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Abstract—Responsive neurostimulation (RNS) is an effective
device for patients with multifocal seizures whose ictal foci
are independent of each other across left and right hemi-
spheres. Accurate RNS placement is crucial to enhance seizure
suppression outcomes. Stereo-electroencephalography (SEEG) is
employed before RNS placement to collect deep brain activities
and determine stimulation targets. To deal with different seizure
types and semiologies for multifocal patients, this paper presents
a functional seizure network model using SEEG to identify
potential RNS targets. The network nodes are a subset of SEEG
contact points, and directional weighted network edges are SEEG
correlations quantified by directed transfer function (DTF). The
network nodes are then ranked by their strength values, and the
top-4 nodes are selected as RNS targets with respect to different
seizure types in each hemisphere. The proposed methodology
is validated based on five multifocal patients. Consistent results
between our computational findings and clinicians’ decisions are
observed with 95.7% overlapping ratio.

Index Terms—Multifocal, responsive neurostimulation, seizure
network, stereo-electroencephalography

I. INTRODUCTION

A. Motivation and Background

Responsive neurostimulation (RNS) is a device and tech-
nology for epilepsy patients whose seizures are initiated from
multiple seizure focus [1]. Traditional resective surgery, in-
cluding open resection or laser ablation, cannot be performed
to eliminate two or more seizure focus that are independently
located across two hemispheres [2]. RNS is applied for seizure
suppression by implanting one or two leads placed on different
seizure focus to deliver pulse via contact points (4 contact
per lead) [2]. These leads are connected with an implantable
stimulator. When ictal events are detected, the stimulator auto-
matically generates and transmit electrical pulses to the contact
points to stimulate the seizure onset zones. For multifocal
patients, whose ictal activities are independently originated
from left and right hemispheres, RNS can achieve up to 53%
seizure reduction rate after a 2-year observation period [3].

To achieve positive outcomes (practically ≥ 50% seizure
reduction rate), doctors need to carefully localize the
seizure focus via different evaluation approaches. Stereo-
electroencephalography (SEEG) is a minimally-invasive tech-
nique to collect brain activity data directly from the cortex
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via implantable depth electrodes [4]. Each electrode has 8-
16 contact points for signal collection. When multiple SEEG
electrodes are implanted across left and right hemispheres,
neurologists need to visually inspect the hundreds of SEEG
signals, and identify the stimulation targets (at most 8 points,
4 from each hemisphere). To automate the SEEG evaluation
process and improve accuracy, a functional seizure network
modeling is proposed [5]. The seizure network nodes are elec-
trodes/contacts covering different brain regions. The network
edges are functional connectivities denoting signal correla-
tions. In particular, directed (or effective) connectivity metrics
from various domains, such as time-domain Granger causality,
frequency-domain directed transfer function and information-
domain transfer entropy, are applied to characterize the direc-
tional connectomics of neural signals among different brain
regions [6]. In a directional seizure network, nodes with strong
outgoing influences are the initiating points that motivates
seizure onset, and nodes with high incoming connections are
the impacted points showing strong symptoms [7]. Various
graph analytic tools are then applied to identify the nodal
importance, and select the as stimulation targets [8].

While SEEG network analysis has been widely applied in
selecting RNS targets for multifocal patients [8], [9], most
existing works treat the ictal events equally from data learning
perspective, and do not further take into account the variety
of networking that can be seen across seizures in a single
individual. With different clinical symptoms and ictal severity,
e.g., focal aware seizures (with consciousness) versus focal
impaired awareness seizures (without consciousness) [10], it
is beneficial to adjust the stimulation settings (e.g., stimulat-
ing contacts, pulse parameters) with respect to each seizure
type. This may prove further importance during the post-
implantation period (e.g., 1 year), when physicians review the
chronological record of seizure patterns and re-program the
device to improve seizure reduction rate [11].

B. Main Contribution

To assist clinicians evaluate the impact of RNS in sup-
pressing seizures, and provide potential optimization for post-
implantaion adjustment, we propose a type-specific seizure
network model to identify RNS targets for different seizure
events. Specifically, we select a subset of SEEG contact points
as network nodes (i.e., spatial analysis), and use directed



TABLE I: Clinical information of five study patients

ID Gender Age of Electrode Contact Seizure No. (#) and Type† Reduction

Implantation No. (#) No. (#) Left Hemisphere Right Hemisphere Rate

2000 F 39y L: 11, R: 7 210 2 CPS, 4 SPS, 4 SUB 4 SUB 75%

2200 M 37y L: 11, R: 9 212 4 CPS 3 CPS, 3 SUB 25%

2300 F 55y L: 11, R: 5 182 5 CPS 1 SPS, 1 SUB 75%

2400 F 37y L: 10, R: 7 174 2 SPS, 6 CPS 2 CPS 25%

2500 M 40y L: 10, R: 11 252 6 SPS, 3 SUB 1 CPS, 1 SUB 50%

† CPS: complex partial seizure; SUB: sub-clinical seizure; SPS: simple partial seizure
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Fig. 1: Example of Patient 2500: (a) SEEG implantation map,
(b) contact points from electrode LC. Ant Hippo: anterior
hippocampus, WM: while matter, STG: superior temporal
gyrus.

transfer function (DTF) as edge connectivity to characterize
the interconnections during ictal activities (i.e., temporal anal-
ysis). We rank the network nodes based on their connectivity
strength, i.e., sum of weights associated with incoming and
outgoing edges, and select the top-4 points in each hemisphere.
We compare the RNS target selection results for different types
of focal seizures, and discuss the consistency with clinicians’
choices.

This work is organized as follows. Background information
are provided in Section II. Methodologies are presented in
Section III. Experimental results are discussed in Section IV.
Conclusions are in Section V.

II. BACKGROUND

A. Clinical Information

This study is conducted under Institutional Review Board
(IRB) IRB-21-198 approved by the University of Texas at Dal-
las (UTD) and the University of Texas Southwestern Medical
Center (UTSW). Five patients (two males and three females)
were selected by a group of experienced clinicians, and their
clinical information are provided in Table I. Patient inclusion
is based on following criteria. First, these patients have failed
to at least two different anti-epileptic drugs (AEDs). Second,
each patient has two independent seizure onset zones from

left and right hemispheres. Specifically, all seizure events are
marked as focal-onset by clinicians, meaning that their origins
and network developments remain within the corresponding
hemisphere [12]. Third, all these patients show different
seizure types originated from at-least one hemisphere. Fourth,
before RNS placement, all patients have undergone through
SEEG implantation and evaluation in epilepsy monitoring unit
(EMU). An example of SEEG implantation map for Patient
2500 is presented in Fig. 1(a), and the electrode contact
information of LC electrode is shown in Fig. 1(b). SEEG
signals were collected using Nihon Kohden EEG 1200 system
at 1000 Hz sampling rate that are bipolarly referenced [13].

B. Epilepsy & Terminology

In this work, epilepsy seizure refers to the recurrent (≥ 2
per day) brain abnormalities that are caused by the excessive
neuronal misfirings [12]. In our study, there are three clinical
seizure types annotated by experienced clinicians. We use
the following annotations of seizure events according to the
International League Against Epilepsy (ILAE) [10]:
1. CPS: Complex partial seizures (CPS) are the classical
definition of focal seizures with loss of awareness. According
to the latest definition [10], they are now referred as focal
impaired awareness seizures.
2. SPS: Simple partial seizures (SPS) are those when patients
do not lose awareness. According to the latest definition [10],
they are now referred to as focal aware seizures.
3. SUB: Sub-clinical seizures (SUB) are the focal seizures
or ictal abnormalities with no clinical symptoms explicitly
observed (e.g., jerking). They are identified based on EEG
discharges from clinicians’ visual inspection.

In this study, all focal seizures of selected patients are
confined within their onset hemispheres, and do not show
secondary generalizations that propagate to the contralateral
hemisphere (also known as focal to bilateral tonic-clonic
seizures) [14]. All patients have experienced RNS treatment
with at least 25% seizure reduction rate during the 1-year post-
implantation period, as listed in Table I.

C. DTF Seizure Network

Among various network connectivity metrics, directed trans-
fer function (DTF), together with its multiple variants, has
been widely applied for different tasks, including localizing
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Fig. 2: Flowchart of the proposed methodology.

surgical zones [15], predicting seizure onsets [16] and recom-
mending surgical options [17]. Established from multivariable
auto-regressive (MVAR) model, DTF can better capture the
spectral (rhythmic) components (e.g., β band) of ictal activities
than time-domain metrics, and are more computationally effi-
cient than informational-based metrics [6]. Definition of DTF
can be referred in [18]. For a standard C variable MVAR with
order K (i.e., time lag):

x(n) =

K∑
k=1

A(k)x(n− k) + e(n) (1)

Its frequency-domain expression is written as A(f)x(f) =
e(f). Then, we have:

x(f) = A−1(f)e(f) = H(f)e(f) (2)

Here, H(f) = A−1(f) is the C × C DTF transfer
matrix. Each matrix element hij(f) can also be viewed as
the spectral coherence of frequency f between i-th and j-
th signals, capturing the correlation between the j-th input
(column index) and i-th output (row index) of the system.
The DTF value at frequency f is given as [19]:

ϕij(f) =
|hij(f)|2∑C
j=1 |hij(f)|2

(3)

And the band DTF value ϕij(f1, f2) over specific frequency
band [f1 − f2] is: [18]:

ϕij(f1, f2) =

f2∑
f=f1

ϕij(f) (4)

In this work, we chose β band (13 − 30Hz) which has
been widely studied to characterize seizure networking pat-
terns [20], [21]. The initial choice of model order K in Equa-
tion 1 is data-dependent, and can be optimized in a patient-
specific (varied from 5 to 15) way using different criteria [18].
In this work, based on empirical recommendations and similar
works [22], we choose K = 10 across all five patients.
Personalization of parameter choices is beyond the scope of
this work which remains for future investigation. Instead, we
concentrate on the type-specific network modeling process,
which will be illustrated next.

III. RNS TARGET IDENTIFICATION METHODOLOGY

The basic flowchart of our proposed method has four steps
as shown in Fig. 2. After collecting SEEG signals from multi-
focal patients, we first pre-process the continuous signals
into 2-second frames for data learning. Then in Step 2, we
select network nodes from SEEG contact points. Step 3 is

a type-specific network modeling, which characterizes the
spatial-temporal properties of seizure events using DTF edge
connectivities. Step 4 is to rank network nodes based on their
strength values. The results are the top-4 selected RNS points
from left and right hemispheres.

A. Data Pre-Processing

To focus on seizure events, in this work, we extract the
ictal period (i.e., from clinical-marked onset to end) of seizure
events from each patient. We divided the continuous SEEG
signals into 2-second, 2 × 1000 = 2000 samples per frame,
with 50% lapping (1-second). A short frame (e.g., empirically
less than 5-second) is appropriate to keep data stationary
(quasi-stationary) for DTF estimation, and can result in more
data segments for statistical analysis [7]. All signals are filtered
with a band-pass filter at [1, 60] Hz.

B. Network Node Selection

SEEG implantation usually involves multiple electrodes
with hundreds of contact points (see Table I). Clinical RNS
devices requires at most 8 points for stimulation (4 points per
hemisphere), which is the limit of existing device [9]. Also,
since the seizure onsets are focally localized in a few areas,
inclusion of less-contributing nodes will introduce ambiguities
and impurities for the learning process. To build a practical
network model with clinical explainability, in this study, we
applied linear discriminant analysis (LDA) to rank out top-20
discriminant contact points as network nodes. This top-20 is
empirically chosen based on clinicians’ experiences and prac-
tical RNS requirements. As an effective filter-based feature
selection method, LDA method has been widely employed
for efficient channel selection in many SEEG studies [23].
Detailed calculation of LDA method can be found in [24].
Table II lists the top-20 LDA ranked points of Patient 2500 (10
left and 10 right), where the clinical-marked points (denoted
in ∗) are included in the top-20 list, showing the consistency
between our machine findings and clinicians’ inspections.

TABLE II: 20 Contact points of Patient 2500 selected by LDA
and clinicians’ inspection

Left Hemisphere Right Hemisphere

Electrode Contact Points Electrode Contact Points

LA LA1, LA2∗ RA RA1, RA2

LB LB1∗, LB2∗, LB5, LB6∗ RB RB1∗, RB2, RB4, RB6∗

LC LC1, LC2∗, LC6, LC7 RC RC1∗, RC2, RC6, RC7

∗ Clinical marked points
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Fig. 3: Graph visualization of Patient 2500: (a) left SPS, (b)
left SUB.

C. Type-Specific Network Modeling

After selecting C = 20 contact points as network nodes,
we follow the procedure in Sec. II-C to assign DTF values
as network edges, and construct the network model for each
type of focal event. In Patient 2500, there are 6 SPS and 3
SUB events originated from left hemisphere (see Table I).
For these two categories of focal events, we combine the
seizure samples having the same annotations, and obtained
the type-specific network models for (a) all left-6 SPS and
(b) all left-3 SUB, respectively. Figures 3(a) and (b) visualize
these two networks. Here the network nodes are the selected
top-20 SEEG contact points (see Table II), and the edge
connections (i.e., DTF values) between left (L) and right (R)
nodes are differentiated via colors. To focus on the important
connections, we discard the self-correlation, and maintain
top-25% highest edge values for better visualization. It can
be observed that, both SPS and SUB events have stronger
left-originated connections (i.e., L→L and L→R) than the
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Fig. 4: Barplots of node strength values for Patient 2500: (a)
left SPS, (b) left SUB.

right side (i.e., R→R and R→L), corresponding to their left
initiations and developments. On the other hand, the distinction
between left and right connectivities are highly discriminative
in SPS network, but less discriminative in SUB network.
Therefore, our network model captures the spatial-temporal
patterns observed across different types of seizures.

D. Node Strength Ranking

As a directional seizure network, each node has two edge
connections: (i) outgoing edges and (ii) incoming edges. To
measure the connections of c-th node within the seizure
network, we define the node strength Sc as the average DTF
values of all outgoing and incoming edges linked to this
node [5]:

Sc =
1

N
[

N∑
i=1,i̸=c

ϕi,c︸ ︷︷ ︸
outgoing

+

N∑
j=1,j ̸=c

ϕc,j︸ ︷︷ ︸
incoming

] (5)

Here ϕi,c and ϕc,j are the outgoing (c-th column) and incom-
ing (c-th row) DTF values from all N points (N = 20 nodes),
where self-correlation are excluded as marked in Equation 5).
For the left-onset SPS and SUB events of Patient 2500, we



use barplots to show their node strength values in Figs. 4(a)
and (b), respectively. Here the bar height is the mean (average)
strength value per node, and the error bar shows the standard
deviation by summing up across all events. The top-4 points
with the highest strength values are marked in red, and are
considered as our recommended RNS targets. For SPS events,
the top-4 selection results include LB1-2, LC1-2, matching the
clinical-marked onset points in Table II. SUB events, on the
other hand, share LC1 and LB2 as commonly-selected results,
but have LB6 and LC6 as specific findings. These observations
indicate the importance of type-specific analysis, as the critical
(e.g., triggering) nodes and developmental pathways (e.g.,
propagation) can be different with respect to each type of
clinical seizure. Such knowledge may be utilized to change
the stimulation settings of RNS.

E. Validation

From data learning perspective, it is of interest to compare
our type-specific results versus the combined results yielded
by homogeneously analyzing all seizure types (i.e., type-
independent). Using Patient 2500 as an example, for left and
right hemisphere, the top-4 selected points of different seizure
types are listed in Table III, where SPS & SUB for left and
SUB & CPS for right. For each hemisphere, we combine the
different seizure events together, and perform the node strength
ranking to obtain the top-4 nodes as the combined RNS
target. The common-selected points between type-specific and
combined are marked in boldface. While there maybe some
discriminants, in general, both the type-specific and type-
independent results include the clinician-marked points (noted
by ∗) as commonly-selected points, showing the consistency
of identifying the initiating nodes in focal seizure networks. In
real world scenarios, such consistency of combined analysis
can help doctors to initialize the RNS stimulating points at the
beginning, and the type-specific variances will be adopted for
post-implantation adjustment during the observation period.

TABLE III: Type-Specific vs combined selection of Patient
2500

Seizure Target Selection Results

Types Left Right

SPS LB1, LB2∗ -LC1∗, LC2

SUB LB2∗, LB6 RB1, RB2∗
LC1∗, LC6 RC1∗, RC6

CPS - RB1, RB2∗
RC1∗, RC2

Combined LB1, LB2 RB1, RB2∗
LC1, LC2 RC1∗, RC2

∗ Clinician-marked points

To evaluate the validity of our approach, we compare our
machine algorithm recommendation (ML) versus clinicians’
decision (CL). Since our ML evaluation is applied for pre-
implantation evaluation, we compare our top-4 combined re-
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LB1LB1

RB1, RB2

RC2 RC1

Left Hemisphere Right Hemisphere

ML Recommendations

(Network Analysis)

Clinicians’ Decisions

(Visual Inspection)

Fig. 5: ML-Based recommendation (red rectangle) vs clini-
cians’ decision (black rectangle) for Patient 2500.

sults (for RNS initiating) versus clinicians’ settings, as shown
in Fig. 5. Using the top-4 ML selections (LC1, LC2, LB1 and
LB2) of left hemisphere for example, 3 points are commonly
selected by CL approaches (LC1, LC2 and LB2) in black.
In this way, the overlapping ratio between two approaches is
|ML|∩|CL|

|CL| = 3
3 = 100%, where we consider the clinicians’

decision as standard reference.

IV. EXPERIMENTAL RESULTS

A. Summary of Type-Specific Selection

For the five Patients 2000, 2200, 2300, 2400 and 2500,
we first show their type-specific RNS selection results in
Figs. 6(a), (b), (c), (d) and (e), respectively. Using Patient 2000
for illustration, from left hemisphere, the commonly selected
results of three seizure types are noted in black font (LB1, LB2
and LC1), and the additional selections from SPS, SUB and
CPS events are differentiated in blue (LC2), green (LI1) and
yellow (LC2), respectively. For the right hemisphere, where
only SUB events are annotated, the top-4 selected points are
our sole recommendations. Looking through these four cases,
we observed that:

1) For each patient, the selection results of different seizure
events (SPS, SUB or CPS) show overlaps within the same
hemisphere, as marked in black font. The commonly-
identified RNS targets correspond to the focal origins
from each hemisphere, which can be the initial selections
for RNS configuration.

2) When originated from identical hemisphere, each seizure
event has its individual semiology, leading to alternative
findings (differentiated via different colors). Our method-
ology can in generally help physicians to achieve opti-
mum stimulation outcomes for their patients. Physicians
could adjust the stimulation settings of targets based on
the occurrence of specific seizure patterns.

B. Comparison with Clinicians’ Decisions

We have summarized our computational findings (global)
and clinical decisions in Table IV. For each patient, we
present the selection results from left and right hemispheres,
and differentiate our machine learning selection (ML) and
clinicians’ decision (CL) by red and black box, respectively.
To compare these two approach, we define the overlapping
ratio of each hemisphere as |ML|∩|CL|

|CL| . We note that:
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Fig. 6: Type-Specific RNS selection for different Patients: (a)
2000, (b) 2200, (c) 2300, (d) 2400 and (e) 2500. Here the
commonly selected points are in black, and specific results of
different types are marked in corresponding colors.

1) For all five patients, our top-4 selected points include clin-
icians’ choices (less than 4 points), with overlapping ratio
of 95.7% from left and right hemispheres. These indicate
the consistency between two selection approaches (our
machine selection and clinicians’ decision). Especially,
for cases where doctors selected 3 or less stimulation
points (e.g., Patient 2000), they are all identified by our
network analysis.

2) In the right hemisphere of Patient 2200, while RF5 and
RF6 are selected by both approaches, the clinicians’
additional choice is RB6, whereas our method’s selection
includes RF7 and RB8. We observe a similar scenario for

TABLE IV: Comparing selection results of five patients

ID Target Selection Results Overlapping Ratio (%)

Left Right Left Right

2000 LB1, LB2

LC1LC2

RB1, RB2

RC2

RC1 100% 100%

2200 LT4, LT5

LC6, LC7 RB8

RF7 RF5, RF6 RB6 100% 66.7%

2300 LI1

LT2

LI3

LT1

RB1, RB2RC1

RF1
100% 100%

2400 LT5, LT6, LT7LT4,

LU5

RB1

RC1

RB2

RC2
66.7% 100%

2500 LC1, LC2

LB2LB1

RB1, RB2

RC1RC2
100% 100%

Average: Clinicians’ Decision

(Visual Inspection)
ML Recommendation

(Network Analysis)
95.7% 95.7%

the left hemisphere of Patient 2400. These two patients
have 25% seizure reduction rate lower than other cases.
We hypothesize that, our extra findings could have shown
further possibilities to improve the outcomes.

V. CONCLUSION & FUTURE DIRECTIONS

Multifocal patients demonstrate ictal EEG patterns initiating
from more than one site and may have different seizures
with specific patterns and semiologies (e.g., focal aware vs
focal impaired awareness) in each hemisphere. Our seizure
network analysis shows both consistency and alternative for
the selection of RNS points. We use directed transfer function
to measure the SEEG connections among node points, and
rank the top candidate points of different seizure types by
their strength values. All five studied patients have well-
focalized seizures, leading to the consistent results of selection
results. The alternatives for RNS targets enhance clinicians
understanding of different seizure semiologies. Particularly,
our network analysis can: (a) first recommend the initial
stimulation targets (combined), and (b) assist clinicians con-
figure RNS devices when specific seizure patterns are more
frequently observed on the long run (type-specific).

In future, we will include a larger cohort of patients,
especially for patients that have focal to bilateral tonic-
clonic seizures and generalized seizures. Also, to evaluate
the effectiveness of network analysis, patients whose RNS
treatment are not successful should also be studied. The
impacting factors that affect neurostimulation outcomes need
to be investigated as well.



ACKNOWLEDGEMENT

This project was partially funded by The University of
Texas at Dallas Office of Research and Innovation through
the SPARK Grant Program.

REFERENCES

[1] D. K. Tran, D. C. Tran, L. Mnatsakayan, J. Lin, F. Hsu, and S. Vadera,
“Treatment of multi-focal epilepsy with resective surgery plus respon-
sive neurostimulation (rns): One institution’s experience,” Frontiers in
Neurology, vol. 11, p. 545074, 2020.

[2] T. L. Skarpaas, B. Jarosiewicz, and M. J. Morrell, “Brain-responsive
neurostimulation for epilepsy (rns® system),” Epilepsy research, vol.
153, pp. 68–70, 2019.

[3] P. Davis and J. Gaitanis, “Neuromodulation for the treatment of epilepsy:
a review of current approaches and future directions,” Clinical Thera-
peutics, 2020.

[4] B. E. Youngerman, F. A. Khan, and G. M. McKhann, “Stereoelectroen-
cephalography in epilepsy, cognitive neurophysiology, and psychiatric
disease: safety, efficacy, and place in therapy.” Neuropsychiatric Disease
& Treatment, vol. 15, 2019.

[5] E. Bullmore and O. Sporns, “Complex brain networks: graph theoretical
analysis of structural and functional systems,” Nature Reviews Neuro-
science, vol. 10, no. 3, pp. 186–198, 2009.

[6] G. Chiarion, L. Sparacino, Y. Antonacci, L. Faes, and L. Mesin,
“Connectivity analysis in eeg data: a tutorial review of the state of the
art and emerging trends,” Bioengineering, vol. 10, no. 3, p. 372, 2023.

[7] G. Peng, M. Nourani, and J. Harvey, “Seeg analysis to identify mis
treatment for patients with focal epileptic seizures,” in 2023 IEEE 23rd
International Conference on Bioinformatics and Bioengineering (BIBE),
2023, pp. 187–194. [Online]. Available: https://doi.ieeecomputersociety.
org/10.1109/BIBE60311.2023.00037

[8] D. D. George, S. G. Ojemann, C. Drees, and J. A. Thompson, “Stimu-
lation mapping using stereoelectroencephalography: current and future
directions,” Frontiers in Neurology, vol. 11, p. 320, 2020.

[9] S. A. Weiss, D. Eliashiv, J. Stern, D. Rubinstein, I. Fried, C. Wu,
A. Sharan, J. Engel, R. Staba, and M. R. Sperling, “Stimulation
better targets fast-ripple generating networks in super responders to the
responsive neurostimulator system,” Epilepsia, vol. 64, no. 5, pp. e48–
e55, 2023.

[10] R. S. Fisher, J. H. Cross, C. D’souza, J. A. French, S. R. Haut,
N. Higurashi, E. Hirsch, F. E. Jansen, L. Lagae, S. L. Moshé et al.,
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