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ABSTRACT

Learning representations from solutions of constrained optimization problems
(COPs) with unknown cost functions is challenging, as models like (Variational)
Autoencoders struggle to capture constraints to decode structured outputs. We
propose an inverse optimization latent variable model (IO-LVM) that constructs
a latent space of COP costs based on observed decisions, enabling the inference
of feasible and meaningful solutions by reconstructing them with a COP solver.
To achieve this, we leverage estimated gradients of a Fenchel-Young loss through
a non-differentiable deterministic solver while shaping the embedding space. In
contrast to established Inverse Optimization or Inverse Reinforcement Learning
methods, which typically identify a single or context-conditioned cost function,
we exploit the learned representation to capture underlying COP cost structures
and identify solutions likely originating from different agents, each using dis-
tinct or slightly different cost functions when making decisions. Using both syn-
thetic and actual ship routing data, we validate our approach through experiments
on path planning problems using the Dijkstra algorithm, demonstrating the in-
terpretability of the latent space and its effectiveness in path inference and path
distribution reconstruction.

1 INTRODUCTION

When learning latent generative representations, it is often necessary for inferred samples to satisfy
specific constraints, such as forming paths in a graph between designated start and target nodes. This
requirement introduces the challenge of ensuring that the model learns the solutions of a Constrained
Optimization Problem (COP). The difficulty intensifies when the feasible set of solutions is discrete,
as the gradients of these solutions with respect to the model parameters are zero almost everywhere
and therefore non-informative (Abbas & Swoboda, 2021).

Several previous works have focused on recovering the underlying cost of the COP that best ex-
plains the observed decisions. These are gradient-based methods that primarily address the non-
informative gradient problem by either smoothing solver operations (Lahoud et al., 2024), interpo-
lating COP solutions (Pogančić et al., 2020b), or perturbing the COP cost (Berthet et al., 2020). In
the context of path planning, Inverse Reinforcement Learning (IRL) seeks to infer transition costs
based on observed behavior, often by making assumptions about the probability distribution of the
solution space (Ziebart et al., 2008b). Despite their contributions, a common limitation of all these
methods is their inability to directly learn simultaneously from multiple agents performing different
decisions. In these works, there is either an assumption of a single underlying cost or an assumption
on the probability class of the COP solution.

In this paper, we introduce IO-LVM, a novel approach for learning latent representations of COP
costs that can recover observed COP solutions, specifically for paths in graphs formulated as lin-
ear objective constrained problems. Our approach does not assume a single underlying COP cost,
allowing it to learn effectively even when multiple agents are involved in the observed paths. The
method uses amortized inference in conjunction with a black-box solver to map these costs into a
meaningful and interpretable low-dimensional latent space. To address the gradient challenge, we
adopt a technique similar to that of Berthet et al. (2020), perturbing the input of the black-box solver
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and employing the Fenchel-Young loss (Blondel et al., 2020) to estimate the gradients of the COP
solutions.

IO-LVM not only reconstructs path distributions and predicts paths for new start and target node
pairs but also addresses the interpretability challenge by encoding paths into a low-dimensional
latent space. In this space, similar costs are positioned close to each other, offering a more intuitive
and interpretable representation of the path-planning process. This low-dimensional latent space
enables new possibilities for path analysis, such as clustering latent vectors into meaningful groups,
denoising paths by finding a small number of paths that covers the observed paths, or generating
similar paths based a sample in the observed data. Additionally, IO-LVM allows for predicting how
different agents might navigate between unseen source and target nodes, providing a flexible and
robust framework for path inference in complex environments.

Traditional Variational Autoencoders (VAEs) (Kingma, 2013), although capable of encoding high-
dimensional data into low-dimensional spaces, often fail to produce structured outputs, which is
crucial in path planning, for instance. The decoder of a standard VAE may generate outputs that do
not correspond to feasible COP solutions. Specifically, in path inference, when outputs are modeled
as edge usage, the combination of edges may not form a valid path between the designated start
and end nodes. Conversely, if outputs are modeled as paths themselves, the combinatorial nature of
the problem results in an overwhelmingly large number of possible paths, making it impractical to
account for them all. By incorporating techniques from structured prediction and amortized infer-
ence, IO-LVM ensures feasible reconstruction while preserving the interpretability characteristics
inherent to VAEs.

1.1 OUR CONTRIBUTIONS

• We introduce IO-LVM, a method that combines variational approximation techniques with
COP solver gradient estimation to learn latent representations for the underlying costs of
COPs based on observed decisions, with a specific focus on paths in graphs.

• IO-LVM naturally constructs a disentangled, and sometimes multimodal, latent space, al-
lowing for the reconstruction of observed path distributions without making assumptions
about inferred paths. Notably, the ability to recover distinct (e.g., multimodal) representa-
tions for the underlying costs enables the modeling of different agents making decisions.

• We demonstrate the versatility of IO-LVM using both synthetic and real-world ship path
datasets, highlighting its potential for path analysis tasks such as naturally clustering paths
into meaningful groups, denoising observed paths, and predicting paths for unseen start
and target nodes.

1.2 RELATED WORK

To address the aforementioned gradient challenge, several works have focused on differentiating
through convex solvers (Amos & Kolter, 2017; Agrawal et al., 2019), enabling the construction
of end-to-end learning frameworks that learn from decisions formulated as solutions to linear or
quadratic programs (Donti et al., 2017; Wilder et al., 2019). However, these methods are mainly
limited to continuous COP formulations and are difficult to extend to combinatorial problems such
as route problems in graphs.

In addition to convex solvers, efforts to differentiate through dynamic programming algorithms
have also been explored. For example, Mensch & Blondel (2018) proposed a method that specifi-
cally addresses the dynamic nature of certain COPs. Specifically for path inference, Lahoud et al.
(2024) proposed differentiating through the Floyd-Warshall algorithm to learn from observed paths
in graphs. However, their approach struggles with scalability as graph size increases due to the
inherent complexity of the classical version of the algorithm.

Learning representations from the solutions of COPs can also be viewed as an instance of Inverse
Optimization (Aswani et al., 2018; Tan et al., 2019; 2020), where the representations correspond to
the cost parameters that led to the observed solutions. In various applications, such as Inverse Path
Planning (Wulfmeier et al., 2017; Lahoud et al., 2024), these observed decisions are often assumed to
be generated by some optimization process. However, these methods typically assume the existence
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of a single underlying cost function, which may not capture the diversity of agent behaviors present
in real-world scenarios.

Yet within the realm of path inference, IRL approaches (Ng et al., 2000; Ziebart et al., 2008a;b;
Nguyen et al., 2015) modeled transition costs by assuming a linear mapping, learning these costs
from observed paths that reflect agents’ decisions. Deep IRL methods (Finn et al., 2016; Wulfmeier
et al., 2017; Fernando et al., 2020) extended this framework to accommodate more complex cost
functions. Nevertheless, these methods heavily rely on gradient estimation based on state visitation
frequencies and do not scale well with increasing graph size, limiting their use in large-scale path-
planning tasks.

Other methods, such as those proposed by Pogančić et al. (2020a) and Berthet et al. (2020), treated
the COP solution as a black box and estimate gradients with respect to its inputs. Similar to our
approach, on of the ideas of Berthet et al. (2020) is to utilize a Fenchel-Young loss to match inferred
and observed paths within a smooth and convex space.

However, all the aforementioned methods either focus on learning a single cost function or condition
this cost on a given context. They do not involve modeling a latent space that would enable to extract
underlying characteristics of the structured data. IO-LVM addresses this gap by learning a latent
representation of the COP with linear costs that can encode the variability in observed paths, even
when multiple agents with different behaviors are involved.

Although autoencoders (Hinton & Salakhutdinov, 2006) and Variational Autoencoders (VAEs)
(Kingma, 2013) have been successful in this area of learning latent representation to facilitate feature
extraction and clustering, they typically struggle to decode structured outputs, which is essential for
path inference tasks. A work with similar motivation to ours is that of Bentley et al. (2022), which
combines VAEs with genetic algorithms. However, their method lacks a guarantee of optimality
for COPs. In contrast, IO-LVM leverages gradient estimation through a specialized solver, ensuring
optimality and feasibility, resulting in a more robust end-to-end learning framework.

2 PRELIMINARIES

In this section, we introduce the foundational concepts and techniques upon which IO-LVM is built.
We begin by discussing the Evidence Lower Bound (ELBO) in latent variable models, followed by
an overview of Fenchel-Young losses.

2.1 EVIDENCE LOWER BOUND (ELBO)

The objective in latent variable models is to perform approximate Bayesian inference, which in-
volves estimating the posterior distribution P (z | x) to identify the latent variables z that best
explain the observed data x. However, directly computing this posterior is generally intractable.
To address this, a variational distribution qφ(z | x) is introduced to approximate the true posterior.
Since maximizing the exact log-likelihood of the data given the latent variables is not feasible, a
lower bound, known as the Evidence Lower Bound (ELBO), on the data log-likelihood is optimized
instead (Kingma, 2013; Rezende et al., 2014). The ELBO makes a trade-off between accurately
reconstructing the input data (the expected log-likelihood) using a model pθ(x | z) and adhering to
the prior distribution P (z) for the latent variables. This trade-off is achieved through the Kullback-
Leibler (KL) divergence between the variational distribution qφ(z | x) and the prior P (z). Thus,
the resulting loss function is the negative of ELBO:

l(θ, φ) = −Eqφ(z|x) [log pθ(x | z)] +DKL (qφ(z | x) ‖P (z)) . (1)

2.2 FENCHEL-YOUNG LOSSES

Fenchel-Young losses are a class of loss functions that generalize many commonly used losses in
machine learning and structured prediction (Blondel et al., 2020; Bao & Sugiyama, 2021) and are
derived from the Fenchel conjugate in convex analysis (Boyd & Vandenberghe, 2004). Given an
input x, a score vector y, and a problem formulated as ω(y) ∈ argminx∈C〈y,x〉, the Fenchel-
Young loss is defined as lFY(y,x) = f(y,x) − f(y, x̂Ω), where x̂Ω is the regularized solution
obtained from ω given the score vector y, i.e., x̂Ω := ωΩ(y). The function f(y,x) represents a
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scoring function that measures the value of x under the influence of y. The loss compares this score
to that of the regularized output x̂Ω, encouraging the solver to produce an output that aligns to the
input x.

One variant of the Fenchel-Young loss is obtained by transforming the optimization process ω(y)
into a stochastic process by adding noise (perturbation) ε to the input. This introduces random-
ness, smoothing the objective function landscape. The perturbed Fenchel-Young loss can then be
expressed as

lεFY(y,x) = f(y,x)− f(y, x̂ε), (2)

where x̂ε := ω(y+ ε), and ε is typically drawn from a distribution that induces smoothness, such as
a Gaussian. By choosing f to be the original linear cost function, i.e., f(y,x) = 〈y,x〉, the gradient
of equation 2 with respect to y elements becomes ∇lεFY(y,x) = x − x̂ε. The loss is minimized if
and only if x = x̂ε. For a more detailed discussion, refer to Berthet et al. (2020).

3 METHODS

In this section, we present IO-LVM in detail in Subsection 3.1, followed by its specific application to
path planning, where the observed decisions are explicitly defined as paths in graphs, in Subsection
3.2.

3.1 METHOD DESCRIPTION: IO-LVM

Let D = {xi}Ni=1 be a dataset of N samples, where each xi ∈ X and X is a constrained space.
We interpret xi as an optimal solution of a COP. Our main goal is to obtain a meaningful low-
dimensional representation of COP costs to reconstruct COP solutions. Specifically, we aim to
estimate the posterior distribution P (z | x), where z ∈ Z ⊂ Rk is a latent vector in a space of
dimension k. Similar to VAEs, we use a nonlinear transformation qφ to map samples xi to the latent
spaceZ , and then reconstruct it back to the constrained space to ensure consistency with the original
COP solution.

Figure 1: Proposed latent space model with a constrained reconstruction. The structured data is first
mapped from X to a latent space Z . The reconstruction is divided into two parts: a mapping from
the latent space Z to an unconstrained space Y , and another mapping from Y to the constrained
space X .

However, as discussed in previous sections, reconstruction in this context is non-trivial due to the
constraints inherent to the COP. For example, the reconstructed output must respect the problem’s
structure, such as forming a valid path between specific nodes in a graph. To achieve this, we propose
a reconstruction process that composes an unconstrained nonlinear transformation pθ from the latent
space Z to an unconstrained Y with a COP solver ω projecting from Y back to the constrained space
X . This sequence of transformations is depicted in Figure 1 and leads us to rewrite the reconstruction
loss (first term) of Equation 1 as Eqφ(z|x)

[
Epθ(y|z) [d(x, ω(y))]

]
, where d is a distance measure

between the observed data in D and the constrained reconstructed vector in X .

A natural choice for d is the Fenchel-Young loss induced by perturbations in the input space of
the COP, as described in Subsection 2.2, maintaining the reconstruction loss differentiable due to
its gradient estimation. When this is done, a potential imbalance between the reconstruction loss
and the regularization term can lead to one term dominating the optimization process, potentially
resulting in an undesired latent representation. We address this issue by introducing a scaling factor
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β to the KL divergence, allowing us to balance the trade-off between regularizing the latent space
and achieving high-quality reconstruction. This approach generalizes the concept of the β-VAE
(Higgins et al., 2017; Burgess et al., 2018) to a constrained framework, where adjusting the weight
of the KL term enables control over disentanglement and regularization, thus promoting a more
balanced and flexible optimization. Consequently, our variational inference loss function is defined
as:

l(θ, φ) = Eqφ(z|x)

[
Epθ(y|z) [lFY(x, ω(y))]

]
+ βDKL (qφ(z|x) ‖P (z)) . (3)

To learn the parameters θ and φ, we minimize the empirical risk 1
N

∑N
i=1 l(θ, φ;xi) over the dataset

D. Empirically, we demonstrate that in our case, the introduction of β also mitigates the issue of pos-
terior collapse, which is often encountered in VAE models with powerful decoders (Van Den Oord
et al., 2017). In Section 4.4, we show that the scaling factor β tunes the model to balance between
denoising the observed constrained structures and fully reconstructing them.

3.2 IO-LVM IN PATH INFERENCE

Consider a direct graph containing the set of edges E and the set of nodes V . Let X be a set of
possible paths x in this graph. More precisely, X = X ′ ∪ S, where X ′ ⊆ {0, 1}|E| is a set of
binary vectors, where each x′ ∈ X ′ is an |E|-dimensional vector representing the usage of edges
in a path (1 for used edges and 0 otherwise); and S := {(s, t) | s, t ∈ V, s 6= t}, defining the start
and target nodes of a path. Also, Let ω be a black-box shortest path solver, e.g., that takes s, t, and
edges cost y ∈ RE>0 as inputs1, so that x̂ := ω(y). More specifically, the COP for the shortest path
problem can be formulated with a linear objective: x̂ ∈ argminx∈X 〈y,x〉. As done in Berthet et al.
(2020), for a smooth mapping and in order to leverage the linear gradient of the Fenchel-Young loss
as described in Subsection 2.2, a perturbed argmin is defined as x̂ε := Eε[argminx∈X 〈y + ε,x〉].
Taking into account the method description, and considering that yθ is sampled from pθ(y | z),
Equation 3 is rewritten as

l(θ, φ) = Eqφ(z|x)

[
〈yθ,x〉 − 〈yθ, x̂θε 〉

]
+ βDKL (qφ(z | x) ‖P (z)) . (4)

Here, yθ is interpreted as the inferred edges (transitions) costs in the graph, while qφ(z | x) is
interpreted as the encoded information of these costs.

Algorithm 1 details the steps in the training process in a stochastic gradient descent (SGD) fashion
using an encoder hφ to model qφ(z | x) and a decoder gθ to model pθ(y | z). In the algorithm,
step 4 decodes from the latent space and makes sure that transition costs are non-negative as input
to a path solver, e.g., Dijkstra. In Step 5, x̂ε can be computed by sampling a single noisy solution
instead of estimating Eε. This keeps the process simple yet effective in the long term due to the use of
SGD. Note that Step 7 contains the backpropagation of the analytical gradient of the reconstruction
loss w.r.t. elements in y as presented in Subsection 2.2, i.e., ∇lεFY(y,x) = x − x̂ε. Once the
algorithm is trained, we can reconstruct paths from parts of the low-dimensional latent space using
gθ, e.g., sampling from different parts of the latent space, so that we can see the different patterns
reconstructed in the path space.

4 EXPERIMENTS

The experiments focus on path planning in graphs using Dijkstra’s algorithm for the shortest path
problem. Two datasets, described in Subsection 4.1, are used under the assumption that agents
optimize paths based on their transition costs. Subsection 4.2 analyzes the interpretability of the
learned latent vectors; Subsection 4.3 demonstrates the latent space’s ability to reconstruct accurate
paths; Subsection 4.4 examines the impact of β on latent space projection and reconstruction; and
Subsection 4.5 evaluates overall performance, comparing it to conceptual baselines.

4.1 DATASETS

In the following paragraphs we briefly explain the used graphs and datasets. Further details of
each dataset generation or preprocessing are provided in the code in the supplementary material.

1The ”unconstrained” space Y is actually dependent on the input space of the COP solver. As in our
purposes we are dealing with non-cycling paths and Dijkstra, we assume (and ensure) that the values in this
space is always greater than zero.
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Algorithm 1 One epoch of the training process: IO-LVM for path inference

1: Components:
2: - Encoder hφ; Decoder gθ.
3: Input: Dataset D = {(x′i, si, ti)}Ni=1
4: Output: Trained model parameters
5: for each sample (x′, s, t) ∈ D do
6: Step 1: Form the path information vector x = concat(x′, s, t).
7: Step 2: Encode x using hφ to obtain the latent mean and variance: (µ, σ) = hφ(x).
8: Step 3: Sample z using the reparameterization trick: z = µ+ σ · ε, where ε ∼ N .
9: Step 4: Map z to the edges cost space using gθ: yθ = max{gθ(z), 0}.

10: Step 5: Solve shortest path using ω for the inferred path: x̂θε = ω(y + ε), where ε ∼ N .
11: Step 6: Compute the loss for this sample as described in Equation 4.
12: Step 7: Update model parameters using the computed loss.
13: end for

It is noteworthy that all graphs are direct. We hide the edges direction in the figures for a better
visualization.

Synthetic Waxman Random Graph We generate a Waxman graph (Van Mieghem, 2001) with
700 nodes (α = 0.05, β = 0.6), where the probability of an edge between two nodes u and v is given
by P (u, v) = α · exp

(
−d(u,v)
β·dmax

)
, where we considered d(u, v) as the Euclidean distance between

nodes u and v, and dmax is the maximum distance between of two nodes, consequently ending up in
7230 edges. We create three edge cost sets to simulate three different agents performing decisions
to go from start and end nodes. For each agent, we add a random noise in the cost so the generated
paths are different from each other. The edge costs are based on Euclidean distances, with higher
costs for the southern edges for agent 1, and higher costs in the northern for agent 3. Two sets of
6,000 observed paths are generated: one with a single source and target pair (Figure 2a, left) and
another with multiple source-target pairs (Figure 2b, right). Further details on cost generation are
provided in the code.

Ships dataset We use the Automatic Identification System (AIS) data provided by the Danish Mar-
itime Authority (Danish Maritime Authority, 2020), considering latitude and longitude projected in
a 2D space for simplicity. The analysis focuses on paths from the first week of the months January
2024, May 2024, and June 2024. Only paths that exceed a distance of 4 units (in latitude/longitude)
in Euclidean space are included. A path is considered completed either when the ship speed ap-
proaches zero or when there is an abrupt change in its heading. In some cases, there are gaps in the
latitude/longitude signals; when such jumps occur, we segment the data and treat them as separate
paths. We created a grid graph with a distance of 0.09 units between adjacent nodes, focusing on
the area where there are more route options to be taken, which in total led to 2513 nodes and 8924
edges.

4.2 ENCODING PATHS TO LATENT SPACE

Synthetic Paths Encoding. We used the learned hφ to map the paths in the test dataset to the latent
space. Figure 2 illustrates this mapping on the synthetic dataset, where the latent space is restricted
to two dimensions. The colors of each point in the latent space illustrate which agent performed the
task. It is important to remind that the agent information was not provided in training, this is only for
interpretation purposes. IO-LVM successfully disentangles the factors associated with the costs of
three different agents. This disentanglement is evident not only when the dataset contains observed
paths between a single pair of start and target nodes (Figure 2a) but more importantly when multiple
pairs of start and end nodes are present (Figure 2b). The example with multiple pairs is important
because it highlights that IO-LVM is capable to encode the underlying transition costs if there is
enough data. As an example, there are multiple different red paths, even with different start and
target nodes, but they are mapped in the same region in the latent space because they share similar
underlying transition costs.
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(a) Left chart is an illustration of paths in the X space.
Right chart is the embedding of each path to the latent
space Z using hφ.

(b) Left chart is an illustration of paths in the X space.
Right chart is the embedding of each path to the latent
space Z using hφ.

Figure 2: Latent space embedding of paths after training for a single (a) pair of start and target nodes
and for multiple (b) pairs of start and target nodes. The figure is better visualized with colors.

(a) Paths in the ship dataset
are in black. Blue cir-
cles correspond to the graph
nodes.

(b) Ship paths mapped to a 2-
dimensional latent space af-
ter parameters θ and φ are
learned.

(c) Plot of ship’s width average in
each hexagon of the latent space.

Figure 3: From (a) to (b), paths are projected to the latent space using the mean of qφ. Ship width,
although not used in training, are observed in (c) as a captured feature in the latent space.

Ship Paths Encoding. Figures 3a and 3b show the mapping using the ship dataset for latent di-
mensions 1 and 2 (we observed that increasing the number of dimensions did not help for better
performance, Figure 8 shows that using 3 dimensions ended up in a high correlation between di-
mensions 2 and 3). For this dataset, instead of different types of agents performing path decisions,
we bring the information of ship width in Figure 3c. Each hexagon corresponds to a small subspace
in the latent space. For each hexagon, the average of the ships’ width are computed and plotted with
a color map. Here, there is a subtle trend related to ship width within the latent space; larger ships
are less frequently found in the top-right corner of the graph, leading to a low average ship width in
that region. This is another example that IO-LVM was capable to capture unobserved factors within
the latent projection.

It is important to note that the proportion of non-observed paths in the test set is high in the synthetic
data involving multiple start and end node pairs, and in the ship dataset, where there is typically
only a single or few observed path between distinct node pairs. This means that most of the paths
mapped in Figure 2b and 3a were not observed during the training process.

4.3 RECONSTRUCTING FROM LATENT SPACE

Reconstruction from parts of the latent space. In order to illustrate reconstructions from parts
of the learned latent space for the dimensions l1 and l2, we sample 20 times from different 2D
independent Gaussian distributions with mean (µ1, µ2) and identical standard deviations (σ, σ).
The reconstruction is performed with the learned gθ with these samples as input, and then Dijkstra
is called to output paths between desired start and end nodes. The circles in the latent space plots (top
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row) in Figures 4 and 5 represent the region bounded by µ1, µ2, and 2σ, i.e., (l1−µ1)
2+(l2−µ2)

2 ≤
4σ2.

Reconstruction for Synthetic Paths. The resulting reconstructed synthetic paths are shown in the
bottom graphs of Figure 4. It can be observed that points closer in the latent space share a relatively
high number of edges in the graph. Additionally, as σ increases, the number of distinct reconstructed
paths naturally grows, e.g., difference between the third and fourth columns in Figure 4. Note that
the Dijsktra in the loop ensures that all reconstructed paths remain valid.

Reconstruction for Ship Paths. A similar process is applied to the ship dataset and can be ob-
served in Figure 5. An interesting pattern emerges here: Some regions of the latent space containing
wider ships avoid the Copenhagen canal (Oresund Strait) when traveling from the east to the north
part of Denmark even though it is the shortest path in terms of euclidean distance, as observed in the
second column of the figure where ships prefer going through the Great Belt. This is for example, a
different decision from ship paths observed in the first column of the figure, where the preference is
through the Oresund Strait.

Figure 4: Reconstruction for the synthetic data with single pair of start and end nodes. Top charts:
region of samples from a Gaussian in the latent space. Bottom charts: corresponding generated
trajectories. Blue agents has higher costs on edges in the north, while red edges has higher costs on
edges in the south. The figure is better visualized with colors.

Unsupervised Learning facilitation Mapping the data to a low-dimensional latent space simpli-
fies the application of unsupervised learning techniques. One straightforward example is illustrated
in Figure 9 (Appendix), where we perform a simple clustering using K-Means in the latent space.
The corresponding clusters are then mapped back to the path space, demonstrating their similarity.

4.4 EFFECT OF VARYING β: DENOISING VERSUS RECONSTRUCTION

We analyze the effect of varying β on three metrics in a synthetic dataset with a fixed start and target
node: the number of distinct paths reconstructed by the decoder using the test dataset, the Fenchel-
Young loss and the Intersection over Union (IoU) metric between observed and inferred edges usage
during training (An illustration of the correlation between FY loss and IOU is shown in the Learning
curve, Figure 7 in Appendix). Table 1 summarizes the impact of increasing β. As β increases, the
number of distinct paths decreases, indicating a denoising effect due to the diminished influence
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Figure 5: Reconstruction for the ship dataset. Top charts: region of samples from a Gaussian in the
latent space. Bottom charts: corresponding generated trajectories in the graph given a hypothetical
(non-existent in the training paths) pair of start and target nodes.

Table 1: Effect of varying β on path reconstruction. Lower β yields more distinct paths, while a
balanced β enables denoising. Higher β leads to posterior collapse.

β = 1e-5 1e-4 5e-4 1e-3 5e-3 1e-2 5e-2 1e-1

Distinct paths 66 59 51 38 15 13 4 1
FY train loss 0.021 0.022 0.027 0.032 0.049 0.054 0.099 0.150
IoU train 0.973 0.981 0.975 0.963 0.940 0.931 0.832 0.491

of the reconstruction loss. This results in the decoder reducing diversity of generated paths due to
the posterior collapse. The Fenchel-Young loss increases and the IoU decreases with larger β, also
reflecting a reduction in reconstruction accuracy. These trends highlight a trade-off: higher β values
favor denoising over reconstruction fidelity, while lower values focus on better reconstruction.

Figure 6: Varying β in the latent space projection (top graphs) and in the reconstruction (bottom
graphs).
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Table 2: Results on the reconstruction of paths distribution and path prediction.

Method Synthetic Ship
DJS Spearman DJS per sample

PO 0.058± .008 0.813± .025 0.500± .161
VAE 0.112± .002 0.639± .144 No convergence
IO-LVM 0.056± .003 0.873± .016 0.467± .195

4.5 PREDICTIVE AND RECONSTRUCTION RESULTS

Baselines We consider two conceptual baselines. The first is based on the method from Berthet
et al. (2020), which we refer to as Perturbed Optimizer (PO). We modified the original method in
two ways: (1) we learn based on paths without considering context, as the original paper is context-
based; and (2) to promote distribution reconstruction, we re-introduce the noise ε during inference,
similar to its use in the training process, to account for variability in the path space. The second
baseline is a traditional β-VAE without the constrained mapping, where the autoencoding occurs
directly in the path space, X .

Metrics and Results for the Synthetic Dataset For the synthetic data with a single start-target
pair, two metrics are evaluated: the Jensen-Shannon divergence (DJS, lower is better) between edge
usage in 1,000 test samples and 1,000 reconstructed paths, indicating the similarity of edge frequen-
cies, and Spearman’s rank correlation (higher is better) between the common paths in the inferred
and actual set of paths to assess the alignment in frequency ranking. Each method is sampled five
times to compute the mean and standard deviation. IO-LVM outperforms PO in Spearman’s cor-
relation, due to its ability to recover distinct costs in the unconstrained space, even in multimodal
cases (e.g., three agents with different paths). In contrast, PO generates noisy paths around a (single)
learned optimal set of transition costs, ω(y+ ε), which may not align with the true distribution. The
β-VAE, despite good training performance and a well-structured latent space, failed to reconstruct
valid paths, indicating poor generalization.

Metrics and Results for the Ship Dataset In the ship dataset, paths include multiple start and end
nodes, making it infeasible to measure distribution distances for fixed start-target pairs due to the
limited number (or even a single) of available paths per pair. Therefore,DJS is measured between the
edges of each inferred sample and its corresponding test sample, and the average is computed across
the dataset. For this evaluation, the most likely path from each model and baseline is compared to
the observed paths. IO-LVM slightly better than PO, but the difference is not statistically significant
due to high variance in the error metric. The β-VAE baseline failed to converge, likely due to the
graph size and the complexity of multiple start and target node scenarios.

5 CONCLUSION

This paper proposed IO-LVM, a novel approach for learning latent representations of constrained
optimization problem (COP) costs, specifically for path planning in graphs. The method leverages
amortized inference and integrates a shortest path solver within a probabilistic framework, allowing
for the modeling of multiple agents and diverse behaviors in graphs. By employing a Fenchel-Young
loss with perturbed inputs, it overcomes the gradient challenges in optimizing COPs, ensuring feasi-
ble and interpretable path reconstructions. The learned latent space captured meaningful structures,
highlighting the model’s characteristic to distinct agent behaviors, while maintaining accurate path
reconstruction and prediction. The study also explored the role of the β hyperparameter on using
the model for denoising paths or aiming full reconstruction. Comparisons with baselines further
validated its performance in path distribution reconstruction and prediction. Our method description
is valid for a general set of COPs if gradient estimation is available. By leveraging different types
of gradient estimation, a future work could extend this framework to incorporate more complex
decision-making scenarios.
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Figure 7: Fenchel-Young loss and IoU between edges computed during the training process.

Figure 8: Latent space of ship trajectories using three dimensions. The right graph indicates that
there is no need for a third latent dimension. Narrow ships are more concentrated in the top right
corner of the two left graphs. The colorbar is only for an evaluation purposes, since the agent type
is not given to the training process.

Figure 9: Clustering the latent vectors and visualizing the correspondent paths.
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