
Hydra: Bidirectional State Space Models
Through Generalized Matrix Mixers

Sukjun Hwang∗,1, Aakash Lahoti∗,1, Ratish Puduppully†,2, Tri Dao3, and Albert Gu1,4

1Machine Learning Department, Carnegie Mellon University
2IT University of Copenhagen

3Department of Computer Science, Princeton University
4Cartesia AI

{sukjunh,alahoti}@cs.cmu.edu, rapu@itu.dk, tri@tridao.me, agu@cs.cmu.edu

Abstract

A wide array of sequence models are built on a framework modeled after Transform-
ers, comprising alternating sequence mixer and channel mixer layers. This paper
studies a unifying matrix mixer view of sequence mixers that can be conceptualized
as a linear map on the input sequence. This framework encompasses a broad range
of well-known sequence models, including the self-attention of Transformers as
well as recent strong alternatives such as structured state space models (SSMs), and
allows understanding downstream characteristics such as efficiency and expressivity
through properties of their structured matrix class. We identify a key axis of matrix
parameterizations termed sequence alignment, which increases the flexibility and
performance of matrix mixers, providing insights into the strong performance of
Transformers and recent SSMs such as Mamba. Furthermore, the matrix mixer
framework offers a systematic approach to developing sequence mixers with desired
properties, allowing us to develop several new sub-quadratic sequence models.
In particular, we propose a natural bidirectional extension of the Mamba model
(Hydra), parameterized as a quasiseparable matrix mixer, which demonstrates supe-
rior performance over other sequence models including Transformers on non-causal
tasks. As a drop-in replacement for attention layers, Hydra outperforms BERT by
0.8 points on the GLUE benchmark and ViT by 2% Top-1 accuracy on ImageNet.

1 Introduction
Large-scale pretrained models such as GPT [35], BERT [10], and ViT [11] exhibit state-of-the-art perfor-
mance across a wide range of tasks in multiple domains, including language and vision. A large number
of these pretrained models follow a multi-layer architectural blueprint: a sequence mixer, such as
Self-Attention1 [42], aggregates information across the input sequence, followed by a channel mixer pro-
cesses information within each sequence element. Over the years, Attention has been the predominant
choice for sequence mixing due to its ability to facilitate direct pairwise interactions between elements
of the input sequence in a single step. However, this capability incurs a quadratic cost with respect to
sequence length, making the training and deployment of these models prohibitively expensive for longer
sequences. Although numerous alternatives have been proposed, designing principled sequence models
that match the performance and versatility of attention-based systems remains a substantial challenge.

One general strategy in designing alternative sequence models involves substituting the Attention
matrix with different matrix parameterizations as the core sequence mixer. These modifications are
motivated by various goals. For instance, simplifying the sequence mixer has led to the development of
models such as MLP-Mixer [40], which uses dense matrices, and FNet [23], which utilizes the Discrete

*Equal Contributions.
†Work done at A*STAR, Singapore.
1In this paper, Attention [3] exclusively refers to Self-Attention.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

1 m! m!
" m!

#

1 m$ m$
" m$

#

1 m" m"
" m"

#

1 m# m#
" m#

#

m! m$ m" m#

m%$ m! m$ m"

m%" m%$ m! m$

m%# m%" m%$ m!

m!! m!$ m!" m!#

m$! m$$ m$" m$#

m"! m"$ m"" m"#

m#! m#$ m#" m##

ℳ∈

Dense

Toeplitz

Vandermonde

q!! q!$

q$! q$$

q"! q"$

q#! q#$
Low Rank

Semiseparable

Quasiseparable

k!! k"! k#! k$!
k!" k"" k#" k$"

𝐜!&𝐀!:!× 𝐛!

𝐜$&𝐀$:!× 𝐛! 𝐜$&𝐀$:$× 𝐛$

𝐜"&𝐀":!× 𝐛! 𝐜"&𝐀":$× 𝐛$ 𝐜"&𝐀":"× 𝐛"

𝐜#&𝐀#:!× 𝐛! 𝐜#&𝐀#:$× 𝐛$ 𝐜#&𝐀#:"× 𝐛" 𝐜#&𝐀#:#× 𝐛#

δ! 𝐜$&𝐀$:$×&𝐛$& 𝐜$&𝐀$:"×&𝐛"& 𝐜$&𝐀$:#×&𝐛#&

𝐜!&𝐀!:!×&𝐛!& δ$ 𝐜"&𝐀":"×&𝐛"& 𝐜"&𝐀":#×&𝐛#&

𝐜$&𝐀$:!×&𝐛!& 𝐜$&𝐀$:$×&𝐛$& δ" 𝐜#&𝐀#:#×&𝐛#&

𝐜"&𝐀":!×&𝐛!& 𝐜"&𝐀":$×&𝐛$& 𝐜"&𝐀":"×&𝐛"& δ#

Channel Mixing

𝐗

𝐌=𝐘

Sequence Mixing

𝑓ℳ 𝑓&

Figure 1: (Left) A schematic of the matrix mixer framework. (Right) An overview of matrix mixer
classes: dense, Vandermonde, Toeplitz, low-rank, semiseparable, and quasiseparable.
Fourier Transform matrix. Additionally, incorporating inductive biases such as positional information
has resulted in the use of Toeplitz matrices in models like TNN [33]. Enhancing computational
efficiency has spurred the creation of low-rank structures in models like Linear Attention (LA) [22]
and Linformer [45], as well as Monarch matrices [5] in models such as M2 [13].

Despite the achievements of these approaches, they often lack a systematic analysis of their theoretical
foundations and empirical consequences. Moreover, these models typically exhibit lower empirical
performance than Attention, which is successfully applied across diverse domains and tasks. In another
line of work, structured state space models (SSMs) [17, 18] such as Mamba [16] have been popularized
for its attention-like performance with linear-time computational scaling. Furthermore, recent work [6]
has shown that SSMs can also be expressed as semiseparable matrices. However, these models are
primarily causal as underscored by their recurrent view of computation, limiting their application
to auto-regressive settings. Several concurrent efforts to adapt Mamba into a bidirectional model [48,
38] have been made, but these attempts remain ad-hoc.

In this work, we study the matrix mixer framework (see Figure 1), which provides a powerful
abstraction for enhancing the understanding of sequence models through the analysis of their matrix
structures. Specifically, we suggest the following:

(i) Formalization of matrix mixer sequence models. We establish the conceptual foundation
of the Matrix Mixer sequence models, delineating key axes of matrix parameterizations that
influence model characteristics such as efficiency, causality, and expressivity. For instance,
we highlight that structured matrix [29] parameterizations underpin efficient sequence models
through computationally efficient algorithms (Section 2.1).

(ii) Introduction of sequence alignment. Within this framework, we define sequence alignment
as a novel attribute, which induces sequence models with essential features of data-dependence
and extendability. We introduce Sequence Aligned Matrices (SAM) that exhibit these properties,
demonstrating their superior performance in downstream tasks compared to non-aligned
counterparts (Section 2.2).

(iii) Exploration of structured matrix parameterizations. Through the matrix mixer framework,
we systematically explore and categorize a broad spectrum of existing sequence models (Sec-
tion 2.3). Motivated by sequence alignment, we also present new sequence models with underex-
plored structured matrix configurations, such as Vandermonde and Cauchy matrices (Section 2.4).

Building on our matrix mixer framework, we introduce a novel sequence model Hydra, which employs
a quasiseparable matrix mixer (Section 3). Quasiseparable matrices are a fundamental matrix structure
with several important properties, making them ideal for sequence modeling. For example, they gener-
alize both the low-rank matrix mixers found in linear attention models and the semiseparable matrices
utilized in state space models. In fact, quasiseparable matrix mixers can be seen as a natural bidirectional
extension of semiseparable matrices, addressing a major limitation in state space models by making
their use in non-causal settings possible. Additionally, Hydra maintains the strong performance and
linear-time computational efficiency of SSMs, thanks to structured matrix multiplication algorithms.
Unlike prior attempts to make SSMs bidirectional by ad-hoc methods – typically by combining separate
models for forward and backward sequence processing through element-wise addition [15, 48, 38], the
Hadamard product [44], or concatenation [44, 12, 38] – the systematic approach of Hydra offers a more
coherent and theoretically grounded advancement. Specifically, the definition of quasiseparable mixer
matrices generalize both the heuristic bidirectional extensions of SSMs and linear attention, providing
a mathematical interpretation of the strong expressivity exhibited by Hydra.

2

We provide extensive experimental results that substantiate our claims. Our systematic ablation studies
control architectural variables to highlight the impact of matrix parameterization. These careful experi-
ments confirm that Sequence Alignment, a property we newly identified in certain matrix mixers, signif-
icantly enhances downstream performance. Furthermore, our experimental findings demonstrate that
novel sequence models like those using Cauchy matrix mixers match the performance of established ma-
trix mixers such as low-rank. This indicates that the strong performance of low-rank variants is not solely
attributable to their matrix structure, but can be matched by other mixers that share similar properties.
In addition, we also validate that the bidirectional extension of the Mamba model, implemented through
quasiseparable matrix mixers, outperforms naive bidirectional approaches [15, 48, 38, 44, 12]. Impor-
tantly, Hydra excels as a performant, general-purpose bidirectional sequence model, as evidenced by
its strong performance across diverse domains. It achieves state-of-the-art results on the GLUE bench-
mark [43] with an average accuracy of 84.3%, outperforming BERT [10] by 0.8 points, and records
a Top-1 accuracy of 81.0% on the ImageNet-1K benchmark [9], surpassing ViT [11] by 2.2 points.

We publicly release source code at https://github.com/goombalab/hydra.

2 The Matrix Mixer Framework:
Bridging Sequence Mixers and Structured Matrices

In Section 2.1, we formally define the matrix mixer framework, conceptualizing sequence mixers
as linear maps on input sequences. In Section 2.2, we introduce sequence alignment, a new axis of
variation of matrix structures which controls important characteristics of downstream sequence models
such as data-dependent parameterizations and extendability. Section 2.3 leverages these definitions to
categorize a wide array of previous works based on their matrix mixers, facilitating the understanding
of sequence mixers through their matrix structures. Furthermore, in Section 2.4, we propose novel
sequence mixers utilizing Vandermonde and Cauchy matrices, demonstrating the flexibility of our
framework in systematically designing new sequence mixers.

2.1 Formalizing the Matrix Mixer Framework

Definition 2.1 (The matrix mixer framework). Let X∈RL×C be the input sequence, consisting of L
elements, each with C channels. Let fX : RL×C→RL×D be the input preprocessing function that en-
capsulates common data transformations such as short convolutions, and linear layers. LetH andP be
the number of heads and head dimension respectively, such thatHP =D. LetM⊆RL×L represent the
underlying class of mixer matrices. For each head h∈ [H], let fh

M : RL×C×Θ→M be the matrix con-
struction function that maps input data to mixer matrices, whereΘ is the space of learnable parameters.
We denote Mh=fh

M(X,θ), whenM,θ,X are clear from the context. Then, we define matrix mixing as,

Yh=Mh(fX(X))h,

where (fX(X))h,Yh denote the preprocessed input and output slice corresponding to head h.

This definition encapsulates the view that existing sequence mixers can be mathematically represented
as L×L mixer matrices that act on the sequence length (see Figure 1, left). The framework not only
incorporates typical data preprocessing steps like projections [22, 39], and short convolutions [16, 6], but
it also accommodates data dependent mixer matrices [39, 34]. Furthermore, it is also powerful enough
to capture the concept of head structure [42] by equivalently sharing the mixer matrices within a head.

Moreover, Definition 2.1 offers a different lens to conceptualize the computational cost of sequence
mixers. If we assume that both the preprocessing function and the matrix construction function are
sub-quadratic in the sequence length L, which is generally true in practice, then the computational
bottleneck lies in the MfX(X) operation. For a general matrix M, this multiplication will incur
a O(L2) cost. The only way to mitigate this to restrictM to being a structured matrix, which are
known to possess sub-quadratic matrix multiplication algorithms. We refer to such sequence mixers
as structured matrix mixers. This paves the way to systematically develop new sequence mixers:
select an appropriate class of structured matrices from established mathematical literature, devise
a data-dependent matrix construction function, and integrate them into the matrix mixer framework.

2.2 Sequence Aligned Matrices
Unstructured mixer matrices, also known as dense matrices, lack two key useful properties: 1) these
matrix mixers cannot be easily made data-dependent, which has been identified as a key property
of performant sequence models such as Transformers and Mamba, and 2) they can only be applied
to fixed-length sequences, a property we call extendability. Due to substantial importance of these

3

https://github.com/goombalab/hydra

Table 1: Categorization of existing methods as matrix mixers. L denotes input sequence length.
Matrix Structure M Formulation (mij) Complexity Sequence Aligned Method Instantiations

Dense mij O(L2) MLP-Mixer [40]

Dense
softmaxj(q

T
i kj) O(L2) ✓ Transformer [42](Softmax Attention)

Low-Rank
qT
i kj O(L) ✓ Linear Attention [22],

(Linear Attention) Linformer [45]

Butterfly See [7, 5] O(LlogL)
Kaleidoscope [8, 7],
Monarch [5, 13]

Toeplitz
mj−i O(LlogL)

S4 [17, 18], H3 [14]
(Convolution) TNN [33], CKConv [37]

Discrete Fourier Transform wij O(Llog2L) FNet [23]

Vandermonde (mi)
j

O(Llog2L) ✓ Ours (Section 2.4)
Cauchy

∑
d(qid−kjd)

−1

Semiseparable cTi A
×
i:jbj1{i≥j} (1), (2) O(L) ✓ Mamba (S6 [16], SSD [6])

Quasiseparable Equation (3) O(L) ✓ Ours (Hydra) (Section 3)

features for sequence mixers, we formally define the class Sequence Aligned Matrices (SAM) to
systematically explore matrices that are characterized with both properties.
Definition 2.2 (Sequence Aligned Matrices). Let L be the sequence length and let M∈RL×L denote
a matrix with a parameter set P . Then, we say that M is a Sequence Aligned Matrix if there exists
a partition Π of P̂ ⊆P , and P̂ ̸=∅, such that for all sets E ∈Π, there exists a bijective map fE : [L]→E ,
and, for each i,j∈ [L], i≤j, the sub-matrix M[i :j+1,i :j+1] is composed solely from the parameters
in the subset∪E,i≤k≤jfE(k)⊆P .

In simpler terms, this implies that each parameter of a SAM is either mapped to a specific element
of the sequence or is left data-independent, ensuring that every upper-left sub-matrix upto index i
is constructed using only the parameters corresponding sequence segment upto and including index
i and/or the data-independent ones.
Proposition 2.3 (Data Dependency). Sequence aligned matrices exhibit canonical data-dependent
parameterization.
Proof. This property arises from the parameter partition structure guaranteed in the definition.
Specifically, for each partition we associate a parametric function that, for any given element i
computes the parameter’s value by treating the element itself as an input.

Proposition 2.4 (Extendability). Sequence aligned sequence mixers can be extended beyond their
trained length.
Proof. This is a direct consequence of Proposition 2.3: the pretrained parametric functions assigned
to each partition enable the computation of matrices larger than those encountered during training.

We identify data dependency – the property induced by SAM – as a key axis of differentiation amongst
existing models. Although data-dependency is a popular notion that is widely regarded as being
crucial to performance of Attention, it lacked any formal definition in the literature. Consequently,
various works have adopted different interpretations of this notion: Hyena [31] implements it via a data-
dependent linear operators over the Toeplitz matrix mixer; GSS [26] adds a data-dependent gate post
sequence mixing; LA, SSD [22, 6], like Attention, directly map input data to the parameters of the matrix
mixer. We adopt the third notion of data dependency, where each parameter is a function of a particular
input token, and under this definition it is clear that models like Hydra, SSD, and LA are data-dependent,
whereas MLP-Mixer, FNet, S4, S4D, and TNN, only have data-independent parameters.

2.3 Prior Sequence Models as (Structured) Matrix Mixers
Using the formalization of the Matrix Mixer framework, we categorize a wide array of previous works
– MLP-Mixer [40], Transformer [42], Linear Attention [22], Linformer [45], S4 [18, 17], H3 [14],
TNN [33], CKConv [37], FNet [23], Kaleidoscope [8, 7], Monarch [5, 13], and Mamba [16, 6] – as
matrix mixers in Table 1. For illustrative purposes, we explicitly show that MLP-Mixer, FNet and LA
are matrix mixers (proofs in Appendix B), and leave out normalizing factors for simplicity as follows:
Proposition 2.5. (MLP-Mixer is a matrix mixer). MLP-Mixer employs fX as an identity function,
and its mixer matrix M has an unstructured parameterization with a single head (H=1).

4

Proposition 2.6. (LA is a structured matrix mixer with sequence alignment). LA employs fX as a
linear projection fX(X,WV)=XWV , with its low-rank mixer matrix being SAM. The mixer matrix
M has H heads with a structured parameterization, where each (i,j)-element mij is defined as:

mij=ϕ(xiWQ)ϕ(xjWK)T , ϕ(·)=elu(·)+1, WQ,WK ∈RC×D.

Additionally, it is important to note that not all structured matrix mixers inherently exhibit sequence
alignment. For example, consider the matrix mixer formulationM=WQW

T
K whereWQ,WK ∈RL×C

are trainable parameters. This formulation yields a low-rank matrix mixer, which qualifies as a
structured matrix mixer. However, this structure is independent of the input data, directly contradicting
the concept of SAM. Another illustrative example is FNet:

Proposition 2.7. (FNet is a structured matrix mixer without sequence alignment). FNet employs fX
as an identity function, using the canonical Vandermonde matrix – Discrete Fourier Transform (DFT) –
for its mixer matrix. The mixer matrix M has a single head (H=1) with a structured parameterization,
where each (p,q)-element mpq is defined as mpq=wpq , where w=e−

2πi
N .

Using these definitions, we present a series of matrix mixers, incorporating various mixer matrices
both with and without the SAM property, and provide extensive experimental evaluations to investigate
the influence of SAM on the expressivity of sequence mixers in Section 4.1.1.

2.4 The Matrix Mixer Framework as a Creative Toolbox
Armed with this framework, we illustrate how more classes of performant sequence models can be
derived. In particular, we introduce Vandermonde and Cauchy matrix mixers, chosen because they are:
1) well-known families of structured matrices with sub-quadratic matrix multiplication, hence are effi-
cient as sequence models, and 2) we show that they have SAM parameterizations. In Section 4.1.1, we
validate that these properties are enough to create efficient and strong sequence models, e.g. our Cauchy
matrix mixer is on par with LA. This validates the central theme of this paper that developing sequence
models can be reduced to choosing structured matrix classes with target properties. We assume an input
sequence X∈RL×C is given, and utilize the prevalent query-key concept that we employ Q=XWQ,
K=XWK where WQ,WK ∈RC×D. For simplicity, we show the single-headed (H=1) case, where
D=P . Further details including the implementations of multi-headed extensions are in Appendix E.

Sequence aligned Vandermonde mixer. In contrast to FNet, which employs a fixed-parameter
Vandermonde mixer based on the Discrete Fourier Transform (DFT), we propose a trainable, and data-
dependent Vandermonde-based matrix mixer. Then, we can construct a mixer matrix from a combina-
tion of two separate Vandermonde matricesMQ,MK , each generated fromQ andK. Specifically, each
(i,j)-element of the resulting mixer matrix M is formulated as mij=

∑
d(cos(2πq

j
id)−cos(2πkijd)).

This formulation utilizes the cosine function – the real part of an imaginary number – which is a well
established technique used in SSMs [17, 28] to prevent the potential for excessive values resulting from
the powers of elements. Thanks to the associative property of matrix multiplications, our sequence
aligned Vandermonde matrix mixer enjoys algorithms with efficient computational complexities.

Sequence aligned Cauchy mixer. As indicated by the definition of Cauchy matrices in Table 1,
the underlying philosophy of using both the Cauchy and low-rank matrix classes as a sequence mixer
is remarkably similar: the relevance of a pair of elements is directly proportional to their associated
value – the greater the relevance, the higher value assigned. Specifically, each (i, j)-element of
the mixer matrix M is constructed by mij =

∑
d
1/(qid−kjd+c), where c is a trainable constant that

prevents elements leading to excessive values when the denominator qid−kjd approaches zero. To our
knowledge, this is the first introduction of a Cauchy-based sequence mixer that achieves performance
comparable to Attention matrix mixers.

3 Hydra: The Double-Headed Mamba
In this section, we introduce Hydra, a novel sequence-to-sequence model through a bidirectional
extension of Mamba. We briefly begin with a preliminary background that SSMs are semiseparable
matrix mixers (Section 3.1). Then, we motivate the design choice of Hydra under the domain of
the matrix mixer framework. Specifically, we opt for quasiseparable matrices as our matrix mixer,
a choice grounded by solid mathematical foundations (Section 3.2). Additionally, we underline
the computational benefits and enhanced parameter efficiency afforded by adopting quasiseparable
matrices (Section 3.3).

5

𝐜!"𝐀!:$×"𝐛$" 𝐜!"𝐀!:&×"𝐛&" 𝐜!"𝐀!:'×"𝐛'"

𝐜$"𝐀$:!×"𝐛!" 𝐜$"𝐀$:&×"𝐛&" 𝐜$"𝐀$:'×"𝐛'"

𝐜&"𝐀&:!×"𝐛!" 𝐜&"𝐀&:$×"𝐛$" 𝐜&"𝐀&:'×"𝐛'"

𝐜'"𝐀':!×"𝐛!" 𝐜'"𝐀':$×"𝐛$" 𝐜'"𝐀':&×"𝐛&"

(c) Addition of Two Separate SSMs (d) Hydra

δ! 𝐜$"𝐀$:$×"𝐛$" 𝐜$"𝐀$:&×"𝐛&" 𝐜$"𝐀$:'×"𝐛'"

𝐜!"𝐀!:!×"𝐛!" δ$ 𝐜&"𝐀&:&×"𝐛&" 𝐜&"𝐀&:'×"𝐛'"

𝐜$"𝐀$:!×"𝐛!" 𝐜$"𝐀$:$×"𝐛$" δ& 𝐜'"𝐀':'×"𝐛'"

𝐜&"𝐀&:!×"𝐛!" 𝐜&"𝐀&:$×"𝐛$" 𝐜&"𝐀&:&×"𝐛&" δ'

𝐜!"𝐛!" + 𝐜!"𝐛!"

𝐜#"𝐛#" + 𝐜#"𝐛#"

𝐜$"𝐛$" + 𝐜$"𝐛$"

𝐜%"𝐛%" + 𝐜%"𝐛%"

(a) Semiseparable

𝒒!"𝒌!

𝒒$"𝒌! 𝒒$"𝒌$

𝒒&"𝒌! 𝒒&"𝒌$ 𝒒&"𝒌&

𝒒'"𝒌! 𝒒'"𝒌$ 𝒒'"𝒌& 𝒒'"𝒌'

𝒒+"𝒌! 𝒒+"𝒌$ 𝒒+"𝒌& 𝒒+"𝒌' 𝒒+"𝒌+

δ! 𝒄!"𝒃$ 𝒄!"𝒃& 𝒄!"𝒃' 𝒄!"𝒃+

𝒒$"𝒌! δ$ 𝒄$"𝒃& 𝒄$"𝒃' 𝒄$"𝒃+

𝒒&"𝒌! 𝒒&"𝒌$ δ& 𝒄&"𝒃' 𝒄&"𝒃+

𝒒'"𝒌! 𝒒'"𝒌$ 𝒒'"𝒌& δ' 𝒄'"𝒃+

𝒒+"𝒌! 𝒒+"𝒌$ 𝒒+"𝒌& 𝒒+"𝒌' δ+
(b) Quasiseparable

Figure 2: (a) A semiseparable (SS) matrix. (b) A quasiseparable (QS) matrix. (c) A mixer matrix
of addition-based bidirectional SSMs. (d) A QS mixer matrix for Hydra. SS and QS matrices are
characterized by rank conditions (Definition 3.1, Definition 3.2). The rank characterization of SS
matrices include the diagonals (e.g., green submatrices), whereas that of QS matrices hold for off-
diagonal submatrices (e.g., yellow submatrices). Because of the similar rank properties, a naive
addition-based bidirectional SSM is provably a QS matrix mixer. Hence, QS matrix mixers generalize
this common heuristic for bidirectional SSMs. The freedom in the diagonal values of Hydra leads to a
higher expressivity compared to the mixer matrices of the addition-based bidirectional SSMs, where
the diagonal values are constrained by the colored vectors.
3.1 Background: State Space Models are Semiseparable Matrix Mixers
SSD [6], the latest advancement in the iterations of SSMs, presents a sub-quadratic sequence mixer
that attains language modeling performance on-par with Attention. Crucially, SSD underscores that
all SSMs are inherently parameterized by semiseparable matrices, which play a pivotal role in their
computational efficiency and strong empirical performance. Specifically, the operational essence of
selective SSMs such as Mamba – the transformation of an input sequence X∈RL×C 7→Y∈RL×C

– can be succinctly represented within the matrix mixer framework, as detailed below:

yt=

t∑
s=0

CT
t A

×
t:sBsxs

Y=SSM(A,B,C)(X)=MX

mij=cTi Ai···Aj+1bj

(1) A×
i:j=


∏i

k=j+1Ak for i>j

1 for i=j∏j−1
k=iAk for i<j

. (2)

Here, mij represents an (i,j)-element of the mixer matrix M∈RL×L, with each matrix Ai∈RN×N

and vector ci,bi ∈RN×1 as time-varying parameters of selective SSMs. This formulation reveals
that the mixer matrices M follow a fundamental class of structured matrices known as semiseparable
matrices, defined as follows:
Definition 3.1 (The rank characterization of semiseparable matrices). A lower triangular matrix M
is N -semiseparable iff any submatrix from the lower triangle (on or below the diagonal) has a rank
of at most N . See Figure 2 (a).

However, a key limitation of these matrices – and by extension, SSMs – is their inherent causality,
which restricts their use in scenarios where bidirectional processing is vital. To circumvent this
limitation, previous efforts [44, 15, 12] have explored employing two separate SSMs, one for
forward and the other for backward sequence processing, then combine the outputs using strategies
like element-wise addition, the Hadamard product, or concatenation. Among such heuristics,
addition-based bidirectional extensions of SSMs [15, 48, 38] can be conceptualized within our matrix
mixer framework, as illustrated in Figure 2 (c).

3.2 Quasiseparable Matrices: A Principled Bidirectional Matrix Mixer
We fully utilize the matrix mixer framework, which is discussed in Section 2, to explore a novel
bidirectional sequence mixer and identify quasiseparable matrices as a prime candidate. Our
exploration focuses on structured matrix classes that meet the following criteria: 1) they feature upper
triangular components for bidirectionality, 2) they possess strong expressivity, and 3) they benefit
from sub-quadratic matrix multiplication algorithms.

The structural design of quasiseparable matrices inherently meets the first criterion, which is defined
as follows: a matrix M is N -quasiseparable if each element mij satisfies

mij=


−→
cTi
−−→
A×

i:j

−→
bj , if i>j

δi, if i=j
←−
cTi
←−−
A×

i:j

←−
bj , if i<j

, (3)

where each δi is a scalar, bi,ci ∈ RN×1, and Ai ∈ RN×N [4]. Clearly, this matrix class features
non-zero upper triangular components, enabling bidirectional processing.

6

Furthermore, the second requirement – the expressivity of quasiseparable matrices – is confirmed
by their rank characterization:
Definition 3.2 (The rank characterization of quasiseparable matrices [30]). A matrix M is
N -quasiseparable iff any submatrix from either the strictly upper or lower triangle (off from the
diagonal) has a rank of at most N . See Figure 2 (b).

This definition emphasizes the rank constraint inherent in quasiseparable matrices, which is also
evident from Equation (3) given that each vector ci,bi ∈RN×1 and matrix Ai ∈RN×N has a rank
of at most N . This structural flexibility of quasiseparable matrices directly leads to significant
generalizations, extending the capabilities of both low-rank and semiseparable matrices.
Corollary 3.3. Quasiseparable matrices generalize low-rank matrices.
Corollary 3.4. Quasiseparable matrices generalize and extend semiseparable matrices.

Additionally, we revisit the previous addition-based bidirectional extensions of SSMs [15, 48, 38]
through the lens of our matrix mixer framework. Unlike other elements, the diagonal values in a mixer
matrix embody a unique concept of residuals, serving as a critical aspect of model expressivity. As
demonstrated in Figure 2 (c), the mixer matrices in these bidirectional SSMs exhibit constraints in

their diagonal elements {
−→
cTi
−→
bi+
←−
cTi
←−
bi}L, which are directly influenced by the shared non-diagonal

construction vectors {−→ci ,
−→
bi ,
←−ci ,
←−
bi}L. Importantly, the rank characterization of semiseparable matrices

includes on-diagonal elements, whereas that of quasiseparable matrices applies only to off-diagonal
submatrices. This generosity in the rank-based definition suggests that sequence models employing
quasiseparable mixers not only offer inherent extendability in handling both causal and bidirectional
processing, but also exhibit strong expressivity.
Corollary 3.5. Quasiseparable matrices are strictly more expressive than mixer matrices of
addition-based bidirectional SSMs.

Leveraging this inherent flexibility of quasiseparable matrix mixers, our Hydra in Section 3.3 is
defined by incorporating shift operations. Our experimental results strikingly confirm that this nuanced
parameterization difference leads to a notable improvement in downstream task performance, thereby
substantiating our theoretical claims (see Appendix D.1).

Moreover, with their structural similarity to semiseparable matrices, quasiseparable matrices are
confirmed as sequence aligned matrices. Given our experimental results that SAM parameterizations
are the key to the strong representational power (Section 4.1.1), we further validate our choice of
quasiseparable matrices for the bidirectional sequence mixer.
Proposition 3.6. N -quasiseparable matrices are sequence aligned matrices.
Proof. quasiseparable matrices, due to their structural similarity to semiseparable matrices,
belong to the class of Sequence Aligned matrices. Specifically, the set of parameters is given by
P= P̂={Ai,bi,ci,δi}L. We consider the partition Π={{Ai}L,{bi}L,{ci}L,{δi}L}, and for each
element of the partition set, we choose the bijection that maps token i to Ai, bi, ci, and δi respectively.
Finally, it is easy to see that the sub-matrix M [: i+1,: i+1] indeed only contains parameters in the
set {Aj ,bj ,cj ,δj}i, thus satisfying the last requirement of SAM matrices.

In Section 3.3, we detail how quasiseparable sequence mixer can be effectively implemented using
existing SSM frameworks to achieve sub-quadratic multiplication efficiencies, fulfilling the final
criterion of our matrix mixer exploration.

3.3 Taming the Hydra
As a direct consequence of the favorable mathematical properties of quasiseparable matrices, we
present a new sequence mixer Hydra. We adopt quasiseparable matrices as matrix mixers in Hydra,
which bring forth three significant advantages: 1) higher representational power compared to its
heuristic alternatives, 2) easy to implement sub-quadratic matrix multiplication algorithm, and 3)
significant parameter savings.

We exploit the relationship between semiseparable and quasiseparable matrices to develop an
easy-to-implement, sub-quadratic matrix multiplication algorithm. Specifically, we recognize that
quasiseparable matrices can be expressed as a combination of two semiseparable matrices.
Proposition 3.7. Let X ∈RL×D be the input sequence, and let QS(·) and SS(·) denote the action
of a quasiseparable and semiseparable matrix respectively. Let the two matrices share the parameters

7

Table 2: Matrix mixer ablations. A systematic empirical study of matrix mixers on the GLUE
benchmark by controlling for the architecture and varying only the matrix parameterization. Sequence-
aligned matrices dynamically parameterize via input projections, becoming data-dependent (DD) that
significantly increases performance. Most DD variants achieve competitive GLUE scores.

Structure DD #Params C4 Pretrain GLUE Tasks GLUE
AvgLce Acc MNLI QNLI QQP RTE SST2 MRPC COLA STS

Dense 71M 2.05 59.6 73.3 76.2 85.3 64.4 90.8 84.7 45.7 76.8 74.7

Toeplitz 71M 1.97 60.8 74.6 79.6 86.6 66.1 90.9 84.2 45.7 79.1 75.8
Toeplitz ✓ 72M 1.91 61.9 77.3 81.8 88.1 67.1 90.7 87.3 45.3 84.1 77.7

DFT 71M 2.46 53.1 70.4 70.8 84.5 59.9 89.8 83.6 44.4 69.8 71.7
Vandermonde 71M 2.46 53.0 55.2 61.3 82.5 66.3 87.4 84.2 45.8 84.2 70.8
Vandermonde ✓ 70M 2.04 59.7 74.1 80.0 86.2 67.9 89.3 84.3 46.0 80.1 76.0

Cauchy 71M 2.25 56.2 75.3 81.3 86.7 66.6 88.8 84.5 27.4 83.2 74.2
Cauchy ✓ 70M 1.94 61.6 77.5 84.4 84.2 68.0 91.0 86.7 48.1 85.2 78.2

Low-Rank 71M 2.06 59.4 73.7 76.5 85.1 61.5 90.6 85.8 49.2 76.6 74.9
Low-Rank ✓ 70M 1.90 62.2 77.6 84.1 88.2 69.1 91.0 85.9 47.6 83.9 78.4

Attention 71M 2.08 59.1 71.0 70.4 83.5 62.3 89.9 83.3 49.6 65.2 71.9
Attention ✓ 70M 1.87 62.9 78.5 85.4 88.4 67.9 91.2 86.4 47.8 84.3 78.8

Quasiseparable 72M 2.03 59.8 73.8 78.1 87.1 64.3 90.2 84.4 45.5 77.2 75.1
Quasiseparable ✓ 71M 1.84 63.3 79.5 85.5 88.6 69.8 91.9 88.4 48.4 85.6 79.7

{Ai,bi, ci}L, and define D = diag(δ1, ··· , δL), where δi’s are the diagonal parameters of the
quasiseparable matrix. Then,

QS(X)=shift(SS(X))+flip(shift(SS(flip(X))))+DX,

where flip(·) denotes the operation that reverses the input sequence, while shift(·) refers to shifting
the sequence right by one position, padding the beginning with zero. (Proof in Appendix B)

The above proposition demonstrates that quasiseparable matrix multiplication can be decomposed into
two operations of semiseparable matrix multiplication with simple functions such as flip and shift.
Given that semiseparable matrix structure encompasses SSMs, this flexibility allows for the selection
of any SSM variant for implementation. In this paper, we employ SSD [6], chosen for its linear-time
and dedicated hardware-efficient implementation. However, the architecture of Hydra is compatible
with a variety of SSMs [18, 17, 16, 6] and can also be generalized with other recurrent models [47, 28].

Furthermore, Hydra significantly improves parameter over the heuristic approaches to bidirectional
modeling using SSMs [15, 48, 44, 12]. For example, some approaches utilize two distinct SSMs,
which doubles the number of training parameters. In contrast, since we conceptualize the model as a
quasiseparable matrix mixer (see Figure 4), we naturally share the fX projection layer, which accounts
for a bulk of the model size. Empirically, we observe only a marginal increase in the total number
of parameters compared to a single SSM, and can cut the the number of parameters nearly in half
compared to the heuristic approaches to bidirectionality.

4 Experiments
In Section 4.1, we begin by analyzing the matrix mixer framework through extensive performance
comparisons between different structured matrix classes (Section 4.1.1). The data-dependent
parameterization of Quasiseparable matrices surpasses the performance of all other matrix classes,
validating our selection of it as the sequence mixer. Furthermore, we compare our method against
other ad-hoc solutions that extend SSMs to acquire bidirectionality (Appendix D.1), and show that
our Hydra outperforms them, underscoring the utility of the matrix view of sequence mixers.

Then, in Section 4.2, we validate the effectiveness of our method by evaluating Hydra on quintessential
language and image benchmark tasks: Masked Language Modeling (Section 4.2.1) and Image
Classification (Section 4.2.2). State-of-the-art performance in both tasks has generally been dominated
by transformer-based models [10, 11]. Our Hydra serves as an efficient and powerful replacement
to the transformer layer, outperforming it on both tasks.

In the presentation of results across all tables, the highest performing scores are highlighted in bold,
while the second-highest scores are marked with an underline. Each number is the average of five runs.

8

Table 3: Performance of various approaches that ex-
tend Mamba to a bidirectional model. We compare
our quasiseparable matrix mixer to element-wise
addition (Add), the Hadamard product (Mult), and
concatenation (Concat) variants.

Method #Params C4 Pretrain GLUE
AvgLce Acc (%)

Mamba 68M 3.45 39.5 77.7

Add 70M 1.68 65.6 80.6
Mult 70M 1.72 64.9 79.6
Concat 69M 1.71 65.4 81.1
Quasi 70M 1.66 65.9 81.7

10 20 30 40 50 60 70

1.7

1.8

1.9

2

Training Steps (K)

Concat
Mult
Add

Quasi

Figure 3: Cross-entropy loss of various bidirec-
tional variants, measured on the C4 validation set.

4.1 Analysis of the Matrix Mixer Framework
4.1.1 Effects of Different Structured Matrix Families

Our controlled experimental setting distinctly separates the mixer matrices from other architectural
components, enabling a rigorous and focused comparison between different types of mixer matrices.
Specifically, utilizing the recent Mamba [6] block, we only replace SSD with different mixer matrices
M. In Table 2 we provide experimental results that showcase the expressivity of various matrix mixers
that support bidirectional sequence processing, primarily by utilizing off-the-shelf structured matrix
families for the mixer matrix. Further details of the experimental setup are provided in Appendix E.

Results. The results distinctly highlight the substantial advantage in expressivity conferred by the
SAM property (Definition 2.2). Previously, the high performance observed in [22, 45] was attributed
to their low-rank based mixer matrices, particularly emphasized by the query-key QKT interaction.
The results show that the structures of mixer matrices affect the capability of sequence models.
However, we demonstrate that the key factor that primarily contributes to significant improvements
in the expressivity of sequence models is not the query-key formulation, but rather the SAM property.
Through our systematic extension, we adapt six structured matrix families – Toeplitz, Vandermonde,
Cauchy, low-rank, Attention, and quasiseparable – to include the SAM property (see Appendix E for
implementation details). This adaptation reveals that the sequence-aligned Cauchy variant performs
nearly as well as the sequence-aligned low-rank variant, which characterizes LA. Moreover, the
experimental results consistently indicate that variants equipped with the SAM property outperform
those lacking this feature across all tested matrix families.

4.1.2 Ablating Approaches for Bidirectionality

We compare the quasiseparable matrix mixer approach to prior bidirectional SSMs models that
achieve bidirectionality by aggregating forward and backward SSMs using various heuristics including
element-wise addition [15], the Hadamard product [44], and concatenation [44, 12]. We provide
details of the ablation studies in Appendix D.1.

Results. The results presented in Table 3 show the shortcomings of the unidirectional Mamba [16] when
applied to bidirectional contexts, as evidenced in C4 and GLUE. This significant performance disparity
(−4.0) underscores the essential need for models to be capable of bidirectional sequence processing.
Within the comparison of four bidirectional variants shown in Table 3, our approach of utilizing a
quasiseparable matrix achieves the top validation results on the C4 benchmark and records the highest
GLUE average score of 81.7. This advantage of our method is further validated in Figure 3, where
it demonstrates the cross-entropy loss on the C4 validation set throughout training. Considering the
gigantic size of the dataset, the expressivity of Hydra using quasiseparable matrices is clearly manifested
by consistently achieving the lowest loss, as well as the highest masked token prediction accuracy.

4.2 Evaluation Results of Hydra
4.2.1 Bidirectional Masked Language Modeling

We pretrain our models on the masked language modeling objective using the Colossal Cleaned
Common Crawl (C4) corpus [36], then finetune and evaluate them on the GLUE benchmark [43]. We
relegate experimental details in Appendix D.2.

9

Table 4: GLUE Results. Evaluation of various sequence models that can be formulated as matrix
mixers. For maximum performance, all models are trained using established recipes [32, 13].

Method #Params C4 Pretrain GLUE Tasks GLUE
AvgLce Acc (%) MNLI QNLI QQP RTE SST2 MRPC COLA STS

BERT 110M 1.59 67.3 84.4 90.3 89.7 77.1 92.3 90.7 54.2 89.1 83.5
MLP-Mixer 112M 1.77 63.5 77.2 82.4 87.6 67.3 90.5 86.5 43.0 85.2 77.5
FNet 112M 1.94 61.3 74.9 82.1 85.7 63.6 87.6 86.4 42.72 83.1 75.8
M2 116M 1.65 65.9 80.5 86.0 87.0 69.3 92.3 89.2 56.0 86.9 80.9
Hydra 112M 1.46 69.1 84.5 90.0 91.3 77.5 93.5 91.2 57.2 88.9 84.3

Results. The results in Table 4, showcase that Hydra outperforms all existing state-of-the-art
methods. Notably, Hydra surpasses the performance of BERT – trained with the latest HuggingFace
recipe [46] – in both pretraining and GLUE benchmark scores. BERT has shown a noticeable gap
in the masked language modeling task compared to other previous methods [40, 23, 13]. Hydra gains
a 1.8% improvement in accuracy of C4 validation and a 0.8% increase in the average GLUE score,
illustrating the effectiveness of leveraging matrix mixer view for bidirectional settings.

4.2.2 Image Classification Table 5: Top 1 & 5 image classification accuracies eval-
uated on the ImageNet-1K benchmark. We also report
accuracies using the common model ensembling tech-
nique: Exponential Moving Average (EMA) weights.
(Top) Reported from literature [27, 31]. (Bottom): Our
unidirectional and bidirectional Mamba results.

Method #Params Top-1 (%) Top-5 (%)

Acc AccEMA Acc AccEMA

ViT-B 87M 78.8 80.6 94.2 95.2
S4-ViT-B 89M 79.4 80.4 94.2 95.1
Hyena-ViT-B 88M 78.4 76.4 94.0 93.0

Mamba-ViT-B 89M 79.1 80.0 94.2 94.9
Hydra-ViT-B 91M 81.0 81.6 95.3 95.6

We assess Hydra on the renowned ImageNet-
1K benchmark [9], which comprises 1.28M
training images and 50k validation images
across 1,000 categories. We use the ViT-
Base [11] model as a baseline to facilitate
a rigorous comparison of various sequence
mixers by substituting the Transformer block
in ViT with alternative sequence mixer mod-
els, specifically S4ND [27], Hyena [31],
Mamba [16], and our proposed Hydra model.
Unlike many off-the-shelf models such as
CNN-based [19, 25] and vision-specialized
Transformers [24] that include additional
techniques such as hierarchical spatial downsampling to boost accuracy, our approach involves
substituting only the sequence mixer layers within the ViT architecture. In addition, as opposed
to other baselines in the setting of [31], our method uses no tuning over the default ViT recipe except
for droppath. We found that Hydra fits the training data noticeably better than ViT, perhaps due to
better expressivity and inductive bias, so we simply increased droppath from 0.3 to 0.5 as stronger
regularization. We relegate further experimental details in Appendix D.2.

Results. The results, as presented in Table 5, compare the performance of Hydra with ViT [11] and
other variants [27, 31] on ImageNet-1K. Hydra exhibits superior performance in image classification,
outperforming ViT by 2.2% in Top-1 accuracy and 1.1% in Top-5 accuracy. Remarkably, even though
Hydra simply flattens images without incorporating any specific 2D architectural adjustments, it still
surpasses S4ND [27] – which is specifically tailored for image processing – by a notable margin of
1.6% in Top-1 accuracy. This showcases the versatility and effectiveness of Hydra in handling diverse
data types.

5 Conclusion
In this work, we have explored a common paradigm for sequence models wherein the sequence mixer
can be represented by a matrix. This framework encompasses many well-known models such as
MLP-Mixer, FNet, convolutions, Transformers (softmax attention), and recent state-space models
such as Mamba. By formalizing the matrix mixer framework and exploring additional matrix variants,
we have identified a key axis of variation (sequence alignment) in matrix parameterizations, which
enables benefits such as data dependence. This, in turn, provides increased flexibility and stronger
performance for sequence models. Furthermore, we have leveraged the matrix mixer framework to
motivate a natural bidirectional extension of state space models called Hydra, which can be formulated
as quasiseparable matrix mixers. Hydra consistently outperforms unidirectional Mamba and other
bidirectional sequence models in tasks such as masked language modeling and image classification.

2We adjust the learning rate to 1e−5 to address instabilities observed in the training of FNet on COLA.

10

Acknowledgements
This research was made possible by the generous support of computational resources provided by
Cartesia AI.

References
[1] Simran Arora, Sabri Eyuboglu, Aman Timalsina, Isys Johnson, Michael Poli, James Zou, Atri

Rudra, and Christopher Ré. “Zoology: Measuring and improving recall in efficient language
models”. In: arXiv preprint arXiv:2312.04927 (2023).

[2] Simran Arora, Sabri Eyuboglu, Michael Zhang, Aman Timalsina, Silas Alberti, Dylan Zinsley,
James Zou, Atri Rudra, and Christopher Ré. “Simple linear attention language models balance
the recall-throughput tradeoff”. In: arXiv preprint arXiv:2402.18668 (2024).

[3] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. “Neural machine translation by
jointly learning to align and translate”. In: arXiv preprint arXiv:1409.0473 (2014).

[4] Tom Bella, Yuli Eidelman, Israel Gohberg, and Vadim Olshevsky. “Computations with quasisep-
arable polynomials and matrices”. In: Theoretical Computer Science (2008).

[5] Tri Dao, Beidi Chen, Nimit S Sohoni, Arjun Desai, Michael Poli, Jessica Grogan, Alexander Liu,
Aniruddh Rao, Atri Rudra, and Christopher Ré. “Monarch: Expressive structured matrices for
efficient and accurate training”. In: International Conference on Machine Learning. PMLR.
2022, pp. 4690–4721.

[6] Tri Dao and Albert Gu. “Transformers are SSMs: Generalized Models and Efficient Algorithms
Through Structured State Space Duality”. In: International Conference on Machine Learning
(ICML). 2024.

[7] Tri Dao, Albert Gu, Matthew Eichhorn, Atri Rudra, and Christopher Ré. “Learning fast algo-
rithms for linear transforms using butterfly factorizations”. In: International conference on
machine learning. PMLR. 2019, pp. 1517–1527.

[8] Tri Dao, Nimit S Sohoni, Albert Gu, Matthew Eichhorn, Amit Blonder, Megan Leszczynski,
Atri Rudra, and Christopher Ré. “Kaleidoscope: An efficient, learnable representation for all
structured linear maps”. In: arXiv preprint arXiv:2012.14966 (2020).

[9] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. “Imagenet: A large-scale
hierarchical image database”. In: CVPR. 2009.

[10] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. “Bert: Pre-training of
deep bidirectional transformers for language understanding”. In: NAACL (2019).

[11] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly,
et al. “An image is worth 16x16 words: Transformers for image recognition at scale”. In: ICLR
(2021).

[12] Yassir Fathullah, Chunyang Wu, Yuan Shangguan, Junteng Jia, Wenhan Xiong, Jay Mahadeokar,
Chunxi Liu, Yangyang Shi, Ozlem Kalinli, Mike Seltzer, and Mark J. F. Gales. “Multi-Head
State Space Model for Speech Recognition”. In: Proc. INTERSPEECH 2023. 2023, pp. 241–245.
DOI: 10.21437/Interspeech.2023-1036.

[13] Daniel Y Fu, Simran Arora, Jessica Grogan, Isys Johnson, Sabri Eyuboglu, Armin W Thomas,
Benjamin Spector, Michael Poli, Atri Rudra, and Christopher Ré. “Monarch Mixer: A simple
sub-quadratic GEMM-based architecture”. In: NeurIPS (2023).

[14] Daniel Y. Fu, Tri Dao, Khaled Kamal Saab, Armin W. Thomas, Atri Rudra, and Christo-
pher Ré. “Hungry Hungry Hippos: Towards Language Modeling with State Space Models”.
In: The Eleventh International Conference on Learning Representations, ICLR 2023, Kigali,
Rwanda, May 1-5, 2023. OpenReview.net, 2023. URL: https://openreview.net/pdf?id=
COZDy0WYGg.

[15] Karan Goel, Albert Gu, Chris Donahue, and Christopher Ré. “It’s raw! audio generation with
state-space models”. In: ICML. 2022.

[16] Albert Gu and Tri Dao. “Mamba: Linear-time sequence modeling with selective state spaces”.
In: arXiv preprint arXiv:2312.00752 (2023).

[17] Albert Gu, Karan Goel, Ankit Gupta, and Christopher Ré. “On the parameterization and initial-
ization of diagonal state space models”. In: NeurIPS (2022).

[18] Albert Gu, Karan Goel, and Christopher Ré. “Efficiently modeling long sequences with struc-
tured state spaces”. In: ICLR (2022).

11

https://doi.org/10.21437/Interspeech.2023-1036
https://openreview.net/pdf?id=COZDy0WYGg
https://openreview.net/pdf?id=COZDy0WYGg

[19] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. “Deep residual learning for image
recognition”. In: Proceedings of the IEEE conference on computer vision and pattern recognition.
2016, pp. 770–778.

[20] Peter Izsak, Moshe Berchansky, and Omer Levy. “How to train BERT with an academic budget”.
In: EMNLP. 2021.

[21] Samy Jelassi, David Brandfonbrener, Sham M Kakade, and Eran Malach. “Repeat after me:
Transformers are better than state space models at copying”. In: arXiv preprint arXiv:2402.01032
(2024).

[22] Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and François Fleuret. “Transformers
are rnns: Fast autoregressive transformers with linear attention”. In: ICML. 2020.

[23] James Lee-Thorp, Joshua Ainslie, Ilya Eckstein, and Santiago Ontanon. “Fnet: Mixing tokens
with fourier transforms”. In: NAACL (2022).

[24] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo.
“Swin transformer: Hierarchical vision transformer using shifted windows”. In: ICCV. 2021.

[25] Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, and Saining
Xie. “A convnet for the 2020s”. In: Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition. 2022, pp. 11976–11986.

[26] Harsh Mehta, Ankit Gupta, Ashok Cutkosky, and Behnam Neyshabur. “Long Range Language
Modeling via Gated State Spaces”. In: The Eleventh International Conference on Learning
Representations. 2023. URL: https://openreview.net/forum?id=5MkYIYCbva.

[27] Eric Nguyen, Karan Goel, Albert Gu, Gordon Downs, Preey Shah, Tri Dao, Stephen Baccus,
and Christopher Ré. “S4nd: Modeling images and videos as multidimensional signals with state
spaces”. In: NeurIPS (2022).

[28] Antonio Orvieto, Samuel L Smith, Albert Gu, Anushan Fernando, Caglar Gulcehre, Razvan
Pascanu, and Soham De. “Resurrecting recurrent neural networks for long sequences”. In:
International Conference on Machine Learning. PMLR. 2023, pp. 26670–26698.

[29] Victor Y Pan. Structured matrices and polynomials: unified superfast algorithms. Springer
Science & Business Media, 2012.

[30] Clément Pernet, Hippolyte Signargout, and Gilles Villard. “Exact computations with qua-
siseparable matrices”. In: Proceedings of the 2023 International Symposium on Symbolic and
Algebraic Computation. 2023, pp. 480–489.

[31] Michael Poli, Stefano Massaroli, Eric Nguyen, Daniel Y. Fu, Tri Dao, Stephen Baccus, Yoshua
Bengio, Stefano Ermon, and Christopher Ré. “Hyena Hierarchy: Towards Larger Convolutional
Language Models”. In: ICML. 2023.

[32] Jacob Portes, Alex Trott, Sam Havens, Daniel King, Abhinav Venigalla, Moin Nadeem, Nikhil
Sardana, Daya Khudia, and Jonathan Frankle. “MosaicBERT: A Bidirectional Encoder Opti-
mized for Fast Pretraining”. In: arXiv preprint arXiv:2312.17482 (2023).

[33] Zhen Qin, Xiaodong Han, Weixuan Sun, Bowen He, Dong Li, Dongxu Li, Yuchao Dai, Lingpeng
Kong, and Yiran Zhong. “Toeplitz Neural Network for Sequence Modeling”. In: ICLR. 2023.

[34] Zhen Qin, Xiaodong Han, Weixuan Sun, Dongxu Li, Lingpeng Kong, Nick Barnes, and Yiran
Zhong. “The devil in linear transformer”. In: EMNLP (2022).

[35] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al.
“Language models are unsupervised multitask learners”. In: OpenAI blog 1.8 (2019), p. 9.

[36] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena,
Yanqi Zhou, Wei Li, and Peter J Liu. “Exploring the limits of transfer learning with a unified
text-to-text transformer”. In: JMLR (2020).

[37] David W Romero, Anna Kuzina, Erik J Bekkers, Jakub M Tomczak, and Mark Hoogen-
doorn. “Ckconv: Continuous kernel convolution for sequential data”. In: arXiv preprint
arXiv:2102.02611 (2021).

[38] Yair Schiff, Chia-Hsiang Kao, Aaron Gokaslan, Tri Dao, Albert Gu, and Volodymyr Kuleshov.
“Caduceus: Bi-directional equivariant long-range dna sequence modeling”. In: arXiv preprint
arXiv:2403.03234 (2024).

[39] Yutao Sun, Li Dong, Shaohan Huang, Shuming Ma, Yuqing Xia, Jilong Xue, Jianyong Wang,
and Furu Wei. Retentive Network: A Successor to Transformer for Large Language Models.
2023. arXiv: 2307.08621 [cs.CL].

12

https://openreview.net/forum?id=5MkYIYCbva
https://arxiv.org/abs/2307.08621

[40] Ilya O Tolstikhin, Neil Houlsby, Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Thomas
Unterthiner, Jessica Yung, Andreas Steiner, Daniel Keysers, Jakob Uszkoreit, et al. “Mlp-mixer:
An all-mlp architecture for vision”. In: NeurIPS (2021).

[41] Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, and
Hervé Jégou. “Training data-efficient image transformers & distillation through attention”. In:
ICML. 2021.

[42] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. “Attention is all you need”. In: NeurIPS (2017).

[43] Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel Bowman.
“GLUE: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding”.
In: ICLR. 2019.

[44] Junxiong Wang, Jing Yan, Albert Gu, and Alexander Rush. “Pretraining Without Attention”. In:
EMNLP. 2023.

[45] Sinong Wang, Belinda Z Li, Madian Khabsa, Han Fang, and Hao Ma. “Linformer: Self-attention
with linear complexity”. In: arXiv preprint arXiv:2006.04768 (2020).

[46] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony
Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer,
Patrick von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain
Gugger, Mariama Drame, Quentin Lhoest, and Alexander M. Rush. “Transformers: State-of-
the-Art Natural Language Processing”. In: EMNLP. 2020.

[47] Songlin Yang, Bailin Wang, Yikang Shen, Rameswar Panda, and Yoon Kim. “Gated linear
attention transformers with hardware-efficient training”. In: arXiv preprint arXiv:2312.06635
(2023).

[48] Lianghui Zhu, Bencheng Liao, Qian Zhang, Xinlong Wang, Wenyu Liu, and Xinggang Wang.
“Vision mamba: Efficient visual representation learning with bidirectional state space model”.
In: arXiv preprint arXiv:2401.09417 (2024).

13

A Discussions
A.1 Limitations
In this section, we share two limitations of our work, namely 1) Representation-Computation Tradeoff,
and 2) Hardware Efficiency.

Representation-Computation Tradeoff. While structured matrix mixers are computationally more
efficient than their dense matrix mixer counterparts like softmax attention, they are also representa-
tionally less expressive, which may be seen as a limitation of these methods. For instance, concurrent
works [1, 2, 21] have begun investigating the representational power of SSMs by analyzing their
performance on memorization-centric tasks. They report that SSMs with a fixed model capacity
are eventually outperformed by softmax attention for longer sequences. This can be viewed as a
consequence of the matrix being too structured, and hence too inexpressive for the problem.

On the other hand, we remark that the degree of structure of a structured matrix is a knob that can
be tuned according to the specific task, that is we can tradeoff the computational efficiency of the
method for larger expressivity. For instance, within the structured matrix class of low rank matrices, we
can tune the rank upto the size of the matrix, which is the sequence length. As the rank of the matrix
class increases so does its expressive power; however, at the same time it also diminishes the compute
efficiency associated with the matrix being low rank.

As another example, we demonstrate this tradeoff on the performance of SSMs on retrieval-style tasks
for SSD, which is the modern variant of Mamba. Specifically, we show that SSD is able to recover
the accuracy attained by softmax attention once we control for the compute capacity of the model. In
contrast, hardware limitations of the selective scan algorithm make it impractical to match the compute
capacity in Mamba, explaining the emerging findings from [1, 2, 21] that SSMs underperform on
memorization-centric tasks. This makes it evident that the development and analysis of SSMs is an
active area of research with substantial room for exploration and improvement.

Hardware Efficiency: Despite the fact that structured matrices have associated sub-quadratic matrix
multiplication algorithms, their implementation may not be hardware-friendly, which can reduce
the execution speed in practice. For instance, one of the core advantages of Transformer is the
hardware-friendly nature of its architectural design, mainly composed of pure matrix multiplications.

A.2 Broader Impact
This paper presents work whose goal is to advance the field of Machine Learning. The primary objective
of this work is to introduce novel component designs that are universally applicable across various
tasks. Consequently, we believe that this work is unlikely to have significant societal impacts that
necessitate special emphasis within this context.

B Proofs
Proposition 2.5. MLP-Mixer is a Matrix Mixer

Proof. Recall that MLP-Mixer applies a weight-shared, per-channel linear projection on the input
sequence. Since MLP-Mixer does not pre-process the input sequence, we set fX to be the identity
function. Additionally, since the mixer matrix is data independent and is learned as a free parameter, we
define the classM :=RL×L, and set fM(X;θ) :=θ3, for θ∈Θ, where Θ:=RL×L. Since MLP-Mixer
shares the matrix across all channels, the number of heads H=1. The output is given by Y(0)=θX(0),
where θ is the learned mixer matrix, which matches with the functional form of MLP-Mixer’s sequence
mixing primitive.

Proposition 2.6. LA is a Structured Matrix Mixer

Proof. Recall that for each head h∈ [H], LA computes,
Yh=σ(Qh)σ(Kh)TVh,

where Qh,Kh,Vh and projections of the input. Since LA preprocesses the input sequence via projec-
tion, we set fX =WV ∈RC×D, with WV as a learned parameter. The class of structured matricesM

3For simplicity, we overload the notation to denote a finite-dimensional linear map with its corresponding
matrix.

14

is clearly the class of Low Rank matrices. We define the setΘ=(RC×Hd)2 to correspond to the learned
parameters WQ,WK for the {Qh,Kh}h matrices, where d is the internal dimension for keys and
queries. We set the matrix-generating function fh

M to compute Mh as Mh=σ(Qh)σ(Kh)T through
linear projections, followed by applying element-wise nonlinearity σ, and a matrix multiplication.
The output Yh = Mh(fX(X))h matches the expected functional form of LA’s sequence mixing
primitive.

Proposition 3.2. Let X∈RL×D be the input sequence, and let QS(·) and SS(·) denote the action
of a Quasiseparable and Semiseparable matrix respectively. Let the two matrices share the param-
eters {Ai,bi,ci}L, and define D= diag(δ1,··· ,δL), where δi’s are the diagonal parameters of the
Quasiseparable matrix. Then,

QS(X)=shift(SS(X))+flip(shift(SS(flip(X))))+DX,
where flip(·) denotes the operation that reverses the input sequence, while shift(·) refers to shifting the
sequence right by one position, padding the beginning with zero.
Proof. The proof follows by observing that the first term, shift(SS(X)), models the effect of the
lower triangular part of the QS matrix. The next term, flip(shift(SS(flip(X)))), represents the upper
triangular part of the QS matrix, and the last term, DX, accounts for the QS matrix’s diagonal.

X

𝐘
𝑓!

𝑏𝑐

𝐌

Δ

∗
+ >>

𝑏𝑐

conv!"

Δ

+>>

𝐌

𝐘

conv𝑿 conv!"

norm
∗

fc

Figure 4: Detailed illustration of Hydra.

def hydra(
x, # (B,L,H*P)
A # (H,) Parameter
):
x_b = flip(x, dim=1)

(B,L,H)
dt_f , dt_b = proj_dt(x), proj_dt(x_b)

(B,L,H*P)
y_f = SSD(

x,
discretize_A(A, dt_f), # (B,L,H)
discretize_bc(x, dt_f), # (B,L,N)

)
y_b = SSD(

x_b ,
discretize_A(A, dt_b), # (B,L,H)
discretize_bc(x_b , dt_b), # (B,L,N)

)

y_f = shift(y_f , dim=1)
y_b = flip(shift(y_b , dim=1), dim=1)

y = y_f + y_b + x * repeat(
proj_D(x),
"B L H -> B L (H P)"

)
return y

Figure 5: Pseudo code for Hydra. B,L,H,P denote
batch size, sequence length, number of heads, and
head dimension respectively. The suffices _f and
_b denote forward and backward. shift: Right-
shift.

C Architectural Details
Here, we provide architectural specifics of our method Hydra. As shown in Figure 4 and previously
discussed Figure 5, Hydra is largely divided into two sub-components, each for forward and backward
sequence processing respectively. A key architectural difference from the unidirectional Mamba [16]
and SSD [6] models is the type of convolutional layers employed. Unlike Mamba and SSD, which
utilize causal convolutions due to their unidirectional nature, Hydra incorporates standard convolutional
layers, reflecting its capacity for bidirectional sequence processing.

D Additional Details
D.1 Details of Ablation Studies in Section 4.1
Bidirectionality. We provide details of the experiments in . Each method under consideration
employs 12 layers. As depicted in Table 3, due to shared projection layers for forward and backward

15

SSMs, Hydra only requires an additional 2M parameters compared to its unidirectional counterpart.
Moreover because of the parameter increase in the concatenation variant, we lower its hidden dimension
to match parameters. As [CLS] token is typically placed at the start of a sequence, we add an additional
technique only to Mamba, which substitutes a [CLS] token with a global average pool of tokens.

D.2 Details of Main Results in Section 4.2
Training Details of Hydra We align our setup with the BERT-Base [10] architecture, which consists
of 110M parameters across 12 transformer encoder layers. To ensure a fair comparison, MLP-
Mixer [40], FNet [23], and M2 [13] are configured with 12 layers, with the number of channels adjusted
to match the parameter count of BERT. Similarly, Hydra is structured with 23 layers to align with the
total number of parameters of BERT. We follow the well-established BERT training recipes [32, 13]
for optimal performance of each method. The specific hyperparameters for reproducing the results
in Table 4 are reported in Table 6, and the settings used for obtaining the results of Hydra in Table 5 are
listed in Table 9.

GLUE. We pretrain on the C4 dataset, and follow the recipe from MosaicBERT [32] which has
been widely adopted in recent works - the models are trained for 70k steps with a batch size of 4096.
We adopt the same hyperparameters as M2 [13] for pretraining, including the optimizer, learning
rate schedule, and the bert-base uncased tokenizer. We employ the controlled setting from [20] for
finetuning models on the GLUE benchmark. Specifically, we utilize weights pretrained on the C4
corpus for the five tasks – MNLI, QNLI, QQP, SST2, and COLA – and finetune RTE, STSB, and MRPC
from an MNLI checkpoint. For reliability, the performance metrics reported represent the average
scores from five runs for each GLUE task, with seeds selected completely at random.

The well-established BERT and M2 models benefit from highly optimized training and finetuning
recipes [20, 13]. Therefore, we perform a short sweep for the learning rate and number of epochs for
finetuning tasks to obtain the best results. To note, we ensure that the number of epochs do not surpass
their original values for fairness. In Table 7 first row, we observe that Hydra of 24 layers trained using
the M2 recipe out-of-the-box outperforms both BERT (83.5) and M2 (80.9) on the GLUE benchmark
without any hyperparameter tuning. From the tuned hyperparameter, Hydra with 23 layers (second
row) gains additional improvements, outperforming the results obtained by using the M2 recipe.

In Table 8, we report extended results for our GLUE comparisons (Table 4), including reference
numbers directly reported from the literature. We include these to show that our results are a fair
comparison of different models using our internally-consistent training framework, and that our
baselines are strong and generally consistent with those found in MosaicBERT [32].

ImageNet-1K. For Table 5, we use 12 layers for the Transformer [42], S4ND [27], and Hyena [31]
blocks, and set to 24 layers for Mamba and Hydra to match the number of parameters. The training
involves images of 224×224 resolution, tokenized using a 16×16 patchifying layer. For Hydra, we
adopt a row-major ordering to flatten patches and deliberately exclude positional embeddings. The
models are trained over 300 epochs, leveraging hyperparameters primarily sourced from a standard
training recipe [24], including an initial learning rate of 1e− 4 and a batch size of 1024. We also
incorporate regular ImageNet-1K training techniques [41], such as augmentation and regularization
strategies. All other configurations remain consistent with the original ViT [11] setup, ensuring that
any observed differences in performance can be directly attributed to the expressivity of the respective
sequence mixer layers.

E Additional Details of Ablation Studies in Table 2
To rigorously demonstrate the representational power of various families of matrix mixers, we ensure a
fair comparison by meticulously controlling architectural hyperparameters. Specifically, all variants
are constructed on the SSD [6] block, with a consistent configuration of 12 layers, an expansion factor
of 2, and a hidden dimension (d_model) of 768. We then adjust the channel dimensions for qk_dim
and headdim to keep the total parameter counts close to 70M. The models are pretrained for 24k steps
in C4, each with a 4096 batch size, thus processing approximately 12.5B tokens in total. The finetuning
phase adheres to the standardized protocol used for Hydra, ensuring comparability.

The primary differentiating factor among the variants is the mixer matrix M, which has two main
configurable attributes: 1) the presence of the SAM property, and 2) the family of a mixer matrix.
According to Definition 2.2, mixers with the SAM attribute contain parameters that are dynamically
generated from elements of the input sequence, making them input data-dependent (Proposition 2.3).
In contrast, variants without SAM are data-independent, with shared parameters across all inputs. The

16

Table 6: Hyperparameters of different recipes used for training GLUE benchmark tasks.

MNLI QNLI QQP RTE SST2 MRPC COLA STS

[2
0]

LR 5e-5 1e-5 3e-5 1e-5 3e-5 8e-5 5e-5 3e-5
WD 5e-6 1e-6 3e-6 1e-6 3e-6 8e-6 5e-6 3e-6

n_epochs 3 10 5 3 3 10 10 10
seq_len 256 256 256 256 256 256 256 256

[1
3]

LR 5e-5 5e-5 3e-5 1e-5 3e-5 5e-5 5e-5 7e-5
WD 5e-6 1e-6 1e-2 1e-2 3e-6 1e-2 5e-6 1e-2

n_epochs 3 10 10 6 3 10 10 10
seq_len 128 128 128 128 128 128 128 128

O
ur

s

LR 1e-4 5e-5 5e-5 1e-5 5e-5 8e-5 1e-4 3e-5
WD 5e-6 1e-6 3e-6 1e-6 3e-6 8e-6 5e-6 3e-6

n_epochs 2 7 3 3 2 10 10 10
seq_len 256 256 256 256 256 256 256 256

Table 7: Evaluation of Hydra on C4 dataset and GLUE Benchmark using different training recipes.
Specific hyperparameters for reproducing the results are provided in Table 6.

Recipe #Params Pretrain GLUE Tasks GLUE
AvgLce Acc (%) MNLI QNLI QQP RTE SST2 MRPC COLA STS

[13] 115M 1.45 69.3 83.7 89.7 89.7 77.4 92.8 91.5 54.7 90.1 83.7
Ours 112M 1.46 69.1 84.5 90.0 91.3 77.5 93.5 91.2 57.2 88.9 84.3

Table 8: Official GLUE benchmark results from the referenced papers [32, 13, 23].

Method Source #Params GLUE Tasks GLUE
AvgMNLI QNLI QQP RTE SST2 MRPC COLA STS

BERT

Ours 110M 84.4 90.3 89.7 77.1 92.3 90.7 54.2 89.1 83.5
[32] 110M 84.1 89.8 91.2 77.2 91.2 87.5 54.6 88.9 83.2
[23] 110M 82.5 91.0 87.0 69.0 93.0 83.0 73.0 89.0 83.3
[13] 110M - - - - - - - - 79.6

MLP-Mixer Ours 112M 77.2 82.4 87.6 67.3 90.5 86.5 43.0 85.2 77.5

FNet
Ours 112M 74.9 82.1 85.7 63.6 87.6 86.4 42.7 83.1 75.8
[23] 83M 72.5 80.0 83.0 63.0 95.0 76.0 69.0 79.0 76.7
[23] 238M 77.0 85.0 85.0 69.0 94.0 88.0 78.0 84.0 81.9

M2 [13] 116M 80.5 86.0 87.0 69.3 92.3 89.2 56.0 86.9 80.9

Hydra Ours 112M 84.5 90.0 91.3 77.5 93.5 91.2 57.2 88.9 84.3

inclusion of projection layers for data dependency results in a marginal increase in parameter count
for models with SAM. Consequently, we precisely configure qk_dim=16, headdim=128 for SAM
variants, and qk_dim = 64, headdim = 64 for non-SAM variants. For dense, Toeplitz (SAM and
non-SAM), and Vandermonde DFT, we slightly adjust the hyperparameters to match the number of
parameters.

To facilitate understanding and reproducability of these methods, we provide PyTorch codes in
Figure 6, Figure 7, Figure 8, Figure 9, Figure 10, and Figure 11. Our primary focus on this ablation
is the comparison of expressivity between different Matrix Mixers. Therefore, our implementations
do not necessarily adopt algorithms with efficient computational complexities for simplicity. The
abbreviation di stands for data-independent and dd represents data-dependent, in which dd variants
are equipped with the SAM property. As the Quasiseparable variant is equivalent to the Hydra blocks,
its implementation can be found in the Python file provided in the supplementary. Further specific
details are described below.

Dense. While extending Dense matrices to incorporate the SAM attribute is not straightforward,
implementing the vanilla Dense mixers (i.e. without SAM) is extremely simple: they are equivalent to
MLP-Mixer [40], employing a mixer matrix of RL×L.

17

Table 9: ViT settings for ImageNet-1K.
Parameter Value
Image size 2242

Optimizer AdamW
Optimizer momentum β1,β2=0.9,0.999
Weight init trunc. normal (std=0.02)
ViT base learning rate 1e−3
ViT weight decay 0.05
Dropout None
Batch size 1024
Training epochs 300
Learning rate schedule cosine decay
Warmup epochs 10
Warmup schedule linear
Randaugment (9,0.5,layers=2)
Mixup 0.8
Cutmix 1.0
Random erasing 0.25
Label smoothing 0.1
Stochastic depth 0.5
Exp. mov. avg (EMA) None

Toeplitz. Toeplitz matrix mixers without SAM properties are equivalent to convolution operations [18,
17], formulated with R2L−1 parameters. We also present a Toeplitz matrix mixer with SAM properties,
thus data-dependent and can handle sequences of arbitrary lengths. The core idea is fairly similar to
the quasiseparable matrix mixer – Hydra – that the Toeplitz matrix mixer integrates outputs from two
separate forward and reverse sequence convolutions. Specifically, for i ∈ 0,...L−1, each token xi

generates two convolution parametersm−i andmi. Using allm parameters, a data-dependent dynamic
convolutional weight is generated as {m−L+1,m−L+2,...,m−1,m0,m1,...mL−2,mL−1}.

Vandermonde. In Section 2.4, we introduced the single-headed sequence aligned Vandermonde
matrix mixer. Leveraging the definition, we present multi-headed implementation by a seamless
extension.

Cauchy. The constant for preventing the denominator approaching zero is initialized to 0.0 and 0.5
for the di and the dd variants, respectively.
Definition E.1 (Cauchy Matrix). Given q,k ∈ RL, a matrix M is Cauchy if each (i,j)-entry mij

satisfies mij=
1

qi−kj
; qi−kj ̸=0.

F Ablating the impact of Shift and Diagonal operations in Hydra
Observe that general Quasiseparable (QS) matrices can be viewed as the Add variant augmented by
two operations: an extra diagonal component and a shift operation. In this ablation we assesses the
impact of each operation on the model performance by individually removing either the diagonal or
shift term, as well as removing both (Add) to analyze why QS outperforms Add.

We find that using only the shift (80.7) or only the diagonal (80.7) yields the same performance as the
Add method (80.6). It is only when both operations are combined that we observe a clear improvement.
This result validates our choice of QS matrices, as neither Add+Diag nor Add+Shift alone has the
expressivity of QS which is strictly more expressive than the addition of two SS matrices.

Table 10: Analyzing the impact of Shift and Diagonal operations in Hydra.
Method #Params Acc (%) GLUE

Add 70M 1.68 80.6
Add+Diag 70M 1.68 80.7
Add+Shift 70M 1.67 80.7
Quasi 70M 1.66 81.7

18

class Dense(nn.Module):
def __init__(

self ,
d_model ,
max_seq_len , # max_seq_len is necessary for Dense.
expand=2,
headdim=128 ,
device=None ,
dtype=None ,

):
factory_kwargs = {"device": device , "dtype": dtype}
super().__init__ ()
self.d_model = d_model
self.max_seq_len = max_seq_len
self.expand = expand
self.d_inner = self.expand * self.d_model
self.headdim = headdim
assert self.d_inner % self.headdim == 0
self.nheads = self.d_inner // headdim

self.std_dev = 1 / np.sqrt(self.max_seq_len)

self.M = nn.Parameter(
torch.empty(self.nheads , self.max_seq_len , self.max_seq_len , ** factory_kwargs

)
)
nn.init.xavier_normal_(self.M)

def forward(self , hidden_states):
residual = hidden_states
Rearrange hidden states to shape [batch , n_heads , length , headdim]
hidden_states = rearrange(hidden_states , ’b l (n h) -> b n l h’, n=self.nheads)

output = torch.einsum(’b n t h, n l t -> b n l h’, hidden_states , self.M)
output = self.std_dev * output
output = rearrange(output , ’b n l h -> b l (n h)’) + residual

return output

Figure 6: PyTorch code for the Dense variant in Table 2.

19

class Toeplitz(nn.Module):
def __init__(

self ,
is_data_dependent ,
d_model ,
max_seq_len , # max_seq_len is necessary for Toeplitz.
expand=2,
headdim=128 ,
device=None ,
dtype=None ,

):
factory_kwargs = {"device": device , "dtype": dtype}
super().__init__ ()
self.is_data_dependent = is_data_dependent
self.d_model = d_model
self.max_seq_len = max_seq_len
self.expand = expand
self.d_inner = self.expand * self.d_model
self.headdim = headdim
assert self.d_inner % self.headdim == 0
self.nheads = self.d_inner // self.headdim

self.kernel_size = 2 * self.max_seq_len - 1
self.pad_size = self.max_seq_len - 1
self.std_dev = 0.5 / np.sqrt(self.max_seq_len)

if not self.is_data_dependent:
self.conv_params = nn.Parameter(

torch.empty(self.nheads , self.kernel_size , dtype=torch.float32 , device=
device)

)
nn.init.xavier_uniform_(self.conv_params)

def forward(self , x, forward_conv=None , reverse_conv=None):
"""
x: (batch , seqlen , nheads*headdim)
forward_conv: (batch , seqlen , nheads)
reverse_conv: (batch , seqlen , nheads)
"""
residual = x
x = rearrange(x, ’b l (n h) -> b h n l’, n=self.nheads)

Pad the hidden states
x = F.pad(x, (self.pad_size , 0))

x_fft = torch.fft.fft(x.to(torch.float32), n=2*self.max_seq_len-1)
if self.is_data_dependent:

forward_conv = rearrange(forward_conv , ’b l n -> b n l’)
reverse_conv = rearrange(reverse_conv , ’b l n -> b n l’)

conv_params = torch.cat(
[torch.flip(reverse_conv[:,:,1:], [-1]), forward_conv], dim=-1

).to(torch.float32) # FFT requires float32.
fft_conv_params = torch.fft.fft(conv_params , n=self.kernel_size).unsqueeze(1)

else:
fft_conv_params = torch.fft.fft(self.conv_params , n=self.kernel_size)

output = torch.fft.ifft(x_fft * fft_conv_params , n=self.kernel_size).real
output = self.std_dev * output[:, :, :, :self.max_seq_len]
output = rearrange(output , ’b h n l -> b l (n h)’).to(residual.dtype) + residual

return output

Figure 7: PyTorch code for the Toeplitz variants in Table 2.

20

class Vandermonde(nn.Module):
def __init__(

self ,
is_data_dependent ,
d_model ,
qk_dim ,
is_dft=True , # Used only when is_data_dependent is False.
max_seq_len=None , # max_seq_len is necessary for non -DFT data -independent

version.
expand=2,
headdim=128 ,
device=None ,
dtype=None ,

):
factory_kwargs = {"device": device , "dtype": dtype}
super().__init__ ()
self.is_data_dependent = is_data_dependent
self.d_model = d_model
self.qk_dim = qk_dim
self.is_dft = is_dft
self.max_seq_len = max_seq_len
self.expand = expand
self.d_inner = self.expand * self.d_model
self.headdim = headdim
assert self.d_inner % self.headdim == 0
self.nheads = self.d_inner // self.headdim
self.d_state = self.nheads * qk_dim

if self.is_data_dependent:
self.std_dev = 1 / np.sqrt(2 * self.max_seq_len * self.qk_dim)
self.eps = 1e-3 # Constant to stabilize training.

else:
if self.is_dft:

column_indices = torch.arange(self.max_seq_len)
row_indices = torch.arange(self.max_seq_len).unsqueeze(1)
dft_matrix = torch.cos(2 * torch.pi * row_indices * column_indices / self

.max_seq_len).to(**
factory_kwargs)

self.register_buffer(’dft_matrix ’, dft_matrix)
self.std_dev = 1 / np.sqrt(self.max_seq_len)

else:
self.q_bias = nn.Parameter(torch.zeros(self.nheads , self.qk_dim , self.

max_seq_len , **
factory_kwargs))

self.k_bias = nn.Parameter(torch.zeros(self.nheads , self.qk_dim , self.
max_seq_len , **
factory_kwargs))

self.std_dev = 1 / np.sqrt(2 * self.max_seq_len * self.qk_dim)

def forward(self , v, q=None , k=None):
batch , seqlen , dim = v.shape
residual = v
v = rearrange(v, ’b l (n h) -> b l n h’, n=self.nheads)
if self.is_data_dependent:

q = rearrange(q, ’b l (n d) -> b n d l’, n=self.nheads)
k = rearrange(k, ’b l (n d) -> b n d l’, n=self.nheads)
q_matrix = torch.cos(

2 * torch.pi * self.eps * torch.einsum(
’b n d t, l -> b n d t l’, q, torch.arange(seqlen , dtype=v.dtype).to(

v.device)
)

)
k_matrix = torch.cos(

2 * torch.pi * self.eps * torch.einsum(
’b n d t, l -> b n d l t’, k, torch.arange(seqlen , dtype=v.dtype).to(

v.device)
)

)
sym_vandermonde = (q_matrix - k_matrix).sum(dim=2)
output = torch.einsum(’b n t l, b l n h -> b t n h’, sym_vandermonde , v)

else:
if self.is_dft:

output = torch.einsum(’b l n h, t l -> b t n h’, v, self.dft_matrix)
else:

q, k = self.q_bias , self.k_bias
q_matrix = torch.cos(

2 * torch.pi * torch.einsum(
’n d t, l -> n d t l’, q, torch.arange(self.max_seq_len , dtype=v.

dtype).to(v.device)
)

)
k_matrix = torch.cos(

2 * torch.pi * torch.einsum(
’n d t, l -> n d l t’, k, torch.arange(self.max_seq_len , dtype=v.

dtype).to(v.device)
)

)
sym_vandermonde = (q_matrix + k_matrix).sum(dim=1)
output = torch.einsum(’n t l, b t n h -> b t n h’, sym_vandermonde , v)

output = self.std_dev * output
output = rearrange(output , ’b l n h -> b l (n h)’) + residual
return output

Figure 8: PyTorch code for the Vandermonde variants in Table 2.
21

class Cauchy(nn.Module):
def __init__(

self ,
is_data_dependent ,
d_model ,
qk_dim ,
max_seq_len=None , # max_seq_len is necessary for data -independent version.
expand=2,
headdim=128 ,
device=None ,
dtype=None ,

):
factory_kwargs = {"device": device , "dtype": dtype}
super().__init__ ()
self.is_data_dependent = is_data_dependent
self.d_model = d_model
self.qk_dim = qk_dim
self.max_seq_len = max_seq_len
self.expand = expand
self.d_inner = self.expand * self.d_model
self.headdim = headdim
assert self.d_inner % self.headdim == 0
self.nheads = self.d_inner // self.headdim
self.d_state = self.nheads * qk_dim

self.tol = 1e-8
self.std_dev = 1 / np.sqrt(self.max_seq_len * self.qk_dim)
if self.is_data_dependent:

self.bias = nn.Parameter(torch.tensor(0.5))
else:

self.q_matrix = nn.Parameter(
torch.empty(self.max_seq_len , self.nheads , self.qk_dim , ** factory_kwargs)

)
self.k_matrix = nn.Parameter(

torch.empty(self.max_seq_len , self.nheads , self.qk_dim , ** factory_kwargs)
)

nn.init.xavier_normal_(self.q_matrix)
nn.init.xavier_normal_(self.k_matrix)

def forward(self , v, q=None , k=None):
residual = v
v = rearrange(v, ’b l (n h) -> b l n h’, n=self.nheads)

if self.is_data_dependent:
q = rearrange(q, ’b l (n d) -> b n l 1 d’, n=self.nheads)
k = rearrange(k, ’b l (n d) -> b n 1 l d’, n=self.nheads)
q = torch.exp(q) + self.bias
k = torch.exp(k) + self.bias

inv_cauchy_matrix = q + k + self.tol
cauchy_matrix = torch.sum(1 / inv_cauchy_matrix , dim=-1)

output = torch.einsum(’b t n h, b n l t -> b l n h’, v, cauchy_matrix)
else:

q, k: (nheads , seqlen , qkdim)
q = torch.exp(self.q_matrix)
k = torch.exp(self.k_matrix)

inv_cauchy_matrix = (q.unsqueeze(1) + k.unsqueeze(0)) + self.tol
cauchy_matrix = torch.sum(1 / inv_cauchy_matrix , dim=-1)

output = torch.einsum(’b t n h, l t n -> b l n h’, v, cauchy_matrix)

output = self.std_dev * output
output = rearrange(output , ’b l n h -> b l (n h)’) + residual

return output

Figure 9: PyTorch code for the Cauchy variants in Table 2.

22

class LowRank(nn.Module):
def __init__(

self ,
is_data_dependent ,
d_model ,
qk_dim ,
max_seq_len=None , # max_seq_len is necessary for data -independent version.
expand=2,
headdim=128 ,
device=None ,
dtype=None ,

):
factory_kwargs = {"device": device , "dtype": dtype}
super().__init__ ()
self.is_data_dependent = is_data_dependent
self.d_model = d_model
self.qk_dim = qk_dim
self.max_seq_len = max_seq_len
self.expand = expand
self.d_inner = self.expand * self.d_model
self.headdim = headdim
assert self.d_inner % self.headdim == 0
self.nheads = self.d_inner // self.headdim
self.d_state = self.nheads * qk_dim

self.std_dev = 1 / np.sqrt(self.max_seq_len * self.qk_dim)
if not self.is_data_dependent:

self.q_matrix = nn.Parameter(
torch.empty(self.max_seq_len , self.nheads , self.qk_dim , ** factory_kwargs)

)
self.k_matrix = nn.Parameter(

torch.empty(self.max_seq_len , self.nheads , self.qk_dim , ** factory_kwargs)
)

nn.init.xavier_normal_(self.q_matrix)
nn.init.xavier_normal_(self.k_matrix)

def forward(self , v, q=None , k=None):
residual = v
v = rearrange(v, ’b l (n h) -> b l n h’, n=self.nheads)

if self.is_data_dependent:
q = rearrange(q, ’b l (n d) -> b l n d’, n=self.nheads)
k = rearrange(k, ’b l (n d) -> b l n d’, n=self.nheads)
output = torch.einsum(’b t n d, b l n d, b l n h -> b t n h’, q, k, v)

else:
output = torch.einsum(’t n d, l n d, b l n h -> b t n h’, self.q_matrix , self

.k_matrix , v)

output = self.std_dev * output
output = rearrange(output , ’b l n h -> b l (n h)’) + residual

return output

Figure 10: PyTorch code for the low-rank variants in Table 2.

23

class Attention(nn.Module):
def __init__(

self ,
is_data_dependent ,
d_model ,
qk_dim ,
max_seq_len=None , # max_seq_len is necessary for data -independent version.
expand=2,
headdim=128 ,
device=None ,
dtype=None ,

):
factory_kwargs = {"device": device , "dtype": dtype}
super().__init__ ()
self.is_data_dependent = is_data_dependent
self.d_model = d_model
self.qk_dim = qk_dim
self.max_seq_len = max_seq_len
self.expand = expand
self.d_inner = self.expand * self.d_model
self.headdim = headdim
assert self.d_inner % self.headdim == 0
self.nheads = self.d_inner // self.headdim
self.d_state = self.nheads * qk_dim

if not self.is_data_dependent:
self.q_matrix = nn.Parameter(

torch.empty(self.max_seq_len , self.nheads , self.qk_dim , ** factory_kwargs)
)

self.k_matrix = nn.Parameter(
torch.empty(self.max_seq_len , self.nheads , self.qk_dim , ** factory_kwargs)

)
nn.init.xavier_normal_(self.q_matrix)
nn.init.xavier_normal_(self.k_matrix)

def forward(self , v, q=None , k=None):
residual = v
v = rearrange(v, ’b l (n h) -> b l n h’, n=self.nheads)

if self.is_data_dependent:
q = rearrange(q, ’b l (n d) -> b l n d’, n=self.nheads)
k = rearrange(k, ’b l (n d) -> b l n d’, n=self.nheads)
qk = torch.einsum(’b t n d, b l n d -> b n t l’, q, k)
attn_weights = torch.softmax(1 / np.sqrt(self.qk_dim) * qk, dim=-1)
output = torch.einsum(’b n t l, b l n h -> b t n h’, attn_weights , v)

else:
qk = torch.einsum(’n t d, n l d -> n t l’, self.q_matrix , self.k_matrix)
attn_weights = torch.softmax(1 / np.sqrt(self.qk_dim) * qk, dim=-1)
output = torch.einsum(’n t l, b l n h -> b t n h’, attn_weights , v)

output = rearrange(output , ’b l n h -> b l (n h)’) + residual

return output

Figure 11: PyTorch code for the Attention variants in Table 2.

G Background
FNet In the FNet [23] architecture, the sequence mixing module utilizes a Discrete Fourier Transform
(DFT) for processing input sequences. One of the approaches they adopt for short sequences is the
application of the matrix representation of the DFT to the input sequence. This representation, denoted
as M , takes the form of a Vandermonde matrix, constructed from the roots of unity:

Mnk=e−
2πi
L nk (4)

where indices n and k range from 0 to L−1. First, we define ωn as the n-th root of unity:

ωn=e−
2πi
L n (5)

Then, the matrix M , which represents the DFT, is expressed using ωn in the form of a Vandermonde
matrix as follows:

M=


ω0
0 ω1

0 ··· ωL−1
0

ω0
1 ω1

1 ··· ωL−1
1

ω0
2 ω1

2 ··· ωL−1
2

...
...

. . .
...

ω0
L−1 ω1

L−1 ··· ωL−1
L−1

 (6)

24

MLP-Mixer In the MLP-Mixer architecture, sequence mixing is implemented using a MLPM . This
MLP operates on each token in the sequence and is formulated as follows:

M=W2σ(W1)
where σ denotes a non-linear activation function (such as ReLU). In this context:

• W1 is a weight matrix with dimensions RdS×L, transforming the sequence from its original
sequence length L to an intermediate dimension dS .

• W2 is a weight matrix with dimensions RL×dS , converting the dimensions back from the
intermediate dimension dS to the original sequence length L.

This design means that W1 and W2 first compress and then expand the sequence dimensions, respec-
tively. The choice of the inner dimension dS is made independent of the sequence length L. Such a
configuration leads to a computational complexity that is linear with respect to the sequence length L,
contrasting with the quadratic complexity commonly seen in sequence mixing operations in attention
mechanisms.

Note that M is a dense matrix, effectively capturing interactions across different tokens in the sequence.

Linear Attention Transformers process sequences of feature vectors, denoted as X∈RN×C , where
N represents the number of vectors and C their dimension. The core component of a Transformer is
the self-attention mechanism, which mixes information across the sequence.

In self-attention, the sequence X is projected into queries Q, keys K, and values V using matrices
WQ,WK ,WV ∈RC×D. The attention output is calculated as follows:

Q=XWQ, (7)
K=XWK , (8)
V=XWV , (9)

Attention(X)=softmax
(
QKT

√
D

)
V (10)

A generalized version of self-attention can be represented as [22]:

v′
i=

∑N
j=1similarity(qi,kj)vj∑N
j=1similarity(qi,kj)

, (11)

where the standard softmax attention employs similarity(q,k)=e
qT k√

D as the similarity function.

In the context of multi-headed Linear Attention (LA) [22], the input sequence is preprocessed and
projected into three matrices for each head h∈ [H]. This is achieved through learned parameters and
nonlinear transformations. Specifically, for each head, the input is projected into matrices σ(Qh),
σ(Kh), and Vh, where σ denotes a non-linearity function. The set of learned parameters for these
projections, denoted as Θ, includes WQ,WK corresponding to the query and key matrices across all
heads, defined as Θ=(RC×Hd)2. Here, H is the number of heads, and d represents the dimension for
each head for keys and queries.

The class of structured matricesM used in LA is characterized as the class of Low Rank matrices.
The matrix-generating function for each head h, denoted as fh

M, computes the matrix Mh as Mh=
σ(Qh)σ(Kh)T . This computation involves linear projections of the queries and keys, application of
element-wise nonlinearity σ, and matrix multiplication.

The output for each head h, denoted as Yh, is then computed as Yh =Mh(fX(X))h, where fX =
WV ∈RC×D represents a projection of the input sequence with WV as a learned parameter matrix.
This projection transforms the input data X into a suitable form for processing by the attention
mechanism. The LA method, as described, offers computational efficiency with time and memory
complexity ofO(N), in contrast to the traditional softmax attention mechanism which scales with
O(N2).

Discrete Convolution Consider a convolution operation between sequence X and the filter sequence
h to produce the output sequence Y . Such a convolution can be represented by a matrix multiplication
with an L×L Toeplitz matrix M [31].

Let:

• X be the input signal, a column vector of length L, i.e., X∈RL×1.

25

• h be the convolution filter, with a length N where typically N≤L.
• Y be the output of the convolution, also of length L.

The Toeplitz matrix M for the convolution is constructed as follows:

M=


h0 h−1 ··· h−L+1

h1 h0 ··· h−L+2
...

...
. . .

...
hL−1 hL−2 ··· h0


Thus, the output Y =MX represents the convolution of X with h, with both X and Y having the same
length L, achieved through the L×L Toeplitz matrix M as defined above.

26

NeurIPS Paper Checklist
The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .
• [NA] means either that the question is Not Applicable for that particular paper or the relevant

information is Not Available.
• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS paper checklist",
• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The main claims made in the abstract and introduction are clearly discussed
throughout the paper.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims made
in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or NA
answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitations are discussed in Section A.
Guidelines:

27

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was only
tested on a few datasets or with a few runs. In general, empirical results often depend on
implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be used
reliably to provide closed captions for online lectures because it fails to handle technical
jargon.

• The authors should discuss the computational efficiency of the proposed algorithms and
how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to address
problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an important
role in developing norms that preserve the integrity of the community. Reviewers will be
specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and a
complete (and correct) proof?
Answer: [Yes]
Justification: Theoretical assumptions are provided with proofs in Section 2, 3, and Section B.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if they

appear in the supplemental material, the authors are encouraged to provide a short proof
sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide specific details of our models, and experimental settings. In addition,
we provide source code of our method in the supplementary.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of whether
the code and data are provided or not.

28

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct the
dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors
are welcome to describe the particular way they provide for reproducibility. In the
case of closed-source models, it may be that access to the model is limited in some
way (e.g., to registered users), but it should be possible for other researchers to have
some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instructions
to faithfully reproduce the main experimental results, as described in supplemental material?
Answer: [Yes]
Justification: In the supplementary, we provide source code with instructions in a README
file. Moreover, we provide implementations of ablations studies in Section E.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

29

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

Answer: [Yes]

Justification: We provide specific experimental details in Section 4, Section C, Section D, and
Section E.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Each number is the average of five runs.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confidence

intervals, or statistical significance tests, at least for the experiments that support the
main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula, call
to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error of

the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the
experiments?

Answer: [No]

Justification:

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster, or

cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute than

the experiments reported in the paper (e.g., preliminary or failed experiments that didn’t
make it into the paper).

9. Code Of Ethics

30

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conform Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special considera-

tion due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative societal
impacts of the work performed?

Answer: [Yes]

Justification: We briefly discuss potential impacts in Section A.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is being
used as intended and functioning correctly, harms that could arise when the technology is
being used as intended but gives incorrect results, and harms following from (intentional
or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [No]

Justification:

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

31

https://neurips.cc/public/EthicsGuidelines

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best faith
effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All assets are open-license.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the pack-

age should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of the
derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to the
asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification:

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as well
as details about compensation (if any)?

Answer: [NA]

Justification:

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contri-
bution of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

32

paperswithcode.com/datasets

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether such
risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals
(or an equivalent approval/review based on the requirements of your country or institution)
were obtained?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

33

	Introduction
	The Matrix Mixer Framework: Bridging Sequence Mixers and Structured Matrices
	Formalizing the Matrix Mixer Framework
	Sequence Aligned Matrices
	Prior Sequence Models as (Structured) Matrix Mixers
	The Matrix Mixer Framework as a Creative Toolbox

	Hydra: The Double-Headed Mamba
	Background: State Space Models are Semiseparable Matrix Mixers
	Quasiseparable Matrices: A Principled Bidirectional Matrix Mixer
	Taming the Hydra

	Experiments
	Analysis of the Matrix Mixer Framework
	Effects of Different Structured Matrix Families
	Ablating Approaches for Bidirectionality

	Evaluation Results of Hydra
	Bidirectional Masked Language Modeling
	Image Classification

	Conclusion
	Discussions
	Limitations
	Broader Impact

	Proofs
	Architectural Details
	Additional Details
	Details of Ablation Studies in sec: sec4.1
	Details of Main Results in sec: sec4.2

	Additional Details of Ablation Studies in tab:ablstructures
	Ablating the impact of Shift and Diagonal operations in Hydra
	Background

