
FRIEREN: Efficient Video-to-Audio Generation
Network with Rectified Flow Matching

Yongqi Wang†, Wenxiang Guo†, Rongjie Huang, Jiawei Huang, Zehan Wang,
Fuming You, Ruiqi Li, Zhou Zhao∗

Zhejiang University
cyanbox@zju.edu.cn

Abstract

Video-to-audio (V2A) generation aims to synthesize content-matching audio from
silent video, and it remains challenging to build V2A models with high generation
quality, efficiency, and visual-audio temporal synchrony. We propose FRIEREN, a
V2A model based on rectified flow matching. FRIEREN regresses the conditional
transport vector field from noise to spectrogram latent with straight paths and
conducts sampling by solving ODE, outperforming autoregressive and score-based
models in terms of audio quality. By employing a non-autoregressive vector field
estimator based on a feed-forward transformer and channel-level cross-modal
feature fusion with strong temporal alignment, our model generates audio that is
highly synchronized with the input video. Furthermore, through reflow and one-
step distillation with guided vector field, our model can generate decent audio in a
few, or even only one sampling step. Experiments indicate that FRIEREN achieves
state-of-the-art performance in both generation quality and temporal alignment on
VGGSound, with alignment accuracy reaching 97.22%, and 6.2% improvement in
inception score over the strong diffusion-based baseline. Audio samples and code
are available at http://frieren-v2a.github.io.

1 Introduction

Recent advancements in deep generative models have significantly enhanced the quality and diversity
of AI-generated content, including text [27], images [29, 30, 1], videos [32, 23] and audios [19,
20]. Among various content-generation tasks, video-to-audio (V2A) generation aims to synthesize
semantically relevant and temporally aligned audio from video frames. Due to its immense potential
for application in film dubbing, game development, YouTube content creation and other areas, the
task of V2A has attracted widespread attention.

A widely applicable V2A solution is expected to have outstanding performance in the following
aspects: 1) audio quality: the generated audio should have good perceptual quality, which is the
fundamental requirement of the audio generation task; 2) temporal alignment: the generated audio
should not only match the content but also align temporally with the video frames. This has a
significant impact on user experience due to keen human perception of audio-visual information; and
3) generation efficiency: the model should be efficient in terms of generation speed and resource
utilization, which affects its practicality for large-scale and high-throughput applications.

Currently, considerable methods have been proposed for this task, including GAN-based models [3, 8],
transformer-based autoregressive models [15, 31], and a recent latent-diffusion-based model, Diff-
Foley [25]. However, these methods have not yet achieved a balanced and satisfactory performance
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across the above aspects. 1) For audio quality, early GAN-based models suffer from poor quality and
lack practicality. Autoregressive and diffusion models make improvements in generation quality, but
still leave room for further advancement. 2) For temporal alignment, autoregressive models lack the
ability to align the generated audio with the video explicitly. And due to the difficulty of learning
audio-visual alignment with the cross-attention-based conditional mechanism solely, Diff-Foley relies
on additional classifier guidance to achieve good synchrony, which not only increases the model
complexity but also leads to instability when reducing sampling steps. 3) For generation efficiency,
autoregressive models suffer from high inference latency, while Diff-Foley requires considerable
sampling steps to achieve good generation quality due to the curved sampling trajectories of diffusion
models, increasing the temporal overhead in inference. In a nutshell, existing methods still leave
significant room for improvement in performance.

In this paper, We introduce another generative modeling approach, namely rectified flow match-
ing [21], into the V2A task. This method regresses the conditional transport vector field between
noise and data distributions with as straight trajectories as possible, and conducts sampling by solving
the corresponding ordinary differential equation (ODE). With simpler formulations, our rectified-
flow-based model achieves higher audio quality and diversity. To improve temporal alignment, we
adopt a non-autoregressive vector field estimator network with a feed-forward transformer with
no temporal-dimension downsampling, thereby preserving temporal resolution. We also employ
a channel-level cross-modal feature fusion mechanism for conditioning, leveraging the inherent
alignment of audio-visual data and achieving strong alignment. These designs lead to high synchrony
between generated audio and input video while upholding model simplicity. Moreover, through
integrating reflow and one-step distillation techniques, our model can generate decent audio with a
few, or even only one sampling step, significantly improving generation efficiency.

We name our model FRIEREN for efficient video-to-audio generation network with rectfied flow
matching. Experiments indicate that FRIEREN outperforms strong baselines in terms of audio quality,
generation efficiency, and temporal alignment on VGGSound [2], achieving a 6.2% improvement in
inception score (IS) and a generation speed 7.3× that of Diff-Foley, as well as temporal alignment
accuracy of up to 97.22% in 25 steps. Additionally, FRIEREN combining reflow and distillation
achieves alignment accuracy of up to 97.85% with just one step, with a 9.3× acceleration compared
to 25-step sampling, further boosting generation efficiency.

2 Related works

2.1 Video-to-audio generation

Video-to-audio (V2A) generation aims to synthesize audio of which content matches the visual
information of a video clip. RegNet [3] designs a time-dependent visual encoder to extract appearance
and motion features, which are then fed to a GAN for audio generation. FoleyGAN [8] also utilizes
GAN for audio generation from visual features, together with a predicted action category as the
conditional input. SpecVQGAN [15] takes RGB and optical flow of videos and uses a transformer to
generate indices of a spectrogram VQVAE autoregressively. Im2Wav [31] adopts two transformers
for different temporal resolutions and takes CLIP [28] features as the condition to generate VQVAE
indices. Du et al. [5] mimics the real-world foley methodology and introduces an additional reference
audio as the condition. Diff-Foley [25] designs an audio-visual contrastive feature and adopts a latent
diffusion to predict spectrogram latents, achieving decent audio quality and inference speed.

In addition to training a whole model from scratch, some works integrate off-the-shelf audio gen-
eration models with modality mappers or multimodal encoders with joint embedding space for
conditioning. V2A-Mapper [35] uses a lightweight mapper to transfer CLIP embeddings of videos to
CLAP [40] embeddings as the condition for audio generation. Xing et al. [41] utilize an ImageBind[9]-
based latent aligner for conditional guidance in audio generation. Despite the existence of plentiful
works on V2A, there is still a large room left for improvement in quality, synchrony, and efficiency.

2.2 Flow matching generative models

Flow matching [18] models the vector field of transport probability path from noise to data samples.
Compared to score-based models like DDPM [12], flow matching achieves more stable and robust
training together with superior performance. Specifically, rectified flow matching [21] learns the
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transport ODE to follow the straight paths connecting the noise and data points as much as possible,
reducing the transport cost, and achieving fewer sampling steps with the reflow technique. This
modeling paradigm has demonstrated excellent performance in accelerating image generation [22, 6].

In the area of audio generation, Voicebox [16] builds a large-scale multi-task speech generation model
based on flow matching. Its successor, Audiobox [34], extends the flow-matching-based model to
a unified audio generation model with natural language prompt guidance. Matcha-tts [26] trains
an encoder-decoder TTS model with optimal-transport conditional flow matching. VoiceFlow [11]
introduces rectified flow matching into TTS, achieving speech generation with fewer inference steps.
However, for the task of V2A, there has been no exploration into utilizing flow matching models to
enhance generation quality or inference efficiency.

3 Method

3.1 Preliminary: rectified flow matching

We first introduce the basic principles of rectified flow matching (RFM) [21] that we build our model
upon. Conditional generation problems like V2A can be viewed as a conditional mapping from a
noise distribution x0 ∼ p0(x) to a data distribution x1 ∼ p1(x). This mapping can be further taken
as a time-dependent changing process of probability density (a.k.a. flow), determined by the ODE:

dx = u(x, t|c)dt, t ∈ [0, 1], (1)

where t represents the time position, x is a point in the probability density space at time t, u is
the value of the transport vector field (i.e., the gradient of the probability w.r.t t) at x, and c is the
condition. In our case, the condition c is the visual features from the video frames, while the data x1

is the compressed mel-spectrogram latent of the corresponding audio from a pre-trained autoencoder.
The fundamental principle of flow matching generative model is to use a neural network θ to regress
the vector field u with the flow matching objective:

LFM(θ) = Et,pt(x) ∥v(x, t|c; θ)− u(x, t|c)∥2 , (2)

ODE Solver

d𝒙 = 𝒗 𝒙,𝑡 𝒄 ; 𝜃 )dt
𝑡 = 0

𝑡 = 1

𝒙0~ 𝑁(0,𝐼)

𝒄
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Figure 1: Illustration of the sampling
process of our rectified-flow based
V2A architecture.

where pt(x) is the distribution of x at timestep t. However,
due to a lack of prior knowledge of target distribution p1(x)
and the forms of pt and u, it is intractable to directly compute
u(x, t|c). As an alternative, conditional flow matching objec-
tive, which is proven in [18] to have identical gradient as eq. 2
w.r.t θ, is used for regression:

LCFM(θ) = Et,p1(x1),pt(x|x1) ∥v(x, t|c; θ)− u(x, t|x1, c)∥2 .
(3)

Through designing specific probabilistic paths that enable effi-
cient sampling from pt(x|x1) and computing of u(x, t|x1, c),
we achieve an unbiased estimation of u(x, t|, c) with the CFM
objective 3. Specifically, rectified flow matching attempts to
establish straight paths between noise and data, aiming to fa-
cilitate sampling with larger step sizes and fewer steps. Given
a noise-data pair (x0,x1), x is located at (1− t)x0 + tx1 at
timestep t, with the vector field being u(x, t|x1, c) = x1−x0,
pointing from the noise point to the data point. Hence, for each
training step of the vector field estimator, we simply sample
the data point x1 and noise point x0 from p1(x) and p0(x),
respectively, and optimize the network with the rectified flow
matching (RFM) loss

∥v(x, t|c; θ)− (x1 − x0)∥2 . (4)

Once the vector estimator network finishes training, we can adopt various solvers to approximate
the solution of the ODE dx = v(x, t|c; θ) at discretized time steps for sampling. A simple and
commonly used ODE solver is the Euler method:

xt+ϵ = x+ ϵv(x, t|c; θ) (5)
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Figure 2: Illustration of model architecture of FRIEREN at different levels.

where ϵ is the step size. The sampled latent is fed to the decoder of the spectrogram autoencoder for
spectrogram reconstruction, and the result is further used to reconstruct the audio waveform with a
vocoder. Figure 1 provides a simple demonstration of the model’s sampling process.

3.2 Model architecture

Model overview We illustrate the model architecture of FRIEREN at different levels in Figure 2. As
shown in Figure 2(a), we first utilize a pre-trained visual encoder with frozen parameters to extract a
frame-level feature sequence from the video. Usually, the video frame rate is lower than the temporal
length per second of the spectrogram latent. To align the visual feature sequence with the mel latent
at the temporal dimension for the cross-modal feature fusion mentioned below, we adopt a length
regulator, which simply duplicates each item in the feature sequence by the ratio of the latent length
per second and the video frame rate for regulation. The regulated feature sequence is then fed to the
vector field estimator as the condition, together with x and t, to get the vector field prediction v.

Visual and audio representations Various audio-aligned visual representations [9, 25, 14, 38, 37,
36, 39] can potentially be applied to video-to-audio generation, and we conduct experiments with
two types of visual representations. For a fair comparison with Diff-Foley [25], we mainly utilize the
CAVP feature proposed in [25], which is a visual-audio contrastive feature considering both content
and temporal alignment. Meanwhile, to investigate the impact of visual feature characteristics on
model performance, we also attempt the visual feature from MAViL 3 [14], which is an advanced
self-supervised visual-audio representation learner that employs both masked-reconstruction and
contrastive learning, and exhibits formidable performance in audio-visual understanding (See section
4.3.2 for comparison). For audio representation, we follow a previous text-to-audio work [13] to train
a mel-spectrogram VAE with 1D convolution over the temporal dimension. Details of the VAE are
provided in appendix A.

Vector field estimator Figure 2(b) demonstrates the structure of the vector field estimator, which is
composed of a feed-forward transformer and some auxiliary layers. The regularized visual feature c
and the point x on the transport path are first processed by stacks of shallow layers separately, with
output dimensions being both half of the transformer hidden dimension, and are then concatenated
along the channel dimension to realize cross-modal feature fusion. This simple mechanism leverages
the inherent alignment within the video and audio, achieving enforced alignment without relying
on learning-based mechanisms such as attention. As a result, the generated audio and input video
sequences exhibit excellent temporal alignment. After appending the time step embedding to the
beginning, the sequence is added with a learnable positional embedding and is then fed into the feed-
forward transformer. The structure of the transformer block is illustrated in Figure 2 (c), the design
of which is derived from the spatial transformer in latent diffusion [29], with the 2D convolution
layers replaced by 1D ones. The feed-forward transformer does not involve temporal downsampling,

3Implementation of MAViL is from av-superb [33]: https://github.com/roger-tseng/av-superb
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thus preserving the resolution of the temporal dimension and further ensuring the preservation of
alignment. The output of the stacked transformer blocks is then passed through a normalization layer
and a 1D convolution layer to finally obtain the prediction of the vector field.

3.3 Re-weighting RFM objective with logit-normal coefficient

The original RFM objective samples uniformly over time span [0, 1]. However, for modeling the
vector field, positions in the middle of the transport path (equivalent to time steps in the middle of
[0, 1]) present greater difficulty, as these positions are distant from both noise and data distributions.
On the other hand, positions near the boundaries of the time span typically lie close to corresponding
noise or data points, and their vector field direction tends to align with the lines connecting these
points and the centroid of the distribution on the opposite side, and therefore relatively easy to regress.
Upon this insight, we introduce time-based re-weighting to the original RFM objective, allocating
more weight to intermediate time steps to achieve better modeling effectiveness. This is equivalent to
increasing the sampling frequency of intermediate time steps. In practice, logit-normal weighting
coefficients have been proven [6] to yield promising results, with the formula being

w(t) =
1√
2π

1

t(1− t)
exp

(
− (ln t− ln(1− t))2

2

)
. (6)

We re-weight the RFM objective with this weighting function to replace the original objective and
observe in our experiment that this re-weighting helps to slightly improve audio quality and temporal
alignment at the cost of a marginal decrease in audio diversity.

3.4 Classifier-free guidance

Similar to diffusion-based models, we observe that classifier-free guidance (CFG) is highly important
for generating audio that semantically matches and temporally aligns with the video. During training,
we randomly replace the condition sequence c with a zero tensor with a probability of 0.2, and during
sampling, we modify the vector field using the formula

vCFG(x, t|c; θ) = γv(x, t|c; θ) + (1− γ)v(x, t|∅; θ), (7)

where γ is the guidance scale trading off the sample diversity and generation quality, and vCFG

degenerates into the original vector field v when γ = 1. We set γ to 4.5 in our major experiments.

3.5 Reflow and one-step distillation with guided vector field

In this section, we introduce two techniques we adopt for reducing sampling steps. The first one is
reflow, which is a crucial component of the rectified flow paradigm [21, 22]. Training the estimator
network with objective 4 for once is insufficient to construct straight enough transport paths, and an
extra reflow procedure is needed to strengthen the transport trajectories without altering the marginal
distribution learned by the model, enabling sampling with larger step sizes and fewer steps. Given a
model θ trained with RFM objective, the reflow procedure applies θ to conduct sampling over the
entire training dataset to obtain sampled data x̂1 and save the corresponding input noise x′

0, finally
obtaining triplets (x′

0, x̂1, c). The noise-data pair (x0,x1) in the RFM objective 4 is replaced by
(x′

0, x̂1) for a secondary training of θ. This process can be repeated multiple times to obtain straighter
trajectories with diminishing marginal effects. We conduct reflow for once as it is sufficient for
achieving straight enough trajectories.

While many rectified-flow-based models regress the same velocity field v during both the initial
training and the reflow process, we observe that when incorporating CFG, conducting sampling and
reflow with the original vector field v is ineffective in straightening the sampling trajectories with the
guided vector field vCFG. Therefore, we use vCFG for generating x̂1 and as the target of regression
in reflow. The reflow objective can be written as:

Lreflow(θ
′) = Et,p(x′

0,x̂1|c),pt(x|x′
0,x̂1) ∥vCFG(x, t|c; θ′)− (x̂1 − x′

0)∥
2 (8)

with same weighting function as eq. 6.

Upon the model θ′ obtained from reflow, we further conduct one-step distillation [21, 22] to enhance
the single-step generation performance of the model. As a type of self-distillation, this procedure tries
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Table 1: Results of V2A models on VGGSound dataset. R+F and RN50 denote the RGB+Flow and
ResNet50 versions of SpecVQGAN, and CG denotes classifier guidance in Diff-Foley.

Model FD↓ IS↑ KL↓ FAD↓ KID(10−3) ↓ Acc(%) ↑ MOS-Q↑ MOS-A↑
SpecVQGAN (R+F) 31.69 5.23 3.37 5.42 8.53 61.83 3.30 ± 0.06 2.35 ± 0.05
SpecVQGAN (RN50) 32.52 5.21 3.41 5.39 9.00 56.92 3.25 ± 0.07 2.17 ± 0.05
Im2Wav 14.98 7.20 2.57 5.49 3.35 56.70 3.39 ± 0.06 2.29 ± 0.06
Diff-Foley (CG ✓) 23.94 11.11 3.38 4.72 9.58 95.03 3.57 ± 0.08 3.74 ± 0.07
Diff-Foley (CG ✗) 24.97 11.69 3.23 7.10 10.32 92.53 3.64 ± 0.07 3.59 ± 0.06
LDM 11.79 10.09 2.86 1.77 2.36 95.33 3.72 ± 0.05 3.79 ± 0.07
FRIEREN 12.26 12.42 2.73 1.32 2.49 97.22 3.78 ± 0.06 3.90 ± 0.05
FRIEREN (Dopri5) 11.64 12.76 2.75 1.37 2.39 96.87 3.81 ± 0.06 3.85 ± 0.06

to reduce the error between the single-step sampling result x′
0 + vCFG(x

′
0, t|c; θ) and the multi-step

sampling result x̂1. The objective function can be written as:

Ldistill(θ
′′) = Et,p(x′

0,x̂1|c),pt(x|x′
0,x̂1) ∥x

′
0 + vCFG(x

′
0, t|c; θ′′)− x̂1∥

2 (9)

Formally, the distillation objective 9 can be viewed as a reflow objective with the sampling timestep
fixed at t = 0. We observe in the experiment that due to a limited number of sampling steps in reflow
data generation, the model may experience a decrease in sampling quality after the reflow process.
Therefore, we opt to use the same training data used in reflow for distillation, rather than re-sampling
the training data with the reflow model, which is based on the theoretical basis that reflow does not
alter the marginal distribution modeled by the estimator.

4 Experiments

4.1 Experiment setup

Dataset and pre-processing Following most previous works, we take VGGSound [2] as the
benchmark, which consists of 200k+ 10-second video clips from YouTube spanning 309 categories.
Excluding videos already removed from YouTube, we follow the original train and test splits of
VGGSound, the sizes of which are about 182.6k and 15.3k. We downsample the audios to 16kHz and
transform them to mel-spectrogram with 80 bins and a hop size of 256. We follow [25] to downsample
the videos to 4 FPS. Data samples are truncated to 8-second clips for training and inference.

Model configuration The transformer of the vector field estimator mainly used in the experiments
has 4 layers and a hidden dimension of 576. Each model is trained with 2 NVIDIA RTX-4090 GPUs.
We train the estimator for 1.3M steps for the first training, and 600k and 500k steps for reflow and
distillation, with the learning rate being 5e-5 for all stages. For waveform generation, we train a
BigVGAN [17] vocoder on AudioSet [7]. Details of model parameters are provided in appendix A.

Metrics We combine objective and subjective metrics to evaluate model performance over audio
quality, diversity, and temporal alignment. For objective evaluation, we calculate Frechet distance
(FD), inception score (IS), Kullback–Leibler divergence (KL), Frechet audio distance (FAD), kernel
inception distance (KID), and alignment accuracy (Acc). We utilize audio evaluation tools provided by
AudioLDM [19], which are widely used in audio generation tasks, as well as the alignment classifier
provided in [25]. For metrics with reference like FAD, we duplicate the reference audio samples in
the test set for 10 times as we generate 10 samples for each data item. For subjective evaluation, we
conduct crowd-sourced human evaluations with 1-5 Likert scales and report mean-opinion-scores
(MOS) over audio quality (MOS-Q) and content alignment (MOS-A) with 95% confidence intervals
(CI). We sample 10 audios for each test video for evaluation. Details of subjective evaluation are
provided in appendix B.

Baseline models We adopt three advanced V2A models as baselines, including: 1) SpecVQGAN
[15], a transformer-based autoregressive model generating spectrogram VQVAE indices from visual
features; 2) Im2Wav [31], a hierarchical autoregressive V2A model predicting audio VQVAE indices
conditioned on CLIP features; and 3) Diff-Foley [25], a strong latent-diffusion-based V2A model.
For SpecVQGAN, we evaluate two versions using RGB+Flow and ResNet features as input visual
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Table 2: Results of FRIEREN and Diff-Foley under different sampling steps. CG denotes classifier
guidance, R denotes reflow and D denotes one-step distillation.

Model Steps FD↓ IS↑ KL↓ FAD↓ KID(10−3) ↓ Acc(%) ↑ MOS-Q↑ MOS-A↑

Diff-Foley (CG ✓)

1

82.61 2.31 4.44 13.64 43.96 31.60 1.28 ± 0.04 1.35 ± 0.03
Diff-Foley (CG ✗) 86.97 1.86 4.17 14.66 39.73 37.02 1.17 ± 0.03 1.63 ± 0.04
FRIEREN (R ✗, D ✗) 70.48 2.95 4.21 13.07 26.99 43.18 2.12 ± 0.04 1.71 ± 0.04
FRIEREN (R ✓, D ✗) 18.61 6.63 2.60 3.13 3.49 94.96 3.32 ± 0.07 3.74 ± 0.06
FRIEREN (R ✓, D ✓) 17.58 8.66 2.56 1.85 2.91 97.85 3.48 ± 0.06 3.93 ± 0.05

Diff-Foley (CG ✓)

5

60.99 3.42 3.62 9.61 3.60 73.30 2.66 ± 0.07 2.98 ± 0.07
Diff-Foley (CG ✗) 51.52 5.14 3.45 10.96 2.66 91.30 3.03 ± 0.08 3.56 ± 0.07
FRIEREN (R ✗, D ✗) 28.78 6.69 3.02 4.34 8.56 87.69 3.30 ± 0.07 3.37 ± 0.08
FRIEREN (R ✓, D ✗) 14.65 8.28 2.60 2.11 2.28 96.82 3.43 ± 0.06 3.83 ± 0.06

Diff-Foley (CG ✓)

25

23.94 11.11 3.28 4.72 9.58 95.03 3.57 ± 0.08 3.74 ± 0.07
Diff-Foley (CG ✗) 24.97 11.69 3.23 7.10 10.32 92.53 3.64 ± 0.07 3.59 ± 0.06
FRIEREN (R ✗, D ✗) 12.26 12.42 2.73 1.32 2.49 97.22 3.78 ± 0.06 3.90 ± 0.05
FRIEREN (R ✓, D ✗) 13.39 9.79 2.64 1.66 2.01 97.36 3.61 ± 0.07 3.88 ± 0.05

(a) Input video

(b) Diff-Foley (c) LDM (d) FRIEREN 
(no reflow)

(e) FRIEREN 
(reflow)

(f) FRIEREN
(reflow + distillation)

Figure 3: One-step generation results of different models. (a): The content of the input video is a
woman playing the violin. (b): Diff-Foley generates meaningless audio with one step. (c, d): LDM
and FRIEREN without reflow generate highly noisy audio. (e, f): reflow enables FRIEREN to generate
meaningful audio in one step, and distillation further improves the one-step generation quality.

conditions. For Diff-Foley, we evaluate its performance with and without classifier guidance to
examine the impact of its complex external alignment mechanism. To better validate the superiority
of our rectified flow model, we also train a diffusion model sharing the same architecture as FRIEREN
but has a different prediction target, labeled as LDM in the following tables. For diffusion models, we
use DPM-Solver [24] for sampling. For our rectified flow model, we use the Euler method 5 in most
cases without further specification. We also explore the more advanced Dormand–Prince method
(Dopri5) [4] method for higher generation quality.

4.2 Results and analysis

Video-to-audio generation results The results of different models are illustrated in table 1. We
sample with diffusion models and FRIEREN with 25 steps, and report the result of FRIEREN without
reflow and distillation, which shows the best overall performance with a high number of sampling
steps. It can be seen that FRIEREN significantly outperforms other models in IS, FAD, and alignment
accuracy, with the values reaching up to 12.42, 1.32, and 97.22%, together with high subjective scores
of 3.78 and 3.90 on quality and alignment. For FD, KL, and KID, the scores of FRIEREN are also
very close to the best values among other models. When we employ the higher-order Dopri5 ODE
solver, FRIEREN achieves further improvements in FD and IS, attaining best values of 11.64 and
12.76, respectively, while maintaining stable performance in other objective metrics, at the cost of
slower sampling speed. This indicates the effectiveness of our approach. Generally, the performance
of FRIEREN surpasses that of the LDM, demonstrating the superiority of rectified flow matching over
the score-based paradigm of diffusion. Additionally, both FRIEREN and LDM outperform Diff-Foley
in temporal alignment, proving that our architecture design achieves strong temporal alignment
without the need for complex mechanisms, and can produce audio that is highly synchronized with
visual input. Additionally, our model also has an advantage in sampling time, with details provided
in appendix C.

Few and single step generation results We further demonstrate the results of Diff-Foley and
FRIEREN on reduced sampling steps in table 2 to illustrate the impact of reflow and one-step
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distillation, together with trend graphs of IS and FAD in figure 4 for intuitive presentation. The
data for reflow are generated with the Euler method for 25 steps. We observe an obvious drop in
performance of Diff-Foley as well as FRIEREN without reflow when sampling with as few as 5 steps,
and their scores become extremely poor when we further reduce the step number to 1. Figure 3 (b) (c)
and (d) illustrate that the audio generated by these models as well as LDM degrades into unacceptably
noisy or meaningless audio within one step. This is due to the convoluted nature of the sampling
trajectories of these models, which disables them from sampling with large step sizes and few steps.
We also notice that when sampling with 5 steps, using additional classifier guidance deteriorates the
audio quality and synchrony of Diff-Foley, where alignment accuracy and IS drop by 18.0% and 1.72
respectively, while FD, KL, and KID increase by 9.47, 0.17, and 0.94 ×10−3. This indicates the lack
of robustness of the complex alignment mechanism that Diff-Foley relies on.

0 5 10 15 20 25
Inference Steps

0

2

4

6

8

10

12

14

IS

Inception Score (IS)

Diff-Foley (w/ CG)
Diff-Foley (w/o CG)
Frieren
Frieren (R)
Frieren (R+D)

0 5 10 15 20 25
Inference Steps

0

2

4

6

8

10

12

14

16

FA
D

Frechet Audio Distance (FAD)
Diff-Foley (w/ CG)
Diff-Foley (w/o CG)
Frieren
Frieren (R)
Frieren (R+D)

Figure 4: IS and FAD of the models with different steps.

In contrast, FRIEREN with reflow
achieves an alignment accuracy of up
to 96.82% in just 5 steps, with signif-
icant advantages in quality, diversity,
and subjective metrics. Additionally,
it maintains an accuracy of 94.96% in
single-step generation, as well as de-
cent quality and diversity. This proves
that reflow functions significantly in
straightening the sampling trajecto-
ries, enabling the rectified flow model
to generate decent audio with a small number of sampling steps. Furthermore, single-step distillation
following reflow further improves the model performance with one step, with alignment accuracy
reaching up to 97.85%, and KL, FAD, and KID being close to the 25-step results of FRIEREN trained
once, with differences of 0.17, 0.53 and 0.42×10−3. It also achieves high MOS-Q and MOS-A of
3.48 and 3.93.

Figure 3 (e) and (f) show that results from FRIEREN with reflow and reflow+distillation have
distinguishable spectrograms, with the latter showing higher quality and sharper edges. This fully
demonstrates that the combination of reflow and one-step distillation endows our model with strong
single-step generation capabilities, significantly enhancing the efficiency on the V2A task. Notice
that reflow brings in some quality degradation in sampling with 25 steps. We speculate that this is
because the limited number of sampling steps restricts the data quality when generating data for
reflow, resulting in a shift in the marginal distribution learned by the model. This cumulative error
might be mitigated by increasing the number of sampling steps during reflow data generation.

4.3 Ablation study

4.3.1 Model size of vector field estimator

We adjust the number of parameters of the vector field estimator and evaluate the model performance
at different scales. We label the major model as “base”, and obtain “small” and “large” models by
decreasing and increasing the hidden dimension and / or the number of transformer layers, respectively.
The parameter counts of the estimator and results are presented in table 3.

We observe that when the model parameters are reduced to 71M, performance declines across all
metrics, where FD, KL, FAD, and KID increase by 0.76, 0.05, 0.18, and 0.3×10−3, and IS, alignment
accuracy, MOS-Q and MOS-A drop by 0.26, 1.18%, 0.07 and 0.07, respectively. However, when the
parameter number increases to 421M, there is a performance degradation across multiple metrics, with
KL, FAD, and KID increasing by 0.03, 0.04, and 0.48×10−3, and IS, alignment acc declining by 0.13
and 2.06%. We speculate that this anomalous phenomenon may be due to the convergence difficulty
for the larger model under similar training steps, or the redundant model capacity tends to cause
overfitting on a relatively small dataset like VGGSound, deteriorating the model’s generalization
performance. In summary, we achieve relatively balanced model performance with the parameter of
the estimator being around 160M. Details of model parameters are provided in appendix A.
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Table 3: Ablation results on different model size of vector field estimator network.

Model Size FD↓ IS↑ KL↓ FAD↓ KID(10−3) ↓ Acc(%) ↑ MOS-Q↑ MOS-A↑
Small (70.90 M) 13.02 12.16 2.78 1.50 2.79 96.04 3.71 ± 0.07 3.83 ± 0.06
Base (158.88 M) 12.26 12.42 2.73 1.32 2.49 97.22 3.78 ± 0.06 3.90 ± 0.05
Large (421.12 M) 12.20 12.29 2.76 1.36 2.97 95.16 3.78 ± 0.07 3.80 ± 0.06

Table 4: Results on different types visual features.

Type Feat. FPS FD↓ IS↑ KL↓ FAD↓ KID(10−3) ↓ Acc(%) ↑ MOS-Q↑ MOS-A↑
CAVP [25] 4 12.26 12.42 2.73 1.32 2.49 97.22 3.78 ± 0.06 3.90 ± 0.05
MAViL [14] 2 12.08 12.17 2.49 1.26 2.52 90.17 3.75 ± 0.06 3.46 ± 0.07

4.3.2 Visual feature characteristics

In table 4, we compare the results of FRIEREN using two different types of visual features from CAVP
and MAViL. Intuitively, the MAViL feature should be more robust and contain richer audio-related
semantic information, as it utilizes masked-reconstruction together with inter-modal and intra-modal
contrastive learning, in contrast to CAVP trained solely with inter-modal contrastive learning. On the
other hand, however, due to MAViL’s convolutional downsampling in the temporal dimension, its
feature sequence has a lower effective FPS of 2 with the same 4 FPS video input as CAVP. The results
in the table indicate that the model with MAViL feature excels in audio diversity, with differences of
FD, KL, and FAD being 0.18, 0.24, and 0.06. Meanwhile, it exhibits a 7.05% decrease in alignment
accuracy and a 0.25 decrease in IS. This result yields two insights for V2A tasks: 1) at relatively low
frame rates, the frame rate of features, rather than content, is more likely to become the bottleneck
for audio quality and visual-audio synchrony; 2) compared to high video frame rates, the semantic
information and robustness of visual features are more crucial for the diversity of generated audio.

4.3.3 Classifier-free guidance scale
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Figure 5: Model performance of FRIEREN under different CFG
scales.

In figure 5, we illustrate the im-
pact of various CFG scales on
the performance of FRIEREN. In
terms of audio diversity (FD,
KL, KID, FAD), the metrics
initially increase with the CFG
scale, reaching an optimal value
at around 2 and 3. After that,
the metrics go down as the in-
creasing CFG scale suppresses
the diversity. For audio quality
(IS) and temporal alignment, as
larger scales make the content of
the generated audio closer to the
visual information, the metrics
initially increase with the scale, reaching an optimal value between 4 and 4.5, and decrease after that
due to audio distortion. We prioritize audio quality and synchrony and adopt a CFG scale of 4.5.

4.3.4 Re-weighting RFM objective

We conduct ablation on RFM objective re-weighting and report the results in table 5. We can see
that compared to the vanilla objective, introducing re-weighting results in improvements of 0.22 and
0.18% for IS and alignment accuracy. This validates the positive impact of objective re-weighting on
audio quality and temporal alignment. On the other hand, objective re-weighting causes a decrease in
audio diversity, with differences in FD, FAD, and KID being 0.31, 0.07, and 0.37×10−3, respectively.
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Table 5: Ablation results on RFM objective re-weighting.

Re-weighting FD↓ IS↑ KL↓ FAD↓ KID(10−3) ↓ Acc(%) ↑ MOS-Q↑ MOS-A↑
✗ 11.95 12.20 2.73 1.25 2.12 97.04 3.74 ± 0.07 3.82 ± 0.06
✓ 12.26 12.42 2.73 1.32 2.49 97.22 3.78 ± 0.06 3.90 ± 0.05

5 Conclusion

In this paper, we propose FRIEREN, an efficient video-to-audio generation model based on rectified
flow matching. We use a neural network to regress the conditional transport vector field with straight
paths from noise to spectrogram latents, and conduct sampling by solving ODE, achieving better
performance than diffusion-based and other V2A models. We adopt a vector field estimator based
on a feed-forward transformer as well as channel-level cross-modal feature fusion to realize strong
audio-video synchrony. Through a combination of reflow and one-step distillation, our model can
generate high-quality audio with a few or even one sampling step, boosting the generation efficiency
significantly. Experiments show that our model achieves state-of-the-art V2A performance on
VGGSound. For future work, we will explore extending the model to larger scales and larger datasets
to achieve V2A generation on a broader data domain. Besides, we will attempt audio generation from
longer video sequences with variable lengths, rather than being limited to fixed-length short clips.
These efforts aim to build a more versatile and widely applicable V2A model.
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A Implementation details

Table 6: Architecture details of 1D VAE for spectrogram compression.

Hyperparameter 1D VAE

Input tensor shape for 10-sec audio (80,624)
Embedding dimension 20
Channels 224
Channel multiplier 1, 2, 4
Downsample layer position after block 1
Attention layer position after block 3
Output tensor shape for 10-sec audio (20,312)

Table 7: Hyperparameters of the vector field estimator of FRIEREN with different sizes.

Hyperparameter Small Base Large

Layers 4 4 6
Hidden dimension 384 576 768
Attention heads 8 8 8
Conv1D-FFN dimension 1,536 2,304 3,072
Number of parameters 70.90M 158.88M 421.12M

In table 6, we provide the architecture details of the mel-spectrogram VAE. Different from the
commonly used 2D VAE for spectrogram, the 1D VAE we adopt does not involve an extra channel
dimension, but takes the frequency axis of the spectrogram as the channel dimension, and conducts
convolution along the temporal axis. This design is derived from the insight that the spectrogram is
not translation invariant along the frequency axis, and it can better synergize with the feed-forward
transformer. In table 7, we present the hyperparameters of the vector field estimator networks with
different sizes.

Additionally, we observe that although there is no significant difference in objective metrics, ini-
tializing the vector field estimator with the weights of a diffusion model for text-to-audio (T2A)
generation [13] helps improve the subjective perceptual quality of the generated audio marginally.
This improvement derives from the knowledge of audio generation on a broader data domain learned
by the T2A model. We adopt this trick in our model training.

B Subjective evaluation

Figure 6: Screenshot of subjective evaluation on audio quality.

For each evaluated model, we select 150 items for subjective evaluation, accounting for about 1% of
the entire test split.

Our subjective evaluation tests are crowd-sourced and conducted via Amazon Mechanical Turk. For
audio quality evaluation, we ask the testers to examine the audio quality and ignore the content. And
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Figure 7: Screenshot of subjective evaluation on temporal alignment.

for temporal alignment, we instruct the testers to evaluate the synchrony between the background
audio and the video content, while ignoring the audio quality. The testers rate scores on 1-5 Likert
scales. We provide screenshots of the testing interfaces in figure 6 and 7. Each data item is rated by 6
testers, and the testers are paid $8 hourly.

C Time efficiency

Table 8: Inference time per sample of different models with batch size = 1.

Model Inference Time (sec)

SpecVQGAN 3.936
Im2Wav 333.246
Diff-Foley (step=25) 2.104
FRIEREN (Dopri5, step=25) 1.510
FRIEREN (Euler, step=25) 0.288
FRIEREN (Euler, step=5) 0.064
FRIEREN (Euler, step=1) 0.031

In table 8, we compare the inference time per sample of different models. The inference is conducted
on a single RTX-4090 GPU with a batch size of 1. We can see that the inference procedure
of transformer-based autoregressive models, including SpecVQGAN and Im2Wav, is more time-
consuming, especially for Im2Wav, which takes several minutes to generate a single sample. This
is because Im2Wav conducts a cascaded generation with 2 transformers. Moreover, its use of high-
bitrate audio VQVAE results in very long sequences of audio representation, significantly increasing
the inference time required for the transformers, which has quadratic time complexity concerning
sequence length. In contrast, Diff-Foley and FRIEREN require less inference time, and FRIEREN
with Euler solver enjoys a higher speed, achieving 7.3 times faster than Diff-Foley with 25 sampling
steps. This is the result of a combination of multiple factors, including model architecture, model
parameters, sampling methods, and so on. Furthermore, when using FRIEREN model with reflow
and one-step distillation, we can generate 5-step sampled audio in 0.064 seconds and 1-step sampled
audio in just 0.031 seconds, achieving 4.5× and 9.3× acceleration compared to 25-step sampling.
This demonstrates the extremely high generation efficiency of our model on the task of V2A.

D Impact of the vocoder on model performance

Different selections of vocoders can significantly impact the performance of various audio generation
models. Diff-Foley uses the simple Griffin-Lim method [10] to map spectrograms to waveforms,
while FRIEREN employs the more efficient BigVGAN. To compare the performance of the spec-
trogram generation models while minimizing the influence of the vocoder, we apply BigVGAN
and Griffin-Lim separately to each model. The output from Diff-Foley is converted into an 80-bin
mel-spectrogram and then fed into BigVGAN. The number of Griffin-Lim iterations for FRIEREN is
the same as Diff-Foley. The results are shown in table 9.
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Table 9: Comparison of the performance of Diff-Foley and FRIEREN using the same vocoder.

Model FD↓ IS↑ KL↓ FAD↓ KID(10−3) ↓
BigVGAN

Diff-Foley (CG ✓) 18.02 10.89 2.88 6.32 5.32
FRIEREN 12.26 12.42 2.73 1.32 2.49

Griffin-Lim

Diff-Foley (CG ✓) 23.94 11.11 3.38 4.72 9.58
FRIEREN 28.29 10.67 3.17 3.70 12.30

It can be seen that using BigVGAN for Diff-Foley improves its FD, KL, and KID, indicating its
effectiveness. On this basis, FRIEREN outperforms Diff-Foley across all metrics, with a greater
difference than when using Griffin-Lim for both. This further demonstrates that our model is superior
to Diff-Foley.

On the other hand, when using Griffin-Lim for both models, despite the performance drop, FRIEREN
still surpasses Diff-Foley in KL and FAD, with FAD showing a significant advantage while maintain-
ing competitive FD and IS values. We speculate that the Griffin-Lim algorithm is so weak that it forms
a performance bottleneck, narrowing the performance gap between FRIEREN and Diff-Foley. Addi-
tionally, differences in spectrogram hyperparameters may also lead to a performance gap. Diff-Foley
uses 128 frequency bins, more than the 80 bins used by FRIEREN, allowing it to carry finer-grained
information and may give Diff-Foley an advantage when using Griffin-Lim.

E Limitations and boarder impacts

Limitations Despite that FRIEREN achieves outstanding performance on audio quality, temporal
alignment, and generation efficiency, it still has two major limitations: 1) Currently, experiments have
only been conducted on a small-scale dataset, VGGSound, and we have not yet scaled the model to
large-scale datasets. Therefore, it is still difficult to apply our model to a wide range of real-world
scenarios for now; 2) our current model design only targets audio generation for fixed-length short
video clips, and it lacks the ability of audio generation for long videos with various lengths. We will
explore the solutions to these issues in future work.

Potential positive impacts The achievements of our model on the V2A task may reduce the cost
of sound effect synthesis, and could potentially drive advancements in the film, gaming, and social
media industries.

Potential negative social impacts The automatic sound effect generation technology may lead
to job losses for related personnel. Additionally, there is a risk of the model being used to generate
harmful content or fake media. Constraints are needed to guarantee that people will not use the model
in illegal cases.
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• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [No]
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Justification: As an application-oriented paper, the theory of the rectified flow model we
rely upon has been thoroughly demonstrated and proven in the related original papers. We
cite these original papers and encourage readers to refer to them for the complete proofs.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Please refer to section 4.1 and appendix A.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [No]
Justification: Due to time limiations, we have not yet organized a publicly shareable version
of the code. We will open-source our code after the paper is accepted.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Please refer to section 4.1, appendix A and appendix B.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We report 95% confidence interval of subjective evaluation results (MOS-Q
and MOS-A). No statistical significance is applicable for objective metrics we use.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Please refer to Model configuration in section 4.1.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We faithfully adhered to the NeurIPS Code of Ethics throughout our research.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: Please refer to appendix E.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [No]

Justification: At this stage, we have not made our code and models open-source. We will
consider relevant protection measures during the open-sourcing stage.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: For code and data we use in our paper, we cite the original papers and comply
with their licensing.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: We do not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [Yes]
Justification: Please refer to appendix B.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The crowdsourced evaluations we conduct do not involve potential risks or
activities requiring approval.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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