

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 SAMPLE-EFFICIENT DIFFERENTIALLY PRIVATE FINE-TUNING VIA GRADIENT MATRIX DENOISING

Anonymous authors

Paper under double-blind review

ABSTRACT

We address the challenge of sample efficiency in differentially private fine-tuning of large language models (LLMs) using DP-SGD. While DP-SGD provides strong privacy guarantees, the added noise significantly increases the entropy of gradient matrices, disrupting their low-rank structure and slowing optimization. We propose a post-processing algorithm that leverages random matrix theory to denoise gradients, restore low-rank structure, and improve alignment with the original signal. Applied to DP-SGD fine-tuning of RoBERTa model family on GLUE tasks and Qwen and Llama family on DART and E2E datasets, our method improves sample efficiency compared to state-of-the-art approaches, substantially reducing training time when optimal performance is not required. This work demonstrates that matrix recovery techniques can enhance the utility of private language model training without compromising privacy guarantees.

1 INTRODUCTION

Many applications of machine learning in natural language processing tasks may raise privacy concerns, because of the potential data leakage from using models trained on private data (Carlini et al., 2021; 2022). Differential privacy (DP) (Dwork et al., 2014) is a formal framework for quantifying and limiting the privacy loss experienced by individuals whose data are included in a dataset when an algorithm is applied to it. DP-SGD (Abadi et al., 2016), is a method to ensure privacy guarantees as measured by the DP framework, and has been successfully applied to NLP tasks (Yu et al., 2021; Li et al., 2021).

Applying DP-SGD to language models, while successful, has many challenges. Training large language models (LLMs) with DP-SGD is computationally expensive (Li et al., 2021). Using parameter efficient fine-tuning methods, this challenge has been addressed (Yu et al., 2021). Still, computational cost is higher than the non-private training, because of lower sample efficiency. This can be viewed, for example, in Figure 1.

In the DP-SGD method, noise is deliberately added to the gradient vector before it is passed to the optimizer to ensure privacy. While this step is crucial for protecting individual data, it also complicates the optimization process. Specifically, the added noise alters the distribution of singular values in the gradient matrix. For transformer-based language models, the singular values of the gradient matrix typically decay rapidly, reflecting low matrix entropy and a strong low-rank structure (Li et al., 2022; Zhao et al., 2024). After noise is introduced, however, the singular values decay more slowly, leading to higher matrix entropy (Li et al., 2022). We hypothesize that this increase in entropy makes optimization more difficult.

The singular values of the gradient matrix undergo a “phase transition” (Baik et al., 2005) when noise is added. If the underlying signal is weak, the singular values of the noisy matrix become indistinguishable from those of pure noise. Figure 4 illustrates this by comparing the sorted singular values of a RoBERTa layer’s gradient matrix before and after DP-SGD noise is applied. In this weak-signal regime, the noisy gradient’s singular values closely follow the “bulk” distribution predicted by the Marchenko–Pastur law (Marčenko & Pastur, 1967; Tao, 2012), making them essentially indistinguishable from pure noise. Thus, when a low-rank signal is too small relative to the noise, it is hidden in the noise and cannot be detected or recovered by examining the singular values and vectors alone. This highlights a fundamental limitation: sufficiently weak signals are undetectable in the presence of strong noise.

054 However, if some singular values exceed this threshold, the largest singular values of the noisy
 055 matrix deviate from the bulk, as shown in Figure 5. This phenomenon is known as the Baik–Ben
 056 Arous–Péché (BBP) phase transition (Baik et al., 2005). The extent of these deviations, as well
 057 as the alignment between the singular vectors of the noisy and original matrices, can be predicted
 058 mathematically (Baik & Silverstein, 2006; Benaych-Georges & Nadakuditi, 2012). These properties
 059 enable partial recovery of the original matrix from its noisy observation (Shabalin & Nobel, 2013;
 060 Gavish & Donoho, 2014).

061 In this paper, we propose a post-processing algorithm for DP-SGD that leverages the mentioned
 062 matrix recovery techniques from random matrix theory to reduce the entropy of the gradient matrix,
 063 restore its low-rank structure, and improve the alignment between the noisy and original gradients.
 064 To evaluate our approach, we apply it to DP-SGD fine-tuning of RoBERTa (Liu et al., 2019) on
 065 GLUE tasks (Wang et al., 2019). We compare the sample efficiency of our method to the current
 066 state-of-the-art (Yu et al., 2021), demonstrating that our approach can improve the sample efficiency
 067 of DP-SGD fine-tuning for language models. While our method may not always achieve the highest
 068 possible utility, it can substantially reduce training time when optimal performance is not required.

070 2 PRELIMINARIES

072 2.1 DIFFERENTIAL PRIVACY

074 Differential privacy is a framework to quantify and measure the maximum possible privacy risks an
 075 algorithm with sensitive training dataset may have. For a pair (ϵ, δ) , this formalism asks any learning
 076 algorithm \mathcal{M} to have similar outputs for two datasets differing only in one element. Intuitively, the
 077 output of the learning algorithm should not change much whether it sees a particular example or not.
 078 This intuition can be formulated mathematically in the concept of approximate differential privacy.

079 2.1.1 APPROXIMATE DIFFERENTIAL PRIVACY

081 **Definition 1.** Two sets are called neighboring sets if they differ only in inclusion or exclusion of
 082 exactly one element.

083 **Definition 2.** A randomized algorithm \mathcal{M} is said to satisfy (ϵ, δ) differential privacy, if for any two
 084 neighboring datasets D and D' and for any event E , the following holds

$$085 \mathbb{P}(\mathcal{M}(D) \in E) \leq \exp(\epsilon) \mathbb{P}(\mathcal{M}(D') \in E) + \delta \quad (1)$$

088 In practice, it is usual to have δ in the order of $|D|^{-1}$ (Abadi et al., 2016). In NLP applications, ϵ
 089 usually takes values between 0.5 and 8 (Yu et al., 2021; Li et al., 2021).

091 2.1.2 DP-SGD

093 DP-SGD is a popular method of training deep learning models with approximate differential privacy
 094 guarantees. This method is a modification of the popular first order SGD algorithm.

095 DP-SGD works by modifying the gradient before passing it to the optimizer. It has two main parts
 096 1. per example gradient clipping and 2. noise addition. There are two hyper-parameters associated
 097 with each of them, the clipping threshold, C , which controls the maximum per example gradient
 098 norm, and the noise multiplier, σ , which when multiplied by C , controls the standard deviation of
 099 the isotropic zero mean Gaussian noise added to the sum of the clipped gradients (Abadi et al.,
 100 2016).

101 In standard SGD, for a batch of data $\{x_i\}_{i \in \mathcal{B}} \subset D$, the batch gradient is computed as:

$$103 \mathbf{g}_{\mathcal{B}} = \frac{1}{B} \sum_{i \in \mathcal{B}} \mathbf{g}_i = \frac{1}{B} \sum_{i \in \mathcal{B}} \nabla f(\theta, x_i)$$

106 In DP-SGD, each individual gradient is first clipped so that its norm does not exceed the threshold C .
 107 The clipped gradients are then summed, and Gaussian noise with entries drawn from $\mathcal{N}(0, \sigma^2 C^2)$ is
 108 added. Finally, the result is averaged over the batch:

$$\begin{aligned}
108 \\
109 \\
110 \quad \bar{\mathbf{g}}_{\mathcal{B}} &= \sum_{i \in \mathcal{B}} \text{clip}(\mathbf{g}_i, C) \\
111 \\
112 \quad \tilde{\mathbf{g}}_{\mathcal{B}} &= \frac{1}{B} (\bar{\mathbf{g}}_{\mathcal{B}} + \mathbf{w}), \quad \mathbf{w}_j \sim \mathcal{N}(0, \sigma^2 C^2) \\
113 \\
114
\end{aligned} \tag{2}$$

115 This new gradient will then be fed to the optimizing algorithm of the choice, e.g. SGD or Adam(W).
116 While σ and C are hyper-parameters, the constant σ is selected based on the privacy guarantees
117 desired for the model (ϵ, δ) , the number of training steps, sampling rate $(\frac{B}{|D|})$. The method for
118 computing the necessary σ based on the privacy guarantees is called the privacy accountant. For this
119 work, we use the privacy accountant of Gopi et al. (2021) which currently is the most tight privacy
120 accountant.

Algorithm 1 DP-SGD (with Denoising)

122 **Require:** Dataset D , loss function $f(\theta, x)$, model parameters θ , sampling rate ρ , clipping norm C ,
123 noise multiplier σ , optimizer \mathcal{O} , number of steps T , Denoising function $\text{Denoise}(\cdot)$
124 **for** $t \leftarrow 1$ to T **do**
125 Sample a batch \mathcal{B} from D using Poisson sampling with rate ρ
126 **for** each $i \in \mathcal{B}$ **do**
127 Compute per-example gradient $\mathbf{g}_i \leftarrow \nabla_{\theta} f(\theta, x_i)$
128 Clip gradient: $\text{clip}(\mathbf{g}_i, C) \leftarrow \mathbf{g}_i / \max(1, \|\mathbf{g}_i\|_2 / C)$
129 **end for**
130 Aggregate clipped gradients: $\bar{\mathbf{g}} \leftarrow \sum_{i \in \mathcal{B}} \text{clip}(\mathbf{g}_i, C)$
131 Draw noise vector \mathbf{w} with i.i.d. entries from $\mathcal{N}(0, \sigma^2 C^2)$
132 Compute noisy average: $\tilde{\mathbf{g}} \leftarrow (\bar{\mathbf{g}} + \mathbf{w}) / |\mathcal{B}|$
133 **Denoise the gradient:** $\hat{\mathbf{g}} \leftarrow \text{Denoise}(\tilde{\mathbf{g}})$
134 Update optimizer state: $\mathcal{O} \leftarrow \text{UpdateState}(\mathcal{O}, \hat{\mathbf{g}})$
135 Update parameters: $\theta \leftarrow \text{UpdateParameters}(\theta, \mathcal{O})$
136 **end for**
137

138
139
140 2.1.3 POST PROCESSING INVARIANCE

141
142 A fundamental property of differential privacy is its invariance under post-processing. This means
143 that no adversary, regardless of the method applied to the output of a differentially private algorithm,
144 can reduce its privacy guarantees or extract more information about the original dataset. In other
145 words, post-processing cannot make the output less private, providing strong protection against
146 attempts to compromise privacy. While previous work has leveraged this property to improve the
147 utility of the DP-SGD algorithm (Zhang et al., 2024; Balle & Wang, 2018), none have utilized results
148 from random matrix theory for the post-processing function. To our knowledge, this is the first work
149 to apply such results in the context of DP-SGD.

150
151 2.2 SINGULAR VALUE DISTRIBUTION OF GRADIENTS

152
153 The gradients of linear layers of neural networks in training, when viewed as a linear operator,
154 exhibit a low rank structure (Li et al., 2022), (Zhao et al., 2024). Viewing the singular values of the
155 gradient operator, this translates to a rapid decay in the singular values of the gradient matrix. This
156 is a well known phenomenon in the literature, and has been observed in many different settings, e.g.
157 (Li et al., 2022), (Zhao et al., 2024). While this has been used to explain why differential privacy
158 works so well in deep models with large parameter counts contrary to theoretical expectations (Li
159 et al., 2022), it has not been used to improve the sample efficiency of differentially private training.
160 In this work, we use this property to improve the sample efficiency of differentially private training
161 by using low rank matrix estimation techniques to denoise the gradients before passing them to the
optimizer.

162 2.3 LOW RANK MATRIX ESTIMATIONS
163164 Low rank matrix reconstruction is a rich sub-field of signal processing (Donoho et al., 2018; Gavish
165 & Donoho, 2014; Shabalin & Nobel, 2013). Assuming the rank of the signal matrix $\mathbf{X} \in \mathbb{R}^{m \times n}$ is
166 k , we can use the SVD decomposition to write it as

167
168
$$\mathbf{X} = \sum_{i=1}^k \lambda_i \mathbf{u}_i \mathbf{v}_i^T$$

169
170

171 where λ_i s are non-increasing singular values, and $\mathbf{u}_i \in \mathbb{R}^m$, $\mathbf{v}_i \in \mathbb{R}^n$ are orthonormal vectors.
172173 Then, a noise matrix with entries drawn from $\mathcal{N}(0, \sigma^2)$ is added to get the noisy matrix $\tilde{\mathbf{X}}$:
174

175
$$\tilde{\mathbf{X}} = \mathbf{X} + \Delta, \quad \Delta_{ij} \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(0, \sigma^2)$$

176

177 The goal is to estimate the original matrix \mathbf{X} from the noisy observation $\tilde{\mathbf{X}}$. We write the SVD
178 decomposition of $\tilde{\mathbf{X}}$ in the notation
179

180
181
$$\tilde{\mathbf{X}} = \sum_{i=1}^{\min(m,n)} \tilde{\lambda}_i \tilde{\mathbf{u}}_i \tilde{\mathbf{v}}_i^T$$

182
183

184 Note that the noisy version may (and usually does) have more than k non-zero components.
185186 2.3.1 EFFECT OF NOISE ON SINGULAR VALUES AND SINGULAR VECTORS: A PHASE
187 TRANSITION188 With the mentioned notation we have
189

190
191
$$\tilde{\lambda}_i \approx \begin{cases} F_{\sigma,n,m}(\lambda_i) = \sqrt{\left(\lambda_i + \frac{\sigma^2 n}{\lambda_i}\right) \left(\lambda_i + \frac{\sigma^2 m}{\lambda_i}\right)} & \text{if } \lambda_i > \sigma \sqrt[4]{mn} \\ \sigma(\sqrt{m} + \sqrt{n}) & \text{if } \lambda_i \leq \sigma \sqrt[4]{mn} \end{cases} \quad (3)$$

192
193

194 This is an increase in the value of the singular value, which is usual in random matrix theory. It is
195 important to note that these results are typically stated in the asymptotic regime, where the matrix di-
196 mensions grow to infinity and the noise variance may scale with the dimensions, often under specific
197 assumptions on the ratio m/n . In practical, finite-dimensional settings, these approximations may
198 incur some error. The precise rate of this error in finite dimensions is not addressed here and could
199 be an interesting direction for further study. The derivation of these results from their asymptotic
200 forms is postponed to the appendix A.2.201 Also, assuming all of the eigenvalues of \mathbf{X} are distinct, and if $\lambda_i > \sigma \sqrt[4]{mn}$, following Lemma 3 of
202 Gavish & Donoho (2014) or proposition 9 of Shabalin & Nobel (2013), we can write

203
204
$$|\langle \mathbf{u}_i, \tilde{\mathbf{u}}_j \rangle|^2 \approx \begin{cases} \frac{\lambda_i^4 - mn\sigma^4}{\lambda_i^4 + m\lambda_i^2\sigma^2} & i = j \\ 0 & i \neq j \end{cases}, \quad (4)$$

205
206

207 and
208

209
210
$$|\langle \mathbf{v}_i, \tilde{\mathbf{v}}_j \rangle|^2 \approx \begin{cases} \frac{\lambda_i^4 - mn\sigma^4}{\lambda_i^4 + n\lambda_i^2\sigma^2} & i = j \\ 0 & i \neq j \end{cases}. \quad (5)$$

211
212

213 However if $\lambda_i \leq \sigma \sqrt[4]{mn}$, then
214

215
$$|\langle \mathbf{u}_i, \tilde{\mathbf{u}}_j \rangle|^2 \approx |\langle \mathbf{v}_i, \tilde{\mathbf{v}}_j \rangle|^2 \approx 0 \quad (6)$$

216 2.3.2 MATRIX DENOISING
217

218 Matrix denoising methods aim to recover the underlying signal matrix \mathbf{X} from its noisy observation
219 $\tilde{\mathbf{X}}$ by leveraging the low-rank structure of the signal. Many of these methods shrink the singular
220 values of the noisy matrix. One such approach is the so-called optimal method discussed in Shabalin
221 & Nobel (2013); Donoho et al. (2018), which outputs a low-rank matrix.

222 **Optimal Denoising** The mentioned optimal estimator for the signal matrix can be written as
223

$$225 \quad \hat{\mathbf{X}}_{\text{optimal}} = \sum_{i=1}^r \eta_i \tilde{\mathbf{u}}_i \tilde{\mathbf{v}}_i^T \quad (7)$$

228 where, following Shabalin & Nobel (2013), the optimal coefficients are
229

$$231 \quad \eta_i = \hat{\lambda}_i \cdot \sqrt{\frac{\hat{\lambda}_i^4 - mn\sigma^4}{\hat{\lambda}_i^4 + m\hat{\lambda}_i^2\sigma^2}} \cdot \sqrt{\frac{\hat{\lambda}_i^4 - mn\sigma^4}{\hat{\lambda}_i^4 + n\hat{\lambda}_i^2\sigma^2}}, \quad \text{where } \hat{\lambda}_i = F_{\sigma, n, m}^{-1}(\tilde{\lambda}_i) \quad (8)$$

234 for all i such that $\tilde{\lambda}_i > \sigma(\sqrt{m} + \sqrt{n})$, and zero otherwise. It has been shown to achieve the best
235 possible mean squared error (MSE) under certain conditions, particularly when the noise is Gaussian
236 and the signal is low-rank.

238 **Computational Overhead** Although the additional computation required for matrix denoising
239 may seem significant, with careful implementation and also utilizing the parallelizable nature of the
240 optimal denoising algorithm, the overhead can be kept minimal. We draw readers attention to three
241 properties that can be leveraged to reduce the computational overhead. 1) First, the fact that in equa-
242 tion 7, the $F_{\sigma, n, m}^{-1}(\tilde{\lambda}_i)$ can be computed independently for each singular value, and the same applies
243 to the computation of η_i . 2) Second, the SVD computation, which is the most computationally ex-
244 pensive part of the algorithm, can be computed in a batched manner for all the layers of the neural
245 network with similar dimensions. And 3) Third, by utilizing approximate methods when accept-
246 able, the SVD computation can be further accelerated. While if implemented naïvely, the overhead
247 can be just short of 3% of the total training time, combining the mentioned strategies, the compu-
248 tational overhead of the denoising step can be reduced to less than 1% of the total training time in
249 our experiments (Table 1). The efficient implementation is available as part of the supplementary
250 material.

251
252 Table 1: Training time in seconds for different methods of DP-SGD fine-tuning of RoBERTa on
253 SST-2 dataset with the setting of section 4. The overhead is computed as the percentage increase in
254 training time compared to regular DP-SGD.

255 Model	256 Method	257 Train Time	258 Overhead
259 RoBERTa Base	Regular DP-SGD	1846	–
	Naïve denoising implementation	1899	2.87%
	Efficient denoising implementation	1861	0.81%
260 RoBERTa Large	Regular DP-SGD	5658	–
	Naïve denoising implementation	5781	2.17%
	Efficient denoising implementation	5700	0.74%

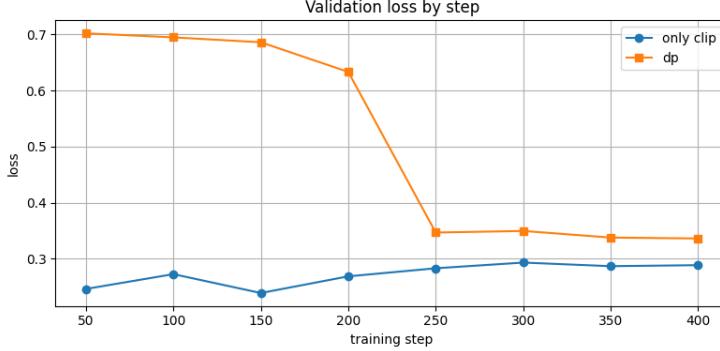
263 264 265

3 METHODOLOGY

266 In this section, we introduce our post-processing method, which leverages equations 7 and 8 to de-
267 noise the gradients produced by DP-SGD before they are passed to the optimizer. First, we establish
268 that the slower convergence observed with DP-SGD (compared to non-private training) is primarily
269 caused by the added Gaussian noise, not by gradient clipping. Although prior work often attributes

270 the loss gap between DP-SGD and non-private training to clipping (Bu et al., 2023), these are dis-
 271 tinct phenomena. Figure 1 shows that the final validation loss is similar for DP-SGD with a zero
 272 noise multiplier ($\sigma = 0$) and for DP-SGD using the noise level required for privacy; however, con-
 273 vergence toward that final loss is significantly slower when noise is added. This indicates that the
 274 added noise is the main driver of DP-SGD’s slower convergence. This is why we focus on denoising
 275 the gradients in our method. More similar experiments comparing clipping alone versus DP-SGD
 276 can be found in appendix B.

277



278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289

290 Figure 1: Comparison of validation loss between DP-SGD and training using per-sample clipping
 291 only (no noise injected). This is for training RoBERTa base model on sst-2 dataset. The Setting are
 292 similar to what is described in 4, except that for only clipping method, we do not add the gaussian
 293 noise and only perform the per-sample clipping. It is evident that the slowdown in convergence is
 294 more pronounced for DP-SGD than for clipping alone.

295

296 3.1 FRAMEWORK
 297

298 We apply the denoising method by aiming to increase the alignment between the denoised gradient
 299 and the clipped gradient. Specifically, our objective is to construct a denoising function that, given
 300 the noisy gradient as input, produces an output that is more closely aligned with the clipped gradient.
 301 Using the notation from Section 2.1.2, we seek a denoising function $\text{Denoise}(\cdot)$ such that

302

$$\cos(\text{Denoise}(\tilde{\mathbf{g}}), \bar{\mathbf{g}}) > \cos(\tilde{\mathbf{g}}, \bar{\mathbf{g}})$$

303 where $\cos(\mathbf{a}, \mathbf{b}) = \frac{\mathbf{a}^T \mathbf{b}}{\|\mathbf{a}\|_2 \|\mathbf{b}\|_2}$ is the cosine similarity between two vectors \mathbf{a} and \mathbf{b} .
 304

305 For tracking this value for evaluation purposes, we define the Improvement at step t as
 306

307

$$\text{Improvement}(t) = \cos(\text{Denoise}(\tilde{\mathbf{g}}_t), \bar{\mathbf{g}}_t) - \cos(\tilde{\mathbf{g}}_t, \bar{\mathbf{g}}_t)$$

308
 309
 310
 311
 312
 313

314 If we can come up with such a denoising function, we hope to improve the sample efficiency of
 315 DP-SGD by making the noisy gradients more closely resemble the true (clipped) gradients. Having
 316 such a denoising function, we can change the DP-SGD algorithm as in Algorithm ??.

317
 318
 319
 320
 321
 322
 323

324 We expect that if the improvement at each step t is consistently non negative, $\text{Improvement}(t) \geq$
 325 0, then the denoising function is effectively aligning the noisy gradients with the true (clipped)
 326 gradients, leading to faster convergence of the DP-SGD algorithm. It is important to note that
 327 the improvement function is only used for evaluation porpuses and is not used for the algorithm
 328 itself, as doing so would violate the differential privacy criteria. The following sections will detail
 329 the implementation of the denoising function which are mainly based on the results reviewed in
 330 Section 2.3.2. The guiding principle behind adapting the matrix denoising methods to our task is
 331 that the denoiser should increase alignment with the (private) clipped gradient, while itself using no
 332 additional private information. This principle helps us in two design choices. One gives us a way to
 333 adapt the asymptotic formulas to finite dimension, and the other helps us to generalize the denoising
 334 algorithm from operating on a single matrix to operating on a collection of matrices (the layers of
 335 the neural network).

324 3.2 DENOISING FUNCTION
325

326 The denoising function we propose is basically application of the denoising functions in section
327 2.3.2 to the linear components of the noisy gradient $\tilde{\mathbf{g}}$. Supposing \mathbf{W} is a layer of our neural network
328 θ , the restriction of the (clipped) gradient to \mathbf{W} is a matrix $\sum_{x \in \mathcal{B}} \text{clip}(\nabla_{\theta} f(\theta, x), C) |_{\mathbf{W}} = \tilde{\mathbf{g}} |_{\mathbf{W}}$. If
329 we consider all the different layers of the neural network, the parameters of the neural network can
330 be partitioned as

$$331 \theta = \mathbf{W}_1 \times \mathbf{W}_2 \times \dots \times \mathbf{W}_L$$

332 where L is the number of layers in the network. Then, we can write

$$334 \tilde{\mathbf{g}} = (\tilde{\mathbf{g}} |_{W_1}, \tilde{\mathbf{g}} |_{W_2}, \dots, \tilde{\mathbf{g}} |_{W_L})$$

$$335 \tilde{\mathbf{g}} = (\tilde{\mathbf{g}} |_{W_1}, \tilde{\mathbf{g}} |_{W_2}, \dots, \tilde{\mathbf{g}} |_{W_L})$$

337 With this notation, we can define the denoising function as separate application of the denoising
338 functions to each layer's gradient:

$$341 \text{Denoise}(\tilde{\mathbf{g}}) = (\text{Denoise}(\tilde{\mathbf{g}} |_{W_1}), \text{Denoise}(\tilde{\mathbf{g}} |_{W_2}), \dots, \text{Denoise}(\tilde{\mathbf{g}} |_{W_L}))$$

342 Where if a layer \mathbf{W}_i is not a linear layer, we simply set $\text{Denoise}(\tilde{\mathbf{g}} |_{W_i}) = \tilde{\mathbf{g}} |_{W_i}$. With this notation,
343 we can also define the per-layer improvement as

$$345 \text{Improvement}_i(t) = \cos(\text{Denoise}(\tilde{\mathbf{g}}_t |_{W_i}), \tilde{\mathbf{g}}_t |_{W_i}) - \cos(\tilde{\mathbf{g}}_t |_{W_i}, \tilde{\mathbf{g}}_t |_{W_i}).$$

346 For linear layers, we modify the so called “optimal” denoising method in two ways.

- 349 • **To adapt the asymptotic formulas to finite dimension** we only apply optimal denoising
350 if the singular values of the noisy layer gradient are larger than a preset multiple of $\sigma(\sqrt{n} +$
351 $\sqrt{m})$, where n, m are dimensions of that linear layer. When the singular value is larger than
352 the required threshold, we apply the optimal denoising function.
- 353 • **To keep the gradient norm the same and also making sure the per-layer alignment
354 improvement will result in whole gradient improvement**, we rescale the denoised per-
355 layer gradient so that its ℓ_2 norm is equal to the noisy version $\tilde{\mathbf{g}} \mapsto \frac{\|\tilde{\mathbf{g}}\|}{\|\tilde{\mathbf{g}}_{\text{optimal}}\|} \hat{\mathbf{g}}_{\text{optimal}}$.

356 So for linear layers and the hyperparameter κ we have

$$358 \text{Denoise}(\tilde{\mathbf{g}} |_{\mathbf{W}}) = \begin{cases} \tilde{\mathbf{g}} |_{\mathbf{W}}, & \text{if } \lambda_1(\tilde{\mathbf{g}} |_{\mathbf{W}}) < \kappa \sigma(\sqrt{n} + \sqrt{m}) \\ \frac{\|\tilde{\mathbf{g}}\|}{\|\tilde{\mathbf{g}}_{\text{optimal}}\|} \hat{\mathbf{g}}_{\text{optimal}}, & \text{otherwise} \end{cases} \quad (9)$$

362 3.2.1 WHY THRESHOLD IS NEEDED AND WHY THIS SPECIFIC VALUE?

363 It is important to recognize that the results in Section 2.3.2 are derived in asymptotic settings. For
364 instance, the theory predicts that if all singular values of the signal matrix are less than $\sigma \sqrt{nm}$, or
365 equivalently, if all singular values of the noisy matrix are less than $\sigma(\sqrt{n} + \sqrt{m})$, then the inner
366 products between the left (or right) singular vectors of the signal and noisy matrices should be zero.
367 In that case, the optimal denoising algorithm returns the zero matrix as the optimum result and states
368 that it is the best one can get. However, in practice and for finite-dimensional matrices, this is not
369 true, and the noisy gradient, even if its singular value are small, usually still has some positive cosine
370 similarity with the original gradient. As a result, the denoising algorithm does not always improve
371 the alignment between the noisy and per-layer clipped gradients.

372 Fortunately, we identified a simple RMT-based criterion to decide when to apply the denoiser.
373 Concretely, we only denoise a layer if the largest singular value of its noisy gradient exceeds
374 $\kappa \sigma(\sqrt{n} + \sqrt{m})$. Choosing $\kappa = 1$ prevents denoising in cases where the optimal estimator would re-
375 turn the zero matrix. This threshold is motivated by the phase transition in equation 3: $\sigma(\sqrt{n} + \sqrt{m})$
376 is the maximal singular value of a pure-noise matrix (signal equal to zero). Thus, RMT indicates
377 when denoising can meaningfully improve alignment; if the estimator would output the zero matrix,
the theoretical prediction is that there is no signal to recover.

Our observations show that for correct value of κ , denoising tends to improve the alignment, otherwise it may reduce the alignment. For choosing the value of κ , we tuned it on the SST dataset while training the RoBERTa-base model by choosing the best value from the set $\{1.01, 1.02, 1.05, 1.1\}$, and used the same value for all the other model/dataset pairs. We choose this set to have values greater than 1 to avoid the cases where denoising outputs zero matrix. Also, we want to keep the values as close to 1 as possible to have more layers denoised. The trade-off here is to have a big enough κ so the denoising improves the alignment, and to have it small enough so that we get enough per-layer gradients denoised to get the most out of the alignment improvement. The best value we found was $\kappa = 1.02$ (Figure 2). We also like to emphasize that while we could have tuned κ for each model/dataset pair, we refrained from doing so to show the robustness of our method to this hyperparameter. The value $\kappa = 1.02$ worked well across all the model/dataset pairs we tried.

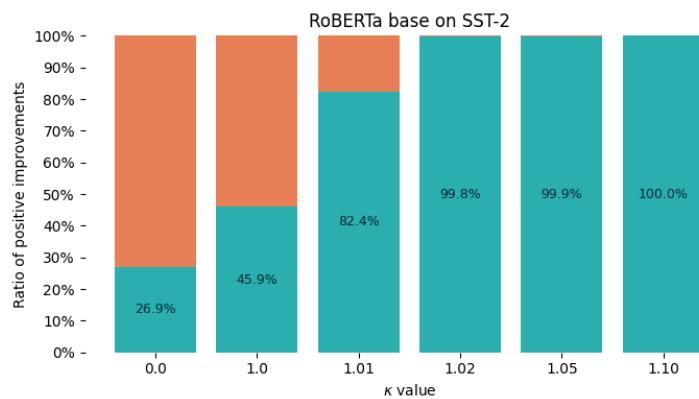


Figure 2: Effect of different values of κ on the per-layer improvements when training RoBERTa base model on sst-2 dataset. The Setting are similar to what is described in 4. It is evident that $\kappa = 1.02$ is the smallest κ which has dominantly positive per-layer improvement.

3.2.2 WHY NORM CORRECTION IS NEEDED?

The scope in which the denoising function from the RMT works is to improve the alignment between the noisy and clipped per-layer gradients. There is no extension of the RMT method to a combination of different layers, and the relative scaling between them. For generalizing to a method for improving alignment of the whole gradient vector, we are going to use the following theorem, which states that if we improve the alignment of each component of a vector, and keep their norms the same, then the overall alignment will also improve.

Theorem 1. Let $x = (x_1, \dots, x_c) \in \mathbb{R}^n$ be a target vector, with $x_i \in \mathbb{R}^{n_i}$ and $\sum_{i=1}^c n_i = n$. Let $y = (y_1, \dots, y_c), y' = (y'_1, \dots, y'_c) \in \mathbb{R}^n$ be estimations of x , with $y_i, y'_i \in \mathbb{R}^{n_i}$. If we have

- (i) $\cos(y_i, x_i) \leq \cos(y'_i, x_i)$, or all $i \in \{1, \dots, c\}$. and
- (ii) $\|y_i\| = \|y'_i\|$, for all $i \in \{1, \dots, c\}$.

Then, we have $\cos(y, x) \leq \cos(y', x)$.

A proof for this theorem is provided in the appendix D. In our case, the target vector is the clipped gradient \bar{g} , and the two estimations are the noisy gradient \tilde{g} and the denoised gradient $\text{Denoise}(\tilde{g})$. It is worth noting that this theorem does not make any assumptions about the nature of the vectors involved, for example if they have any matrix structure at all, and is a general result about cosine similarity and vector norms and is not related to low-rank structure. Also, contrary to the results in section 2.3.2, this theorem is exact and does not rely on any asymptotic approximations or probabilistic arguments.

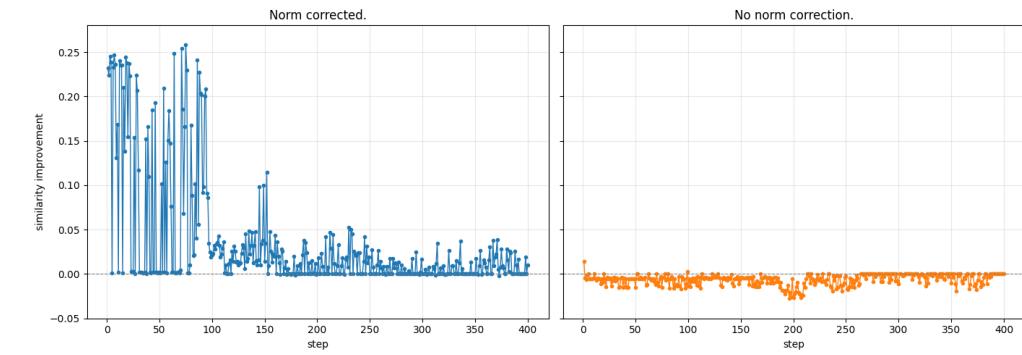
On another note, the assumption (ii) in theorem 1 is the reason we need to do the norm correction in equation 9. Without this correction, even if the per-layer alignment improves, there is no guarantee that the overall alignment will also improve. To see the effect of the norm correction, we have done

432 ablation studies for the effect of norm correction. The results for the case of training RoBERTa base
 433 model on SST-2 dataset are presented in figure 3. It is evident that without the norm correction, the
 434 improvement is not consistent, and even negative. This shows the importance of the norm correction
 435 step in our denoising function. More ablation results can be found in the appendix D.

436

437

438



450 Figure 3: Comparison of whole gradient improvement when using norm correction and not using
 451 it. This is for training RoBERTa base model on sst-2 dataset. The Setting are similar to what is
 452 described in 4. It is evident that using norm correction results in more consistent improvement.

453

454

455 Also, on the last note, we like to note that the norm of the denoised gradient in this method is
 456 exactly the nosie of the noisy gradient. This will prevent any possible issues with convergence of
 457 the optimizer due to unexpected changes in the gradient norm.

4 EXPERIMENTS

463 In this section, we present the evaluation method and the experiment results we had. To evaluate our
 464 main goal of improving the sample efficiency of DP-SGD, we compared the performance of DP-
 465 SGD with and without our denoising method across different datasets from the GLUE benchmark
 466 (Wang et al., 2019) and two sizes of the RoBERTa model (Liu et al., 2019).

467

468 Because our goal is to find a fast converging method, with possible trade-off in the final performance,
 469 we count the number of training steps each method needs to reach some certain (validation) accuracy
 470 thresholds. We set these thresholds to be 95% and 90% of the SOTA results for the private training
 471 of the same models on the same datasets. The SOTA results are taken from Yu et al. (2021).

472 For epsilon, we also follow the same setup as Yu et al. (2021), which is 6.7 for all datasets, and
 473 compute the required noise multiplier using the privacy accountant of Gopi et al. (2021) in each
 474 case so that the total privacy loss at 400 steps is 6.7.

475 We keep every other hyper-parameter the same as Yu et al. (2021), including batch size, learning
 476 rate, weight decay, and clipping norm. Looking at the tables 2 and 3, we can see that our method
 477 consistently improves the sample efficiency of DP-SGD across all datasets and model sizes. **Im-
 478 provements range from 20% to 100%** in the number of steps required to reach 90% and 95% of
 479 the SOTA performance. Also, we achieved higher performance in five out of eight cases for the final
 480 accuracy at 400 steps.

481 We also report additional language-generation experiments on the E2E benchmark (Novikova et al.,
 482 2017) and DART (Nan et al., 2021) using Qwen3 and Llama3.2 models (Team, 2025; Grattafiori
 483 et al., 2024) (see Appendix E for hyperparameters and more details). After 50 training steps (Table
 484 4), our denoising method outperforms the baseline in **49 of 50** model/dataset/metric combinations,
 485 demonstrating substantial sample-efficiency gains under tight iteration budgets. These experiments
 use models of up to 4B parameters, indicating the approach scales to larger models.

486	Task	Method	Final Acc. (at 400 steps)	SOTA (at 20 epochs)	Steps 90%	Steps 95%	Speedup 90%	Speedup 95%
487	SST	Ours	92.4	92.5	150	150	67%	67%
488		Baseline	92.5		250	250		
489	QNLI	Ours	84.6	87.5	200	300	100%	-
490		Baseline	80.0		400	—		
491	MNLI	Ours	80.0	83.5	250	400	40%	-
492		Baseline	77.6		350	—		
493	QQP	Ours	83.1	85.7	150	250	67%	40%
494		Baseline	81.9		250	350		
495								
496								
497								
498								
499								

500 Table 2: Comparison of Ours and Baseline on GLUE tasks when training Roberta Base. Final
 501 accuracy, SOTA reference, number of steps needed to reach 90% and 95% of SOTA, and speedups
 502 (only for Ours) are reported.

504	Task	Method	Final Acc. (at 400 steps)	SOTA (at 20 epochs)	Steps 90%	Steps 95%	Speedup 90%	Speedup 95%
505	SST	Ours	93.8	95.3	150	150	33%	67%
506		Baseline	93.9		200	250		
507	QNLI	Ours	88.5	90.8	150	250	33%	20%
508		Baseline	89.2		200	300		
509	MNLI	Ours	85.6	87.8	200	250	25%	20%
510		Baseline	85.3		250	300		
511	QQP	Ours	84.7	87.4	150	250	33%	20%
512		Baseline	84.1		200	300		
513								
514								
515								
516								
517								

518 Table 3: Comparison of Ours and Baseline on GLUE tasks with RoBERTa Large. Final accuracy,
 519 SOTA reference, steps to reach 90% and 95% of SOTA, and speedups (only for Ours) are reported.

522 5 LIMITATIONS AND FUTURE WORK

524 One major limitation of our method is that it does not always produce the best final performance
 525 despite the fastest convergence. In some experiments, the baseline achieves slightly higher final ac-
 526 curacy than our method. This is particularly puzzling given the consistently positive improvement in
 527 cosine similarity between the denoised and noisy gradients relative to the clipped gradients. Further
 528 investigation is needed to understand this discrepancy and to identify possible remedies.

530 6 REPRODUCIBILITY STATEMENT

532 All the necessary code and hyperparameters for reproducing the results in this paper has been made
 533 available in the supplementary material.

536 REFERENCES

538 Martin Abadi, Andy Chu, Ian Goodfellow, H Brendan McMahan, Ilya Mironov, Kunal Talwar, and
 539 Li Zhang. Deep learning with differential privacy. In *Proceedings of the 2016 ACM SIGSAC*
 conference on computer and communications security, pp. 308–318, 2016.

540 Jinho Baik and Jack W Silverstein. Eigenvalues of large sample covariance matrices of spiked
 541 population models. *Journal of multivariate analysis*, 97(6):1382–1408, 2006.

542

543 Jinho Baik, Gérard Ben Arous, and Sandrine Péché. Phase transition of the largest eigenvalue for
 544 nonnull complex sample covariance matrices. 2005.

545

546 Borja Balle and Yu-Xiang Wang. Improving the Gaussian mechanism for differential privacy:
 547 Analytical calibration and optimal denoising. In Jennifer Dy and Andreas Krause (eds.), *Pro-
 548 ceedings of the 35th International Conference on Machine Learning*, volume 80 of *Proceed-
 549 ings of Machine Learning Research*, pp. 394–403. PMLR, 10–15 Jul 2018. URL <https://proceedings.mlr.press/v80/balle18a.html>.

550

551 Florent Benaych-Georges and Raj Rao Nadakuditi. The singular values and vectors of low rank
 552 perturbations of large rectangular random matrices. *Journal of Multivariate Analysis*, 111:120–
 553 135, 2012.

554

555 Zhiqi Bu, Hua Wang, Zongyu Dai, and Qi Long. On the convergence and calibration of deep learning
 556 with differential privacy. *Transactions on machine learning research*, 2023:https–openreview,
 557 2023.

558

559 Nicholas Carlini, Florian Tramer, Eric Wallace, Matthew Jagielski, Ariel Herbert-Voss, Katherine
 560 Lee, Adam Roberts, Tom Brown, Dawn Song, Ulfar Erlingsson, et al. Extracting training data
 561 from large language models. In *30th USENIX security symposium (USENIX Security 21)*, pp.
 2633–2650, 2021.

562

563 Nicholas Carlini, Steve Chien, Milad Nasr, Shuang Song, Andreas Terzis, and Florian Tramer. Mem-
 564 bership inference attacks from first principles. In *2022 IEEE symposium on security and privacy
 (SP)*, pp. 1897–1914. IEEE, 2022.

565

566 David L Donoho, Matan Gavish, and Iain M Johnstone. Optimal shrinkage of eigenvalues in the
 567 spiked covariance model. *Annals of statistics*, 46(4):1742, 2018.

568

569 Cynthia Dwork, Aaron Roth, et al. The algorithmic foundations of differential privacy. *Foundations
 570 and trends® in theoretical computer science*, 9(3–4):211–407, 2014.

571

572 Matan Gavish and David L Donoho. The optimal hard threshold for singular values is $4/\sqrt{3}$. *IEEE
 573 Transactions on Information Theory*, 60(8):5040–5053, 2014.

574

575 Sivakanth Gopi, Yin Tat Lee, and Lukas Wutschitz. Numerical composition of differential privacy.
 576 *Advances in Neural Information Processing Systems*, 34:11631–11642, 2021.

577

578 Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
 579 Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd
 of models. *arXiv preprint arXiv:2407.21783*, 2024.

580

581 Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
 582 Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. *ICLR*, 1(2):3, 2022.

583

584 Xuechen Li, Florian Tramer, Percy Liang, and Tatsunori Hashimoto. Large language models can be
 585 strong differentially private learners. *arXiv preprint arXiv:2110.05679*, 2021.

586

587 Xuechen Li, Daogao Liu, Tatsunori B Hashimoto, Huseyin A Inan, Janardhan Kulkarni, Yin-Tat
 588 Lee, and Abhradeep Guha Thakurta. When does differentially private learning not suffer in high
 589 dimensions? *Advances in Neural Information Processing Systems*, 35:28616–28630, 2022.

590

591 Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
 592 Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining
 593 approach. *arXiv preprint arXiv:1907.11692*, 2019.

594

595 Vladimir A Marčenko and Leonid Andreevich Pastur. Distribution of eigenvalues for some sets of
 596 random matrices. *Mathematics of the USSR-Sbornik*, 1(4):457, 1967.

594 Linyong Nan, Dragomir Radev, Rui Zhang, Amrit Rau, Abhinand Sivaprasad, Chiachun Hsieh,
 595 Xiangru Tang, Aadit Vyas, Neha Verma, Pranav Krishna, et al. Dart: Open-domain structured
 596 data record to text generation. In *Proceedings of the 2021 Conference of the North American
 597 Chapter of the Association for Computational Linguistics: Human Language Technologies*, pp.
 598 432–447, 2021.

599 Jekaterina Novikova, Ondřej Dušek, and Verena Rieser. The e2e dataset: New challenges for end-
 600 to-end generation. *arXiv preprint arXiv:1706.09254*, 2017.

602 Andrey A Shabalin and Andrew B Nobel. Reconstruction of a low-rank matrix in the presence of
 603 gaussian noise. *Journal of Multivariate Analysis*, 118:67–76, 2013.

604 Terence Tao. *Topics in random matrix theory*, volume 132. American Mathematical Soc., 2012.

605 Qwen Team. Qwen3 technical report, 2025. URL <https://arxiv.org/abs/2505.09388>.

606 Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R. Bowman.
 607 Glue: A multi-task benchmark and analysis platform for natural language understanding. In
 608 *International Conference on Learning Representations*, 2019.

609 Da Yu, Saurabh Naik, Arturs Backurs, Sivakanth Gopi, Huseyin A Inan, Gautam Kamath, Janardhan
 610 Kulkarni, Yin Tat Lee, Andre Manoel, Lukas Wutschitz, et al. Differentially private fine-tuning
 611 of language models. *arXiv preprint arXiv:2110.06500*, 2021.

612 Xinwei Zhang, Zhiqi Bu, Mingyi Hong, and Meisam Razaviyayn. Doppler: Differentially private
 613 optimizers with low-pass filter for privacy noise reduction. *Advances in neural information pro-
 614 cessing systems*, 37:41826–41851, 2024.

615 Jiawei Zhao, Zhenyu Zhang, Beidi Chen, Zhangyang Wang, Anima Anandkumar, and Yuandong
 616 Tian. Galore: Memory-efficient ILM training by gradient low-rank projection. *arXiv preprint
 617 arXiv:2403.03507*, 2024.

618

A RANDOM MATRIX THEORY BACKGROUND

We have included some additional figures and derivations for the random matrix theory results used in this paper.

A.1 LOW RANK STRUCTURE IN GRADIENTS OF LARGE LANGUAGE MODELS

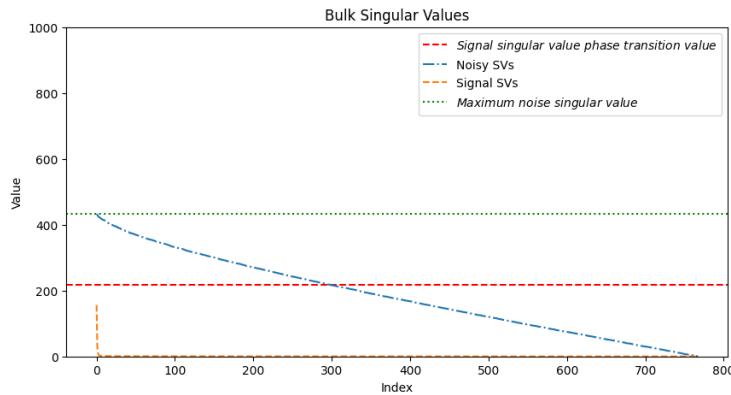


Figure 4: Sorted singular values of the gradient matrix for a RoBERTa layer, before and after adding DP-SGD noise. When the signal singular values are smaller than the red line, the singular values of the noisy matrix are indistinguishable from pure noise.

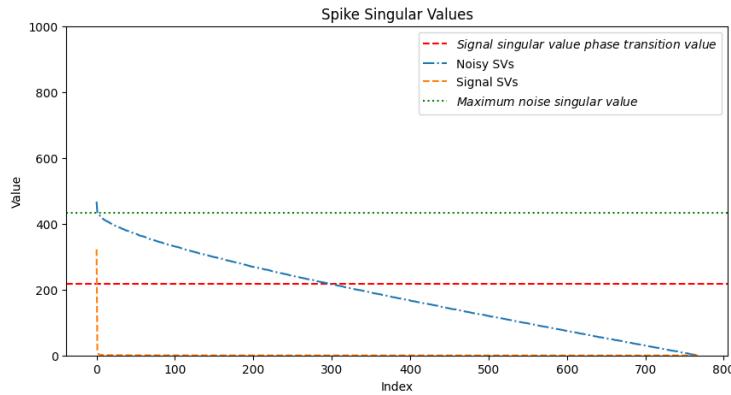


Figure 5: Sorted singular values of the gradient matrix for a RoBERTa layer, before and after adding DP-SGD noise. When some signal singular values exceed the red line, the largest singular values of the noisy matrix deviate from the bulk.

A.2 FINITE DIMENSIONAL DERIVATION OF RANDOM MATRIX THEORY RESULTS

In the usual random matrix theory literature, the results in Shabalin & Nobel (2013); Donoho et al. (2018); Gavish & Donoho (2014) are stated in the asymptotic regime, where the matrix dimensions grow to infinity and the noise variance may scale with the dimensions. In this section we want to state those results in their original form, and explain the derivation of equations 3, 4, and 5 from their asymptotic forms.

The setup in Shabalin & Nobel (2013); Donoho et al. (2018) is as follows. We have a sequence of matrices $\mathbf{X}_n \in \mathbb{R}^{m_n \times n}$ with $m_n/n \rightarrow \beta$ as $n \rightarrow \infty$. The rank of the signal matrix is fixed, i.e. $\text{rank}(\mathbf{X}_n) = r$ for all n . The singular values of the signal matrix are fixed, i.e. the non-zero singular values of \mathbf{X}_n are $\lambda_1 > \lambda_2 > \dots > \lambda_r > 0$ for all n . Then, we add a noise matrix with i.i.d. entries from $\mathcal{N}(0, 1/n)$ to get the noisy matrix. In these settings, the results in Shabalin & Nobel (2013); Gavish & Donoho (2014) state that

$$\lim_{n \rightarrow \infty} y_{n,i} \stackrel{a.s.}{=} \begin{cases} \sqrt{\left(\lambda_i + \frac{1}{\lambda_i}\right) \left(\lambda_i + \frac{\beta}{\lambda_i}\right)} & \lambda_i > \beta^{1/4} \\ 1 + \sqrt{\beta} & \lambda_i \leq \beta^{1/4} \end{cases} \quad (10)$$

where $y_{n,i}$ is the i -th singular value of the noisy matrix. If we want to change this into the finite dimensional form, we can start from a noise matrix with i.i.d. entries from $\mathcal{N}(0, \sigma^2)$ instead of $\mathcal{N}(0, 1/n)$. Then, if we work with the matrix $\frac{Y}{\sigma\sqrt{n}}$, then, the new noise matrix will have the desired distribution. Using the equation 10 for the matrix $\frac{Y}{\sigma\sqrt{n}}$, and substituting $\beta = m/n$, we get to the equation 3. Similar arguments can be used to derive equations 4 and 5 from their asymptotic forms in Shabalin & Nobel (2013).

B WHY DENOISING IS NEEDED?

As discussed in introductory paragraph of section 3, the slowdown in convergence of DP-SGD can be attributed to two main factors: the per-sample gradient clipping and the addition of noise. In this appendix, we present more empirical evidence to support this claim in figure 6.

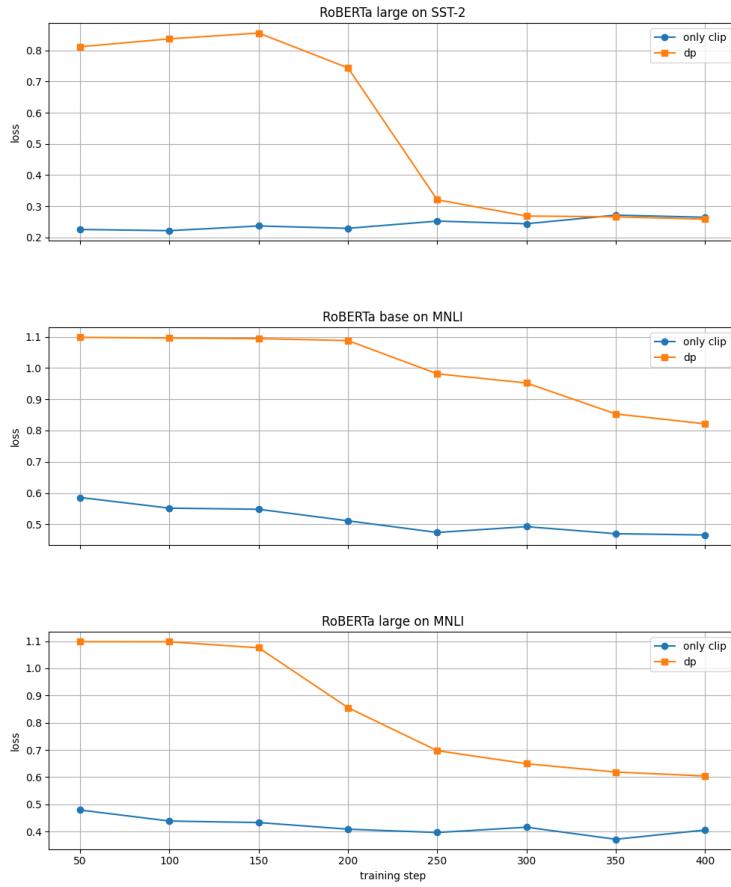
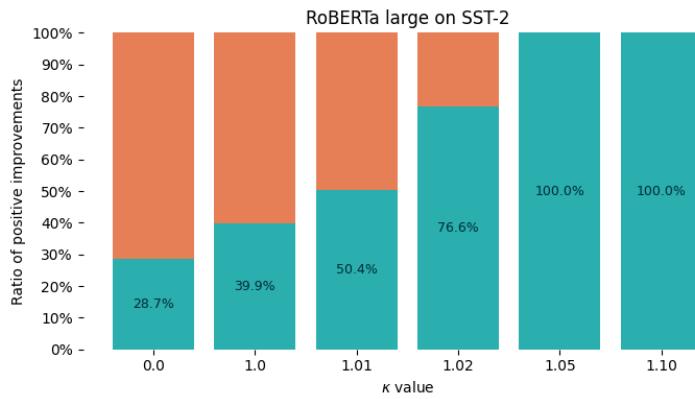


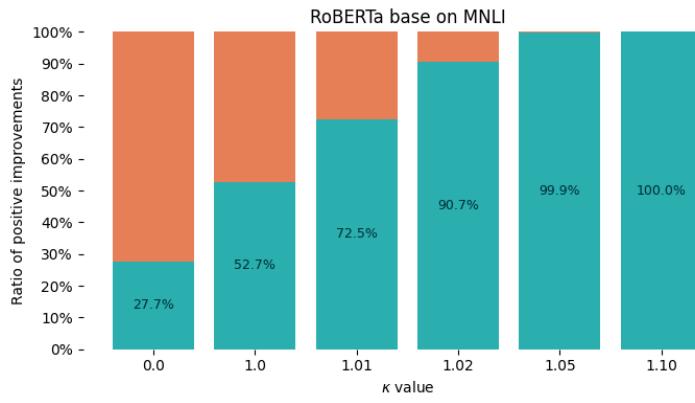
Figure 6: Comparison between validation loss curves of DP-SGD with and without noise addition. The experiments are conducted on the SST-2 and MNLI dataset using the RoBERTa family models. The results clearly indicate that the addition of noise significantly slows down the convergence of the training process compared to the scenario where only gradient clipping is applied. We also see significant gap between the two curves in terms of final loss achieved, for some of the model/dataset pairs .

C ADDITIONAL RESULTS ON WHY THRESHOLD IS NEEDED.

Here we include additional hyperparameter sweeps for κ on different model/dataset pairs. The results are presented in figures 7, 8, and 9. Also, scatter plot of layer improvement vs $\frac{\lambda_1}{\sigma(\sqrt{n}+\sqrt{m})}$ for different layer dimensionality is presented in figure 10 to further justify our choice of threshold.



770
771
Figure 7: Effect of different values of κ on the per-layer improvements when training RoBERTa
large model on SST-2 dataset. The Setting are similar to what is described in 4.



786
787
Figure 8: Effect of different values of κ on the per-layer improvements when training RoBERTa
base model on MNLI dataset. The Setting are similar to what is described in 4.

D ADDITIONAL RESULTS ON WHY NORM CORRECTION IS NEEDED.

In this appendix, we give a proof of theorem 1, as well as additional experimental results showing the ablation of norm correction in our denoising function.

D.1 PROOF OF THEOREM 1

Proof. Since the blocks are disjoint and $\|y_i\| = \|y'_i\|$ for all i , we can write

$$\langle y, x \rangle = \sum_{i=1}^c \langle y_i, x_i \rangle \quad \text{and} \quad \|y\|^2 = \sum_{i=1}^c \|y_i\|^2 = \sum_{i=1}^c \|y'_i\|^2 = \|y'\|^2.$$

For each block, cosine similarity is

$$\cos(y_i, x_i) = \frac{\langle y_i, x_i \rangle}{\|y_i\| \|x_i\|}.$$

Assumption (i) and the norm equality (ii) imply

$$\langle y_i, x_i \rangle = \|y_i\| \|x_i\| \cos(y_i, x_i) \leq \|y'_i\| \|x_i\| \cos(y'_i, x_i) = \langle y'_i, x_i \rangle.$$

Summing over all i gives $\langle y, x \rangle \leq \langle y', x \rangle$. Using the equality of global norms, we obtain

$$\cos(y, x) = \frac{\langle y, x \rangle}{\|y\| \|x\|} \leq \frac{\langle y', x \rangle}{\|y'\| \|x\|} = \cos(y', x).$$

Thus $\cos(y, x) \leq \cos(y', x)$, as claimed. \square

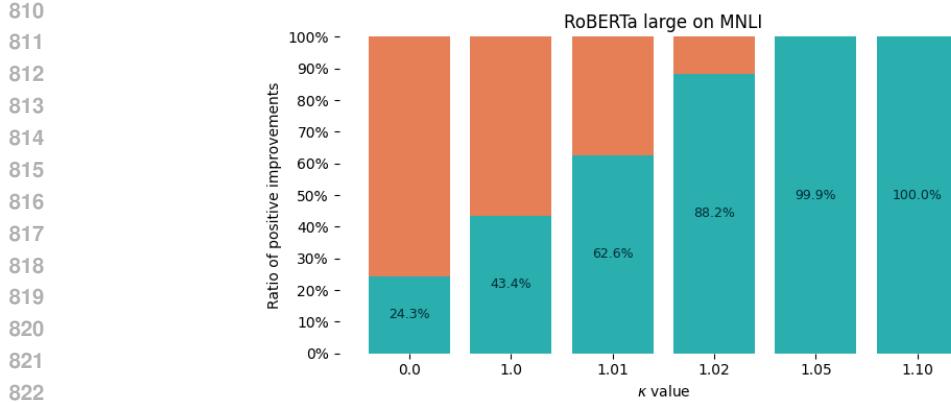


Figure 9: Effect of different values of κ on the per-layer improvements when training RoBERTa large model on MNLI dataset. The Setting are similar to what is described in 4.

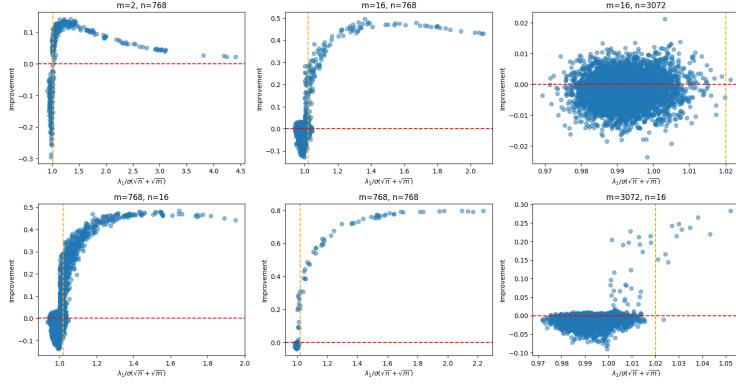


Figure 10: Scatter plot of layer improvement vs $\frac{\lambda_1}{\sigma(\sqrt{n} + \sqrt{m})}$ for different layer dimensionality. The vertical yellow line shows the threshold κ we used in our experiments. We want the yellow line in a position to have lots of points on top right side, and few points on the bottom right side (and preferably few on top left side).

D.2 ADDITIONAL NORM CORRECTION ABALATION RESULTS

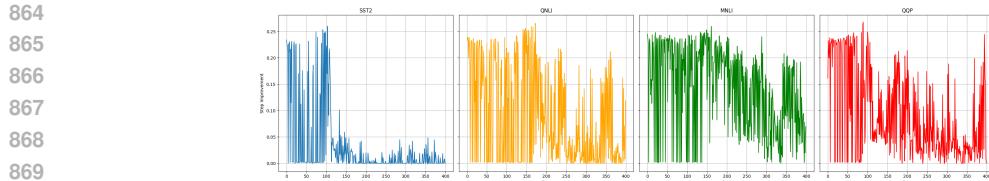
For the sake of completeness, we clarify what we mean by the ablation. Instead of the equation 9, we use the denoised gradient without the norm correction, i.e.,

$$\text{Denoise}_{\text{unscaled}}(\tilde{\mathbf{g}}|\mathbf{w}) = \begin{cases} \tilde{\mathbf{g}}|\mathbf{w}, & \text{if } \lambda_1(\tilde{\mathbf{g}}|\mathbf{w}) < \kappa \sigma(\sqrt{n} + \sqrt{m}) \\ \hat{\mathbf{g}}_{\text{optimal}}, & \text{otherwise} \end{cases}$$

Other than the 3, we also have the results for training both RoBERTa base and large models on MNLI dataset, as well as RoBERTa large model on SST-2 dataset. These results are presented in figures 6. It is evident from these results that without the norm correction, the improvement is not consistent, and can even be negative in some cases. Also, it is evident that with the norm correction, the improvement is consistently positive. This shows the importance of the norm correction step in our denoising function.

E ADDITIONAL LANGUAGE GENERATION EXPERIMENTS

In this appendix, we present additional experiments on language generation tasks, specifically on the E2E benchmark (Novikova et al., 2017) and DART (Nan et al., 2021) datasets. We used the



871 Figure 11: Improvement in cosine similarity between denoised and noisy gradients with respect
872 to clipped gradients over training steps for different datasets. The positive values indicate that
873 the denoising method consistently enhances the alignment between the noisy and clipped gradi-
874 ents throughout the training process.

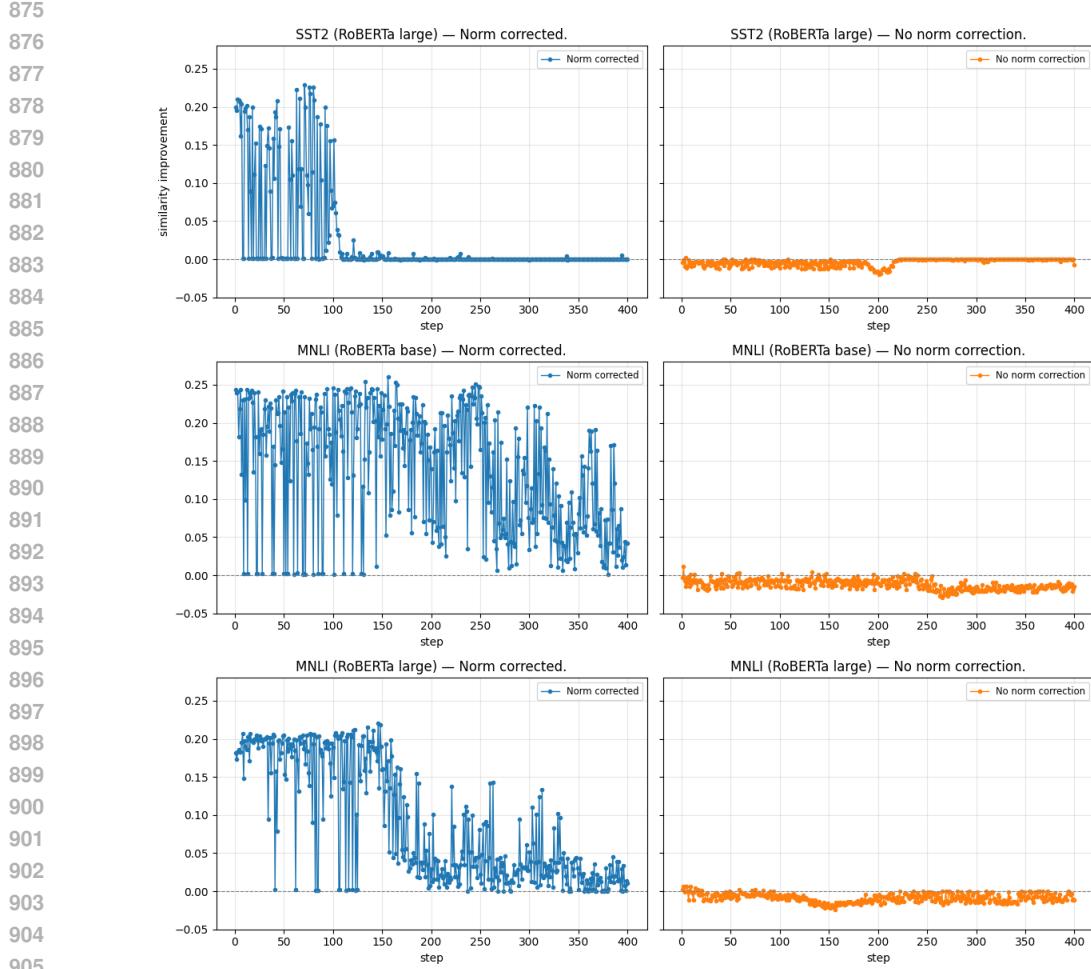


Figure 12: Comparison of whole gradient improvement when using norm correction and not using it. The Settings are similar to what is described in 4. It is evident that using norm correction results in more consistent improvement.

models from Qwen3 (Team, 2025) and Llama3.2 (Grattafiori et al., 2024) family. For training these models, we used LoRA (Hu et al., 2022) with rank 32. We used a learning rate of $2e-4$, batch size of 64, and clipping norm of 1.0. The privacy budget ϵ was set to 5.4 for all experiments, and the noise multiplier was calculated using the privacy accountant from Gopi et al. (2021) to ensure a total privacy loss of 5.4 at 400 training steps. For generating text during evaluation, we used the same setting as in Yu et al. (2021). For the denoising, we used the same $\kappa = 1.02$ as in all other experiments, showing the robustness of our method to this hyperparameter. Similar to experiments on the GLUE benchmark datasets, we see significant improvements in performance

918 after a limited number of training steps. Here, we present the results after 50 training steps to
 919 highlight the sample efficiency of our denoising method. In table 4, we can see that out of the 50
 920 different model/dataset/metric combinations, the denoised models outperformed the baseline in 49
 921 cases, demonstrating the effectiveness of our denoising method in enhancing model performance on
 922 language generation tasks under differential privacy constraints.

923 The final performance of the models after 400 steps are reported in table 5. In the metrics after 400
 924 steps, out of the 50 different model/dataset/metric combinations, the denoised models outperformed
 925 the baseline in 35 cases, showing that our method not only improves sample efficiency but also leads
 926 to better final performance in many scenarios. This, however, is still an area for further investigation
 927 to understand the cases where the baseline outperforms the denoised models at the later steps.

Dataset	Model	Size	Variant	BLEU	ROUGE-L	METEOR	NIST	CIDEr
E2E	Qwen	0.6B	baseline	23.17	46.78	0.509	2.34	0.67
			denoised	37.35	53.52	0.628	4.60	1.11
	Qwen	1.7B	baseline	36.01	53.57	0.609	4.64	1.08
			denoised	36.95	54.42	0.624	4.71	1.14
E2E	Qwen	4B	baseline	40.00	55.19	0.659	4.83	1.27
			denoised	40.88	55.74	0.663	5.03	1.36
	Llama	1B	baseline	22.15	44.24	0.476	2.59	0.47
			denoised	36.33	52.86	0.626	4.62	1.13
E2E	Llama	3B	baseline	10.96	25.22	0.268	0.93	0.22
			denoised	26.33	44.36	0.516	3.48	0.64
	DART	Qwen	baseline	14.66	33.44	0.323	0.91	0.59
			denoised	23.58	46.46	0.462	2.87	0.84
DART	Qwen	1.7B	baseline	21.77	46.98	0.483	4.23	0.86
			denoised	33.29	51.95	0.579	5.26	1.26
	Qwen	4B	baseline	21.74	44.47	0.522	3.84	0.86
			denoised	21.78	46.98	0.484	4.22	0.86
DART	Llama	1B	baseline	8.88	37.38	0.368	2.86	0.41
			denoised	13.81	43.12	0.454	3.68	0.73
	Llama	3B	baseline	6.12	30.08	0.319	2.13	0.26
			denoised	9.47	37.33	0.375	2.95	0.47

949 Table 4: Comparison of baseline vs. denoised models on E2E and DART datasets after 50 steps.
 950 Bold indicates the better value within each pair.

953 F USE OF LLMs

955 We have utilized large language models (LLMs) to assist in editing and refining the manuscript.
 956 LLMs were used to improve the clarity, coherence, and overall quality of the writing, ensuring that
 957 the content is presented in a clear and accessible manner.

972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987

988	Dataset	Model	Size	Variant	BLEU	ROUGE-L	METEOR	NIST	CIDEr
989	E2E	Qwen	0.6B	baseline	38.77	53.57	0.661	4.83	1.17
990				denoised	38.94	55.07	0.668	4.87	1.20
991	E2E	Qwen	1.7B	baseline	40.00	55.70	0.661	4.91	1.22
992				denoised	40.05	55.73	0.670	4.92	1.23
993	E2E	Qwen	4B	baseline	40.58	56.47	0.678	5.00	1.32
994				denoised	40.44	56.33	0.676	4.99	1.28
995	E2E	Llama	1B	baseline	37.06	54.94	0.629	4.65	1.21
996				denoised	39.70	55.29	0.662	4.93	1.30
997	E2E	Llama	3B	baseline	39.02	54.68	0.659	4.89	1.25
998				denoised	39.64	54.83	0.682	4.91	1.29
999	DART	Qwen	0.6B	baseline	25.99	50.44	0.595	3.38	1.01
1000				denoised	25.43	50.23	0.510	3.37	1.02
1001	DART	Qwen	1.7B	baseline	31.07	52.63	0.572	4.77	1.26
1002				denoised	30.98	52.89	0.581	4.93	1.26
1003	DART	Qwen	4B	baseline	29.70	52.22	0.571	4.63	1.22
1004				denoised	34.82	54.71	0.594	5.29	1.38
1005	DART	Llama	1B	baseline	20.03	46.40	0.466	3.91	0.79
1006				denoised	19.41	46.85	0.479	3.95	0.81
1007	DART	Llama	3B	baseline	23.56	48.01	0.512	4.60	1.00
1008				denoised	21.51	44.25	0.461	3.80	0.87

1008 Table 5: Comparison of baseline vs. denoised models on E2E and DART datasets. Bold indicates
 1009 the better value within each pair.
 1010

1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025