with 3 encoder layers, 2 decoder layers, and 8 attention
heads, with a model dimension of 512. We trained the model for 10 epochs with a learning rate of
0.001, a batch size of 32, and applied a dropout rate of 0.05; for the N-BEATS model, we adopted
three stack modes with 1024 hidden layer units while setting the batch size to 10 for more training
examples. For the other comparison methods, we performed fine-tuning on parameters to arrive at
the optimal settings for each dataset.

H ADDITIONAL EXPERIMENTS

H.1 HANDLING NOISE AND OUTLIERS IN REPRESENTATION MATRIX

To evaluate Drift2Matrix’s ability to handle noise, we introduced artificial noise into the SyD dataset.
We approached the issue of noise and outliers from two perspectives:

1. Noise in the Representation Matrix: Drift2Matrix captures relationships among series,
where those belonging to the same concept form a highly correlated submatrix, visible
as bright blocks in the heatmap. Self-representation learning naturally identifies noise or
outliers, which appear as darker areas due to weak or no correlation. An example of this
phenomenon is shown in Fig. 7(a), where a missing connected block can be seen in the
lower right corner of the matrix. Importantly, the overall structure of the representation
matrix Z remains intact despite the presence of noise.

2. Reconstructing a Clean Representation Matrix Z: To address noise, we modify the
objective function of self-representation learning. In a linear space, the objective function is
adjusted from:

min
Z

1

2
∥S− SZ∥22 +Ω(Z)

to the following form:

min
Z,E

Ω(Z) + λ∥E∥2,1, s.t. S = SZ+E

Here, S represents the series matrix, which is composed of authentic samples from the
underlying concepts, and outliers are denoted by E. This modification allows us to obtain a
noise-reduced representation matrix, with the noise captured in E. Figure 7(b-c) provides an
example of this, with E highlighting the noise or outliers, offering useful insights in certain
domains.

H.2 THE OUTPUTS OF CONCEPT IDENTIFICATION WITH OTHER DATASETS AND COMPLETE
RESULTS

To evaluate the capability of our model to identify the concepts, we also used the MSP (resp., ELD,
CCD, EQD, EOG, RDS. In Fig. 8, for each row, we have the distinct concepts exhibited by co-
evolving series in the MSP, ELD, CCD, EQD, EOG and RDS datasets, respectively. As can be seen,
we discovered 4 different concepts in the MSP time series, 3 in ELD, 4 in CCD, 3 in EQD, 3 in EOG,
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(c)(b)(a)

Figure 7: (a) Representation matrix with noise. A missing connected block in the lower right corner
of the matrix due to noise data. (b-c) Reconstructed representation matrix. This allows us to obtain a
noise-reduced representation matrix (b), with the noise captured in (c).

and 5 in RDS. For these real cases, we lack the ground truth for validating the obtained concepts.
Instead, we validate the value and gain of the discovered concepts for time series forecasting as they
are employed in the forecasting Eq. 6. Fig. 9 illustrates the forecasted outcomes for six arbitrarily
selected time series from the respective datasets, offering a demonstrative insight into the notable
efficacy of our model in forecasting time series.

H.3 COMPREHENSIVE COMPARISON

In this section, we present a detailed comparison of Drift2Matrix and Auto-D2M with thirteen
different models. The results are summarized in Table 7 which includes the performance metrics for
each model across all datasets used in our experiments. This comparison highlights the strengths and
weaknesses of Drift2Matrix relative to other state-of-the-art models, showcasing its superior ability
to handle complex time series data and capture concept drift. Among the seventeen models, ten are
forecasting models (ARIMA Box (2013), KNNR Chen & Paschalidis (2019), INFORMER Zhou et al.
(2021), N-BEATS Oreshkin et al. (2019), CARD Wang et al. (2023), ETSformer Woo et al. (2022),
TimesNet Wu et al. (2022), SparseTSF Lin et al. (2024), FITS Xu et al. (2024), Dlinear Zeng et al.
(2023)), the other seven are concept-drift models (MSGARCH Ardia et al. (2019), SD-Markov Bazzi
et al. (2017), OrBitMap Matsubara & Sakurai (2019), Cogra Miyaguchi & Kajino (2019), FEDformer
Zhou et al. (2022), OneNet Wen et al. (2024) and FSNet Pham et al. (2022)).

Furthermore, we conducted additional Type I and Type II error evaluations for concept detection on
the SyD, Stock1, and Stock2 datasets. To contextualize these results, we define **True Positive
(TP)**, **False Positive (FP)**, **True Negative (TN)**, and **False Negative (FN)** in the
context of our concept detection methodology:

• True Positive (TP): The model correctly detects the presence of a ground truth concept
within a window.

• False Positive (FP): The model incorrectly detects a concept within a window where no
concept actually exists.

• True Negative (TN): The model correctly identifies that no concept exists within a window.
• False Negative (FN): The model fails to detect a ground truth concept within a window.

The evaluation results are summarized in Tables 5 and 6 below:

Table 5: Evaluation of Concept Detection: TP, FP, TN, and FN Counts.
Dataset Total Tests Ground Truth Concepts TP FP TN FN
SyD 500× 10 = 5000 5 4900 50 4950 100

Stock1 503× 7 = 3521 5 3200 100 3421 321
Stock2 467× 13 = 6071 5 5000 200 5871 1071

These results demonstrate the robustness of Drift2Matrix in accurately detecting concept drift across
datasets with different levels of complexity and domain specificity.
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Figure 8: Discovered concepts for the six real datasets
MSP ELD

CCD EQD

EOG RDS

Figure 9: True (black) and forecasted (blue) values for the six time series, each from a real dataset.

Table 6: Type I and Type II Errors for Concept Detection.
Dataset Type I Error (FPR) Type II Error (FNR)
SyD 1.00% 2.00%

Stock1 2.87% 9.14%
Stock2 3.34% 17.67%
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Table 7: Models’ forecasting performance, in terms of RMSE
Datasets Horizon Forecasting models

ARIMA KNNR Informer N-Beats CARD ETSformer TimesNet SparseTSF FITS Dlinear
SyD 78 1.761 1.954 0.966 0.319 0.796 1.009 0.811 0.773 0.753 0.752
MSP 31 6.571 4.021 2.562 0.956 2.112 2.677 2.151 1.495 1.475 1.466
ELD 227 2.458 2.683 2.735 1.593 2.255 2.858 2.297 2.841 2.629 2.589
CCD 583 8.361 6.831 3.746 1.692 3.089 3.914 3.146 2.178 2.153 2.086
EQD 50 5.271 3.874 4.326 1.681 3.567 4.520 3.633 2.508 2.459 2.347
EOG 183 3.561 3.452 4.562 2.487 3.761 4.767 3.831 3.207 3.048 2.829
RDS 69 6.836 6.043 5.682 2.854 4.685 5.937 4.772 3.886 3.649 3.504

Stock1 (×10−2) 17 2.635 2.348 2.127 1.035 1.754 2.224 1.786 1.323 1.291 1.228
Stock2 (×10−2) 11 2.918 2.761 1.064 0.607 0.877 1.117 0.894 0.765 0.704 0.702

ETTh1

96 1.209 0.997 0.966 0.933 0.939 0.974 0.949 0.932 0.920 0.917
192 1.267 1.034 1.005 1.023 1.082 1.037 1.087 1.123 1.071 1.069
336 1.297 1.057 1.035 1.048 1.101 1.087 1.103 1.107 1.086 1.076
720 1.347 1.108 1.088 1.115 1.147 1.103 1.148 1.176 1.168 1.152

ETTh2

96 1.216 0.944 0.943 0.892 0.933 1.001 0.942 0.945 0.952 0.946
192 1.250 1.027 1.015 0.979 0.995 1.102 1.004 1.090 1.062 1.053
336 1.335 1.111 1.088 1.040 1.072 1.134 1.076 1.143 1.127 1.190
720 1.410 1.210 1.146 1.101 1.131 1.182 1.139 1.121 1.109 1.141

ETTm1

96 0.997 0.841 0.853 0.806 0.810 0.895 0.821 0.856 0.837 0.829
192 1.088 0.898 0.898 0.827 0.846 0.902 0.859 0.879 0.862 0.949
336 1.025 0.886 0.885 0.852 0.885 0.905 0.896 0.904 0.905 0.916
720 1.070 0.921 0.910 0.903 0.963 0.932 0.975 0.986 0.969 0.957

ETTm2

96 0.999 0.820 0.852 0.804 0.825 0.885 0.830 0.854 0.851 0.848
192 1.072 0.874 0.902 0.829 0.849 0.902 0.861 0.897 0.874 0.861
336 1.117 0.905 0.892 0.852 0.863 0.959 0.867 0.955 0.943 0.938
720 1.176 0.963 0.965 0.897 0.928 1.006 0.928 0.973 0.967 0.960

Traffic

96 1.243 1.006 0.895 0.893 0.919 0.921 0.920 0.958 0.939 0.930
192 1.253 1.021 0.910 0.920 0.956 0.957 0.953 0.987 0.971 0.964
336 1.260 1.028 0.916 0.895 0.902 0.996 0.929 0.957 0.941 0.937
720 1.285 1.060 0.968 0.949 0.986 1.056 0.998 0.995 0.985 0.984

Weather

96 1.013 0.814 0.800 0.752 0.760 0.841 0.790 0.766 0.754 0.741
192 1.021 0.867 0.861 0.798 0.832 0.908 0.854 0.913 0.903 0.899
336 1.043 0.872 0.865 0.828 0.857 0.905 0.884 0.901 0.918 0.903
720 1.096 0.917 0.938 0.867 0.895 0.956 0.918 0.942 0.940 0.939

Datasets Horizon Concept-aware models
MSGARCH SD-Markov OrbitMap Cogra FEDformer OneNet FSNet Drift2Matrix Auto-D2M

SyD 78 1.264 0.936 0.635 1.251 1.260 0.317 0.433 0.315 0.313
MSP 31 2.641 3.234 1.244 2.898 2.849 0.751 1.148 0.663 0.659
ELD 227 2.425 2.439 1.835 2.587 2.635 1.101 1.425 1.644 1.669
CCD 583 5.712 3.462 1.753 3.604 3.616 1.298 1.678 1.387 1.392
EQD 50 4.213 3.573 1.386 3.949 3.944 1.386 1.938 1.392 1.388
EOG 183 3.566 3.571 3.251 4.067 4.013 1.337 2.044 1.198 1.191
RDS 69 5.924 4.587 4.571 5.135 5.779 1.865 2.546 1.198 1.689

Stock1 (×10−2) 17 2.366 2.146 1.003 2.137 2.258 0.923 0.953 0.878 0.902
Stock2 (×10−2) 11 2.129 1.669 0.747 1.367 1.352 0.312 0.477 0.303 0.317

ETTh1

96 1.073 1.025 0.909 0.909 0.928 0.916 0.928 0.913 0.907
192 1.092 1.037 0.991 0.996 1.034 0.975 0.995 0.979 0.977
336 1.123 1.094 1.039 1.041 1.102 1.028 1.045 1.018 1.015
720 1.146 1.108 1.083 1.095 1.122 1.082 1.102 1.073 1.085

ETTh2

96 0.974 0.956 0.894 0.901 0.997 0.889 0.909 0.885 0.879
192 0.952 0.935 0.976 0.987 0.993 0.968 0.971 0.977 0.970
336 1.094 1.009 1.052 1.065 1.072 1.039 1.019 1.044 1.037
720 1.148 1.131 1.120 1.131 1.147 1.119 1.135 1.115 1.121

ETTm1

96 0.832 0.803 0.778 0.780 0.796 0.777 0.788 0.781 0.777
192 0.854 0.814 0.810 0.819 0.827 0.813 0.842 0.805 0.801
336 0.895 0.857 0.820 0.838 0.857 0.819 0.898 0.822 0.819
720 0.919 0.895 0.868 0.890 0.899 0.868 0.964 0.864 0.854

ETTm2

96 0.958 0.864 0.821 0.824 0.830 0.812 0.832 0.810 0.802
192 0.982 0.885 0.832 0.849 0.858 0.830 0.854 0.825 0.824
336 1.003 0.977 0.842 0.854 0.870 0.841 0.864 0.847 0.839
720 1.134 1.021 0.906 0.921 0.935 0.896 0.901 0.886 0.876

Traffic

96 1.224 1.058 0.883 0.898 0.906 0.884 0.895 0.880 0.874
192 1.242 1.083 0.895 0.908 0.925 0.883 0.905 0.888 0.880
336 1.341 1.189 0.908 0.922 0.924 0.901 0.929 0.937 0.926
720 1.337 1.201 0.946 0.964 0.969 0.940 0.946 0.932 0.923

Weather

96 0.974 0.951 0.744 0.759 0.785 0.745 0.775 0.737 0.737
192 0.999 0.982 0.775 0.793 0.802 0.776 0.794 0.771 0.769
336 1.028 1.009 0.806 0.825 0.869 0.801 0.804 0.791 0.786
720 1.093 1.027 0.841 0.863 0.871 0.833 0.864 0.840 0.832

While forecasting series task is not our main focus, we provide a comparison of Drift2Matrix with other models.
Results for the extended Auto-D2M, are included but not part of the comparison.
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(a) forecasting on three volatility series of Stock1.

(b) real-time forecasting on four volatility series of Stock2.

Figure 10: Results of N-BEATS model. (a) forecasting on three series of Stock1. (b) online
forecasting on four series of Stock2. Please also see our results shown in Fig 2(c) and Fig 3(a).

Shift

Shift

Figure 11: Visualization of N-BEATS and Drift2Matrix on ETTh1.

H.4 FORECASTING RESULTS OF N-BEATS ON STOCK1, STOCK2, ETTM2

The forecasting results of N-BEATS are depicted in Fig. 10. Compared to our forecasted result, shown
in Fig 2(c) and Fig. 3, N-BEATS falls short in capturing complex concept transitions within multiple
time series, revealing the limitations of a model geared solely for single time series forecasting.
Additionally, Fig. 11 illustrates visualizations of N-BEATS and Drift2Matrix on the ETTh1 dataset,
highlighting the strengths of Drift2Matrix in handling co-evolving time series with concept drift.

H.5 CASE STUDY OF KERNEL REPRESENTATION ON MOTION SEGMENTATION SEQUENCES

We apply the proposed method to motion segmentation on the Hopkins155 database. Hopkins155 is a
standard motion segmentation dataset consisting of 155 sequences with two or three motions. These
sequences can be divided into three concepts, i.e., indoor checkerboard sequences (104 sequences),
outdoor traffic sequences (38 sequences), and articulated/nonrigid sequences (13 sequences). This
dataset provides ground-truth motion labels and outlier-free feature trajectories (x-, y-coordinates)
across the frames with moderate noise. The number of feature trajectories per sequence ranges from
39 to 556, and the number of frames from 15 to 100. Under the affine camera model, the trajectories
of one motion lie on an affine subspace of dimensions up to three.

Fig. 13 shows the results on the four random sequences – i.e., pepople1, cars10, 1R2TCR, and
2T3RTCR, our kernel-induced representation achieves good results on imbalance-concept sequence
(people 1) and performs well on noticeable perspective distorted sequences (1R2TCR and 2T3RTCR).
In 1R2TCR and 2T3RTCR, the camera often has some degree of perspective distortion so that the
affine camera assumption does not hold; in this case, the trajectories of one motion lie in a nonlinear
subspace.

H.6 DISTRIBUTION OF RMSE VALUES ACROSS ALL DATASETS

Fig. 12 illustrates the distribution of RMSE values for each model across all datasets, and it is evident
that our model achieves the most favourable outcomes overall.
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Figure 12: Box Plot of RMSE Values for Each Model Across Datasets
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Figure 13: Results on random four sequences (pepople1, cars10, 1R2TCR, 2T3RTCR) of Hopkins155
database. The top row shows images from the four sequences with superimposed tracked points. The
second row is the heatmap of representation matrices yielded by Drift2Matrix. The bottom row is a
projection of the representation results into a 3D space.
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Figure 14: The heatmap of representation matrices (binarized) learned on SyD by various SOTA and
Drift2Matrix.

H.7 COMPLEXITY ANALYSIS AND EXECUTION TIME EVALUATION

Solving the optimization problem involves iterative updates to W, V, and Z. The update for W
requires computing the smallest k eigenvalues and eigenvectors of a matrix, with a complexity of
O(kn2). Updating Z involves matrix addition, transposition, and element-wise truncation, resulting
in a complexity of O(n2). The update for V, which involves matrix inversion

(
(K+ βI)−1

)
,
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(a) small-scale dataset (b) large-scale dataset

Figure 15: Computation time on small/large scale series datasets.

dominates the computation with a complexity of O(n3). Over T iterations, the total computational
complexity is O(Tn3), with matrix inversion being the primary bottleneck. The space complexity is
O(n2) due to the kernel matrix.

To improve scalability, we employ low-rank kernel approximations, reducing the complexity to
O(Tn2d), where d≪ n. Parallelization and efficient inversion techniques, such as the Woodbury
formula, further enhance computational efficiency.

Additionally, we further reduce complexity by employing the Nyström method in combination with
self-representation learning. A straightforward approach selects a smaller subset of time series,
specifically k concept prototypes, by choosing m representative time series from the dataset. Based on
self-representation learning principles, these concept prototypes are expressed as a linear combination
of all time series, residing within the subspace spanned by the dataset S. To avoid computing the full
kernel matrix, the solution is restricted to a smaller subspace Ŝ ⊂ S, satisfying two criteria: (1) Ŝ
must be small enough for computational efficiency, and (2) it must sufficiently cover the dataset to
minimize approximation errors.

Building on kernel-induced representation learning, we use the initial representation matrix to identify
concepts efficiently. Concept prototypes and their associated time series are selected from these
concepts to construct Ŝ. With Ŝ containing m(m≪ n) time series, we define two kernel matrices:
K̂ ∈ Rm×m for kernel similarities among the m selected time series, and K̃ ∈ Rn×m for similarities
between the entire dataset and the selected time series. Using the Nyström method, the full kernel

matrix K is approximated as K∗ ≈ K̃K̂
−1

K̃
T

. This reduces computational costs significantly as
only K̃ needs computation (K̂ is a subset of K̃). This approach provides an efficient and scalable
solution for large-scale co-evolving time series.

Fig. 15 presents the execution time comparison on small-scale datasets (with short sequence lengths:
SyD, Stock1, Stock2) and the average runtime on large-scale datasets (with long sequence
lengths: ETTh1, ETTh2, ETTm1, ETTm2, Traffic, Weather). Note that the vertical axis uses
a linear-log scale.

H.8 ABLATION STUDY

H.8.1 ABLATION STUDY ON THE NUMBER OF SERIES

Fig. 16 illustrates the effect of the number of series on model performance. For datasets with a
smaller number of series, the experimental results remain relatively stable. In contrast, for datasets
with a larger number of series, a significant reduction in the series count leads to a decline in accuracy,
indicating that fewer nonlinear inter-series correlations are available for the model to leverage. For the
EOG dataset, the RMSE initially decreases before increasing. This suggests that the initial reduction
in series eliminates redundant information, improving performance. However, as the reduction
continues, the loss of critical information ultimately degrades the model’s accuracy.

H.8.2 ABLATION STUDY ON REGULARIZATIONS

We conduct ablation experiments to validate the efficacy of Drift2Matrix’s kernel representation
learning. We focus particularly on the regularization and kernelization techniques employed in Eq. 3.
Our approach is compared against existing self-representation learning/subspace clustering methods
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Figure 16: The impact of the number of series.
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Figure 17: RMSE across datasets for different regularizations at varying γ

Lu et al. (2018a); Bai & Liang (2020); Elhamifar & Vidal (2013); Ji et al. (2014); Liu et al. (2012) -
SSC, LSR, LRR, BDR, EDSC, SSQP, and SSCE, under varying values of γ. The comparative results
are illustrated in Fig. 17. This comparison clearly demonstrates that our model achieves superior
performance, outperforming the other methods in terms of RMSE across different datasets for a range
of γ values.

H.8.3 ABLATION STUDY ON KERNEL-BASED METHODS

We also extend ablation experiments to other kernel-based method to validate the representation capa-
bility of Drift2Matrix. We present the representation (binarized version) produced by Drift2Matrix
and other SOTA methods on the predicted window of SyD in Fig. 14. Drift2Matrix yields a block
diagonal matrix with dense within-cluster scatter and sparse between-cluster separation, revealing the
underlying cluster structure. SSC, BDR, SSCE, and LSR perform poorly (i.e., unclearly identified the
strong and weak correlations) when the subspaces are nonlinear or overlap. LRR gets improved for
those weakly-correlated points (in the light area) but still cannot accurately predict the representation
for highly-correlated points (in the dark area), making the cluster undistinguished from each other
(Note that undistinguished clusters can lead to bad representations). Although kernel-based methods
are adept at handling nonlinear data, they are helpless in the case of potentially locally manifold
structures, e.g., SC, KKM, and RKKM fail to distinguish the second cluster from the fourth cluster,
and KSSC only finds three clusters.
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Table 8: Ablation study of Drift2Matrix with different kernel functions, in terms of RMSE, for the
nine datasets

Dataset Drift2Matrix (Linear) Drift2Matrix (Polynomial) Drift2Matrix (Sigmoid) Drift2Matrix
SyD 1.324 1.325 0.638 0.315
MSP 3.673 2.975 1.382 0.663
ELD 1.853 2.655 2.903 1.644
CCD 4.390 3.395 2.429 1.387
EQD 5.409 4.405 4.015 1.392
EOG 3.200 3.205 2.517 1.198
RDS 6.705 4.710 3.715 1.699
Stock1 2.103× 10−2 2.056× 10−2 9.905× 10−3 8.780× 10−3

Stock2 2.650× 10−2 2.061× 10−2 6.073× 10−3 3.032× 10−3

H.8.4 ABLATION STUDY ON KERNEL FUNCTIONS

In this section, we present an ablation study conducted to evaluate the impact of different kernel
functions on the performance of the Drift2Matrix model. This study aims to ascertain the effectiveness
of various kernels in capturing nonlinear relationships in time series data.

We explore three different kernel functions in our ablation study: Linear, Polynomial, Sigmoid. These
kernels are chosen for their distinct properties in mapping data to higher-dimensional spaces. Each
kernel function offers different properties and captures various aspects of the data. The linear kernel
is straightforward and effective for linear relationships, while the polynomial kernel can model more
complex, non-linear interactions. The sigmoid kernel, inspired by neural networks, and the Gaussian
kernel, a popular choice for capturing the locality in data, add more flexibility to the model.

• Linear Kernel: Simple yet effective for linear relationships, represented as

K(S,S) = S⊤S (26)

• Polynomial Kernel: Captures complex, non-linear interactions, given by

K(S,S) = (S⊤S+ c)d (27)

where c is a constant and d is the degree of the polynomial.
• Sigmoid Kernel: Inspired by neural networks, takes the form of

K(S,S′) = tanh(ξS⊤S′ + c) (28)

where ξ and c are the parameters of the sigmoid function.

In our experiments, the parameters for each kernel function were tuned to optimize the model’s
performance. For the Polynomial and Sigmoid kernels, we varied the degree d and the constants ξ
and c to explore their effects on the model’s forecasting accuracy.

As shown in Table 8, the Drift2Matrix model with the Gaussian kernel achieves the best performance
across all datasets, indicating its effectiveness in capturing the complex nonlinear relationships in
time series data. The ablation study highlights the Gaussian kernel’s ability to adaptively handle
various types of data distributions, making it a versatile choice for time series analysis. However, the
choice of the kernel function may depend on the specific characteristics of the dataset, and therefore,
a careful consideration of kernel properties is necessary for optimal model performance. Besides,
from a technical perspective, multiple kernel learning (MKL) offers a way to learn an appropriate
consensus kernel by combining several predefined kernel matrices, thus integrating complementary
information and identifying a suitable kernel for the given task, i.e.,

K =

M∑
m=1

βmKm, subject to
M∑

m=1

βm = 1

where Km represents individual kernels and βm are the non-negative weights that sum to 1. This
formulation allows MKL to find an optimal combination of kernels.
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