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Abstract

The growing prevalence of streaming data and increasing concerns over data pri-
vacy pose significant challenges for traditional nonparametric regression methods,
which are often ill-suited for real-time, privacy-aware learning. In this paper, we
tackle these issues by first proposing a novel one-pass online functional stochastic
gradient descent algorithm that leverages the Huber loss (H-FSGD), to improve
robustness against outliers and heavy-tailed errors in dynamic environments. To fur-
ther accommodate privacy constraints, we introduce a locally differentially private
extension, Private H-FSGD (PH-FSGD), designed to real-time, privacy-preserving
estimation. Theoretically, we conduct a comprehensive non-asymptotic conver-
gence analysis of the proposed estimators, establishing finite-sample guarantees
and identifying optimal step size schedules that achieve optimal convergence rates.
In particular, we provide practical insights into the impact of key hyperparameters,
such as step size and privacy budget, on convergence behavior. Extensive experi-
ments validate our theoretical findings, demonstrating that our methods achieve
strong robustness and privacy protection without sacrificing efficiency.

1 Introduction

Nonparametric regression, which models the relationship between a response variable and its predic-
tors without imposing a specific functional form, is a fundamental tool in statistical data analysis.
It has been extensively studied over the past several decades (e.g., Siegel [1957], Härdle [1990],
Wasserman and Lafferty [2005], Takezawa [2005]) and is particularly well-suited for capturing
complex and nonlinear structures in data. More recently, nonparametric modeling has provided
powerful insights into complex and dynamic systems across a range of applications, including deep
learning [Schmidt-Hieber, 2020, Zhang and Wang, 2024], climatology [Huth and Pokorná, 2004,
Deb and Jana, 2024], and economics [Donnelly et al., 2011, Salibian-Barrera, 2023].

Traditional nonparametric regression methods typically assume full access to the entire dataset
beforehand and require it to be stored entirely in memory. Within this batch learning framework,
model estimation is conducted only once based on the full dataset. However, this paradigm faces
substantial limitations in streaming data environments, where observations arrive sequentially and
continuously over time. In such settings, storing and processing the entire data stream simultaneously
is often infeasible. For example, data generated in real time by autonomous vehicles or large-scale
sensor networks in smart cities accumulate rapidly and far exceed the capacity of available memory
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resources. In contrast to classical batch learning, online learning methods are designed to dynamically
update model estimates using only the currently available data, thereby enabling real-time decision-
making in nonparametric regression. To date, such methods have been extensively studied in the
literature; see, for example, Gu and Lafferty [2012], Huang et al. [2013], Kuzborskij and Cesa-Bianchi
[2017], Xue and Yao [2022], Yang et al. [2024], Quan and Lin [2024]. Beyond these approaches, a
line of work has focused on functional stochastic gradient descent (FSGD) approximation algorithms
developed within the framework of reproducing kernel Hilbert spaces (RKHS) or more general Hilbert
spaces; see Kivinen et al. [2004], Dieuleveut and Bach [2016], Zhang and Simon [2022], Liu et al.
[2023], Zhang and Simon [2023], Chen and Klusowski [2024], Fonseca et al. [2024]. Nevertheless, a
common limitation across the above literature is the implicit assumption of unrestricted access to raw
individual, level data throughout the learning process.

As data complexity and volume continue to grow, so do the challenges associated with safeguarding
individual privacy and maintaining public trust, particularly in applications involving potentially
sensitive user data, such as patient records in healthcare or behavioral logs in e-commerce platforms.
Differential privacy (DP), one of the most widely adopted frameworks [Dwork et al., 2006a,b], pro-
vides rigorous guarantees that the output of a statistical analysis does not reveal sensitive information
about any individual in the dataset. Owing to its rigorous mathematical definitions and practical
applicability, DP has been successfully applied in numerous fields, including medical imaging, health-
care analytics, and intelligent transportation systems [Dankar and El Emam, 2013, Ziller et al., 2024,
Bhadani, 2024]. In the literature, two primary variants of DP have been extensively studied: the
central differential privacy (CDP) model assumes the existence of a trusted server that can securely
collect, store, and process raw data from users, and the local differential privacy (LDP) model
eliminates the need for such a trusted entity by requiring each user’s data to be privatized at the source,
before being transmitted to any data aggregator or processor (see e.g. Dwork et al. [2014], Duchi et al.
[2018], Berrett and Yu [2021], Li et al. [2023], Duchi and Ruan [2024]). However, privacy protection
inevitably introduces tension with two other key objectives: model robustness against adversarial per-
turbations and statistical utility. This fundamental trade-off, known as the privacy-robustness-utility
trilemma, has been extensively studied across different learning paradigms, including distributed
learning [Allouah et al., 2023], adversarial learning with certified guarantees [Phan et al., 2020],
and decentralized Byzantine-robust systems [Ye et al., 2024]. Although substantial progress has
been made under both paradigms, most existing methods are dedicated to finite-dimensional learning
problems such as fitting a parametric regression model.

Recently, increasing attention has been directed toward privacy-preserving estimation in infinite-
dimensional settings, where either the inputs, outputs, or both are functions in nature. Most existing
work in this area has been developed under the CDP framework. For example, Hall et al. [2013]
proposed to add an appropriately calibrated Gaussian process to release functional data while preserv-
ing privacy. Building this idea, Mirshani et al. [2019] developed the Gaussian mechanism to a more
general framework capable of releasing a broad class of functional estimators. Reimherr and Awan
[2019] further generalized this line of work by introducing privacy mechanisms based on centered
elliptical processes. In parallel, Awan et al. [2019] studied the exponential mechanism in separable
Hilbert spaces, with applications in functional data analysis, shape analysis, and nonparametric
statistics. More recently, Lin and Reimherr [2024] introduced the independent component Laplace
process mechanism to achieve pure DP for functional summaries in separable infinite-dimensional
Hilbert spaces. Cai et al. [2024] examined the statistical optimality of federated nonparametric
regression under DP constraints. In cases where the infinite-dimensional functional space can be
effectively approximated by a finite number of basis functions, several methods have utilized the post-
processing property of DP to design privacy-preserving procedures. For example, Cai et al. [2023]
introduced CDP-based techniques for nonparametric regression under basis-function representations.
Extending this line of work, Xue et al. [2024] established statistically optimal estimation procedures
for distributed functional mean estimation and varying coefficient models under a variety of DP
frameworks. Despite these advances, existing approaches are primarily designed for batch learning
and often rely on a trusted data curator. To the best of our knowledge, no scalable and statistically
sound method has yet been developed to perform online private nonparametric regression under the
LDP framework. This gap leads to the following fundamental question:

Can one design an online, private, nonparametric regression algorithm that is
robust to heavy-tailed noise and simultaneously satisfies LDP, without compromis-
ing statistical efficiency?
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Figure 1: Flowchart of the proposed online robust privacy-preserving estimation framework. Data is
received one by one, optionally perturbed with noise for privacy, and then used to update a functional
LDP estimator via either H-FSGD or PH-FSGD.

The main goal of this paper is to address the question outlined above. To this end, we develop a
fully online robust LDP framework for real-time estimation in nonparametric regression. Specifically,
we introduce two novel algorithms, i.e., H-FSGD and PH-FSGD, that enable efficient and privacy-
preserving learning in streaming data environments. In contrast to minimizer-optimal loss alignment
approaches [Allouah et al., 2023] for addressing the privacy–robustness–utility trilemma, our method
achieves inherent outlier robustness via a Huber loss framework. A flowchart illustrating the structure
of the proposed framework is provided in Figure 1. A comparative summary of our method against
representative recent works in nonparametric regression is provided in Table 1. For brevity, we include
one example from each category of related methods. Our main contribution can be summarized as
follows:

• Online robust LDP estimation framework: Our framework provides rigorous per-iteration LDP
guarantees for nonparametric regression in an online setting, addressing a key limitation of existing
methods that typically require access to the entire dataset. By incorporating Huber loss into our
framework, the proposed algorithms attain robustness to outliers and heavy-tailed errors, thereby
enabling robust privacy-preserving real-time estimation in dynamic environments.

• One-pass algorithms: The proposed algorithms are both designed to operate in an online, one-
pass manner, yielding LDP estimators with O(1) time and space complexity per iteration for
nonparametric regression. By eliminating the need to store or re-access historical data, our approach
avoids the O(n) computational and memory overhead typically associated with maintaining past
kernel evaluations. This design enables high computational efficiency and inherent scalability,
making the algorithms particularly well-suited for large-scale or streaming data environments.

• Non-asymptotic analysis: We systematically establish non-asymptotic convergence rates for our
estimators, with or without LDP, under both constant and decaying step-size regimes. Our analysis
operates in a general framework that recovers the best approximation of the true function within
the RKHS. The convergence rate depends on the sample size, step size, and the smoothness of
both the RKHS and the original space containing the best approximation. Specifically, under a
constant step-size scheme, the proposed estimators attain the minimax optimal rate not only when
the original function space matches or is smoother than the estimation space, but also in certain
cases when it is less smooth.

Table 1: A comparison of recent results on nonparametric regression.
Method Online One-pass Robust Optimal rate Privacy

Hall et al. [2013] % % % ? !

Dieuleveut and Bach [2016] ! ! % ! %

Liu et al. [2023] ! ! % ! %

Quan and Lin [2024] ! ! % ! %

Proposed ! ! ! ! !
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2 Problem formulation

We observe an independently and identically distributed stream of data {(Xn, Yn)}∞n=1 generated
from the regression model

Yn = f⋆(Xn) + en,

where Xn ∈ X is the n-th copy of the covariate X with marginal distribution PX , Yn ∈ R is the
response, en is the noise with E(e) = 0, Var(e) = σ2 and Cov(e,X) = 0, and the regression
function f⋆ belongs to L2(PX) with ∥f⋆∥∞ < ∞. For our theoretical analysis, we assume finite-
variance noise to derive tractable bounds on the gradient variance. This assumption encompasses
many common heavy-tailed distributions, such as the Student–t distribution with degrees of freedom
ν > 2, the Laplace distribution, and the symmetric Pareto distribution with shape parameter α > 2.
Empirically, however, our procedure remains robust even under infinite-variance conditions, such as
Cauchy noise (see Subsection F.4).

Our objective is to estimate f⋆ in a streaming setting that operates in a single pass, where samples
arrive sequentially and storing the entire dataset is infeasible. Online methods that incrementally
process data are increasingly adopted for large-scale problems due to their computational and memory
efficiency [Zhang and Lei, 2025]. At the same time, many application domains that generate streaming
data, such as healthcare [Mohammed et al., 2013], medical records [Liu et al., 2024], and customer
analytics [Hard et al., 2019], require formal privacy protection, which motivates the design of
algorithms that provide provable privacy guarantees while remaining computationally efficient. These
desiderata raise several intertwined challenges: the target is an infinite-dimensional function, yet the
algorithm is restricted to a single update per sample, which rules out classical offline kernel methods
requiring multiple passes and global optimization [Cai and Yuan, 2011]); most differential-privacy
techniques are developed for finite-dimensional parameters [Dwork et al., 2014] and do not transfer
straightforwardly to infinite-dimensional, single-pass function estimation; and heavy-tailed noise
can make squared-loss-based online methods [Dieuleveut and Bach, 2016] unstable, necessitating
robustness in the loss function.

To address robustness in the presence of heavy tails and to facilitate private updates, we consider
Huber regression in an RKHS. Concretely, we study the population optimization

min
f∈H

ELτ

(
Y − f(X)

)
, (1)

where Lτ is the Huber loss with parameter τ > 0:

Lτ (u) =
1
2u

2 I{|u| ≤ τ}+
(
τ |u| − 1

2τ
2
)
I{|u| > τ}. (2)

The Huber loss combines the efficiency of squared loss for small residuals with the robustness of
absolute loss for large residuals; importantly for our setting, for fixed τ it yields uniformly bounded
gradients, which both stabilizes online updates and simplifies the design of per-iteration noise under
LDP without relying on ad-hoc gradient clipping (see (6) for gradient details).

We take H to be a RKHS on X with kernel K(·, ·) and inner product ⟨·, ·⟩H. To allow for model
misspecification we do not require f⋆ ∈ H; instead we target the best RKHS approximation

fH := argmin
f∈H

E
[
(Y − f(X))2

]
,

where H denotes the closure of H in L2(PX). The RKHS restriction is a standard device in
nonparametric regression that converts the infinite-dimensional estimation problem into a tractable
functional estimation framework while permitting a misspecified truth [Wahba, 1990, Dieuleveut and
Bach, 2016, Zhang et al., 2023].

We place the following standard regularity conditions on the covariate distribution and the kernel.

Assumption 1. Suppose that the distribution of PX has full support in X .

Assumption 2. The kernel is continuous and uniformly bounded on the diagonal: supx∈X K(x, x) ≤
B2 <∞ for some B > 0.

Assumptions 1–2 are common in nonparametric RKHS regression and ensure basic well-posedness
of the estimation task [Cai and Yuan, 2011, Zhou et al., 2020, Liu and Li, 2023].

4



Since privacy is a core concern in our work, we adopt the LDP framework, which removes the need
for a trusted curator by randomizing data at the user side prior to collection. Formally, for ε > 0 and
δ ≥ 0, a randomized mechanism M : X → Y is (ε, δ)-LDP if for any x, x′ ∈ X and measurable
E ⊂ Y it holds that

P
(
M(x) ∈ E

)
≤ eεP

(
M(x′) ∈ E

)
+ δ,

where the probability is taken over the randomness of M [Xiong et al., 2020]. Within the online
RKHS framework, the LDP mechanism leverages the boundedness of Huber gradients to calibrate
noise precisely to the sensitivity of each update, ensuring rigorous privacy guarantees while preserving
statistical efficiency.

Our aim is to construct a computationally efficient, single-pass sequence of estimators {fn}n≥1 ⊂
H that can be updated incrementally upon receipt of (Xn+1, Yn+1) and that satisfies ∥fn −
fH∥L2(PX) → 0 as n→ ∞ in both the non-private and the LDP settings. The algorithms leverage the
Huber loss to achieve robustness to heavy-tailed noise and to yield bounded per-iteration sensitivity
suitable for LDP.

More background information regarding RKHS and DP is presented in Appendix B.

We introduce the notation used throughout the paper. Let {an}n≥1 and {bn}n≥1 are two sequences
of non-negative numbers. an ≲ bn or an = O(bn) indicates that an ≤ Cbn for some constant C > 0
independent of n. an ≳ bn indicates that an ≥ Cbn for some constant C > 0 independent of n.
an ≍ bn represents an ≲ bn and an ≳ bn. Denote PX as the distribution of X over the space X , and
L2(PX) = {f : X → R|

∫
X f(x)

2dPX(x) < ∞}. The norm ∥ · ∥L2
PX

for f ∈ L2(PX) is defined

as ∥f∥2
L2

PX

=
∫
X f(x)

2dPX(x) = E(f(X)).

3 Methodology

In this section, we propose the online robust nonparametric estimation within the RKHS framework to
the minimization problem (1), which is universal for non-privacy-preserving and privacy-preserving
settings.

3.1 Robust functional SGD

We first propose a Huber functional stochastic gradient descent (H-FSGD) algorithm to solve (1) in
the streaming data setting without DP. Inspired by functional SGD methods for squared loss [Liu
et al., 2023], H-FSGD extends this approach to the Huber loss. Given an initial estimate f̂0 (e.g.,
f̂0(·) = f̄0(·) = 0), the estimate is recursively updated upon the arrival of each new sample (Xn, Yn)
as follows:

f̂n = f̂n−1 − γn∇̂Lτ (f̂n−1)(Xn, Yn), f̄n =
n− 1

n
f̄n−1 +

1

n
f̂n, (3)

where γn is the step size, and ∇̂Lτ is an estimator of the Fréchet gradient of the Huber loss evaluated
at (Xn, Yn). This update generalizes classical SGD to the functional setting with a robust loss, and
the Polyak average f̄n further improves stability and accuracy by averaging over the update trajectory
[Ruppert, 1988, Polyak and Juditsky, 1992].

By the reproducing property of the kernel K, any f ∈ H satisfies f(X) = ⟨f,KX⟩H, where
KX(·) = K(X, ·). The Fréchet derivative of ⟨f,KX⟩H with respect to f is KX . Therefore, the
gradient estimator of the Huber loss at a sample (x, y) is given by

∇̂Lτ (f)(x, y) = −ℓτ (y − f(x))Kx = −wτ (y − f(x))(y − f(x))Kx, (4)

where ℓτ (u) := uI {|u| ≤ τ}+ τ · sign(u)I {|u| > τ}, and wτ := min{1, τ/|u|}. By utilizing the
reproducing property f̂n−1(X) = ⟨f̂n−1,KX⟩H, the recursion in (3) can be written as

f̂n = f̂n−1 + γnwτ

(
Yn − ⟨f̂n−1,KXn

⟩H
)(

Yn − ⟨f̂n−1,KXn
⟩H
)
KXn

,

f̄n =
n− 1

n
f̄n−1 +

1

n
f̂n.

(5)
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The proposed H-FSGD algorithm updates iteratively without storing historical raw data. In practice,
we retain the current estimate f̂n−1 evaluated on a fixed grid {tj}Jj=1. Upon receiving the n-th
sample (Xn, Yn), the prediction f̂n−1(Xn) can be computed as ⟨f̂n−1,KXn

⟩H, requiring only the
current estimate f̂n−1 and KXn calculated at the new Xn, which offers greater flexibility and lower
memory usage.

The parameter τ in the Huber loss establishes a trade-off between robustness and bias in the estimation,
which is consistent with classical literature [Fan et al., 2017]. In practice, we use a data-driven
procedure to choose the parameter τ , motivated by classical Huber loss methods [Holland and Welsch,
1977]. Firstly, obtain an initial estimator f̂LS of fH via the existing least-squares functional SGD
[Dieuleveut and Bach, 2016] and small samples. Secondly, calculate the prediction errors {resii}i
based on the estimator f̂LS, and get the robust estimation of σ via the median absolute deviation
estimator, i.e.,

σ̂ = Median{|resii|}/0.6745.
Lastly, construct τ = 1.345σ̂, where 1.345 is the default value in R package (‘rlm’ function) to
achieve 90% efficiency for normally distributed noise.

We summarize the selection of τ in Algorithm 2, and the proposed H-FSGD in Algorithm 3. Please
see Appendix C.

3.2 Robust locally differentially private functional SGD

Protecting sensitive information in real-time data streams is paramount to prevent unintended disclo-
sures as each new observation is processed. Unlike Hall et al. [2013], which applies DP to the entire
algorithm in a centralized manner, our approach integrates privacy protection into each iteration step.
This design eliminates the need for a trusted data collector and achieves LDP by ensuring that data
are privatized at the source before any aggregation occurs.

To ensure rigorous LDP guarantees, we augment Algorithm 3 by adding per-iteration Gaussian
process noise. Under Assumption 2 and the definition of the Huber loss, for any n ∈ N, and pair of
input individual values z = (x, y), z′ = (x′, y′), we have

sup
z,z′

∥∇̂L(f̂n−1)(x, y)− ∇̂L(f̂n−1)(x
′, y′)∥H ≤ 2τ sup

x∈X
∥Kx∥H ≤ 2τB. (6)

The quantity 2τB corresponds to the sensitivity in the standard LDP framework [Xiong et al.,
2020]. Let ξn be the sample path of a Gaussian process having mean zero and covariance function
8τ2B2 log(2/δn)

ε2n
K, where (εn, δn) is the privacy budget at the n-th iteration. Applying Proposition 1,

we propose the private H-FSGD (PH-FSGD) as following, initialized at f̄0 = f̂0 = 0,

f̂n = f̂n−1 + γnwτ

(
Yn − ⟨f̂n−1,KXn

⟩H
)(

Yn − ⟨f̂n−1,KXn
⟩H
)
KXn

+ γnξn,

f̄n =
n− 1

n
f̄n−1 +

1

n
f̂n.

(7)

It is worth noting that PH-FSGD supports varying privacy constraints across iterations, with per-
iteration noise ensuring that each data point is protected at the source.

We summarize our approach as in Algorithm 1. We make the following remarks.
Remark 1. Algorithm 1 supports mixed privacy regimes through iteration-specific privacy budgets.
Large εn values effectively imply non-private updates. While our current experiments focus on
fully private or non-private settings, the algorithm naturally accommodates hybrid cases by adjusting
per-iteration noise.
Remark 2. While our method is developed in the infinite-dimensional RKHS, the computational
implementation employs grid discretization as a finite approximation, which is a standard approach
in functional data analysis to balance computational feasibility with theoretical fidelity. Following
established practice (e.g., Dieuleveut and Bach [2016], Liu et al. [2023]), we use dense grids to ensure
accurate function recovery, with approximation error diminishing as grid density increases.
Remark 3. When outliers are not a concern (τ → ∞), the Huber loss reduces to squared loss. In the
context of DP, the privacy guarantee is governed by the sensitivity of the gradient. Without additional
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Algorithm 1 PH-FSGD

1: Input: The streaming data {(Xn, Yn)}n∈N, the initial estimates f̄(·) = f̂(·) = 0, the step
size sequences {γn}n∈N, the tuning parameter τ > 0, the reproducing kernel K, the bounded
parameter B > 0, the privacy parameters {εn}n∈N, {δn}n∈N, and the function grids {tj}Jj=1.

2: for n = 1, 2, . . . do
3: Generate the noise {ξn(tj)}Jj=1 from NJ(0,

8τ2B2 log(2/δn)
ε2n

K(t)), where K(t) is a J × J

matrix with its components (K(t))ij = K(ti, tj).
4: Calculate the residual: resn = Yn − ⟨f̂n−1,KXn

⟩H.
5: Perform the noisy gradient descent at each function grid tj for j = 1, . . . , J as follows.
6: if |resn| ≤ τ

7: then f̂n(tj) = f̂n−1(tj) + γnresnK(Xn, tj) + γnξn(tj).
8: elseif resn > τ
9: then f̂n(tj) = f̂n−1(tj) + γnτK(Xn, tj) + γnξn(tj).

10: else f̂n(tj) = f̂n−1(tj)− γnτK(Xn, tj) + γnξn(tj).
11: Update f̄n at each function grid:

f̄n(tj) =
n− 1

n
f̄n−1(tj) +

1

n
f̂n(tj), j = 1, . . . , J.

12: end for
13: Output: The estimators

{
f̄n(tj)

}J
j=1

at each function grid tj and each iteration n.

assumptions, it is standard practice to apply gradient clipping to ensure bounded sensitivity under the
squared loss [Song et al., 2021]. If the response variable Y is further assumed to be bounded, then
the gradient sensitivity is naturally finite, and the privacy guarantee directly depends on its magnitude.
Thus, squared loss remains privacy-compatible with proper sensitivity control.

Theorem 1. The estimators f̂n and f̄n at each iteration n ∈ N in Algorithm 1 satisfy
(max1≤i≤n{εi},max1≤i≤n{δi})-LDP for n ∈ N.

Theorem 1 ensures that each update in the proposed PH-FSGD algorithm satisfies
(max1≤i≤n{εi},max1≤i≤n{δi})-LDP by adding Gaussian process noise calibrated to the gradi-
ent’s sensitivity. This protects individual sample privacy at each iteration without storing raw data.
Cumulative privacy over time can be analyzed via the composition result in Proposition 2.

4 Theoretical properties

In this section, we establish non-asymptotic convergence rates for the averaged estimator f̄n. We first
introduce the necessary assumptions.
Assumption 3. Suppose that the reproducing kernel K satisfies K ≼ Σ, where Σ = E(KX ⊗KX),
and the symbol ≼ denotes the order between self-adjoint operators.
Assumption 4. There exists a constant M > 0 such that ∥f∥H ≤M for all f ∈ H.
Assumption 5. Suppose that Cov(e,X) = 0. In addition, denote pe is the probability density
function of e. There exist constants m > 0 and κ > 0 such that inft∈(−m,m) pe(t) ≥ κ.

Assumption 6. Denote {νi}i∈N as the sequence of non-zero eigenvalues of the operator Σ in the
decreasing order. Suppose that νi ≤ s2i−α for some α > 1 and some positive constant s.
Assumption 7. Assume that fH ∈ Σr(L2

PX
) with r ≥ 0, where Σr(L2

PX
) ={∑∞

i=1 biϕi such that
∑∞

i=1
b2i
ν2r
i
<∞

}
with the eigenvalues {bi}i and the eigenvectors {ϕi}i. As

a consequence, ∥Σ−r(fH)∥L2
PX

<∞.

Assumptions 3 and 4 are automatically satisfied by any continuous bounded Mercer kernel on a
compact domain. Common examples include the Gaussian, Laplace, Periodic, and Polynomial
kernels. Assumption 5 is mild, as it covers any continuous distribution with positive density at zero,
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such as the normal distribution, t-distribution, or zero-mean uniform distribution. Assumptions 6
and 7 are standard in the RKHS literature [Dieuleveut and Bach, 2016, Fischer and Steinwart, 2020,
Zhang et al., 2023]. Assumption 6 imposes smoothness via the spectral decay of the covariance
operator Σ; a larger decay exponent α leads to faster eigenvalue decay, effectively reducing the
RKHS’s effective dimension and imposing stronger smoothness constraints. Assumption 7 relates to
the regularity of fH. A larger source condition exponent r indicates greater smoothness. In particular,
when r = 1/2, the source space Σ1/2(L2

PX
) coincides with the H. For r ≥ 1/2, the minimizer fH

lies in H, whereas for r < 1/2, it may reside only in the closure of H.

We establish the consistency of our proposed H-FSGD and PH-FSGD estimators. By comparing (5)
and (7), we observe that the non-private estimator is a special case of the private one with ξn = 0
for all n. Accordingly, we focus on the consistency of the private estimators here and defer the
analysis of their non-private counterparts to Appendix D. The privacy budget is allowed to vary across
iterations. A notable special case arises when the estimator reduces to (ε, δ)-LDP with a uniform
privacy budget across all individuals, i.e., ε = ε1 = · · · = εn = · · · and similarly for δ. Since
handling heterogeneous privacy budgets requires no additional theoretical complexity beyond the
uniform case, we assume a common budget (ε, δ) for simplicity.

The following lemma plays a central role in establishing the consistency of the proposed estimators.
Lemma 1. Suppose that Assumptions 2, 4 and 5 are fulfilled. Denote Tf =
E [wτ (Yn − f(Xn))KXn

⊗KXn
] for any f ∈ H. There exists a constant c > 0 such that Tf ≽ cΣ

for any n and any f , where ≽ denotes the order between self-adjoint operators.

Theorem 2 establishes the convergence rate of the privatized estimator f̄n with constant step size.
Theorem 2 (Constant step size). Suppose Assumptions 1–7 hold. Take any constant choice γi = γ =
Γ(n), for 1 ≤ i ≤ n. If c−1γB2 < 1 with c defined in Lemma 1, then

E∥f̄n − fH∥2L2
PX

≤ O

((
σ2 +

8τ2B2 log(2/δ)

ε2

)(
γ1/αn−1+1/α + n−1

)
+ (1 + q(γ, n))γ−2rn−2min{r,1} ∥∥Σ−rfH

∥∥2
L2

PX

)
,

(8)
where q(γ, n) = 0 for r ≤ 1/2, and q(γ, n) = γ(1+α)(2r−1)/αn(2r−1)/α for r > 1/2.

On the right-hand side of (8), the first term represents the variance component, while the second
corresponds to the bias. The variance term is associated with both the intrinsic noise level σ2 and
an additional factor 8τ2B2 log(2/δ)/ε2, which arises from the privacy constraint. A larger step size
amplifies the variance, whereas the bias term decreases as the step size increases. This reveals a
fundamental bias-variance trade-off in the choice of step size to control estimation error. Compared
to regularized kernel ridge regression (KRR) with penalty parameter λ in offline [Yang et al., 2017],
the variance of KRR scales as λ−1/αn−1, and the bias as λ2r. By choosing λ = (γn)−1, the
convergence rate of KRR matches that of our PH-FSGD estimators. Our current theoretical bounds
assume sufficiently fine discretization to guarantee the grid-based solution closely approximates the
RKHS optimum. While small J may introduce non-negligible error, our empirical results confirm
that larger J effectively mitigates this discrepancy. Extending the theory to explicitly account for
finite grid effects remains an important direction for future work.

To optimize the bias-variance trade-off, we choose the step size γ as prescribed in Corollary 1.
Corollary 1 (Constant step size). Under Assumptions 1–7, take the constant step size γi = γ =
Γ(n) ≍ n−ζ for i = 1, 2, . . ..

(i) When 0 < r ≤ (α− 1)/(2α), take ζ = 0, then E∥f̄n − fH∥2
L2

PX

≤ O
(
n−2r

)
;

(ii) When (α − 1)/(2α) < r ≤ 1, take ζ = (2rα + 1 − α)/(2rα + 1), then E∥f̄n − fH∥2
L2

PX

≤

O
(
n−2rα/(2rα+1)

)
;

(iii) When 1 < r ≤ (α + 2)/2, take ζ = (α + 1)/(2rα + 1), then E∥f̄n − fH∥2
L2

PX

≤

O
(
n−(2rα−2r+2)/(2rα+1)

)
;

(iv) When r > (α+ 2)/2, take ζ = 1/(1 + α) then E∥f̄n − fH∥2
L2

PX

≤ O
(
n−α/(1+α)

)
.
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The results above focus on the effect of the sample size n, all privacy parameters (ε, δ) are treated as
constants and are thus absorbed into the O(·) notation. For results with explicit dependence on the
privacy parameters in the convergence rates, we refer to Corollary 2. When 0 < r ≤ (α− 1)/(2α),
where the original space of fH is less smooth than the estimation RKHS, our estimator remains
consistent, with the estimation error vanishing as n→ ∞, depending on r. For (α−1)/(2α) < r ≤ 1,
the estimator achieves the minimax optimal rate [Zhang et al., 2023]. This region includes the classical
case Σr(L2

PX
) = H with r = 1/2, smoother scenarios with r > 1/2, and even less smooth cases

where (α− 1)/(2α) < r < 1/2. The convergence rate improves as either α or r increases, reflecting
the intuition that greater smoothness in the estimation or original space leads to faster rates. When
r > 1, although Assumption 7 is stronger than r = 1, we do not improve the bound, which is the
saturation phenomenon [Engl et al., 1996].

In Appendix D, we also examine consistency under non-constant step sizes. Theoretical results for
non-private estimators are also included, showing similar patterns to the private case when the privacy
term is set to zero. All technical proofs are provided in Appendix J.

5 Experiments

This section evaluates the finite-sample performance of the proposed H-FSGD and PH-FSGD
estimators under two cases: (Case 1) the true function f∗(x) is a sine function; (Case 2) f∗(x) is a
linear combination of two Beta density functions. Two types of errors are considered, the Gaussian
distribution N(0, 0.25) and t distribution with degree of freedom 3. Simulation details are provided
in Appendix F. We assess both non-private and privacy-preserving settings, repeating each setup 200
times independently and using the mean squared error (MSE) as the evaluation metric.

Example 5.1 (Non-private synthetic data). In this example, we evaluate the H-FSGD estimator
and compare it with two baselines: one-pass FSGD using least-squares loss (denoted L2-FSGD) and
least-squares FSGD with access to historical data (denoted offline) from Dieuleveut and Bach [2016].
All three methods are tested under both constant and non-constant step-size schemes. We report the
MSEs of the averaged estimators at sample sizes n = 2000, 5000, and 10000, and include function
fitting plots at n = 10000 to illustrate model performance. Box plots and corresponding function
fitting results for Cases 1 and 2 under constant step sizes are shown in Figure 2, while the results
under non-constant step sizes are presented in Figure 5 in Appendix F for space considerations.
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Figure 2: Box-plots and function fitting plots for Case 1 (top panels) and Case 2 (bottom panels) with
the constant step size scheme in Example 5.1.

Figures 2 and 5 demonstrate that when the error follows a heavy-tailed distribution such as the
t(3) distribution, our proposed H-FSGD method significantly outperforms the least-squares-based
FSGD in both the median and interquartile range of the MSEs, especially when the sample size is
small. Under Gaussian errors, H-FSGD matches or exceeds the performance of the baseline methods.
Moreover, as the sample size grows, the MSEs of all three methods declines, and by n = 10000 they
all achieve near-perfect function fits.
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Example 5.2 (Private synthetic data). In this example, we evaluate our PH-FSGD method under
two LDP settings: (3, 0.1)-LDP and (2, 0.2)-LDP. Box-plots of MSEs and corresponding function
fitting results under both data-generating cases and constant step size schemes are shown in Figures 3
and 6 (in Appendix F), respectively.
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Figure 3: Box-plots and function fitting plots for Case 1 (top panels) and Case 2 (bottom panels) with
the constant step size scheme in Example 5.2.

As shown in Figures 3 and 6, the non-private estimator consistently achieves the lowest median
MSE and tightest variability, while the two LDP variants incur progressively larger error as privacy
strength increases ((3, 0.1)-LDP represents moderate privacy, and (2, 0.2)-LDP represents strong
privacy). These results reflect the inherent trade-off between privacy and statistical efficiency: stronger
privacy (i.e., more noise) enhances protection but also leads to greater estimation error and slower
convergence. Despite strong privacy constraints, all methods still recover the true function shape well.
The differences in box plots and curve fits diminish as the sample size increases, demonstrating that
larger datasets can effectively offset the accuracy loss from LDP.

Computational time. We compare the computational efficiency of different methods on a laptop
equipped with a 3.20 GHz AMD Ryzen 7 5800H CPU and 16GB RAM. Computational times are
recorded for sample sizes ranging from n = 4000 to n = 40000, as shown in Figure 4.
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Figure 4: Change of computation times of our proposed H-FSGD and PH-FSGD, and baselines
L2-FSGD and Offline as the sample sizes increasing from 4000 to 40000.

Figure 4 confirms that both our proposed H-FSGD and PH-FSGD methods are one-pass algorithms
with linear computational complexity O(n), whereas the offline method is computationally intensive,
exhibiting cubic complexity O(n3) as the sample size n increases. Further experimental results, en-
compassing analyses of step-size sensitivity, performance beyond theoretical assumptions, robustness
under contamination models, and a real-data application, are detailed in Appendix F and Appendix G.
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address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

15



Answer: [Yes]
Justification: We provided the full set of assumptions in Assumption 1–7, and a complete
and correct proof has been presented in Appendix J.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Algorithms 1–3, Section 5 and Appendix F have provided detailed information
to ensure the reproduction of core results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We provide open access to the code with sufficient instructions, as described
in supplemental material.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Experimental settings and details have been presented in Section 5 and Ap-
pendix F.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The errors have been defined suitably and correctly, and have been reported
with Box-plots of MSEs and function fitting plots, as shown in Section 5 and Appendix F.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We have provided the type of compute workers, memory and time of execution
for experiments in Section 5.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Our research strictly adheres to the NeurIPS Code of Ethical requirements in
all aspects.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We discuss both potential positive and negative societal impacts in Section 1.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: This study does not release any new datasets or models that may pose potential
risks for misuse.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We have mentioned and cited all assets used in this paper properly.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: This paper proposes a new algorithm for online robust locally differentially
private learning for nonparametric regression, but no new assets such as datasets, models, or
code repositories are released.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core methods and experimental framework in this paper do not involve the
use of Large Language Models.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Appendix

A Notation

Table 2: List of notation

Notation Meaning

Xn the n-th copy of the random covariate X
Yn the n-th copy of the response Y
en the n-th copy of the error e
σ2 the variance of the error e
f⋆ the target nonparametric function lying in the space L2(PX)

K the reproducing kernel
H a RKHS

⟨·, ·⟩H the inner product in H
H̄ the closure of H
fH the best approximation of f⋆ in the RKHS H̄
Lτ the Huber loss with the parameter τ
∇̂Lτ the estimator of the Frechet gradient of the Huber loss
B2 the uniform upper bound of K(x, x) for all x
γn the step size at the n-th iteration
f̂n the current private estimator of fH at the n-th iteration
f̄n the averaged private estimator of fH at the n-th iteration
f̄0n the averaged non-private estimator of fH at the n-th iteration

εn, δn the privacy budget at the n-th iteration
{tj}Jj=1 the function grids

Σ the covariance operator associated with the kernel K, i.e., Σ = E(KX ⊗KX)

α the parameter characterizing the decay rate of the eigenvalues of the covariance
operator Σ

r the parameter quantifying the regularity of the target function fH with respect to the
eigenbasis of Σ

B Background on RKHS and LDP

B.1 RKHS and linear operators

Definition 1. [Gu and Gu, 2013] A Hilbert space H of functions f : X → R is said to be an RKHS
if the elements of H are functions defined on a compact topological space X , and there is a bivariate
function K(·, ·) : X × X → R having the following properties:

(1) For all x ∈ X , the function Kx = K(x, ·) is in H.

(2) The reproducing property holds, i.e., for all x ∈ X and f ∈ H, f(x) = ⟨f,Kx⟩H,

where ⟨·, ·⟩H is the associated inner product of H. In this case, K is the reproducing kernel of H.
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Define an operator Σ : L2(PX) → L2(PX), such that for any f ∈ L2(PX),

Σf = E[KXf(X)].

Then for any z ∈ X , Σf(z) = E[K(X, z)g(X)]. If f ∈ H, the reproducing property gives that
Σ = E[KX ⊗KX ], where KX ⊗KX is an operator defined as (KX ⊗KX)f = ⟨f,KX⟩HKX =
f(X)KX for f ∈ H. It follows that for any f, g ∈ H,

⟨f,Σg⟩H = E[f(X)g(X)].

This operator links the RKHS inner product to the expected product of functions, facilitating theoreti-
cal analysis. Assumptions 1–2 make Σ be an valid linear operator for the whole space L2(PX).

The closure of H in L2(PX), denoted by H̄, is defined as the set of all limits of sequences in H.
Formally,

H̄ = {f ∈ L2(PX) : ∃{fk} ⊂ H such that ∥fk − f∥L2(PX) → 0}.
Intuitively, H̄ consists of all functions in L2(PX) that can be approximated arbitrarily well (in
L2(PX) norm) by a sequence of functions in H. This construction is standard in the kernel methods
literature [Dieuleveut and Bach, 2016], and it allows us to avoid assuming that f⋆ belongs to H or
that H is dense in L2(PX).

B.2 Differential privacy

A random algorithm, denoted as M , can be intuitively considered as protecting privacy if it prevents
an attacker from distinguishing whether a specific datum x belongs to the dataset X when the
algorithm is applied to X . To formalize this notion, the concept of CDP is introduced.
Definition 2 (CDP, [Dwork et al., 2006a,b]). Let ε > 0 and δ ≥ 0. A datasetX = (x1, x2, . . . , xn) ∈
Xn consists of n data from some space X . Two datasets X and X ′ are called neighbors if they differ
by only one entry, denoted as X ∼ X ′. A random algorithm M : Xn → Y is said to be (ε, δ)-DP if
for any neighboring datasets X and X ′, and any measurable set E ⊂ Y ,

P(M(X) ∈ E) ≤ eεP(M(X ′) ∈ E) + δ,

where the probabilities are computed over the randomness of the mechanism M .

This definition ensures that the probabilities of obtaining certain outcomes under the algorithm M
applied to datasets X and X ′ are similar. However, CDP relies on a trusted curator, which may lead
to internal exposure risks and undermine the goal of privacy protection. To address this issue, LDP
eliminates such risks by randomizing data prior to collection.
Definition 3 (LDP, [Xiong et al., 2020]). Let ε > 0 and δ ≥ 0. A randomized algorithm M : X → Y
is said to be (ε, δ)-LDP if for any pair of input individual values x, x′ ∈ X , and any measurable set
E ⊂ Y ,

P(M(x) ∈ E) ≤ eεP(M(x′) ∈ E) + δ,

where the probabilities are computed over the randomness of the mechanism M .

LDP can be regarded as a stricter variant of DP, where individuals add noise to their data before
sharing, ensuring that each user’s information remains confidential without relying on a trusted data
collector. We next introduce the following Gaussian mechanism to construct a function estimator
with DP.
Proposition 1. [Hall et al., 2013] LetD ∈ D be an input dataset. Suppose that the family of functions
{fD : D ∈ D} lies in the reproducing kernel Hilbert space (RKHS) H with the reproducing kernel
K, the inner product ⟨·, ·⟩H and the corresponding norm ∥ · ∥H. Two datasets D and D′ are called
neighbors if they differ by only one entry, denoted as D ∼ D′. Let supD∼D′ ∥fD − fD′∥H ≤ ∆0,
c(δ) ≥ (2 log(2/δ))1/2 for δ > 0. Take G as the sample path of a Gaussian process having mean
zero and covariance function K. Then the release of

f̃D = fD +
∆0c(δ)

ε
G

is (ε, δ)-differential private.

Some useful properties for the construction of LDP algorithms are stated below.
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Proposition 2. [Xiong et al., 2020]
(1) Parallel composition for LDP: Let Mi, i = 1, . . . , k be (εi, δi)-LDP mechanisms and X1, . . . , Xk

be disjoint. Then M(X1, . . . , Xk) = (M1(X1), . . . ,Mk(Xk)) is (maxi εi,maxi δi)-LDP.
(2) Postprocessing property for LDP: Let M1 be an (ε, δ)-LDP mechanism, and M2 be a mechanism
without any privacy constraints. Then the composition of M1 and M2, i.e., M2(M1(·)) is (ε, δ)-LDP.

C Algorithms for H-FSGD

Algorithm 2 Choice of τ

1: Input: Small sample data {(Xn, Yn)}Nτ

n=1, the initial estimates f̄(·) = f̂(·) = 0, the step size
sequences {γn}n∈N, the reproducing kernel K, and the function grids {tj}Jj=1.

2: Use existing least-squares functional SGD [Liu et al., 2023] to obtain an estimator f̂LS.
3: Calculate the prediction errors {resii}i based on the estimator f̂LS.
4: Estimate the standard deviation of noise via σ̂ = Median{|resii|}/0.6745.
5: Choose τ as τ = 1.345σ̂.
6: Output: τ .

Algorithm 3 H-FSGD

1: Input: The streaming data {(Xn, Yn)}n∈N, the initial estimates f̄(·) = f̂(·) = 0, the step size
sequences {γn}n∈N, the tuning parameter τ > 0 via Algorithm 2, the reproducing kernel K, and
the function grids {tj}Jj=1.

2: for n = 1, 2, . . . do
3: Calculate the residual: resn = Yn − ⟨f̂n−1,KXn

⟩H.
4: Perform the gradient descent at each function grid tj for j = 1, . . . , J as follows.
5: if |resn| ≤ τ

6: then f̂n(tj) = f̂n−1(tj) + γnresnK(Xn, tj).
7: elseif resn > τ
8: then f̂n(tj) = f̂n−1(tj) + γnτK(Xn, tj).

9: else f̂n(tj) = f̂n−1(tj)− γnτK(Xn, tj).
10: Update f̄n at each function grid:

f̄n(tj) =
n− 1

n
f̄n−1(tj) +

1

n
f̂n(tj), j = 1, . . . , J.

11: end for
12: Output: The estimators

{
f̄n(tj)

}J
j=1

at each function grid tj and each iteration n.

D Additional theoretical results

We state the following refinement of Corollary 1 to make the dependence on the privacy parameters
(ε, δ) explicit in the convergence rates.
Corollary 2 (Constant step size, explicit dependence on privacy parameters). Under Assumptions 1–7,
take the constant step size γi = γ = Γ(n) ≍ n−ζ for i = 1, 2, . . ..

(i) When 0 < r ≤ (α− 1)/(2α), take ζ = 0, then E∥f̄n − fH∥2
L2

PX

≤ O
(
n−2r

)
;

(ii) When (α − 1)/(2α) < r ≤ 1, take ζ = (2rα + 1 − α)/(2rα + 1), then E∥f̄n − fH∥2
L2

PX

≤

O
((
σ2 + 8τ2B2 log(2/δ)

ε2

)
n−2rα/(2rα+1)

)
;

(iii) When 1 < r ≤ (α + 2)/2, take ζ = (α + 1)/(2rα + 1), then E∥f̄n − fH∥2
L2

PX

≤

O
((
σ2 + 8τ2B2 log(2/δ)

ε2

)
n−(2rα−2r+2)/(2rα+1)

)
;
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(iv) When r > (α + 2)/2, take ζ = 1/(1 + α) then E∥f̄n − fH∥2
L2

PX

≤

O
((
σ2 + 8τ2B2 log(2/δ)

ε2

)
n−α/(1+α)

)
.

We consider the consistency of privatized estimators in the setting of non-constant step sizes.

Theorem 3 (Non-constant step size). Suppose Assumptions 1–7 hold. Take the step sizes γi ≍ i−ζ

with ζ ∈ (0, 1) satisfying 2r − 1/(1 − ζ) < 0, for i = 1, 2, . . .. If c−1γ0B
2 < 1 with c defined in

Lemma 1, then:
(i) 0 ≤ ζ ≤ 1/2,

E∥f̄n−fH∥2L2
PX

≤ O

((
σ2 +

8τ2B2 log(2/δ)

ε2

)
γ1/αn n−1+1/α + γ−1

n (nγn)
−2r

∥∥Σ−rfH
∥∥2
L2

PX

)
;

(ii) 1/2 < ζ < 1,

E∥f̄n−fH∥2L2
PX

≤ O

((
σ2 +

8τ2B2 log(2/δ)

ε2

)
(nγn)

−2+1/α + γ−1
n (nγn)

−2r
∥∥Σ−rfH

∥∥2
L2

PX

)
.

Consistent with Theorem 2, the first term in (i) and (ii) reflects the variance order, while the second
term captures the bias order. Theorem 3 indicates that for ζ ∈ [0, 1/2], both the bias and variance
terms respond to changes of the step size similarly to those in Theorem 2. In contrast, for a smaller
step size with ζ ∈ (1/2, 1), the bias term retains this behavior, but the variance term increases as the
step size decreases.

We can also choose an optimal step size and achieve the optimal convergence rate.

Corollary 3 (Non-constant step size). Under Assumptions 1–7, take the step sizes γi ≍ i−ζ for
i = 1, 2, . . ..
(i) When 0 < r ≤ (α− 1)/(2α), take ζ = 0, then E∥f̄n − fH∥2

L2
PX

≤ O
(
n−2r

)
;

(ii) When (α − 1)/(2α) < r < (1 + α)/(2α), take ζ = (2rα + 1 − α)/(2rα + 1 + α), then
E∥f̄n − fH∥2

L2
PX

≤ O
(
n−(2rα+α−1)/(2rα+1+α)

)
;

(iii) When r ≥ (1 + α)/(2α), take ζ = 1/(1 + α), then E∥f̄n − fH∥2
L2

PX

≤ O
(
n−α/(1+α)

)
.

A comparison between Corollary 3 and Corollary 1 reveals that when 0 < r ≤ (α − 1)/(2α) or
r ≥ (α+2)/2, the convergence rates of the non-constant and constant step size schemes are identical.
In contrast, for (α−1)/(2α) < r < (α+2)/2, the convergence rate achieved under the non-constant
step size scheme is slower than that under the constant step size setting.

The consistency of the privatized estimators can be easily reduced to the estimators without DP, as
shown in Corollary 4 and 5.

Corollary 4 (Constant step size, without privacy). Suppose Assumptions 1–7 hold. Consider the
estimator f̄0n without privacy protection defined via the recursion (5). Take any constant choice
γi = γ = Γ(n), for 1 ≤ i ≤ n. If c−1γB2 < 1 with c defined in Lemma 1, then

E∥f̄0n − fH∥2L2
PX

≤ O

(
σ2
(
γ1/αn−1+1/α + n−1

)
+ (1 + q(γ, n))γ−2rn−2min{r,1} ∥∥Σ−rfH

∥∥2
L2

PX

)
.

Further, take Γ(n) ≍ n−ζ .

(i) When 0 < r ≤ (α− 1)/(2α), take ζ = 0, then E∥f̄0n − fH∥2
L2

PX

≤ O
(
n−2r

)
;

(ii) When (α − 1)/(2α) < r ≤ 1, take ζ = (2rα + 1 − α)/(2rα + 1), then E∥f̄0n − fH∥2
L2

PX

≤

O
(
n−2rα/(2rα+1)

)
;

(iii) When 1 < r ≤ (α + 2)/2, take ζ = (α + 1)/(2rα + 1), then E∥f̄0n − fH∥2
L2

PX

≤

O
(
n−(2rα−2r+2)/(2rα+1)

)
;

(iv) When r > (α+ 2)/2, take ζ = 1/(1 + α) then E∥f̄0n − fH∥2
L2

PX

≤ O
(
n−α/(1+α)

)
.
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Corollary 5 (Non-constant step size, without privacy). Suppose Assumptions 1–7 hold. Consider the
estimator f̄0n without privacy protection defined via the recursion (5). Take the step sizes γi ≍ i−ζ

with ζ ∈ (0, 1), for i = 1, 2, . . .. If c−1γ0B
2 < 1 with c defined in Lemma 1, and 2r−1/(1− ζ) < 0,

then:
(i) 0 ≤ ζ ≤ 1/2,

E∥f̄0n − fH∥2L2
PX

≤ O

(
σ2γ1/αn n−1+1/α + γ−1

n (nγn)
−2r

∥∥Σ−rfH
∥∥2
L2

PX

)
;

(ii) 1/2 < ζ < 1,

E∥f̄0n − fH∥2L2
PX

≤ O

(
σ2(nγn)

−2+1/α + γ−1
n (nγn)

−2r
∥∥Σ−rfH

∥∥2
L2

PX

)
.

Further,
(i) When 0 < r ≤ (α− 1)/(2α), take ζ = 0, then E∥f̄0n − fH∥2

L2
PX

≤ O
(
n−2r

)
;

(ii) When (α − 1)/(2α) < r < (1 + α)/(2α), take ζ = (2rα + 1 − α)/(2rα + 1 + α), then
E∥f̄0n − fH∥2

L2
PX

≤ O
(
n−(2rα+α−1)/(2rα+1+α)

)
;

(iii) When r ≥ (1 + α)/(2α), take ζ = 1/(1 + α), then E∥f̄0n − fH∥2
L2

PX

≤ O
(
n−α/(1+α)

)
.

We summarize the theoretical results to facilitate a comparison of the guarantees under private
and non-private settings across different decay-rate regimes r, encompassing both constant and
non-constant step-size schemes.

Constant step size. In the private setting, the error bound is

O

((
σ2 +

8τ2B2 log(2/δ)

ε2

)(
γ1/αn−1+1/α + n−1

)
+ (1 + q(γ, n))γ−2rn−2min{r,1} ∥∥Σ−rfH

∥∥2
L2

PX

)
,

whereas in the non-private setting, the error bound is

O

(
σ2
(
γ1/αn−1+1/α + n−1

)
+ (1 + q(γ, n))γ−2rn−2min{r,1} ∥∥Σ−rfH

∥∥2
L2

PX

)
.

The optimal choices of ζ and the corresponding convergence rates across different ranges of r are
summarized in Table 3.

Table 3: Constant step size: optimal ζ and convergence rates.
r range Optimal ζ in γi ≍ n−ζ Private / non-private convergence rate

(0, (α− 1)/(2α)] 0 O(n−2r)
((α− 1)/(2α), 1] (2rα+ 1− α)/(2rα+ 1) O

(
n−2rα/(2rα+1)

)
(1, (α+ 2)/2] (α+ 1)/(2rα+ 1) O

(
n−(2rα−2r+2)/(2rα+1)

)
((α+ 2)/2,∞) 1/(1 + α) O

(
n−α/(1+α)

)
Non-constant step size. In the private setting, the error bound isO

((
σ2 + 8τ2B2 log(2/δ)

ε2

)
γ
1/α
n n−1+1/α + γ−1

n (nγn)
−2r ∥Σ−rfH∥2L2

PX

)
, 0 ≤ ζ ≤ 1/2,

O
((
σ2 + 8τ2B2 log(2/δ)

ε2

)
(nγn)

−2+1/α + γ−1
n (nγn)

−2r ∥Σ−rfH∥2L2
PX

)
, 1/2 < ζ < 1,

while in the non-private setting, the error bound isO
(
σ2γ

1/α
n n−1+1/α + γ−1

n (nγn)
−2r ∥Σ−rfH∥2L2

PX

)
, 0 ≤ ζ ≤ 1/2,

O
(
σ2(nγn)

−2+1/α + γ−1
n (nγn)

−2r ∥Σ−rfH∥2L2
PX

)
, 1/2 < ζ < 1.

The optimal ζ and convergence rates are summarized in Table 4.
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Table 4: Non-constant step size: optimal ζ and convergence rates.
r range Optimal ζ in γi ≍ n−ζ Private / non-private convergence rate

(0, (α− 1)/(2α)] 0 O(n−2r)
((α− 1)/(2α), (1 + α)/(2α)) (2rα+ 1− α)/(2rα+ 1 + α) O

(
n−(2rα+α−1)/(2rα+1+α)

)
[(1 + α)/(2α),∞) 1/(1 + α) O

(
n−α/(1+α)

)
Overall, the privacy term introduces an additional additive factor of (8τ2B2 log(2/δ))/(ε2), which
increases the variance constant but does not affect the asymptotic rates under optimal step sizes.

E Robustness-privacy-utility trilemma

The interplay among the Huber parameter, the privacy budget, and the step size forms a fundamental
robustness–privacy–utility trilemma. In the non-private setting, using a smaller Huber parameter
τ improves robustness to outliers but increases bias, which is a classical bias–robustness trade-off
[Fan et al., 2017]. In the private setting, however, a larger τ amplifies gradient sensitivity, requiring
stronger noise for given (ε, δ)-LDP, which raises gradient variance and necessitates smaller γ0 for
stability. Similarly, a tighter privacy budget (e.g., a smaller ε) demands stronger noise, again making
a smaller γ0 critical for stable convergence. The step size itself is typically chosen according to a
decaying schedule, either γi = γ0n

−ζ for constant step size with sample size n or γi = γ0i
−ζ for

non-constant step size. As shown in Corollaries 1–5, the optimal choice of the decay exponent ζ
depends on the smoothness parameters r and α. Under strong privacy noise, smaller γ0 improves
stability, but overly small steps slow convergence.

In practice, the three hyperparameters must be co-tuned carefully. The Huber parameter can be
set following the procedure described in Algorithm 2, which builds on established methods in the
Huber loss literature [Holland and Welsch, 1977]. The privacy budget is usually determined by
application-specific requirements, but, whenever possible, relaxing the budget (choosing a larger ε)
reduces the amount of noise added and thereby improves utility. In the absence of theory-guided
tuning, we recommend a grid search over (γ0, ζ) for the step size on a validation set, consistent with
practical and widely used approaches in optimization [Ge et al., 2019, Attia and Koren, 2025].

F Additional experimental results

F.1 Experiment details

We generate i.i.d. samples from the model Y = f⋆(X) + e. We consider two examples of true
functions f⋆ as follows:

Case 1: f⋆1 (x) = sin(3πx/2),

Case 2: f⋆2 (x) =
2

3
β10,5(x) +

1

3
β5,10(x),

where βp,q = xp−1(1−x)q−1

B(p,q) with B(p, q) = Γ(p)Γ(q)
Γ(p+q) denoting the beta function and Γ is the gamma

function with Γ(p) = p! for p ∈ N+, and ψa,b denotes the density function of N(a, b2). The first
case is simple, and the second case is designed to mimic complex true function. The noise e is set to
two cases: t(3) representing heavy-tailed noise, and N(0, 0.25) representing the regular situation.

In simulation, we use the RKHS with the Gaussian kernel K(x, y) = exp
{
−(x− y)2/(2h2)

}
and

the inner product: for any f, g ∈ HK , ⟨f, g⟩ =
∫ f̂(w)ĝ(w)

K̂(w)
dw, where f̂(w) =

∫
R f(x)e

−iwxdx, and

K̂(w) =
√
2πh exp{−h2w2/2}.

We conduct all three methods under both constant and non-constant step-size schemes. For the
constant step size setting, we use a fixed step size of the form γ0n

−ζ with total sample sizes n, where
n is the total sample size; for the non-constant setting, the step size is set as γi = γ0i

−ζ for the i-th
iteration.
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Figure 5: Box-plots and function fitting plots for Case 1 (top panels) and Case 2 (bottom panels) with
the non-constant step size scheme in Example 5.1.

F.2 Additional main results

As shown in Figure 5, when the error distribution exhibits heavy tails such as the t(3) distribution,
our H-FSGD algorithm also delivers markedly improved robustness compared to the standard least-
squares-based FSGD under the non-constant step size scheme. The advantage is most pronounced
at small sample sizes. In the case of Gaussian noise, H-FSGD maintains superior or competitive
accuracy relative to benchmark methods. Furthermore, all methods exhibit decreasing MSEs with
growing sample size, and they convergence to nearly ideal function approximations by n = 10000.
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Figure 6: Box-plots and function fitting plots for Case 1 (top panels) and Case 2 (bottom panels) with
the non-constant step size scheme in Example 5.2.

Figure 6 demonstrate similar patterns to Figure 3. Two LDP estimators exhibit increasing estimation
error as the level of privacy protection intensifies, which illustrates the classic tension between privacy
and utility. Nonetheless, all estimators, including those under stringent LDP, are still capable of
capturing the underlying functional form. As sample size grows, the performance gap between
private and non-private methods narrows significantly. This trend underscores how larger datasets
can mitigate the negative impact of privacy-preserving mechanisms on estimation accuracy.

F.3 Sensitivity of step sizes

We have conducted additional simulation studies to examine the sensitivity of estimation performance
with respect to different values of step size. We examine the H-FSGD performance under Case 1
for both constant and non-constant step size settings, with γ0 ∈ [4, 24] and ζ ∈ [0.3, 0.8]. Figure 7
illustrates the heatmaps of average MSEs over 50 repetitions when the sample size is n = 10000.
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Figure 7: Sensitivity analysis of the step-size parameters γ0 and ζ. Results under the constant
step-size scheme are presented in the left panel, whereas those under the non-constant step-size
scheme are shown in the right panel.

Figure 7 indicates that the proposed estimators exhibit robustness to the choice of γ0 and ζ under
both constant and non-constant step size settings, with wide parameter regions yielding stable and
comparable MSEs.

F.4 Performance beyond theoretical assumptions

While our theoretical analysis requires finite-variance noise condition, we also conduct experiments
with heavier-tailed noise, including Student-t(2.5) and Cauchy(0, 1) noises. Tables 5 and 6 show
MSE (×10−3) means and standard deviations over 200 repetitions for n = 10000, 20000, and 40000,
under both constant and non-constant step sizes.

Table 5: MSE (×10−3) with standard deviations in parentheses (×10−3), computed over 200 repeti-
tions under t(2.5) noise.

Step size Constant Non-constant

n 10000 20000 40000 10000 20000 40000

H-FSGD 2.15
(0.758)

1.25
(0.415)

0.669
(0.214)

2.26 (1.06) 1.41
(0.682)

0.907
(0.467)

L2-FSGD 3.97 (2.25) 2.04 (1.20) 1.11
(0.551)

6.13 (4.40) 3.38 (2.89) 2.02 (1.71)

Offline 4.21 (2.17) 2.17 (1.26) 1.16
(0.569)

6.75 (5.49) 3.65 (3.25) 2.12 (1.85)

Our experimental results demonstrate that H-PSGD maintains superior robustness compared to both
L2-FSGD and offline methods, even when handling infinite-variance distributions that fall outside
our current theoretical framework. While formal guarantees for these extreme cases remain to be
established, the observed empirical performance strongly motivates future theoretical investigation of
such challenging scenarios.

F.5 Robustness in contamination models

While our method is designed for heavy-tailed noise via the Huber loss, we also assess its robustness
under Huber’s ε⋆-contamination model, where an ε⋆-fraction of data is adversarially corrupted. Using
Case 1 (true model) and Case 2 (contaminated model), we simulate performance across varying ε⋆.
Table 7 reports the mean and standard deviation of the MSE (×10−2) over 50 repetitions for both
constant and non-constant step sizes at n = 10000.
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Table 6: MSE (×10−3) with standard deviations in parentheses (×10−3), computed over 200 repeti-
tions under Cauchy(0, 1) noise.

Step size Constant Non-constant

n 10000 20000 40000 10000 20000 40000

H-FSGD 3.64 (1.57) 1.97
(0.816)

1 (0.435) 5.22 (3.25) 2.98 (1.81) 1.65 (1.03)

L2-FSGD 5.83e+07
(8.2e+08)

1.89e+07
(2.65e+08)

5.7e+06
(7.89e+07)

2.24e+08
(3.17e+09)

1.01e+08
(1.42e+09)

4.36e+07
(6.15e+08)

Offline 1.73e+08
(2.45e+09)

4.86e+07
(6.85e+08)

1.33e+07
(1.86e+08)

3.67e+08
(5.19e+09)

1.38e+08
(1.95e+09)

5.32e+07
(7.51e+08)

Table 7: Performance comparison under different contamination levels.

Step size ε⋆ 0 0.1 0.2 0.3 0.4

Constant
H-FSGD 0.0722

(0.0158)
0.657

(0.0985)
2.85

(0.251)
8.08

(0.497)
20.4

(1.27)

L2-FSGD 0.0619
(0.0150)

2.46
(0.263)

9.49
(0.611)

21.2
(0.928)

37.4
(1.16)

Non-constant
H-FSGD 0.0939

(0.0326)
0.683

(0.105)
2.89

(0.260)
8.11

(0.517)
20.2

(1.23)

L2-FSGD 0.152
(0.136)

2.55
(0.310)

9.63
(0.683)

21.3
(1.01)

37.5
(1.23)

Step size ε⋆ 0.5 0.6 0.7 0.8 0.9

Constant
H-FSGD 56.7

(3.91)
114 (3.47) 155 (2.49) 186 (2.21) 211 (2.10)

L2-FSGD 58.4
(1.60)

84 (1.70) 114 (1.74) 149 (2.15) 189 (2.14)

Non-constant
H-FSGD 56.4

(4.23)
114 (3.78) 155 (2.61) 186 (2.32) 211 (2.16)

L2-FSGD 58.5
(1.64)

84.2
(1.83)

114 (1.94) 149 (2.25) 189 (2.18)
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As shown in Table 7, H-FSGD remains stable up to ε⋆ = 0.3, with degradation beginning around
ε⋆ = 0.4, suggesting a breakdown point near 40%. In contrast, L2-FSGD deteriorates earlier at
ε⋆ = 0.3. Across all settings, H-FSGD consistently outperforms L2-FSGD.

G Applications

Many real-world applications simultaneously require privacy protection, robustness to heavy-tailed
noise, and nonparametric modeling. Examples include:

• Healthcare analytics. Wearable fitness data (e.g., heart rate, sleep patterns) demands LDP since raw
physiological signals can re-identify users; exhibits heavy-tailed noise due to irregular activities
(e.g., sudden spikes in heart rate during exercise or sensor artifacts); and necessitates nonparametric
regression because the relationship between metrics (e.g., sleep duration vs. recovery rate) is often
nonlinear and complex.

• Financial fraud detection. Transaction histories require LDP when shared due to their identifiable
nature, legitimate spending patterns contaminated by fraudulent outliers create heavy-tailed distri-
butions, and the adversarial nature of fraud evolution necessitates nonparametric methods to detect
novel attack patterns beyond rigid rule-based systems.

• Consumer behavior analysis. Browsing logs need LDP protection against profiling, purchase
amounts exhibit heavy-tailed distributions dominated by rare large orders, and market segmentation
reveals irregular price elasticity patterns that nonparametric models can adequately capture.

To better validate our method’s practical utility, we conducted experiments on the real data “Health and
fitness dataset” from Kaggle website 3. Our goal is to investigate how endurance levels affect overall
fitness. We select 40000 samples as the training set and 1000 samples as the test set. We compared
our H-FSGD and PH-FSGD methods with baseline methods on out-of-sample R2 performance, as
displayed in Table 8.

Table 8: Out-of-sample R2 of proposed and baseline methods.
Step size H-FSGD L2-FSGD Offline (2,0.2)-LDP (3,0.1)-LDP lm

Constant 0.622 0.617 0.609 0.589 0.609 0.581
Non-constant 0.623 0.618 0.609 0.526 0.596 0.581

The results show that H-FSGD consistently outperforms L2-FSGD and Offline methods, showing
strong robustness. All non-private nonparametric methods outperform linear regression (lm) in
capturing complex relationships. Under LDP, PH-FSGD remains competitive, matching or exceeding
lm, confirming its effectiveness under privacy constraints. These findings validate our method’s
ability to model nonlinear patterns while preserving privacy.

H Discussions

H.1 Computational complexity

Our theoretical analysis is conducted directly in the RKHS, where finite-sample bounds depend on
the kernel eigenvalue decay rate α rather than the grid size J . The grid size J primarily influences
computational costs, reflecting the inherent tradeoff between accuracy and efficiency.

In the univariate setting, the computational complexity remains tractable: constructing the covariance
matrix and performing Cholesky decomposition require O(J3) setup time, while n functional SGD
iterations incur an additional O(nJ2) cost with O(J2) storage. However, we fully acknowledge that
the situation changes drastically in the multivariate case. A d-dimensional problem would demand
O(J3d) setup time, O(nJ2d) operations, and O(J2d) storage, rendering naive grid-based approaches
impractical for d ≥ 3.

To mitigate this curse of dimensionality, additive kernel methods [Raskutti et al., 2012] provide
a scalable alternative. By decomposing the problem dimension-wise, the computational costs are

3https://www.kaggle.com/datasets/evan65549/health-and-fitness-dataset
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reduced to O(dJ3 + ndJ2) with storage O(dJ2), thereby preserving theoretical guarantees while
ensuring practical feasibility.

H.2 Minibatching integration

Our framework can be easily extended to support minibatching. Specifically, at iteration n, if a
mini-batch {(Xnt, Ynt)}Bn

t=1 with size Bn is available, the update rule becomes:

f̂n = f̂n−1 + γn
1

Bn

Bn∑
t=1

wτ

(
Ynt − ⟨f̂n−1,KXnt

⟩H
)(

Ynt − ⟨f̂n−1,KXnt
⟩H
)
KXnt

+ γnξn,

f̄n =
n− 1

n
f̄n−1 +

1

n
f̂n,

where ξn is the sample path of a Gaussian process having mean zero and covariance function
8τ2B2 log(2/δn)

ε2n
K with (εn, δn) being the privacy budget at the n-th iteration. The noise term ξn

still suffices to ensure DP, as the modified Fréchet gradient has the same sensitivity and the privacy
mechanism remains applicable in this case. Moreover, the theoretical analysis can be readily modified
by replacing the single-sample gradient with its minibatch-averaged counterpart. Minibatching may
in fact help improve the privacy–utility trade-off by reducing gradient variance, allowing for smaller
noise magnitudes under the same privacy budget; however, it also requires a trusted data collector to
aggregate and access the mini-batch data.

H.3 Extension to non-i.i.d. data

Addressing concept drift and non-i.i.d. data is both important and challenging. Our current framework,
like standard functional SGD theory, assumes i.i.d. data, and does not directly extend to non-i.i.d.
settings, which is a limitation shared by many SGD-based methods. challenges include parameter
drift, slower convergence [Zhao et al., 2018, Li et al., 2020], and bias from dependent observations.
While one could define the population risk as

∞∑
n=1

pnLτ (Yn − fn(Xn))

with distribution weight pn, this is infeasible in online settings due to unknown distribution shifts and
the ill-defined infinite-sum objective. A more practical alternative models the data as coming from
M sub-populations with different distributions, minimizing the global risk

M∑
m=1

pmLτ (Y
(m) − f(X(m))).

This leads to a parallel SGD scheme: at each round t, the global estimate f̂t is sent to local devices,
which compute updates

f̂
(m)
t+1 = f̂t − γt∇̂Lτ (f̂t)(X

(m)
n , Y (m)

n ) + γtξt,

followed by weighted aggregation

f̂t+1 =

M∑
m=1

pmf̂
(m)
t+1 .

This setup accommodates distributional heterogeneity and aligns with recent federated learning
approaches for non-i.i.d. data [Chen et al., 2020, Ma et al., 2022].

I Limitations

The first limitation of this work lies in its exclusive focus on the Gaussian mechanism for implementing
LDP, without exploring alternative mechanisms such as the exponential mechanism [Awan et al.,
2019] or the Laplace mechanism [Lin and Reimherr, 2024]. While the Gaussian mechanism provides
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desirable analytical properties and facilitates rigorous theoretical analysis, this choice may reduce the
flexibility of our framework in settings where other mechanisms are better suited. We acknowledge
this constraint; however, to the best of our knowledge, our work is the first to adapt the Gaussian
mechanism into online nonparametric regression under LDP, providing a novel and theoretically
grounded approach to privacy-preserving estimation in streaming environments. The second limitation
concerns the scope of our loss function, which is restricted to the Huber loss rather than a broader
class of M-estimators. This modeling decision is primarily driven by two technical challenges: (i)
quantifying sensitivity for general M-estimators under LDP is nontrivial, and (ii) most M-estimators
lack closed-form update rules, posing significant challenges for theoretical convergence analysis in
online learning frameworks. Future research may address these limitations by extending the proposed
framework to incorporate alternative privacy mechanisms and more general robust loss functions.

J Technical proofs

J.1 Proof of Equation (4)

By the definition of the Huber loss (2), the estimator of the Fréchet gradient is

∇̂Lτ (f)(x, y) =

{− (y − f(x))Kx, |y − f(x)| ≤ τ

− τ · sign(y − f(x))Kx, |y − f(x)| > τ

= − [(y − f(x)) I {|y − f(x)| ≤ τ}+ τ · sign(y − f(x))I {|y − f(x)| > τ}]Kx

=: −ℓτ (y − f(x))Kx,

where Kx(·) = K(x, ·), and ℓτ (u) := uI {|u| ≤ τ} + τ · sign(u)I {|u| > τ}. Note that ℓτ (u) =
uwτ (u) with wτ (u) = min{1, τ/|u|}, then

∇̂Lτ (f)(x, y) = −wτ (y − f(x))(y − f(x))Kx.

J.2 Proof of outlier robustness

Outlier robustness in statistics and machine learning is typically characterized by the influence
function [Hampel et al., 1986, Avella-Medina, 2021], which we formally define below.
Definition 4 (Robust statistics). Let F be a space of probability distributions on Z = X × R, and
let T : F → G be a functional mapping each F ∈ F to a function T (F ) = fF ∈ G. For any
contamination point z = (x′, y′) ∈ Z , define the contaminated distribution Fϵ = (1− ϵ)F + ϵ∆z,
where ∆z is the point mass at z and ϵ ∈ (0, 1). Then the influence function of T at z under F is the
function IF(z;T, F ) : X → R given pointwise by

IF(z;T, F )(x) := lim
ϵ→0+

T (Fϵ)(x)− T (F )(x)

ϵ
= lim

ϵ→0+

fFϵ
(x)− fF (x)

ϵ
.

If the influence function is uniformly bounded, then the statistics T (F ) are considered robust, as no
single outlier can have a disproportionate effect on the estimator.

We now rigorously show that the Huber loss yields an estimator with a uniformly bounded influence
function in the nonparametric setting. Consider the nonparametric regression model Y = f(X) + e

and the estimator f̂ = argminf EF [Lτ (Y − f(X))], where the Huber loss is

Lτ (u) =


1

2
u2, |u| ≤ τ,

τ |u| − 1

2
τ2, |u| > τ,

with ψτ (u) =
d
duLτ (u) =

{
u, |u| ≤ τ,

τ sign(u), |u| > τ,
and ψ′

τ (u) =
d
duψτ (u) =

{
1, |u| < τ,

0, |u| ≥ τ,
.

Define the functional Tx0 on the joint distribution F of (X,Y ) by Tx0(F ) = fF (x0), where fF (·)
satisfies the population estimating equation

Ψx0
(t;F ) :=

∫
ψτ (y − t)FY |X=x0

(dy) = 0.
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Let a contaminated distribution be Fϵ = (1 − ϵ)F + ϵ∆(x′,y′), where ∆(x′,y′) is a point mass at
(x′, y′). The influence function at (x′, y′) is defined by

IF((x′, y′);Tx0 , F ) = lim
ϵ→0+

Tx0(Fϵ)− Tx0(F )

ϵ
.

Since Ψx0

(
Tx0

(Fϵ);Fϵ) = 0, by differentiating with respect to ϵ at ϵ = 0 (implicit function theorem),
we obtain

∂Ψx0

∂t

∣∣∣
t=fF (x0)

(Tx0
(Fϵ)− Tx0

(F )) + Ψx0

(
fF (x0);Fϵ) = o(ϵ).

Noting ∂Ψx0

∂t = −
∫
ψ′
τ (y − fF (x0))FY |X=x0

(dy), and Ψx0
(fF (x0);Fϵ) = ϵψτ (y

′ −
fF (x0))I{x′=x0}, we solve to get

IF((x′, y′);Tx0 , F ) =
ψτ (y

′ − fF (x0))I{x′=x0}∫
ψ′
τ (y − fF (x0))FY |X=x0

(dy)
.

Note that |ψk(y
′− fF (x0))| ≤ τ , |I{x′=x0}| ≤ 1, and D(x0) :=

∫
ψ′
τ (y− fF (x0))FY |X=x0

(dy) =
P(|Y − fF (x0)| < τ | X = x0). Under the usual assumption that the conditional density of
r = Y − f(X) is continuous and strictly positive at zero, there exists a universal constant c > 0 such
that D(x0) ≥ c for all x0. Hence, for all contamination points (x′, y′) and all x0,

| IF((x′, y′);Tx0
, F )| ≤ τ

c
,

which does not depend on (x′, y′), proving that the influence function is uniformly bounded. This
establishes that our estimator based on the Huber loss is provably robust to outliers.

J.3 Proof of Theorem 1

Fixing f̂n−1, the Fréchet gradient iterating f̂n is

gn(Xn, Yn) = −ℓτ (Yn − f̂n−1(Xn))KXn
.

View g as an operator such that g(x, y) = −ℓτ (y− f̂n−1(x))Kx. By Assumption 2 and the definition
of ℓτ (·), we have

sup
z=(x,y),z′=(x′,y′)

∥g(x, y)− g(x′, y′)∥ ≤ 2τB.

Applying Proposition 1 with single sample D = {(Xn, Yn)}, if ξn is taken as the sample path of a
Gaussian process having mean zero and covariance function 8τ2B2 log(2/δn)

ε2n
K, then the next iterate

f̂n is (εn, δn)-LDP. Utilizing the parallel composition property of LDP stated in Proposition 2 (1), we
observe that releasing each update based on disjoint subsets of the data does not amplify the overall
privacy loss. Consequently, for any n ∈ N, both the estimator f̂n and its averaged counterpart f̄n
inherit (max1≤i≤n{εi},max1≤i≤n{δi})-LDP from each individual update.

J.4 Proof of Theorem 2

Lemma 1 and the following Lemmas are usefull to prove Theorem 2.

Proof of Lemma 1. Recall that wτ (s) = min{1, τ
|s|}. Assumptions 2 and 4 imply that ∥f∥∞ ≤ BM ,

then
|Yn − f(Xn)| ≤ ∥f⋆∥∞ + ∥f∥∞ + |en| ≤ ∥f⋆∥∞ +BM + |en|,

it follows that wτ (Yn − f(Xn)) ≥ min{1, τ
|en|+BM+∥f⋆∥∞

}. Utilizing Assumption 5, we have

Tf ≽ E
(
min

{
1,

τ

|en|+BM + ∥f⋆∥∞

})
E(KXn ⊗KXn)

≽ 2mκmin

{
1,

τ

m+BM + ∥f⋆∥∞

}
Σ =: cΣ.
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Lemma 2. Let αn = (I − γTn−1)αn−1 + γΞα
n. Tn−1 satisfies Tn−1 ≼ Σ with γΣ ≼ I , where

≼ denotes the order between self-adjoint operators. Ξα
n ∈ H is Fn measurable for a sequence of

increasing σ-fields {Fn}n, E(∥Ξα
n∥2|Fn−1) is finite, and E(Ξα

n ⊗ Ξα
n) ≼ σ2

αΣ. Then

E⟨ᾱn,Σᾱn⟩L2
PX

≤ Bias(n, γ,Σ, {Ti}i, α0) + Var(n, γ,Σ, {Ti}i, {Ξα
i }i),

where ᾱn =
∑n

j=1 αn,

Bias(n, γ,Σ, {Ti}i, α0) =
2

n2
E

∥∥∥∥∥∥Σ1/2
n∑

j=1

j∏
i=1

(I − γTi−1)α0

∥∥∥∥∥∥
2

Σ

,

and

Var(n, γ,Σ, {Ti}i, {Ξα
i }i) =

2

n2
E

∥∥∥∥∥∥Σ1/2
n∑

j=1

j∑
k=1

j∏
i=k+1

(I − γTi−1) γΞ
α
k

∥∥∥∥∥∥
2

Σ

.

Proof of Lemma 2. By the recursion of αn, we have

ᾱn =
1

n

 n∑
j=1

j∏
i=1

(I − γTi−1)α0 +

n∑
j=1

j∑
k=1

j∏
i=k+1

(I − γTi−1) γΞ
α
k

 .

Then

E∥ᾱn∥2L2
PX

≤ 2

n2
E

∥∥∥∥∥∥Σ1/2
n∑

j=1

j∏
i=1

(I − γTi−1)α0

∥∥∥∥∥∥
2

Σ

+
2

n2
E

∥∥∥∥∥∥Σ1/2
n∑

j=1

j∑
k=1

j∏
i=k+1

(I − γTi−1) γΞ
α
k

∥∥∥∥∥∥
2

Σ

=: Bias(n, γ,Σ, {Ti}i, α0) + Var(n, γ,Σ, {Ti}i, {Ξα
i }i).

Lemma 3. Under Assumptions 2–5, for any r ≥ 0 and any n ≥ 0, E(Ξr
n ⊗ Ξr

n) ≼ c−rγrB2rσ̃2Σ,
and E

(
ηnoise,r
n ⊗ ηnoise,r

n

)
≼ c−(r+1)γr+1B2rσ̃2I , where σ̃2 = σ2 + 8τ2B2 log(2/δ)

ε2 , and c is defined
as in Lemma 1.

Proof of Lemma 3. We make an induction on r. For r = 0, using Cauchy-Schwarz inequality and
Assumption 3, we have

E(Ξ0
n ⊗ Ξ0

n) ≼ E
[
(Yn − fH(Xn))

2KXn
⊗KXn

]
+ E(ξn ⊗ ξn)

≼ E(e2n)E(KXn
⊗KXn

) +
8τ2B2 log(2/δ)

ε2
K

≼

(
σ2 +

8τ2B2 log(2/δ)

ε2

)
Σ

=: σ̃2Σ,

where σ̃2 = σ2 + 8τ2B2 log(2/δ)
ε2 . The recursion formula of ηnoise,0

n implies that

ηnoise,0
n =

n∑
k=1

n∏
i=k+1

(I − γTi−1) γΞ
0
k.

Then

E
(
ηnoise,0
n ⊗ ηnoise,0

n |Fn−1

)
=

n∑
k=1

n∏
i=k+1

(I − γTi−1) γ
2E(Ξ0

n ⊗ Ξ0
n)

n∏
i=k+1

(I − γTi−1)

≼ σ̃2
n∑

k=1

n∏
i=k+1

(I − γTi−1) γ
2Σ

n∏
i=k+1

(I − γTi−1) .
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Utilizing Lemma 1, we have Tn ≽ cΣ for any n, then
n∏

i=k+1

(I − γTi−1)−
n∏

i=k

(I − γTi−1) =

n∏
i=k+1

(I − γTi−1) γTk−1 ≽ c

n∏
i=k+1

(I − γTi−1) γΣ.

It follows that
n∑

k=1

n∏
i=k+1

(I − γTi−1) γ
2Σ

n∏
i=k+1

(I − γTi−1) ≼ γ

n∑
k=1

n∏
i=k+1

(I − γTi−1) γΣ

≼ c−1γ

n∑
k=1

[
n∏

i=k+1

(I − γTi−1)−
n∏

i=k

(I − γTi−1)

]
≼ c−1γI.

Then
E
(
ηnoise,0
n ⊗ ηnoise,0

n

)
≼ c−1γσ̃2I.

Assume that for any n ≥ 0, E(Ξr
n ⊗ Ξr

n) ≼ c−rγrB2rσ̃2Σ, and E
(
ηnoise,r
n ⊗ ηnoise,r

n

)
≼

c−(r+1)γr+1B2rσ̃2I . We now consider E(Ξr+1
n ⊗ Ξr+1

n ) and E
(
ηnoise,r+1
n ⊗ ηnoise,r+1

n

)
. Recall

that Ξr+1
n =

(
Tn−1 − wτ (Yn − f̂n−1(Xn))KXn

⊗KXn

)
ηnoise,r
n−1 . By induction and Assumption 2,

E(Ξr+1
n ⊗ Ξr+1

n ) ≼ c−(r+1)γr+1B2rσ̃2E
[(

Tn−1 − wτ (Yn − f̂n−1(Xn))KXn
⊗KXn

)2 ∣∣∣∣Fn−1

]
≼ c−(r+1)γr+1B2rσ̃2E

[
(KXn

⊗KXn
)
2
]

≼ c−(r+1)γr+1B2(r+1)σ̃2Σ.

It follows that

E(ηnoise,r+1
n ⊗ ηnoise,r+1

n )

≼ c−(r+1)γr+1B2(r+1)σ̃2
n∑

k=1

n∏
i=k+1

(I − γTi−1) γ
2Σ

n∏
i=k+1

(I − γTi−1)

≼ c−(r+2)γr+2B2(r+1)σ̃2I.

Lemma 4. Assume that (Xn, f̂n,Ξ
α
n) ∈ H ×H×H is Fn measurable for a sequence of increas-

ing σ-fields {Fn}n. Further, E(Ξα
n|Fn−1) = 0, E(∥Ξα

n∥2|Fn−1) < ∞, and E(∥KXn∥2KXn ⊗
KXn |Fn−1) ≼ B2Σ with E(KXn ⊗ KXn |Fn−1) = Σ for all n ≥ 1, some constant B > 0 and

invertible operator Σ. Let αn =
(
I − γwτ (Yn − f̂n−1(Xn))KXn ⊗KXn

)
αn−1 + γΞα

n, with

α0 = 0 and γc−1B2 < 1. Then

E⟨ᾱn−1,Σᾱn−1⟩L2
PX

≤ 1

c(1− γc−1B2)

γ

n

n∑
k=1

E∥Ξα
k∥2L2

PX

.

Proof of Lemma 4. The recursion formula implies that

∥αn∥2L2
PX

≤ ∥αn−1∥2L2
PX

+ 2γ2∥wτ (Yn − f̂n−1(Xn))(KXn
⊗KXn

)αn−1∥2L2
PX

+ 2γ2∥Ξα
n∥2L2

PX

+ 2γ⟨αn−1,Ξ
α
n − wτ (Yn − f̂n−1(Xn))(KXn

⊗KXn
)αn−1⟩L2

PX
.

Taking expectations on both sides and utilizing Lemma 1, we have

E(∥αn∥2L2
PX

|Fn−1)

≤ ∥αn−1∥2L2
PX

+ 2γ2E∥(KXn
⊗KXn

)αn−1∥2L2
PX

+ 2γ2E∥Ξα
n∥2L2

PX

− 2γ⟨αn−1, Tn−1αn−1⟩L2
PX

≤ ∥αn−1∥2L2
PX

+ 2γ2⟨αn−1,E(∥KXn∥2KXn ⊗KXn)αn−1⟩L2
PX

+ 2γ2E∥Ξα
n∥2L2

PX

− 2cγ⟨αn−1,Σαn−1⟩L2
PX

≤ ∥αn−1∥2L2
PX

+ 2γ2E∥Ξα
n∥2L2

PX

− 2cγ(1− γc−1B2)⟨αn−1,Σαn−1⟩L2
PX
.
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Taking another expectation on both sides, we obtain that

E⟨αn−1,Σαn−1⟩L2
PX

≤ 1

2cγ(1− γc−1B2)
E
(
∥αn−1∥2L2

PX

− ∥αn∥2L2
PX

+ 2γ2∥Ξα
n∥2L2

PX

)
.

By convexity and α0 = 0, we have

E⟨ᾱn−1,Σᾱn−1⟩L2
PX

≤ 1

c(1− γc−1B2)

γ

n

n∑
k=1

E∥Ξα
k∥2L2

PX

.

Lemma 5. Consider αn =
(
I − γwτ (Yn − f̂n−1(Xn))KXn

⊗KXn

)
αn−1 with α0 = −fH. If

r > 1/2, then

E⟨ᾱn,Σᾱn⟩L2
PX

≤ O
((

1 + γ(1+α)(2r−1)/αn(2r−1)/α
)
(γn)−2r

∥∥Σ−rfH
∥∥2
Σ

)
.

Proof of Lemma 5. The proof is similar to that of Lemma 13 in Dieuleveut and Bach [2016]. The
recursion implies that

αn =M(n, i+ 1)αi

for any i = 0, 1, . . . , n − 1, where M(n, k) =
∏n

j=k

(
I − γwτ (Yj − f̂j−1(Xj))KXj

⊗KXj

)
.

Note that

n2E⟨ᾱn,Σᾱn⟩ = E
n∑

i=0

⟨αi,Σαi⟩+ 2E
n−1∑
i=0

n∑
j=i+1

⟨αi,Σαj⟩.

For the second term, by Lemma 1,

E
n−1∑
i=0

n∑
j=i+1

⟨αi,Σαj⟩ ≤ E
n−1∑
i=0

n∑
j=i+1

⟨αi,Σ(I − cγΣ)j−iαi⟩

= E
n−1∑
i=0

⟨αi,
[
c−1γ−1

(
(I − cγΣ)− (I − cγΣ)n−i+1

)
∧ nΣ(I − cγΣ)

]
αi⟩

≤ E
n∑

i=0

⟨αi, Ai,nαi⟩ − E
n∑

i=0

⟨αi,Σαi⟩,

where Ai,n ≼ (c−1γ−1I ∧ nΣ) =: A. Define the operator T from symmetric matrices to symmetric
matrices as

TA = cΣA+ cAΣ− γE [KXn ⊗KXnAKXn ⊗KXn ] .

Then for any symmetric matrix A,

E
n∑

i=0

(M(i, 1))
⊤
AM(i, 1) ≤

n∑
i=0

(I − γT )iA.

Similar to the proof of Lemma 14 in Dieuleveut and Bach [2016], for r > 1/2, we have

γ

n∑
i=0

(I − γT )iA ≼ O

((
γ−1 + n1/αγ1/α

)2r−1

n2−2rΣ1−2r

)
,

and then

E
n∑

i=0

⟨αi, Aαi⟩ ≤ O

((
1 + γ1+1/αn1/α

)2r−1

γ−2rn2−2r∥Σ−rα0∥2Σ
)
.

Thus,

E⟨ᾱn,Σᾱn⟩L2
PX

≤ O
((

1 + γ(1+α)(2r−1)/αn(2r−1)/α
)
(γn)−2r

∥∥Σ−rfH
∥∥2
Σ

)
.
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Lemma 6. Suppose Assumptions 2, 4–7 hold. Define

Bias(n, γ,Σ, {Ti}i, fH) =
2

n2
E

∥∥∥∥∥∥Σ1/2
n∑

j=1

j∏
i=1

(I − γTi−1) fH

∥∥∥∥∥∥
2

Σ

.

If 0 ≤ r ≤ 1, then

Bias(n, γ,Σ, {Ti}i, fH) ≤ 2c−2r(γn)−2r
∥∥Σ−rfH

∥∥2
Σ
;

If r > 1, then

Bias(n, γ,Σ, {Ti}i, fH) ≤ 2c−2rn−2γ−2r
∥∥Σ−rfH

∥∥2
Σ
.

Proof of Lemma 6. The proof is similar to that of Lemma 4 in Dieuleveut and Bach [2016]. Utilizing
Lemma 1,

Bias(n, γ,Σ, {Ti}i, fH) ≤ 2

n2

∥∥∥∥∥∥Σ1/2
n∑

j=1

j∏
i=1

(I − cγΣ) fH

∥∥∥∥∥∥
2

Σ

≤ 2

n2

∥∥∥∥∥∥
n−1∑
j=0

(I − cγΣ)
j
Σr

∥∥∥∥∥∥
2

Σ

∥∥Σ−rfH
∥∥2
Σ

=
2

n2
c−2rγ−2r

∥∥∥∥∥∥
n−1∑
j=0

(I − cγΣ)
j
(cγΣ)r

∥∥∥∥∥∥
2

Σ

∥∥Σ−rfH
∥∥2
Σ

≤ 2

n2
c−2rγ−2r sup

0≤x≤1


n−1∑
j=0

(1− x)
j
xr


2 ∥∥Σ−rfH

∥∥2
Σ
.

If 0 ≤ r ≤ 1, then sup0≤x≤1

{∑n−1
j=0 (1− x)

j
xr
}
≤ n1−r, it follows that

Bias(n, γ,Σ, {Ti}i, fH) ≤ 2c−2r(γn)−2r
∥∥Σ−rfH

∥∥2
Σ
.

If r > 1, then sup0≤x≤1

{∑n−1
j=0 (1− x)

j
xr
}
= 1, it follows that

Bias(n, γ,Σ, {Ti}i, fH) ≤ 2c−2rn−2γ−2r
∥∥Σ−rfH

∥∥2
Σ
.

Lemma 7. Under Assumptions 2, 4–7, we have for r ≥ 0,

Var(n, γ,Σ, {Ti}i, {Ξr
i }i) =

2

n2
E

∥∥∥∥∥∥Σ1/2
n∑

j=1

j∑
k=1

j∏
i=k+1

(I − γTi−1) γΞ
r
k

∥∥∥∥∥∥
2

Σ

≤ c−rγrB2r2c−2σ̃2
[
c0(α)(cγ)

1/αn−1+1/α + n−1
]
,

where c0(α) = 4α2

(α+1)(2α−1) .
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Proof of Lemma 7. Utilizing Lemmas 1 and 3, we have

Var(n, γ,Σ, {Ti}i, {Ξr
i }i) ≤

2

n2
E

∥∥∥∥∥∥Σ1/2
n∑

j=1

j∑
k=1

(I − cγΣ)
j−k

γΞr
k

∥∥∥∥∥∥
2

Σ

=
2

n2

n∑
k=1

γ2E

tr

 n∑
j=k

(I − cγΣ)j−k

Σ

 n∑
j=k

(I − cγΣ)j−k

Ξr
k ⊗ Ξr

k


≤ c−rγrB2rσ̃2 2

n2

n∑
k=1

γ2tr

 n∑
j=k

(I − cγΣ)j−k

Σ

2

= c−rγrB2rσ̃2 2c
−2

n2

n∑
k=1

tr
[
I − (I − cγΣ)n−k+1

]2
.

Note that

tr
[
I − (I − cγΣ)j

]2 ≤ 1 +

∫ ∞

1

[
1− (1− cγu−α)j

]2
du

= 1 +

∫ (cγj)1/α

1

[
1− (1− cγu−α)j

]2
du+

∫ ∞

(cγj)1/α

[
1− (1− cγu−α)j

]2
du

≤ 1 +

(
1 +

1

2α− 1

)
(cγj)1/α,

then

Var(n, γ,Σ, {Ti}i, {Ξr
i }i) ≤

2

n2
E

∥∥∥∥∥∥Σ1/2
n∑

j=1

j∑
k=1

(I − cγΣ)
j−k

γΞr
k

∥∥∥∥∥∥
2

Σ

≤ c−rγrB2rσ̃2 2c
−2

n2

n∑
k=1

[
1 +

(
1 +

1

2α− 1

)
(cγ(n− k + 1))1/α

]

≤ c−rγrB2r2c−2σ̃2

[
4α2(cγ)1/α

(α+ 1)(2α− 1)
n−1+1/α + n−1

]
.

Following Lemmas 1–7, we give the proof of Theorem 2.

Proof of Theorem 2. The recursion (7) is equivalent to

f̂n =
(
I − γwτ (Yn − f̂n−1(Xn))KXn

⊗KXn

)
f̂n−1 + γYnwτ (Yn − f̂n−1(Xn))KXn

+ γξn.

Denote ˜KXn ⊗KXn as the a.s. extension of KXn ⊗ KXn : H → H to L2
PX

→ H, such that
˜KXn
⊗KXn

(f) = f(Xn)KXn
, and it will be denoted as KXn

⊗ KXn
for simplicity without

confusion. Let ηn = f̂n− fH, and Ξn = (Yn− fH(Xn))wτ (Yn− f̂n−1(Xn))KXn
+ ξn. We obtain

that η0 = −fH, and

ηn =
(
I − γwτ (Yn − f̂n−1(Xn))KXn

⊗KXn

)
ηn−1 + γΞn. (9)

We decompose the recursion formula (9) into two simpler recursions ηinit
n and ηnoise

n such that ηn =
ηinit
n + ηnoise

n . Specifically, the initial component {ηinit
n }n is defined as ηinit

0 = −fH, and

ηinit
n =

(
I − γwτ (Yn − f̂n−1(Xn))KXn

⊗KXn

)
ηinit
n−1;

and the noise component {ηnoise
n }n satisfies ηnoise

0 = 0, and

ηnoise
n =

(
I − γwτ (Yn − f̂n−1(Xn))KXn

⊗KXn

)
ηnoise
n−1 + γΞn.
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By Minkowski’s inequality,(
E∥η̄n∥2L2

PX

)1/2
≤
(
E∥η̄init

n ∥2L2
PX

)1/2
+
(
E∥η̄noise

n ∥2L2
PX

)1/2
, (10)

where η̄n =
∑n

j=1 ηj/n, η̄init
n =

∑n
j=1 η

init
j /n, and η̄noise

n =
∑n

j=1 η
noise
j /n. Next, we will respec-

tively present the upper bounds of E∥ηinit
n ∥2

L2
PX

and E∥ηnoise
n ∥2

L2
PX

.

Noise component. Denote Tn−1 = E
[
wτ (Yn − f̂n−1(Xn))KXn

⊗KXn
|Fn−1

]
. Define the

main recursion of ηnoise
n as

ηnoise,0
n = (I − γTn−1) η

noise,0
n−1 + γΞn, with ηnoise,0

0 = 0.

Then the residual term is

ηnoise
n −ηnoise,0

n =
(
I − γwτ (Yn − f̂n−1(Xn))KXn

⊗KXn

)(
ηnoise
n−1 − ηnoise,0

n−1

)
+γΞ1

n, with ηnoise
0 −ηnoise,0

0 = 0,

where Ξ1
n =

(
Tn−1 − wτ (Yn − f̂n−1(Xn))KXn

⊗KXn

)
ηnoise,0
n−1 . For any r ≥ 0, we further define

a sequence {ηnoise,r
n }n as follows:

ηnoise,r
n = (I − γTn−1) η

noise,r
n−1 + γΞr

n, with ηnoise,r
0 = 0,

where Ξ0
n = Ξn, and Ξr

n =
(
Tn−1 − wτ (Yn − f̂n−1(Xn))KXn

⊗KXn

)
ηnoise,r−1
n−1 for r ≥ 1. Then

ηnoise
0 −

∑r
i=0 η

noise,i
0 = 0, and

ηnoise
n −

r∑
i=0

ηnoise,i
n =

(
I − γwτ (Yn − f̂n−1(Xn))KXn

⊗KXn

)(
ηnoise
n−1 −

r∑
i=0

ηnoise,i
n−1

)
+ γΞr+1

n .

Minkowski’s inequality implies that

(
E∥η̄noise

n ∥2L2
PX

)1/2
≤

r∑
i=0

(
E∥η̄noise,i

n ∥2L2
PX

)1/2
+

E

∥∥∥∥∥η̄noise
n −

r∑
i=0

η̄noise,i
n

∥∥∥∥∥
2

L2
PX

1/2

,

where η̄noise,i
n =

∑n
j=1 η

noise,i
j /n. To obtain the upper bound of E∥η̄noise,i

n ∥2
L2

PX

, we first verify the

conditions in Lemma 2. The definition of wτ (·) implies that Tn−1 ≼ Σ for any n. For i = 0,

E(∥Ξ0
n∥2|Fn−1) = E

[∥∥∥(Yn − fH(Xn))wτ (Yn − f̂n−1(Xn))KXn + ξn

∥∥∥2 ∣∣∣∣Fn−1

]
≤ E

[
∥(Yn − fH(Xn))KXn

∥2
∣∣∣∣Fn−1

]
+ E(∥ξn∥2) <∞.

For i ≥ 1,

E(∥Ξi
n∥2|Fn−1) = E

[∥∥∥(Tn−1 − wτ (Yn − f̂n−1(Xn))KXn
⊗KXn

)
ηnoise,r−1
n−1

∥∥∥2 ∣∣∣∣Fn−1

]
=

[
E
(∥∥∥wτ (Yn − f̂n−1(Xn))KXn ⊗KXn

∥∥∥2 ∣∣∣∣Fn−1

)
− ∥Tn−1∥2

] ∥∥∥ηnoise,r−1
n−1

∥∥∥2
≤ E

(
∥KXn ⊗KXn∥

2
)∥∥∥ηnoise,r−1

n−1

∥∥∥2 <∞.

By Lemma 3, for any r ≥ 0 and any n ≥ 0, E(Ξr
n ⊗ Ξr

n) ≼ c−rγrB2rσ̃2Σ. Utilizing Lemma 2 with
α0 = 0 and αn = ηnoise,i

n , we have

E∥η̄noise,i
n ∥2L2

PX

≤ Var(n, γ,Σ, {Tj}j , {Ξi
j}j). (11)

For the residual term ηnoise
n −

∑r
i=0 η

noise,i
n , it is easy to verify the conditions in Lemma 4. If

γc−1B2 < 1, then

E

〈
η̄noise
n −

r∑
i=0

η̄noise,i
n ,Σ

(
η̄noise
n −

r∑
i=0

η̄noise,i
n

)〉
L2

PX

≤ 1

c(1− γc−1B2)

γ

n

n∑
k=1

E∥Ξr+1
k ∥2L2

PX

.
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Utilizing Lemma 3,
n∑

k=1

E∥Ξr+1
k ∥2L2

PX

≤
n∑

k=1

tr
(
E(Ξr+1

k ⊗ Ξr+1
k )

)
≤ nc−(r+1)γr+1B2(r+1)σ̃2tr(Σ).

Then,

E

∥∥∥∥∥η̄noise
n −

r∑
i=0

η̄noise,i
n

∥∥∥∥∥
2

L2
PX

≤ 1

1− γc−1B2
c−(r+2)γr+2B2r+2σ̃2tr(Σ). (12)

Combining (11), (12), and Lemma 7, we have(
E∥η̄noise

n ∥2L2
PX

)1/2
≤

r∑
i=0

[
Var(n, γ,Σ, {Tj}j , {Ξi

j}j)
]1/2

+

[
1

1− γc−1B2
c−(r+2)γr+2B2r+2σ̃2tr(Σ)

]1/2
≤
[
2c−2σ̃2

(
c0(α)(cγ)

1/αn−1+1/α + n−1
)]1/2 r∑

i=0

(c−1γB2)i/2 +

[
1

1− c−1γB2
c−(r+2)γr+2B2r+2σ̃2tr(Σ)

]1/2
≤

√
2c−1σ̃

1− (c−1γB2)1/2

[(
c0(α)(cγ)

1/α
)1/2

n−1/2+1/(2α) + n−1/2

]
+

[
1

1− c−1γB2
c−(r+2)γr+2B2r+2σ̃2tr(Σ)

]1/2
,

where c0(α) = 4α2

(α+1)(2α−1) . Let the recursion step r → ∞, if c−1γB2 < 1, then we have(
E∥η̄noise

n ∥2L2
PX

)1/2
≤

√
2c−1σ̃

1− (c−1γB2)1/2

[(
c0(α)(cγ)

1/α
)1/2

n−1/2+1/(2α) + n−1/2

]
. (13)

Initial component. Recall that ηinit
n =

(
I − γwτ (Yn − f̂n−1(Xn))KXn ⊗KXn

)
ηinit
n−1 with

ηinit
0 = −fH. Define the main recursion as

ηinit,0
n = (I − γTn−1) η

init,0
n−1

with ηinit,0
0 = −fH. Then the residual term is

ηinit
n − ηinit,0

n =
(
I − γwτ (Yn − f̂n−1(Xn))KXn

⊗KXn

)(
ηinit
n−1 − ηinit,0

n−1

)
+ γΞinit

n

with ηinit
0 − ηinit,0

0 = 0, where Ξinit
n =

(
Tn−1 − wτ (Yn − f̂n−1(Xn))KXn ⊗KXn

)
ηinit,0
n−1 . Utilizing

Lemmas 2 and 4, we have

E⟨η̄init
n ,Ση̄init

n ⟩L2
PX

≤ Bias(n, γ,Σ, {Ti}i, fH),

and

E⟨η̄init
n − η̄init,0

n ,Σ
(
η̄init
n − η̄init,0

n

)
⟩L2

PX
≤ 1

c(1− γc−1B2)

γ

n

n∑
k=1

E∥Ξinit
k ∥2L2

PX

,

where

Bias(n, γ,Σ, {Ti}i, fH) =
2

n2
E

∥∥∥∥∥∥Σ1/2
n∑

j=1

j∏
i=1

(I − γTi−1) fH

∥∥∥∥∥∥
2

Σ

.

Note that
E∥Ξinit

k ∥2L2
PX

= E

〈
fH,

k∏
i=1

(I − γTi−1)
(
Tk−1 − wτ (Yk − f̂k−1(Xk))KXk

⊗KXk

)2 k∏
i=1

(I − γTi−1)fH

〉
L2

PX

≤ B2E

〈
fH,

(
k∏

i=1

(I − γTi−1)

)2

ΣfH

〉
L2

PX

.
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By Lemma 1, for any r, if c−1γB2 < 1 with c ∈ (0, 1], then cγB2 < 1, it follows that

γ

n

n∑
k=1

E∥Ξinit
k ∥2L2

PX

≤ γB2

n

n∑
k=1

E

〈
fH,

(
k∏

i=1

(I − γTi−1)

)2

ΣfH

〉
L2

PX

≤ γB2

n
E

〈
fH,

n∑
k=1

(I − cγΣ)
2k

ΣfH

〉
L2

PX

≤ γB2

n

∥∥∥∥∥∥
[

n∑
k=1

(I − cγΣ)2kΣ2r

]1/2
Σ−rfH

∥∥∥∥∥∥
2

L2
PX

≤ γB2

n
c−2rγ−2r

∥∥∥∥∥
n∑

k=1

(I − cγΣ)2k(cγΣ)2r

∥∥∥∥∥
L2

PX

∥∥Σ−rfH
∥∥2
L2

PX

≤ γB2

n
c−2rγ−2r sup

0≤x≤1

{
n∑

k=1

(1− x)2kx2r

}∥∥Σ−rfH
∥∥2
L2

PX

.

If r ≤ 1/2, then sup0≤x≤1

{∑n
k=1(1− x)2kx2r

}
≤ n1−2r, whose proof can be found in Dieuleveut

and Bach [2016]. Then

E∥η̄init
n − η̄init,0

n ∥2L2
PX

≤ O

(
(γn)−2r

∥∥Σ−rfH
∥∥2
L2

PX

)
.

Thus, for r ≤ 1/2,(
E∥η̄init

n ∥2L2
PX

)1/2
≤ Bias(n, γ,Σ, {Ti}i, fH)1/2 +O

(
(γn)−r

∥∥Σ−rfH
∥∥
L2

PX

)
.

By Lemma 6, if 0 ≤ r ≤ 1/2, then(
E∥η̄init

n ∥2L2
PX

)1/2
≤ O

(
(γn)−r

∥∥Σ−rfH
∥∥
L2

PX

)
. (14)

When r > 1/2, utilizing Lemmas 5 and 6, we have(
E∥η̄init

n ∥2L2
PX

)1/2
≤ O

((
1 + γ(1+α)(2r−1)/αn(2r−1)/α

)1/2
γ−rn−min{r,1} ∥∥Σ−rfH

∥∥
L2

PX

)
.

(15)
To put (14) and (15) together, denote q(γ, n) = 0 for r ≤ 1/2, and q(γ, n) =
γ(1+α)(2r−1)/αn(2r−1)/α for r > 1/2. Then(

E∥η̄init
n ∥2L2

PX

)1/2
≤ O

(
(1 + q(γ, n))

1/2
γ−rn−min{r,1} ∥∥Σ−rfH

∥∥
L2

PX

)
. (16)

Combining (10), (13), and (16), we obtain that(
E∥η̄n∥2L2

PX

)1/2
≤

√
2c−1σ̃

1− (c−1γB2)1/2

[(
c0(α)(cγ)

1/α
)1/2

n−1/2+1/(2α) + n−1/2

]
+O

(
(1 + q(γ, n))

1/2
γ−rn−min{r,1} ∥∥Σ−rfH

∥∥
L2

PX

)
.

Thus,

E∥f̄n − fH∥2L2
PX

≤ O

(
σ̃2
(
γ1/αn−1+1/α + n−1

)
+ (1 + q(γ, n))γ−2rn−2min{r,1} ∥∥Σ−rfH

∥∥2
L2

PX

)
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J.5 Proof of Theorem 3

The proof idea of Theorem 3 is similar to that of Theorem 2. We begin by presenting several useful
lemmas that will be useful in proving the main theorem. For brevity, we omit proofs that are analogous
to previously shown results. The proof of Theorem 3 is given thereafter.
Lemma 8. Let αn = (I − γnTn−1)αn−1 + γnΞ

α
n . Tn−1 satisfies Tn−1 ≼ Σ with γnΣ ≼ I , where

≼ denotes the order between self-adjoint operators. Ξα
n ∈ H is Fn measurable for a sequence of

increasing σ-fields {Fn}n, E(∥Ξα
n∥2|Fn−1) is finite, and E(Ξα

n ⊗ Ξα
n) ≼ σ2

αΣ. Then

E⟨ᾱn,Σᾱn⟩L2
PX

≤ Bias(n, {γi}i,Σ, {Ti}i, α0) + Var(n, {γi}i,Σ, {Ti}i, {Ξα
i }i),

where ᾱn =
∑n

j=1 αn,

Bias(n, {γi}i,Σ, {Ti}i, α0) =
2

n2
E

∥∥∥∥∥∥Σ1/2
n∑

j=1

j∏
i=1

(I − γiTi−1)α0

∥∥∥∥∥∥
2

Σ

,

and

Var(n, {γi}i,Σ, {Ti}i, {Ξα
i }i) =

2

n2
E

∥∥∥∥∥∥Σ1/2
n∑

j=1

j∑
k=1

j∏
i=k+1

(I − γiTi−1) γkΞ
α
k

∥∥∥∥∥∥
2

Σ

.

Lemma 9. Under Assumptions 2–5, for any r ≥ 0 and any n ≥ 0, E(Ξr
n ⊗ Ξr

n) ≼ c−rγr0B
2rσ̃2Σ,

and E
(
ηnoise,r
n ⊗ ηnoise,r

n

)
≼ c−(r+1)γr+1

0 B2rσ̃2I , where σ̃2 = σ2 + 8τ2B2 log(2/δ)
ε2 , and c is defined

as in Lemma 1.
Lemma 10. Assume that (Xn, f̂n,Ξ

α
n) ∈ H ×H×H is Fn measurable for a sequence of increas-

ing σ-fields {Fn}n. Further, E(Ξα
n|Fn−1) = 0, E(∥Ξα

n∥2|Fn−1) < ∞, and E(∥KXn
∥2KXn

⊗
KXn

|Fn−1) ≼ B2Σ with E(KXn
⊗ KXn

|Fn−1) = Σ for all n ≥ 1, some constant B > 0 and

invertible operator Σ. Let αn =
(
I − γnwτ (Yn − f̂n−1(Xn))KXn

⊗KXn

)
αn−1 + γnΞ

α
n, with

α0 = 0 and non-increasing {γn}n satisfying c−1γ0B
2 < 1. Then

E⟨ᾱn−1,Σᾱn−1⟩L2
PX

≤ 1

2cn(1− c−1γ0B2)

[
n−1∑
k=1

E∥αk∥2L2
PX

(
− 1

γk
+

1

γk+1

)
+ 2

n∑
k=1

γkE∥Ξα
k∥2L2

PX

]
.

Proof of Lemma 10. Similar to the proof of Lemma 4, we obtain

2cγn(1− c−1γnB
2)E⟨αn−1,Σαn−1⟩L2

PX
≤ E∥αn−1∥2L2

PX

− E∥αn∥2L2
PX

+ 2γ2nE∥Ξα
n∥2L2

PX

.

If {γn}n is non-increasing, then

E⟨αn−1,Σαn−1⟩L2
PX

≤ 1

2cγn(1− c−1γ0B2)

(
E∥αn−1∥2L2

PX

− E∥αn∥2L2
PX

+ 2γ2nE∥Ξα
n∥2L2

PX

)
.

By convexity and α0 = 0, we have

E⟨ᾱn−1,Σᾱn−1⟩L2
PX

≤ 1

2cn(1− c−1γ0B2)

[
n−1∑
k=1

E∥αk∥2L2
PX

(
− 1

γk
+

1

γk+1

)
+ 2

n∑
k=1

γkE∥Ξα
k∥2L2

PX

]
.

Lemma 11. Suppose Assumptions 2, 4–7 hold. Take γi ≍ i−ζ with ζ ∈ (0, 1). Define

Bias(n, {γi}i,Σ, {Ti}i, fH) =
2

n2
E

∥∥∥∥∥∥Σ1/2
n∑

j=1

j∏
i=1

(I − γiTi−1) fH

∥∥∥∥∥∥
2

Σ

.
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If r − 1/(1− ζ) ≤ 0, then

Bias(n, {γi}i,Σ, {Ti}i, fH) ≤ O
(
n−2r(1−ζ)

∥∥Σ−rfH
∥∥2
Σ

)
;

if r − 1/(1− ζ) > 0, then

Bias(n, {γi}i,Σ, {Ti}i, fH) ≤ O
(
n−2

∥∥Σ−rfH
∥∥2
Σ

)
.

Proof of Lemma 11. The proof is similar to that of Lemma 6 in Dieuleveut and Bach [2016]. Utilizing
Lemma 1, if γi = i−ζ , then

Bias(n, {γi}i,Σ, {Ti}i, fH) ≤ 2

n2

∥∥∥∥∥∥Σ1/2
n∑

j=1

j∏
i=1

(I − cγiΣ) fH

∥∥∥∥∥∥
2

Σ

≤ 2

n2

∥∥∥∥∥∥
n∑

j=1

j∏
i=1

(I − cγiΣ)Σ
r

∥∥∥∥∥∥
2

Σ

∥∥Σ−rfH
∥∥2
Σ

≤ 2

n2
sup

0≤x≤1/(cγ0)


n∑

j=1

j∏
i=1

(1− cγix)x
r


2 ∥∥Σ−rfH

∥∥2
Σ

≤ 2

n2

(
C sup

0≤x≤1

{
nxr ∧ xr−1/(1−ζ)

})2 ∥∥Σ−rfH
∥∥2
Σ
.

If r − 1/(1− ζ) ≤ 0, then sup0≤x≤1

{
nxr ∧ xr−1/(1−ζ)

}
≤ n1−r(1−ζ), so that

Bias(n, {γi}i,Σ, {Ti}i, fH) ≤ C0n
−2r(1−ζ)

∥∥Σ−rfH
∥∥2
Σ
;

if r − 1/(1− ζ) > 0, then sup0≤x≤1

{
nxr ∧ xr−1/(1−ζ)

}
= 1, so that

Bias(n, {γi}i,Σ, {Ti}i, fH) ≤ C0n
−2
∥∥Σ−rfH

∥∥2
Σ
.

Lemma 12. Under Assumptions 2, 4–7, take γi ≍ i−ζ with ζ ∈ (0, 1), we have for r ≥ 0, there exist
positive constants C3 and C4 such that

Var(n, {γi}i,Σ, {Ti}i, {Ξr
i }i) =

2

n2
E

∥∥∥∥∥∥Σ1/2
n∑

j=1

j∑
k=1

j∏
i=k+1

(I − γiTi−1) γkΞ
r
k

∥∥∥∥∥∥
2

Σ

≤

{
C3c

−rγr0B
2rσ̃2n(1−ζ−α)/α, if 0 < ζ ≤ 1/2

C4c
−rγr0B

2rσ̃2n(2αζ+1−ζ−2α)/α, if 1/2 < ζ < 1
.

Proof of Lemma 12. The proof is similar to that of Lemma 7 in Dieuleveut and Bach [2016]. Utilizing
Lemmas 1 and 9, we have

Var(n, {γi}i,Σ, {Ti}i, {Ξr
i }i) ≤

2

n2
E

∥∥∥∥∥∥Σ1/2
n∑

j=1

j∑
k=1

j∏
i=k+1

(I − cγiΣ) γkΞ
r
k

∥∥∥∥∥∥
2

Σ

=
2

n2

n∑
k=1

γ2kE

tr

 n∑
j=k

j∏
i=k+1

(I − cγiΣ)

Σ

 n∑
j=k

j∏
i=k+1

(I − cγiΣ)

Ξr
k ⊗ Ξr

k


≤ c−rγr0B

2rσ̃2 2

n2

n∑
k=1

γ2ktr

 n∑
j=k

j∏
i=k+1

(I − cγiΣ)

Σ

2

≤ c−rγr0B
2rσ̃2 2C

′

n2

n∑
k=1

γ2k

∞∑
t=1

 n∑
j=k

j∏
i=k+1

(1− cγit
−α)

 t−α

2

.
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Take γi ≍ i−ζ . Utilizing 1− x ≤ exp(−x), we have

n∑
j=k

j∏
i=k+1

(1− cγit
−α) ≤

n∑
j=k

exp{−c′
j∑

i=k+1

i−ζt−α}

=

n∑
j=k

exp

{
−c′t−α (j + 1)1−ζ − (k + 1)1−ζ

1− ζ

}

≤
∫ n+1

k+1

exp

{
−c′t−αx

1−ζ − (k + 1)1−ζ

1− ζ

}
dx

≤ c′′ max{tα/(1−ζ), tα(k + 1)ζ}.

Then

Var(n, {γi}i,Σ, {Ti}i, {Ξr
i }i) ≤

2

n2
E

∥∥∥∥∥∥Σ1/2
n∑

j=1

j∑
k=1

j∏
i=k+1

(I − cγiΣ) γkΞ
r
k

∥∥∥∥∥∥
2

Σ

≤ c−rγr0B
2rσ̃2 2C

′

n2

n∑
k=1

γ2k

∞∑
t=1

t−2α
(
min{n− k, c′′ max{tα/(1−ζ), tα(k + 1)ζ}}

)2
≤ c−rγr0B

2rσ̃2

[
C ′′

n2

n∑
k=1

γ2k

∞∑
t=1

t−2α min{(n− k)2, t2α/(1−ζ)}

+
C ′′

n2

n∑
k=1

γ2k

∞∑
t=1

t−2α min{(n− k)2, t2α(k + 1)2ζ}

]
.

Utilizing the same arguments as in Lemma 7 in Dieuleveut and Bach [2016], we have,

C ′′

n2

n∑
k=1

γ2k

∞∑
t=1

t−2α min{(n− k)2, t2α/(1−ζ)} ≤

{
C1n

(1−ζ−α)/α, if ζ ≤ 1/2

C1n
(2αζ+1−ζ−2α)/α, if ζ > 1/2

.

Also,
C ′′

n2

n∑
k=1

γ2k

∞∑
t=1

t−2α min{(n− k)2, t2α(k + 1)2ζ} ≤ C2n
(1−ζ−α)/α.

Thus,

Var(n, {γi}i,Σ, {Ti}i, {Ξr
i }i) ≤

{
C3c

−rγr0B
2rσ̃2n(1−ζ−α)/α, if 0 < ζ ≤ 1/2

C4c
−rγr0B

2rσ̃2n(2αζ+1−ζ−2α)/α, if 1/2 < ζ < 1
.

Following Lemmas 1, 8–12, we give the proof of Theorem 3.

Proof of Theorem 3. Denote ηn = f̂n − fH. The recursion (7) implies that

ηn =
(
I − γnwτ (Yn − f̂n−1(Xn))KXn

⊗KXn

)
ηn−1 + γnΞn, (17)

where Ξn = (Yn − fH(Xn))wτ (Yn − f̂n−1(Xn))KXn
+ ξn. We also decompose the recursion

formula (17) into the initial and noise components. Specifically, the initial component {ηinit
n }n is

defined as ηinit
0 = −fH, and

ηinit
n =

(
I − γnwτ (Yn − f̂n−1(Xn))KXn

⊗KXn

)
ηinit
n−1;

and the noise component {ηnoise
n }n satisfies ηnoise

0 = 0, and

ηnoise
n =

(
I − γnwτ (Yn − f̂n−1(Xn))KXn ⊗KXn

)
ηnoise
n−1 + γnΞn.
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By Minkowski’s inequality,(
E∥η̄n∥2L2

PX

)1/2
≤
(
E∥η̄init

n ∥2L2
PX

)1/2
+
(
E∥η̄noise

n ∥2L2
PX

)1/2
, (18)

where η̄n =
∑n

j=1 ηj/n, η̄init
n =

∑n
j=1 η

init
j /n, and η̄noise

n =
∑n

j=1 η
noise
j /n. Next, we will respec-

tively present the upper bounds of E∥ηinit
n ∥2

L2
PX

and E∥ηnoise
n ∥2

L2
PX

.

Noise component. Denote Tn−1 = E
[
wτ (Yn − f̂n−1(Xn))KXn

⊗KXn
|Fn−1

]
. For any r ≥ 0,

define a sequence {ηnoise,r
n }n as follows:

ηnoise,r
n = (I − γnTn−1) η

noise,r
n−1 + γnΞ

r
n, with ηnoise,r

0 = 0,

where Ξ0
n = Ξn, and Ξr

n =
(
Tn−1 − wτ (Yn − f̂n−1(Xn))KXn

⊗KXn

)
ηnoise,r−1
n−1 for r ≥ 1. Then

ηnoise
0 −

∑r
i=0 η

noise,i
0 = 0, and

ηnoise
n −

r∑
i=0

ηnoise,i
n =

(
I − γnwτ (Yn − f̂n−1(Xn))KXn

⊗KXn

)(
ηnoise
n−1 −

r∑
i=0

ηnoise,i
n−1

)
+γnΞ

r+1
n .

Minkowski’s inequality implies that

(
E∥η̄noise

n ∥2L2
PX

)1/2
≤

r∑
i=0

(
E∥η̄noise,i

n ∥2L2
PX

)1/2
+

E

∥∥∥∥∥η̄noise
n −

r∑
i=0

η̄noise,i
n

∥∥∥∥∥
2

L2
PX

1/2

,

where η̄noise,i
n =

∑n
j=1 η

noise,i
j /n. By Lemma 9, for any r ≥ 0 and any n ≥ 0, E(Ξr

n ⊗ Ξr
n) ≼

c−rγr0B
2rσ̃2Σ. Utilizing Lemma 8 with α0 = 0 and αn = ηnoise,i

n , we have

E∥η̄noise,i
n ∥2L2

PX

≤ Var(n, {γj}j ,Σ, {Tj}j , {Ξi
j}j). (19)

For the residual term ηnoise
n −

∑r
i=0 η

noise,i
n , we can utilize Lemma 10 with αr

n = ηnoise
n −

∑r
i=0 η

noise,i
n

and Ξα
n = Ξr+1

n . If {γn}n is non-increasing and satisfies c−1γ0B
2 < 1, then

E

〈
η̄noise
n −

r∑
i=0

η̄noise,i
n ,Σ

(
η̄noise
n −

r∑
i=0

η̄noise,i
n

)〉
L2

PX

≤ 1

2cn(1− c−1γ0B2)

[
n−1∑
k=1

E∥αr
k∥2L2

PX

(
− 1

γk
+

1

γk+1

)
+ 2

n∑
k=1

γkE∥Ξr+1
k ∥2L2

PX

]
.

Utilizing Lemma 9,

n∑
k=1

γkE∥Ξr+1
k ∥2L2

PX

≤
n∑

k=1

γktr
(
E(Ξr+1

k ⊗ Ξr+1
k )

)
≤ nc−(r+1)γr+2

0 B2(r+1)σ̃2tr(Σ).

Take γi ≍ i−ζ . Note that ∥αr
i ∥ ≤ ∥αr

i−1∥+ γi∥Ξr+1
i ∥ ≤

∑i
k=1 γk∥Ξ

r+1
k ∥. Then

1

n

n−1∑
k=1

E∥αr
k∥2L2

PX

(
− 1

γk
+

1

γk+1

)
≤ 2c′ζ

1

n

n−1∑
i=1

1

iγi
E∥αr

k∥2

≤ 2c′ζ
1

n

n−1∑
i=1

1

iγi

[(
i∑

k=1

γk

)(
i∑

k=1

γkE(∥Ξr+1
k ∥2)

)]

≤ c′ζ

1− ζ
nc−(r+1)γr+2

0 B2(r+1)σ̃2tr(Σ).
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It follows that

E

∥∥∥∥∥η̄noise
n −

r∑
i=0

η̄noise,i
n

∥∥∥∥∥
2

L2
PX

≤ 1

2c(1− c−1γ0B2)

[
c′ζ

1− ζ
nc−(r+1)γr+2

0 B2(r+1)σ̃2tr(Σ) + 2c−(r+1)γr+2
0 B2(r+1)σ̃2tr(Σ)

]
≤ c̃nc−(r+1)γr+2

0 B2(r+1)σ̃2tr(Σ).
(20)

Combining (19), (20), and Lemma 12, we have(
E∥η̄noise

n ∥2L2
PX

)1/2
≤

r∑
i=0

[
Var(n, {γj}j ,Σ, {Tj}j , {Ξi

j}j)
]1/2

+
[
c′nc−(r+1)γr+2

0 B2(r+1)σ̃2tr(Σ)
]1/2

≤ σ̃
[
C3n

(1−ζ−α)/αI{0 < ζ ≤ 1/2}+ C4n
(2αζ+1−ζ−2α)/αI{1/2 < ζ < 1}

]1/2 r∑
i=0

(c−1γB2)i/2

+
[
c′nc−(r+1)γr+2

0 B2(r+1)σ̃2tr(Σ)
]1/2

≤ σ̃

1− (c−1γB2)1/2

[
C3n

(1−ζ−α)/αI{0 < ζ ≤ 1/2}+ C4n
(2αζ+1−ζ−2α)/αI{1/2 < ζ < 1}

]1/2
+
[
c′nc−(r+1)γr+2

0 B2(r+1)σ̃2tr(Σ)
]1/2

.

Let the recursion step r → ∞, if c−1γB2 < 1, then we have

(
E∥η̄noise

n ∥2L2
PX

)1/2
≤


C

1/2
3 σ̃

1− (c−1γB2)1/2
n(1−ζ−α)/(2α), if 0 < ζ ≤ 1/2

C
1/2
4 σ̃

1− (c−1γB2)1/2
n(2αζ+1−ζ−2α)/(2α), if 1/2 < ζ < 1

. (21)

Initial component. The main recursion is

ηinit,0
n = (I − γnTn−1) η

init,0
n−1

with ηinit,0
0 = −fH, and the residual term is

ηinit
n − ηinit,0

n =
(
I − γnwτ (Yn − f̂n−1(Xn))KXn

⊗KXn

)(
ηinit
n−1 − ηinit,0

n−1

)
+ γnΞ

init
n

with ηinit
0 − ηinit,0

0 = 0, where Ξinit
n =

(
Tn−1 − wτ (Yn − f̂n−1(Xn))KXn ⊗KXn

)
ηinit,0
n−1 . Utilizing

Lemmas 8 and 10, we have

E⟨η̄init,0
n ,Ση̄init,0

n ⟩L2
PX

≤ Bias(n, {γi}i,Σ, {Ti}i, fH),

and

E⟨η̄init
n − η̄init,0

n ,Σ
(
η̄init
n − η̄init,0

n

)
⟩L2

PX

≤ 1

2cn(1− c−1γ0B2)

[
n−1∑
k=1

E∥ηinit
k − ηinit,0

k ∥2L2
PX

(
− 1

γk
+

1

γk+1

)
+ 2

n∑
k=1

γkE∥Ξinit
k ∥2L2

PX

]
,

where

Bias(n, {γi}i,Σ, {Ti}i, fH) =
2

n2
E

∥∥∥∥∥∥Σ1/2
n∑

j=1

j∏
i=1

(I − γiTi−1) fH

∥∥∥∥∥∥
2

Σ

.

47



Note that

E∥Ξinit
k ∥2L2

PX

≤ B2E

〈
fH,

(
k∏

i=1

(I − γiTi−1)

)2

ΣfH

〉
L2

PX

.

By Lemma 1, for any r, we have

1

n

n∑
k=1

γkE∥Ξinit
k ∥2L2

PX

≤ B2

n

n∑
k=1

γkE

〈
fH,

(
k∏

i=1

(I − γiTi−1)

)2

ΣfH

〉
L2

PX

≤ B2

n
c−1

∥∥∥∥∥∥
n∑

k=1

(
k∏

i=1

(I − cγiΣ)

)2

cγkΣ
2r

∥∥∥∥∥∥
L2

PX

∥∥Σ−rfH
∥∥2
L2

PX

.

The proof of Theorem 3 in Dieuleveut and Bach [2016] implies that, if 2r − 1
1−ζ < 0, then∥∥∥∥∥∥

n∑
k=1

(
k∏

i=1

(I − cγiΣ)

)2

cγkΣ
2r

∥∥∥∥∥∥
L2

PX

≤ c′′n(nγn)
−2r.

It follows that
1

n

n∑
k=1

γkE∥Ξinit
k ∥2L2

PX

≤ c′′c−1B2(nγn)
−2r

∥∥Σ−rfH
∥∥2
L2

PX

.

Denote αn = ηinit
n − ηinit,0

n . Lemma 10 implies that

E∥αi∥2 ≤ E∥αi−1∥2 + 2γ2i E∥Ξinit
i ∥2 ≤

i∑
k=1

2γ2kE∥Ξinit
k ∥2 ≤

i∑
k=1

2γkE∥Ξinit
k ∥2.

Taking γi ≍ i−ζ , we have

1

n

n−1∑
k=1

E∥αk∥2L2
PX

(
− 1

γk
+

1

γk+1

)
≤ 2c′ζ

1

n

n−1∑
i=1

1

iγi
E∥αk∥2

≤ 4c′c′′c−1ζB2 1

n

n−1∑
i=1

i(iγi)
−2r−1

∥∥Σ−rfH
∥∥2
L2

PX

≤ c′′′B2γ−1
n (nγn)

−2r
∥∥Σ−rfH

∥∥2
L2

PX

.

It follows that

E∥η̄init
n − η̄init,0

n ∥2L2
PX

≤ O

(
(nγn)

−2r
∥∥Σ−rfH

∥∥2
L2

PX

)
+O

(
γ−1
n (nγn)

−2r
∥∥Σ−rfH

∥∥2
L2

PX

)
≤ O

(
γ−1
n (nγn)

−2r
∥∥Σ−rfH

∥∥2
L2

PX

)
.

Thus,(
E∥η̄init

n ∥2L2
PX

)1/2
≤ Bias(n, {γi}i,Σ, {Ti}i, fH)1/2 +O

(
γ−1/2
n (nγn)

−r
∥∥Σ−rfH

∥∥
L2

PX

)
.

Take γi ≍ i−ζ with ζ ∈ (0, 1). By Lemma 11, if r − (1 + ζ/2)/(1− ζ) ≤ 0, then(
E∥η̄init

n ∥2L2
PX

)1/2
≤ O

(
γ−1/2
n (nγn)

−r
∥∥Σ−rfH

∥∥
L2

PX

)
; (22)

if r − (1 + ζ/2)/(1− ζ) > 0, then(
E∥η̄init

n ∥2L2
PX

)1/2
≤ O

(
n−1

∥∥Σ−rfH
∥∥
L2

PX

)
.
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Note that 1/(2(1− ζ)) < (1+ ζ/2)/(1− ζ) for any ζ ∈ (0, 1). Combining (18), (21), and (22), take
ζ satisfying 2r − 1/(1− ζ) < 0, if ζ ∈ (0, 1/2], then(

E∥η̄n∥2L2
PX

)1/2
≤ O

(
σ̃n(1−ζ−α)/(2α)

)
+O

(
γ−1/2
n (nγn)

−r
∥∥Σ−rfH

∥∥
L2

PX

)
;

if ζ ∈ (1/2, 1), then(
E∥η̄n∥2L2

PX

)1/2
≤ O

(
σ̃n(2αζ+1−ζ−2α)/(2α)

)
+O

(
γ−1/2
n (nγn)

−r
∥∥Σ−rfH

∥∥
L2

PX

)
.

Thus, taking ζ satisfying 2r − 1/(1− ζ) < 0, we have

E∥f̄n − fH∥2L2
PX

≤


O

(
σ̃2γ1/αn n−1+1/α + γ−1

n (nγn)
−2r

∥∥Σ−rfH
∥∥2
L2

PX

)
, if 0 < ζ ≤ 1/2

O

(
σ̃2(nγn)

−2+1/α + γ−1
n (nγn)

−2r
∥∥Σ−rfH

∥∥2
L2

PX

)
, if 1/2 < ζ < 1

.
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