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ABSTRACT

Accurate prediction of personalized drug response is critical for precision oncol-
ogy, yet limited clinical data forces reliance on preclinical datasets. However, fun-
damental biological differences between preclinical cell lines and patient tumors
hinder direct knowledge transfer. In this work, we introduce THERAPI, a novel
tumor heterogeneity-aware Domain Adaptation (DA) framework that represents
patient tumors as weighted combinations of multiple cell lines with tissue-specific
context. Along with our comprehensive gene expression modeling by integrat-
ing drug-induced perturbation-based and rank-based representations, THERAPI
outperforms both DA-free and DA-based models and generalizes robustly to an
external dataset, highlighting its potential for applications in precision medicine.

1 INTRODUCTION

Predicting personalized drug response is essential for precision medicine, as it enables tailored
treatment strategies based on individual patient profiles (Feng et al., 2021). However, the limited
availability of large-scale clinical datasets like The Cancer Genome Atlas (TCGA, Weinstein et al.
(2013)) forces many studies to rely on preclinical data such as the Genomics of Drug Sensitivity
in Cancer (GDSC, Iorio et al. (2016)) to predict cancer cell line responses (Liu et al., 2020; Bang
et al., 2024). Yet, fundamental differences between cancer cell lines and patient tumors, arising
from variations in the tumor microenvironment and heterogeneity, hinder direct knowledge trans-
fer, often resulting in models that fail to generalize to real-world patient samples (Lee et al., 2018;
Shen et al., 2023). These discrepancies lead to one of the core challenges in machine learning,
known as domain shift, which limits the direct applicability of models trained on preclinical data
to diverse patient populations. Thus, the main challenge in this task is translating knowledge from
GDSC to TCGA—specifically, how to transfer transcriptomic information from GDSC cell lines to
the transcriptomic profiles of patient tumors in TCGA. To address this challenge, domain adaptation
(DA)-based techniques have been explored to align distributions between preclinical models and
patient tumors (He et al., 2022; Kim et al., 2024).

Despite advances in DA-based techniques, two major limitations remain during transfer. First, cur-
rent methods overlook tumor heterogeneity. Unlike cell lines, patient tumors exhibit distinct het-
erogeneity and microenvironment differences (Mourragui et al., 2019). However, most DA-based
approaches align cell line data and patient data without accounting for this heterogeneity in can-
cer composition along with tissue-specific context. Second, existing methods fail to model and
consider gene interactions, an essential element of drug response mechanism, as they operate at a
low-dimensional representation level (He et al., 2022; Kim et al., 2024). Previous studies on tran-
scriptomic modeling have shown that examining interrelationships between gene expression levels
(Theodoris et al., 2023) or gene interactions from drug-induced gene expression perturbation (Bang
et al., 2024) is critical for drug response prediction tasks. However, existing DA-based methods over-
look this aspect and rely on simple MLP encoders for drug response prediction in a low-dimensional
representation space.

1



Published as a workshop paper at MLGenX 2025

To address these challenges, we propose THERAPI: Tumor Heterogeneity-aware Embedding for
Response Adaptation and Patient Inference, bridging the gap between cell line transcriptomic data
and patient tumor profiles. Unlike existing methods that treat patient tumors as analogous to indi-
vidual cell lines, THERAPI models tumor heterogeneity by representing each patient tumor as a
linear combination of multiple preclinical cancer models, further enriched with tissue-type annota-
tions. Furthermore, to enhance drug response prediction, THERAPI integrates both drug-induced
gene-gene interaction perturbations and rank-based gene expression representations, allowing for a
more comprehensive modeling of gene expression without the constraints of low-dimensional la-
tent representations. By integrating tumor heterogeneity and gene expression modeling, THERAPI
outperforms both DA-free and DA-based models in translating preclinical drug response data from
GDSC to predict TCGA patient drug response. In addition, performance evaluation on an external
dataset demonstrated the generalizability of our framework, highlighting its potential for applica-
tions in precision medicine.

2 THERAPI

2.1 THERAPI ARCHITECTURE

Our objective is to predict patient drug response by modeling the biological characteristics of tu-
mors and gene-gene interactions. As shown in Figure 1, our model THERAPI consists of two
steps: 1) Alignment step brings the preclinical and clinical transcriptome space into a unified space
through attention-based aggregation (Section 2.2) and 2) Drug response prediction step integrates
perturbation-and rank-based modules for modeling gene-level knowledge (Section 2.3).

Figure 1: Overview of THERAPI framework. (a) The alignment step of preclinical (GDSC) and clinical
(TCGA) transcriptomes into a unified embedding space. Through attention-based aggregation of cell lines, the
alignment module represents patient samples as weighted sum of cell lines. (b) The drug response prediction
step consists of a drug-induced perturbation module and a rank-based expression representation module. After
the alignment module is trained in alignment step, the patient sample is encoded as weighted sum of cell lines,
which is passed down to each module to yield a final drug responder label.

2.2 ALIGNMENT STEP

We represent the target domain (XT ) consisting of patient tumors by modeling tumor heterogeneity
using the source domain (XS) consisting of preclinical cancer models (i.e., cell lines). During the
alignment, THERAPI utilizes unlabeled data from both the source and target domains to train an
autoencoder that minimizes data reconstruction error. As shown in Figure 1a, unlike autoencoder-
based model (He et al., 2022), THERAPI uses two unique features: Attention-based cell line ag-
gregation and Tissue label classifiers. The aggregation module is trained to align both preclinical
and clinical transcriptome profiles through accurate reconstruction. Tissue classifiers further inject
the tissue information via tissue label classification and center loss (Wen et al., 2016). For detailed
description of the alignment step, refer to Appendix A.1
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Attention-based cell line aggregation The core idea of the aggregation module is to model tumor
heterogeneity by leveraging cell line data. We use domain-specific encoders, ES and ET , to transform
cell line and patient tumor expression profiles into latent representations zs and zt. An attention
mechanism then computes weights

wi
(t,s) =

exp
(
⟨Qzt, Kzis⟩

)∑Ns

j=1 exp
(
⟨Qzt, Kzjs⟩

) ,
using learnable projection matrices Q and K and dot product ⟨·, ·⟩, to aggregate source representa-
tions as z′t =

∑Ns

i=1 w
i
(t,s)z

i
s. This aggregated representation is decoded with DT to reconstruct the

tumor sample xt, while each cell line is reconstructed via DS . The reconstruction loss is defined as

Lrec = Exs∼XS

[
∥x̂s − xs∥2

]
+ Ext∼XT

[
∥x̂t − xt∥2

]
where x̂ = D(z), ensuring that both domains retain essential gene expression features.

Tissue label classifiers To take tissue labels into the learning process during domain adaptation,
we apply MLP-based classifiers in both the latent and reconstructed spaces. In the source domain,
classifiers f

(L)
S and f

(R)
S operate on zs and its reconstruction x̂s, respectively; similarly, for the

target domain, tissue classification is applied to the attention-weighted aggregated representation z′t
and

∑
wi

(t,s)x
i
s, respectively. Thus, the overall tissue classifier loss is given by Lclass = L(L)+L(R),

where each term is computed via cross-entropy loss. Additionally, we used the center loss Lcenter to
construct a compact space according to the tissue labels in the latent embedding space.

The overall loss in the alignment step Lalign is formulated as:

Lalign = αLrec + β Lclass + γ Lcenter,

with hyperparameters α, β, and γ balancing each term.

2.3 DRUG RESPONSE PREDICTION STEP

In the drug response prediction step, THERAPI is first trained using drug-perturbed and rank-based
representations derived from pre-trained models in the source domain (Figure 1b-Train). Then, this
model is applied to the target domain to predict drug response in patient samples (Figure 1b-Test).

During the training of drug response predictor on the source domain, the input representation is
constructed using three pre-trained models: Drug perturbation representation using CSG2A (Bang
et al., 2024), rank-based gene-interaction using Geneformer (Theodoris et al., 2023), and molecular
encoder using MAT (Maziarka et al., 2020). The detailed explanation of each model is described in
Appendix A.2. The final drug response predictor is trained by concatenating these three representa-
tions and optimizing a supervised loss function, binary cross-entropy loss, based on the binary drug
response label.

After training in the source domain, the drug response predictor is applied to the target domain for
patient drug response prediction. The main difference in the inference step is that the patient input
xt is first transformed into x′

t =
∑Ns

i=1 w
i
(t,s)x

i
s using the attention-based cell lineage aggregation

module during the alignment step, after which drug response is predicted. We note that the drug
response-labeled patient data are not used in the alignment step to prevent data leakage.

3 RESULTS

3.1 EXPERIMENTAL SETTING

For patient drug response prediction, we used GDSC as the source domain and TCGA as the target
domain. The GDSC dataset consists 673 cancer cell lines and 174 unique drugs, forming a total
of 112,533 cell line-drug pairs. And the TCGA dataset includes 8,400 patient samples, among
which only 358 patients received treatment with 21 unique drugs, resulting in 383 patient-drug pairs.
To evaluate drug response prediction, we used AUROC, AUPRC, accuracy, precision, recall, and
F1-score, reporting the average performance over 10-fold cross-validation. Details of the dataset,
evaluation metrics, and experimental setup are provided in Appendix B.
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Table 1: Performance comparison with baseline models on GDSC-TCGA dataset. Alignment column indicates
whether models align the preclinical and clinical transcriptome data, and the tissue column indicates whether the
model considers the tissues labels during alignment. Mean and standard deviation of 10-fold CV are provided.
Best performance and its comparable results (paired t-test p-value < 0.05) are marked in bold, and second-best
are underlined.

Model AUROC AUPRC Accuracy Precision Recall F1
DA-free
(Cell-level)

DeepCDR 0.669 (0.074) 0.608 (0.058) 0.575 (0.056) 0.542 (0.044) 0.844 (0.113) 0.656 (0.046)
CSG2A 0.668 (0.053) 0.643 (0.057) 0.561 (0.060) 0.532 (0.042) 0.857 (0.048) 0.655 (0.032)

DA-based
CODE-AE 0.668 (0.089) 0.623 (0.067) 0.628 (0.082) 0.643 (0.092) 0.505 (0.185) 0.551 (0.144)
PANCDR 0.714 (0.029) 0.687 (0.025) 0.638 (0.049) 0.609 (0.052) 0.740 (0.087) 0.663 (0.032)
THERAPI 0.775 (0.034) 0.710 (0.024) 0.716 (0.039) 0.713 (0.051) 0.704 (0.105) 0.703 (0.051)

Table 2: Ablation study results on three modules of THERAPI, on GDSC-TCGA dataset on 10-fold CV
setting. Mean and standard deviation of 10-fold CV are provided. Best performance and its comparable results
(paired

Model AUROC AUPRC Accuracy Precision Recall F1
THERAPI 0.775 (0.034) 0.710 (0.024) 0.716 (0.039) 0.713 (0.051) 0.704 (0.105) 0.703 (0.051)

w/o Alignment 0.621 (0.073) 0.579 (0.061) 0.580 (0.067) 0.579 (0.085) 0.504 (0.140) 0.529 (0.101)
w/o Rank rep. 0.615 (0.162) 0.606 (0.111) 0.596 (0.133) 0.603 (0.171) 0.624 (0.227) 0.590 (0.148
w/o Perturbed rep. 0.480 (0.037) 0.574 (0.026) 0.561 (0.023) 0.587 (0.011) 0.845 (0.074) 0.692 (0.029)

3.2 BENCHMARK DATASET PERFORMANCES

We evaluated THERAPI by translating preclinical drug response data from GDSC to the patient
dataset TCGA. Our benchmark included two DA-free models (DeepCDR Liu et al. (2020) and
CSG2A Bang et al. (2024)) and two DA-based models (CODE-AE He et al. (2022) and PANCDR
Kim et al. (2024)). As a result, THERAPI achieved the best performance across most metrics
(Table 1). As expected, DA-based models outperform DA-free ones, underscoring the necessity
of DA techniques for effective transfer learning across datasets with distinct distributions. Among
the DA-based models, our approach demonstrates superior performance, which we attribute to its
biologically informed construction of the shared embedding space. As shown in Appendix D.1,
THERAPI not only aligns cell lines and patient samples but also preserves biological context by
forming clusters consistent with tissue origin—an ability not observed in other DA-based models.

3.3 ABLATION STUDIES

To investigate the contribution of each module to THERAPI’s performance, we conducted an abla-
tion study by removing the alignment module, the rank-based representation, and the perturbation-
based representation. As shown in Table 2, the full THERAPI model achieved the highest perfor-
mance. The attention-based alignment module significantly improved performance in terms of Re-
call and F1, demonstrating that attention-based aggregation effectively mitigates domain differences.
Both the perturbation-based and rank-based modules contributed to performance gains. Notably, the
gene-level perturbation representation yielded the largest improvement in terms of AUROC, sug-
gesting that capturing drug-induced gene perturbations is critical for transferring drug response pre-
diction. Overall, these results validate the design of THERAPI and highlight the complementary
benefits of its constituent modules.

3.4 EXTERNAL DATASET PERFORMANCES

Figure 2: Results on I-
SPY2 dataset. Boxplot of
AUROC of 10-fold CV.

To assess the generalizability of THERAPI, we evaluated its perfor-
mance on the external I-SPY 2 dataset (Wolf et al., 2022). I-SPY 2
includes 988 transcriptome profiles from breast cancer patients, 178 of
whom received paclitaxel. We aligned 810 untreated patients with the
GDSC dataset and applied the GDSC-trained drug response model to I-
SPY 2. As a result, THERAPI outperformed four baseline models in
predicting drug response (Figure 2). Additionally, the alignment step
successfully mapped the two distinct domains into a shared space (Ap-
pendix D.2).
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4 CONCLUSION

In this study, we introduced THERAPI, a tumor heterogeneity-aware domain adaptation framework
for translating preclinical cell line data to patient tumors in personalized drug response prediction.
Unlike existing methods, THERAPI models tumor heterogeneity by representing each patient tu-
mor as a weighted combination of multiple preclinical cell lines, incorporating tissue-type annota-
tions for greater biological relevance. Additionally, its pre-trained gene expression modeling frame-
work integrates drug-induced perturbations and rank-based representations to enhance prediction
accuracy. THERAPI outperformed both DA-free and DA-based models across multiple evalua-
tion metrics and showed generalizability on an external dataset. These results highlight its potential
for real-world clinical applications, advancing precision oncology through biologically informed
domain adaptation.
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A DETAILS IN METHODOLOGY OF THERAPI

A.1 ALIGNMENT STEP

A.1.1 ATTENTION-BASED CELL LINE AGGREGATION

A central objective of our approach is to capture tumor heterogeneity by allowing each patient tumor
sample to draw information from multiple cell lines. Let XS ∈ RNs×d and XT ∈ RNt×d denote
the source (cell line) and target (tumor) expression datasets, respectively, with Ns and Nt samples
and d genes per sample. Each expression profile x has an associated tissue label τ .

We employ two domain-specific encoders, ES and ET , mapping input vectors into latent representa-
tions:

zis = ES(xi
s), zt = ET (xt),

where zis ∈ Rdz and zt ∈ Rdz . The attention module uses these latent representations to compute
source weights:

wi
(t,s) =

exp
(
⟨Qzt, Kzis⟩

)∑Ns

j=1 exp
(
⟨Qzt, Kzjs⟩

) ,
where Q and K are learnable projection matrices of size dz × dk, and ⟨·, ·⟩ denotes the dot product.
These weights indicate how relevant each cell line is for reconstructing a given tumor sample. The
aggregated target representation is then

z′t =

Ns∑
i=1

wi
(t,s)z

i
s,

capturing tumor heterogeneity through a combination of different cell lines. Next, DS and DT

reconstruct the original samples:

x̂s = DS(z
i
s), x̂t = DT (z

′
t).

We define the reconstruction loss Lrec as the mean squared error between the original and recon-
structed samples, ensuring that both source and target encoders and decoders learn consistent latent
representations:

Lrec = Exs∼XS

[
∥x̂s − xs∥2

]
+ Ext∼XT

[
∥x̂t − xt∥2

]
.

By learning appropriate attention weights and minimizing Lrec, the model aligns cell line features
with patient tumor profiles in a way that accounts for tissue-specific heterogeneity.

A.1.2 TISSUE LABEL CLASSIFIERS

To further incorporate tissue information in our domain adaptation, we introduce tissue classification
at two representation levels: the latent space (z) and the reconstructed expression space (x′). An
MLP-based tissue classifier fS is trained in both domains. In the source domain, we classify

f
(L)
S (zis) and f

(R)
S (x̂s),

where x̂s = DS(z
i
s). For the target domain, the aggregated latent representation

∑
i w

i
(t,s)z

i
s and its

reconstruction
∑

i w
i
(t,s)x

i
s are used:

f
(L)
S

(∑
i

wi
(t,s)z

i
s

)
and f

(R)
S

(∑
i

wi
(t,s)x

i
s

)
.

We define the overall classification loss as the sum of latent and reconstruction classification losses:

Lclass = L(L) + L(R),

where each term can be a standard cross-entropy loss.

To promote tighter clustering of tissue labels within the latent space, we incorporate a center loss
Lcenter, which pulls samples of the same tissue type closer together:

Lcenter =

K∑
k=1

∑
z∈Ck

∥z − ck∥2,
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where K is the number of tissue types, Ck is the set of latent vectors with tissue label k, and ck is
the learnable center for tissue k.

Finally, we combine these objectives into the total alignment loss:
Lalign = αLrec + βLclass + γLcenter,

where α, β, and γ are hyperparameters. Balancing these terms ensures the model captures relevant
gene expression patterns, tissue-specific distinctions, and tumor heterogeneity while bridging the
gap between cell line and patient tumor domains.

A.2 DRUG RESPONSE PREDICTION STEP

The model is first trained on drug-perturbed and rank-based representations derived from pre-trained
models in the source domain. After training, the model is applied to the target domain to predict
drug response in patient samples.

A.2.1 TRAINING IN THE SOURCE DOMAIN

During training, the drug response predictor is constructed using three pre-trained models, each
capturing different aspects of drug-gene interaction:

• Drug perturbation representation using CSG2A (Bang et al., 2024), which models the gene
expression changes induced by drug treatment: zpert = fpert(xs, d) where xs represents the
gene expression profile of a source domain sample, and d represents the drug molecular
structure.

• Rank-based gene interaction representation using Geneformer (Theodoris et al., 2023),
which encodes gene-gene interactions in a rank-based manner:

zrank = frank(xs).

• Molecular representation model using molecular attention transformer (MAT, Maziarka
et al. (2020)), which encodes the drug molecular structure using a transformer-based em-
bedding:

zmol = fmol(d).

The final representation for drug response prediction is obtained by concatenating these three em-
beddings:

z = [zpert; zrank; zmol]

where z is the combined input to the MLP. The drug response predictor is defined as:
ŷ = fMLP(z)

where ŷ represents the predicted probability of drug response. Since the drug response is binary, the
model is optimized using the binary cross-entropy (BCE) loss:

LBCE = − 1

N

N∑
i=1

[yi log ŷi + (1− yi) log(1− ŷi)]

where yi is the true drug response label for sample i, and N is the number of training samples.

A.2.2 INFERENCE IN THE TARGET DOMAIN

After training in the source domain, the drug response predictor is applied to the target domain
for patient drug response prediction. The key difference in the inference step is that the patient
input xt is first transformed into an aligned representation x′

t using the attention-based cell lineage
aggregation module during the alignment step:

x′
t =

Ns∑
i=1

wi
(t,s)x

i
s

where wi
(t,s) represents the learned attention weights mapping the target sample xt to the source cell

lines xi
s. The aligned representation x′

t is then passed through the trained drug response model to
predict the final response ŷ.
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B EXPERIMENTAL SETTING

B.1 DATA

For patient drug response prediction, we mainly utilized the GDSC-TCGA dataset, built using
GDSC as the source domain and TCGA as the target domain. Both datasets contain gene expression
profiles utilized to 978 LINCS (Library of Integrated Network-based Cellular Signatures) landmark
genes and include tissue-type annotations for 23 distinct tissue types. All gene expression data are
metricized by the standard transcripts per million bases for each gene, followed by log transforma-
tion.

The GDSC dataset consists of 673 cancer cell lines and 174 unique drugs, forming a total of 112,533
cell line-drug pairs. The drug response values in GDSC are represented using IC50 (half-maximal
inhibitory concentration) values and we used these values in a binary form. To obtain binary drug
response labels, we binarize IC50 values by computing the mean IC50 per drug across all cell
lines. Samples with IC50 lower than the median are labeled as responders (1), while those with
IC50 higher than the median are labeled as non-responders (0). The GDSC data can be accessed at
https://www.cancerrxgene.org/.

The TCGA dataset consists of 8,400 patient samples, including 8,042 unlabeled and 358 labeled
patients. The unlabeled patients are used only in the alignment step to adapt the source and target
domains. In contrast, the 358 labeled patients, who were treated with 21 unique drugs, are used only
in the test step for drug response prediction, forming a total of 383 patient-drug pairs. The TCGA
data can be accessed at https://portal.gdc.cancer.gov/.

B.2 PERFORMANCE EVALUATION

We perform 10-fold cross-validation with a train:validation:test split of 8:1:1. The model perfor-
mance is evaluated using six metrics:

Area Under the Receiver Operating Characteristic Curve (AUROC)

AUROC =

∫ 1

0

TPR(t) dFPR(t)

where TPR (True Positive Rate) and FPR (False Positive Rate) are computed at different thresholds.

Area Under the Precision-Recall Curve (AUPRC)

AUPRC =

∫ 1

0

Precision(r) dRecall(r)

where precision and recall vary based on the classification threshold.

Accuracy

Accuracy =
TP + TN

TP + TN + FP + FN
where TP, TN, FP, and FN represent the true positives, true negatives, false positives, and false
negatives, respectively.

Precision
Precision =

TP
TP + FP

Recall
Recall =

TP
TP + FN

F1-score
F1-score = 2× Precision × Recall

Precision + Recall
The final reported performance is the average metric score across the 10 folds.
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B.3 HYPERPARAMETERS

The model consists of two steps: alignment and drug response prediction step. Tabels 3 and 4 are
the hyperparameters for each step.

Table 3: Hyperparameters for alignment

Component Hyperparameter
Autoencoder for GDSC 978 → 256 → 128 → 256 → 978
Autoencoder for TCGA 978 → 128 → 256 → 978
Latent Tissue Classifier 128 → 128 → 32 → 23
Expression Tissue Classifier 978 → 512 → 128 → 32 → 23
Batch Size 128
Learning Rate 1× 10−3

Loss Weights α = 0.2, β = 0.8, γ = 0.4
Epochs 199

Table 4: Hyperparameters for drug response prediction

Component Architecture/Hyperparameter
Perturbation Embedding 978 → 256
Rank-Based Embedding 978 → 256
Molecular Embedding 978 → 256
Concatenation & Prediction 768 → 128 → 1
Dropout Rate 0.1
Batch Size 512
Learning Rate 1× 10−3

Training Strategy Early stopping with patience 10 steps

In both steps, we fixed the random seed to 42 and used torch.optim.Adam as the optimizer.

C RELATED WORK

C.1 TRANSCRIPTOMIC FOUNDATION MODELS FOR TRANSFER LEARNING

Recent advances in single-cell sequencing have generated extensive multimodal datasets, propelling
the development of foundation models (FMs) in this domain (Liu et al., 2023). While FMs have
excelled in DNA analysis and biomedical NLP, their application to single-cell data remains in its
infancy. Existing single-cell FMs, such as scBERT (Yang et al., 2022), scGPT (Cui et al., 2024),
and GeneFormer (Theodoris et al., 2023), primarily focus on cell-type annotation and gene function
prediction. GeneFormer distinguishes itself by the novel employment of a rank-based positional
encoding scheme, which facilitates more fluent correction of batch effects—a common challenge
in single-cell data analysis. This approach contrasts with conventional methods and contributes to
improved integration and analysis across diverse datasets.

In the realm of drug response prediction, chemical perturbation can be defined at multiple
scales—gene, cell line, and patient—with each scale capturing different aspects of cellular behavior.
Addressing the gap between these scales, CSG2A (Bang et al., 2024) introduces a condition-specific
gene–gene attention mechanism. This perturbation-based modeling approach dynamically learns
gene interactions under specific input conditions and transfers this detailed gene-level knowledge to
the cell line level.

Together, models like GeneFormer and CSG2A highlight the evolving capabilities of transcriptome
foundation models, bridging the gap between gene-level perturbations and higher-level cellular re-
sponses, which is crucial for advancing precision medicine.

C.2 DRUG RESPONSE PREDICTION MODELS

Drug response prediction models mainly focus on accurately predicting the cell-scale drug response,
mainly due to the large-scale available data provided by the GDSC project. However the essential
aim is to transfer this knowledge to patient level to enable precision medicine. We first describe the
cell-scale drug response models, then provide the pioneering domain adaptation-based models that
aim to translate cell-scale modeling to patient data through alignment techniques.

C.2.1 DOMAIN ADAPTATION-FREE (CELL-LEVEL) DRUG RESPONSE MODELS

DeepCDR (Liu et al., 2020) DeepCDR (Precision Medicine Prediction using an Adversarial Net-
work for Cancer Drug Response) is a hybrid graph convolutional network (GCN) designed for can-
cer drug response (CDR) prediction by integrating multi-omics profiles of cancer cells with intrinsic
chemical structures of drugs. DeepCDR automatically learns latent representations of topological
structures among atoms and bonds. The model consists of a uniform GCN and multiple subnet-
works, capturing the relationships between genomic, transcriptomic, and chemical data.
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CSG2A (Bang et al., 2024) CSG2A is a condition-specific gene–gene attention (CSG2A) network
designed to bridge the gap between transcriptomic-level perturbation data (LINCS L1000) and cell-
line drug response datasets (GDSC). The model employs a transfer learning strategy, where it is
pretrained on LINCS L1000 and fine-tuned on GDSC while preserving gene interaction networks.
CSG2A dynamically learns condition-specific gene-gene interactions, incorporating both biological
priors and data-driven learning.

C.2.2 DOMAIN ADAPTATION-BASED MODELS

CODE-AE (He et al., 2022) CODE-AE is a context-aware deconfounding autoencoder that mit-
igates data heterogeneity and distribution shift between preclinical and clinical drug response data.
It learns a shared embedding space from unlabeled data and refines it through supervised training on
labeled cell-line data. To enhance domain alignment, CODE-AE employs regularization techniques,
with adversarial learning (CODE-AE-ADV) demonstrating the best performance. During inference,
drug responses in patients are predicted using the aligned embedding, improving generalization to
clinical data.

PANCDR (Kim et al., 2024) PANCDR (Precision Medicine Prediction using an Adversarial
Network for Cancer Drug Response) is a domain adaptation-based model designed to improve
preclinical-to-clinical generalization in drug response prediction. It consists of two sub-models:
an adversarial model that minimizes domain discrepancy between preclinical and clinical datasets,
and a CDR prediction model that extracts drug-response features. PANCDR is trained on both pre-
clinical and unlabeled clinical data, enabling it to generalize effectively to external test sets.

D ADDITIONAL RESULTS

D.1 EMBEDDING SPACE ANALYSIS

The Figure 3 shows the embedding space generated from the latent representations of each model,
with colored by data type (Figure 3a) and colored by tissue type (Figure 3b). The results indicate
that our model effectively aligns the two data types while also preserving tissue-specific information.
CSG2A and CODE-AE were not included because their latent representations vary depending on the
drug combination, even for the same sample.

Figure 3: Embedding Space of GDSC and TCGA. t-SNE visualization of the embedding space for GDSC
and TCGA, colored by (a) data type and (b) tissue type. The figure presents results for different models in the
following order: raw gene expression values (left), DeepCDR, PANCDR, and THERAPI (ours, right).
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D.2 EXTERNAL DATASET EMBEDDING SPACE

The I-SPY 2 dataset (Wolf et al., 2022) 1, includes 988 breast cancer tumor patients with expression
profiling by array data. Among these, 178 patients received Paclitaxel, with drug response labeled
based on pathological complete response (pCR) status: a value of 1 indicating complete response
(148 patients), and 0 indicating failure to achieve complete response (30 patients). We aligned
the 810 patients who did not receive paclitaxel with breast cancer samples from GDSC and then
evaluated the alignment of the 178 paclitaxel-treated patients. As shown in the Figure 4, before
alignment, the two datasets exhibited distinct embedding distributions, whereas after alignment,
they formed a shared embedding space with a similar distribution.

Figure 4: Embedding space of I-SPY2 dataset. Embedding space visualization before and after alignment
of GDSC breast samples (red circles) and I-SPY2 samples (light gray circles before alignment and dark gray
circles after alignment) using UMAP.

1Downloaded from GEO https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE194040
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