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Abstract
In the setting of 𝑓 -DP, we propose the concept canonical
noise distribution (CND) which captures whether an additive
privacy mechanism is tailored for a given 𝑓 , and give a con-
struction of a CND for an arbitrary tradeoff function 𝑓 . We
show that private hypothesis tests are intimately related to
CNDs, allowing for the release of private 𝑝-values at no ad-
ditional privacy cost as well as the construction of uniformly
most powerful (UMP) tests for binary data. We apply our
techniques to difference of proportions testing.

CCS Concepts: • Security and privacy → Privacy pro-
tections; Usability in security and privacy; Social as-
pects of security and privacy.

Keywords: differential privacy, p-values, frequentist infer-
ence, optimal mechanism
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1 Introduction
In this paper, we study two basic and fundamental privacy
questions in the framework of 𝑓 -DP. The first is based on
the basic mechanism of adding independent noise to a real-
valued statistic, and the second is about the nature of hypoth-
esis tests under DP. We show that in fact, the two problems
are intricately related, where the “canonical” additive noise
distribution enables private 𝑝-values “for free,” and gives a
closed form construction of certain optimal hypothesis tests.
One of the most basic and fundamental privacy mecha-

nisms is an additive mechanism, where independent noise
is added to a real-valued statistic. The Laplace mechanism
appeared along with the original definition of DP, and the
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Gaussian mechanism was another one of the earliest pri-
vacy mechanism designed for approximate DP. A natural
question is what noise distributions are “optimal" or “canon-
ical" for a given definition of privacy. The geometric mecha-
nism/discrete Laplace mechanism is optimal for count data
in terms of maximizing Bayesian utility [8], the staircase
mechanism is optimal for 𝜖-DP in terms of ℓ2-error [7], and
the truncated-uniform-Laplace (Tulap) distribution gener-
alizes both the discrete Laplace and staircase mechanisms
and is optimal for (𝜖, 𝛿)-DP in terms of generating uniformly
most powerful (UMP) hypothesis tests for Bernoulli data
[1, 2]. In this paper, we give a formal definition of a canonical
noise distribution (CND) which is applicable to any 𝑓 -DP
notion of privacy. We show that the Gaussian distribution is
canonical for Gaussian differential privacy (GDP), and the
Tulap distribution is canonical for (𝜖, 𝛿)-DP. We prove that
a CND always exists for any symmetric tradeoff function 𝑓 ,
and give a construction to generate a CND given an arbitrary
tradeoff function 𝑓 . In fact, this construction results in the
Tulap distribution in the case of (𝜖, 𝛿)-DP.

Another basic privacy question is on the nature of DP
hypothesis tests. Awan and Slavković [1] and Awan and
Slavković [2] showed that for independent Bernoulli data,
there exists uniformly most powerful (UMP) (𝜖, 𝛿)-DP tests
which are based on the Tulap distribution, enabling "free"
private 𝑝-values, at no additional cost to privacy. We show
that in general, given any 𝑓 -DP test, a free private 𝑝-value
can always be generated in terms of a CND for 𝑓 . We also
expand the main results of Awan and Slavković [1] from
(𝜖, 𝛿)-DP to 𝑓 -DP as well as from i.i.d. Bernoulli variables
to exchangeable binary data. This expansion shows that the
CND is the proper analogue of the Tulap distribution, and
gives an explicit construction of the most powerful 𝑓 -DP
test for binary data. Finally, we apply our results to private
difference of proportions testing, available in the full paper.

2 Differential privacy
All of the major variants of DP state that given a random-
ized algorithm 𝑀 , for any two adjacent databases 𝑋 , 𝑋 ′, the
distributions of𝑀 (𝑋 ) and𝑀 (𝑋 ′) should be “similar.” While
many DP variants measure similarity in terms of divergences,
recently Dong et al. [5] proposed 𝑓 -DP, which formalizes
similarity in terms of constraints on hypothesis tests. We
say that 𝑋 and 𝑋 ′ are adjacent if 𝐻 (𝑋,𝑋 ′) ≤ 1, where 𝐻 is
the Hamming metric.
For two probability distributions 𝑃 and 𝑄 , the tradeoff

function 𝑇 (𝑃,𝑄) : [0, 1] → [0, 1] is defined as 𝑇 (𝑃,𝑄) (𝛼) =
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Figure 1.A plot of three examples of𝑇 (𝑀 (𝐷), 𝑀 (𝐷 ′)). Only
the red, dashed tradeoff curve satisfies 𝑓 -DP.

inf{1 − E𝑄𝜙 | E𝑃 (𝜙) ≤ 𝛼}, where the infinimum is over all
measurable tests 𝜙 . The tradeoff function can be interpreted
as follows: If 𝑇 (𝑃,𝑄) (𝛼) = 𝛽 , then the most powerful test
𝜙 which is trying to distinguish between 𝐻0 = {𝑃} and 𝐻1 :
{𝑄} at type I error ≤ 𝛼 has type II error 𝛽 . A larger tradeoff
function means that it is harder to distinguish between 𝑃 and
𝑄 . A function 𝑓 : [0, 1] → [0, 1] is a tradeoff function if and
only if 𝑓 is convex, continuous, decreasing, and 𝑓 (𝑥) ≤ 1−𝑥
for all 𝑥 ∈ [0, 1] [5, Proposition 2.2]. We say that a tradeoff
function 𝑓 is nontrivial if 𝑓 is not identically equal to 1 − 𝛼 .

Definition 2.1 (𝑓 -DP). Let 𝑓 be a tradeoff function. A mech-
anism𝑀 satisfies 𝑓 -DP if

𝑇 (𝑀 (𝐷), 𝑀 (𝐷 ′)) ≥ 𝑓

for all 𝐷, 𝐷 ′ ∈ X𝑛 such that 𝐻 (𝐷, 𝐷 ′) ≤ 1.

See Figure 1 for examples of tradeoff functions which do
and do not satisfy 𝑓 -DP for a particular 𝑓 . In the above def-
inition, the inequality 𝑇 (𝑀 (𝐷), 𝑀 (𝐷 ′)) ≥ 𝑓 is shorthand
for 𝑇 (𝑀 (𝐷), 𝑀 (𝐷 ′)) (𝛼) ≥ 𝑓 (𝛼) for all 𝛼 ∈ [0, 1]. With-
out loss of generality we can assume that 𝑓 is symmetric:
𝑓 (𝛼) = 𝑓 −1 (𝛼), where 𝑓 −1 (𝛼) = inf{𝑡 ∈ [0, 1] | 𝑓 (𝑡) ≤ 𝛼}
[5, Proposition 2.4].
Wasserman and Zhou [14] and Kairouz et al. [11] both

showed that (𝜖, 𝛿)-DP can be expressed in terms of hypothe-
sis testing, and in fact Dong et al. [5] showed that (𝜖, 𝛿)-DP
can be expressed as a special case of 𝑓 -DP.

Definition 2.2 ((𝜖, 𝛿)-DP). Let 𝜖 > 0 and 𝛿 ≥ 0, and define
𝑓𝜖,𝛿 (𝛼) = max{0, 1 − 𝛿 − exp(𝜖)𝛼, exp(−𝜖) (1 − 𝛿 − 𝛼)}. A
mechanism𝑀 satisfies (𝜖, 𝛿)-DP if it satisfies 𝑓𝜖,𝛿 -DP.

Another notable special case of 𝑓 -DP is Gaussian DP.

Definition 2.3 (Gaussian differential privacy). For ` > 0,
𝐺` (𝛼) := 𝑇 (𝑁 (0, 1), 𝑁 (`, 1)) (𝛼) = Φ(Φ−1 (1 − 𝛼) − `),

where Φ is the cdf of 𝑁 (0, 1). A mechanism 𝑀 satisfies `-
Gaussian differential privacy (`-GDP) if it is 𝐺`-DP.

3 Canonical noise distributions
One of the most basic techniques of designing a privacy
mechanism is through adding data-independent noise. The
earliest DPmechanisms add either Laplace or Gaussian noise,
and there have since been several works developing op-
timal additive mechanisms including the geometric (dis-
crete Laplace) [8], truncated-uniform-Laplace (Tulap) [1, 2],
and staircase mechanisms [7]. There have also been sev-
eral works exploring multivariate and infinite-dimensional
additive mechanisms such as 𝐾-norm [3, 10], elliptical per-
turbations [13], and Gaussian processes [9, 12].

While there are many choices of additive mechanisms to
achieve 𝑓 -DP, we are interested in adding the least noise
necessary in order to maximize the utility of the output.
Rather than measuring the amount of noise by its variance
or entropy, we focus on whether the privacy guarantee is
tight.
In this section, we introduce the concept canonical noise

distribution (CND), which captures whether a real-valued dis-
tribution is perfectly tailored to satisfy 𝑓 -DP. We formalize
this in Definition 3.1. We then show that for any symmetric
𝑓 , we can always construct a CND, where the construction is
given in Definition 3.4 and proved to be a CND in Theorem
3.5. We will see in Section 4 that CNDs are fundamental for
understanding the nature of 𝑓 -DP hypothesis tests, for con-
structing “free” DP 𝑝-values, and for the design of uniformly
most powerful 𝑓 -DP tests for binary data.
Before we define canonical noise distribution, we must

introduce the sensitivity of a statistic, a central concept of
DP [6]. A statistic 𝑇 : X𝑛 → R has sensitivity Δ > 0 if
|𝑇 (𝑋 ) −𝑇 (𝑋 ′) | ≤ Δ for all 𝐻 (𝑋,𝑋 ′) ≤ 1. As the sensitivity
measures howmuch a statistic can changewhen one person’s
data is modified, additive noise must be scaled proportionally
to the sensitivity in order to protect privacy.

Definition 3.1. Let 𝑓 be a symmetric tradeoff function. A
cdf 𝐹 is a canonical noise distribution (CND) for 𝑓 if

1. given a statistic 𝑆 (𝑋 ) with sensitivity Δ > 0, and
𝑁 ∼ 𝐹 (·), the mechanism 𝑆 (𝑋 ) + Δ𝑁 satisfies 𝑓 -DP.
Equivalently, for any𝑚 ∈ (0, 1),𝑇 (𝐹 (·), 𝐹 (· −𝑚)) ≥ 𝑓 ,

2. 𝑓 (𝛼) = 𝑇 (𝐹 (·), 𝐹 (· − 1)) (𝛼) for all 𝛼 ,
3. 𝑇 (𝐹 (·), 𝐹 (· − 1)) (𝛼) = 𝐹 (𝐹−1 (1 − 𝛼) − 1) for all 𝛼 ,
4. 𝐹 (𝑥) = 1 − 𝐹 (−𝑥) for all 𝑥 ∈ R; that is, 𝐹 is the cdf of

a random variable which is symmetric about zero.

The most important conditions of Definition 3.1 are 1 and
2, which state that the distribution can be used to satisfy
𝑓 -DP and that the privacy bound is tight. Condition 3 of
Definition 3.1 gives a closed form for the tradeoff function,
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and is equivalent to requiring that the optimal rejection set
for discerning between 𝐹 (·) and 𝐹 (·−1) is of the form (𝑥,∞)
for some 𝑥 ∈ R. The last condition of Definition 3.1 enforces
symmetry of the distribution, which makes CNDs much
easier to work with.
It is easy to show that Φ(`·), the cdf of 𝑁 (0, 1/`2) is a

CND for 𝐺` .

Proposition 3.2. Let 𝑓 be a symmetric tradeoff function. Let
𝐹 be a CND for 𝑓 , and𝐺 be another cdf such that𝑇 (𝐺 (·),𝐺 (·−
1)) ≥ 𝑓 . Let𝑁 ∼ 𝐹 and𝑀 ∼ 𝐺 . Then there exists a randomized

function Proc : R → R which satisfies Proc(𝑁 ) 𝑑
= 𝑀 and

Proc(𝑁 + 1) 𝑑
= 𝑀 + 1, where “𝑑=” means equal in distribution.

Proposition 3.2 follows from property 2 in Definition 3.1
along with Dong et al. [5, Theorem 2.10], which was origi-
nally a result of Blackwell [4]. Proposition 3.2 shows that if
we add noise from a CND, we can post-process to obtain the
same result as if we added noise from another distribution.
This shows in a very general sense that a CND adds the least
noise necessary to achieve 𝑓 -DP.
In the remainder of this section, we show that given any

tradeoff function 𝑓 , we can always construct a canonical
noise distribution (CND), but that a CND need not be unique.

Lemma 3.3. Let 𝑓 be a symmetric tradeoff function and let 𝐹
be a CND for 𝑓 . Then 𝐹 (𝑥) = 1−𝑓 (𝐹 (𝑥−1)) when 𝐹 (𝑥−1) > 0
and 𝐹 (𝑥) = 𝑓 (1 − 𝐹 (𝑥 + 1)) when 𝐹 (𝑥 + 1) < 1.

In the Lemma 3.3, we see that a CND satisfies an inter-
esting recurrence relation. If we know the value 𝐹 (𝑥) = 𝑐
for some 𝑥 ∈ R and 𝑐 ∈ (0, 1), then we know the value of
𝐹 (𝑦) for all 𝑦 ∈ Z + 𝑥 . This means that if we specify 𝐹 on an
interval of length 1, such as [−1/2, 1/2], then 𝐹 is completely
determined by the recurrence relation. We will leverage this
fact to construct a CND from scratch, by specifying a linear
function on [−1/2, 1/2]. The remainder of this section is de-
voted to the construction of a CND and the proof that it has
the properties of Definition 3.1.

Definition 3.4. Let 𝑓 be a symmetric tradeoff function, and
let 𝑐 ∈ [0, 1] be the unique fixed point of 𝑓 : 𝑓 (𝑐) = 𝑐 . We
𝐹𝑓 : R→ R as

𝐹𝑓 (𝑥) =


𝑓 (1 − 𝐹𝑓 (𝑥 + 1)) 𝑥 < −1/2
𝑐 (1/2 − 𝑥) + (1 − 𝑐) (𝑥 + 1/2) −1/2 ≤ 𝑥 ≤ 1/2
1 − 𝑓 (𝐹𝑓 (𝑥 − 1)) 𝑥 > 1/2.

Note that in Definition 3.4, on [−1/2, 1/2] the CDF corre-
sponds to a uniform random variable, but then due to the
recursive nature of 𝐹𝑓 and the fact that 𝑓 is in general non-
linear, the CND of Definition 3.4 is in general not uniformly
distributed on any other intervals. See Figure 2 for a plot of
the pdf of the CND of Definition 3.4 corresponding to the
tradeoff function 𝐺1.
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Figure 2. Density plots of 𝑁 (0, 1) as well as the CND of
Definition 3.4 for the tradeoff function 𝐺1.

Theorem 3.5 below states that for any nontrivial tradeoff
function, this construction yields a canonical noise distri-
bution, which can be constructed as in Definition 3.1. This
CND can be used to add perfectly calibrated noise to a statis-
tic to achieve 𝑓 -DP. As we will see later, the existence (and
construction) of a CND will enable us to prove that any 𝑓 -
DP test can be post-processed from a test statistic, and that
this implies that we can always obtain hypothesis testing
𝑝-values at no additional privacy cost, a generalization of
the result of Awan and Slavković [1], which previously only
held for (𝜖, 𝛿)-DP and for Bernoulli data.

Theorem 3.5. Let 𝑓 be a nontrivial symmetric tradeoff func-
tion and let 𝐹𝑓 be as in Definition 3.4. Then 𝐹𝑓 is a canonical
noise distribution for 𝑓 .

It turns out that the requirements of Definition 3.1 do not
uniquely determine a distribution. For instance, Φ the cdf
of a standard normal is a CND for 1-GDP, but Φ is different
from the construction in Definition 3.4. See Figure 2 for the
pdf of these two CNDs. Note that the CND of Definition
3.4 can be seen to be uniform in [−1/2, 1/2] and has “kinks”
at each half-integer value. On the other hand, the standard
normal is smooth.

What we have developed in this section is a constructive
and general method of generating canonical noise distribu-
tions for 𝑓 -DP. In the special case of (𝜖, 𝛿)-DP, the CND 𝐹𝑓
is equal to the cdf of the Tulap distribution, proposed in
Awan and Slavković [1], which is an extension of the Stair-
case mechanism Geng and Viswanath [7] from (𝜖, 0)-DP to
(𝜖, 𝛿)-DP.

4 The nature of 𝑓 -DP tests
A test is a function 𝜙 : X𝑛 → [0, 1], where 𝜙 (𝑥) represents
the probability of rejecting the null hypothesis given the
observation 𝑥 . The mechanism that implements this test
releases a random value drawn as Bern(𝜙 (𝑥)), where 1 rep-
resents “Reject” and 0 represents “Accept.” We say that the
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test 𝜙 satisfies 𝑓 -DP if Bern(𝜙 (𝑥)) satisfies 𝑓 -DP. Lemma 4.1
shows that a test satisfies 𝑓 -DP if for adjacent databases 𝑥
and 𝑥 ′, the values 𝜙 (𝑥) and 𝜙 (𝑥 ′) are close in terms of an
inequality based on 𝑓 .

Lemma 4.1. A test 𝜙 : X𝑛 → [0, 1] satisfies 𝑓 -DP if and only
if 𝜙 (𝑥) ≤ 1 − 𝑓 (𝜙 (𝑥 ′)) for all 𝐻 (𝑥, 𝑥 ′) ≤ 1.

Lemma 4.1 simplifies the search for 𝑓 -DP hypothesis tests
and generalizes the bounds on private tests established in
Awan and Slavković [1].

The result of Lemma 4.1 can also be expressed in terms
of canonical noise distributions in Corollary 4.2, giving the
elegant relation that 𝐹−1 (𝜙 (𝑥)) and 𝐹−1 (𝜙 (𝑥 ′)) differ by at
most 1 when 𝑥 and 𝑥 ′ are adjacent.

Corollary 4.2 (Canonical Noise Distributions). Let 𝑓 be a
symmetric nontrivial tradeoff function and let 𝐹 be a canonical
noise distribution for 𝑓 . Then a test 𝜙 satisfies 𝑓 -DP if and only
if 𝐹−1 (𝜙 (𝑥)) ≤ 𝐹−1 (𝜙 (𝑥 ′)) + 1 for all 𝐻 (𝑥, 𝑥 ′) ≤ 1.

As we will see, Corollary 4.2 is also important for the
construction of free DP 𝑝-values in Section 4.1.

4.1 Free 𝑓 -DP 𝑝-values
In Awan and Slavković [1], it was shown that for Bernoulli
data, the uniformly most powerful DP test could also be ex-
pressed as the post-processing of a private 𝑝-value, offering
𝑝-values at no additional privacy cost. We generalize this
result using the concept of canonical noise distributions and
show that for 𝑓 -DP test can be expressed as a post-processing
threshold test based on a private test statistic, and that the
test statistic can also be used to give private 𝑝-values.

Theorem 4.3. Let 𝜙 : X𝑛 → [0, 1] be an 𝑓 -DP test. Let 𝐹 be
a CND for 𝑓 , and draw 𝑁 ∼ 𝐹 . Then

1. releasing 𝑇 = 𝐹−1 (𝜙 (𝑥)) + 𝑁 satisfies 𝑓 -DP,
2. the variable 𝑍 = 𝐼 (𝑇 ≥ 0), a post-processing of 𝑇 is

distributed as 𝑍 | 𝑋 = 𝑥 ∼ Bern(𝜙 (𝑥)),
3. the value 𝑝 = sup\0∈𝐻0

E𝑋∼\0𝐹 (𝐹−1 (𝜙 (𝑋 )) −𝑇 ) is also
a post-processing of 𝑇 and is a 𝑝-value for 𝐻0,

4. if 𝐻0 is a simple hypothesis and E𝐻0𝜙 = 𝛼 , then at type
I error 𝛼 , the 𝑝-value from part 3. is as powerful as 𝜙 at
every alternative.

We see from Theorem 4.3 that given an 𝑓 -DP test 𝜙 , we
can report both a summary statistic (namely, 𝑇 ) as well as a
𝑝-value (a post-processing of 𝑇 ) which contain strictly more
information than only sampling Bern(𝜙 (𝑥)). This shows
that for simple null hypotheses, there is no general privacy
amplification when post-processing a 𝑝-value or test statistic
to a binary accept/reject decision.

Note that Theorem 4.3 starts with an 𝑓 -DP test, and shows
how to get a private summary statistic and 𝑝-values. How-
ever, constructing a private test 𝜙 is another matter. In Sec-
tion 4.2, we show that for exchangeable binary data, we can
construct a most powerful 𝑓 -DP test in terms of a CND.

4.2 Most powerful tests for binary data
In this section, we extend the main result of Awan and
Slavković [1], that of constructing most powerful DP tests, to
general 𝑓 -DP as well as exchangeable distributions on {0, 1}𝑛 .
In contrast, the hypothesis tests of Awan and Slavković [1]
were limited to (𝜖, 𝛿)-DP and i.i.d. Bernoulli data. A distri-
bution 𝑃 on a set X𝑛 is exchangeable if given 𝑋 ∼ 𝑃 and a
permutation 𝜋 , 𝑋 𝑑

= 𝜋 (𝑋 ). Note that i.i.d. data are always
exchangeable, but there are exchangeable distributions that
are not i.i.d.

Theorem 4.4. Let 𝑓 be a symmetric nontrivial tradeoff func-
tion and let 𝐹 be a CND of 𝑓 . Let X = {0, 1}. Let 𝑃 and 𝑄
be two exchangeable distributions on X𝑛 such that 𝑑𝑄

𝑑𝑃
is a

increasing function of 𝑋 =
∑𝑛

𝑖=1𝑋𝑖 . Let 𝛼 ∈ (0, 1). Then a
most powerful 𝑓 -DP test 𝜙 with level 𝛼 for 𝐻0 : 𝑋 ∼ 𝑃 versus
𝐻1 : 𝑋 ∼ 𝑄 can be expressed in any of the following forms:

1. There exists 𝑦 ∈ {0, 1, 2, . . . , 𝑛} and 𝑐 ∈ (0, 1) such that
for all 𝑥 ∈ {0, 1, 2, . . . , 𝑛},

𝜙 (𝑥) =


0 𝑥 < 𝑦,

𝑐 𝑥 = 𝑦,

1 − 𝑓 (𝜙 (𝑥 − 1)) 𝑥 > 𝑦,

where if 𝑦 > 0 then 𝑐 satisfies 𝑐 ≤ 1− 𝑓 (0), and 𝑐 and 𝑦
are chosen s.t. E𝑃𝜙 (𝑥) = 𝛼 . If 𝑓 (0) = 1, then 𝑦 = 0.

2. 𝜙 (𝑥) = 𝐹 (𝑥 −𝑚), where𝑚 satisfies E𝑃𝜙 (𝑥) = 𝛼 .
3. Let 𝑁 ∼ 𝐹 . The variable𝑇 = 𝑋 +𝑁 satisfies 𝑓 -DP. Then
𝑝 = E𝑋∼𝑃𝐹 (𝑋 − 𝑇 ) is a 𝑝-value and 𝐼 (𝑝 ≤ 𝛼) | 𝑋 =

𝐼 (𝑇 ≥ 𝑚) | 𝑋 ∼ Bern(𝜙 (𝑋 )).

While Theorem 4.3 took an 𝑓 -DP test and produced “free”
private 𝑝-values, Theorem 4.4 constructs an optimal test
from scratch beginning only with a CND.

5 Difference of Proportions Tests
Testing two population proportions is a very basic and com-
mon hypothesis testing setting that in any when there are
two groups with binary responses, such as A/B testing, clin-
ical trials, and observational studies. While there does not
exist a UMP unbiased 𝑓 -DP test for this problem, using our
results on DP most powerful tests for binary data, we show
that there does exist a UMP unbiased “semi-private” test,
which satisfies a weakened version of 𝑓 -DP. While this test
cannot be used for privacy purposes, it does provide an upper
bound on the power of any 𝑓 -DP test, and gives intuition on
the structure of an optimal 𝑓 -DP test for this problem. Using
this as a benchmark we propose a private test, which allows
for optimal inference for the two population parameters and
is nearly as powerful as the semi-private UMPU. In the spe-
cial case of (𝜖, 0)-DP, we show empirically that our proposed
test is more powerful than any (𝜖/

√
2)-DP test and has more

accurate type I errors than the classic normal approximation
test. The details and results are available in the full paper.
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