
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

SAMPLE-EFFICIENT DIFFERENTIALLY PRIVATE FINE-
TUNING VIA GRADIENT MATRIX DENOISING

Anonymous authors
Paper under double-blind review

ABSTRACT

We address the challenge of sample efficiency in differentially private fine-tuning
of large language models (LLMs) using DP-SGD. While DP-SGD provides strong
privacy guarantees, the added noise significantly increases the entropy of gradient
matrices, disrupting their low-rank structure and slowing optimization. We pro-
pose a post-processing algorithm that leverages random matrix theory to denoise
gradients, restore low-rank structure, and improve alignment with the original sig-
nal. Applied to DP-SGD fine-tuning of RoBERTa model family on GLUE tasks
and Qwen and Llama family on DART and E2E datasets, our method improves
sample efficiency compared to state-of-the-art approaches, substantially reducing
training time when optimal performance is not required. This work demonstrates
that matrix recovery techniques can enhance the utility of private language model
training without compromising privacy guarantees.

1 INTRODUCTION

Many applications of machine learning in natural language processing tasks may raise privacy con-
cerns, because of the potential data leakage from using models trained on private data (Carlini et al.,
2021; 2022). Differential privacy (DP) (Dwork et al., 2014) is a formal framework for quantifying
and limiting the privacy loss experienced by individuals whose data are included in a dataset when
an algorithm is applied to it. DP-SGD (Abadi et al., 2016), is a method to ensure privacy guarantees
as measured by the DP framework, and has been succesfully applied to NLP tasks (Yu et al., 2021;
Li et al., 2021).

Applying DP-SGD to language models, while successful, has many challenges. Training large lan-
guage models (LLMs) with DP-SGD is computationally expensive (Li et al., 2021). Using parameter
efficient fine-tuning methods, this challenge has been addressed (Yu et al., 2021). Still, computa-
tional cost is higher than the non-private training, because of lower sample efficiency. This can be
viwed, for example, in Figure 1.

In the DP-SGD method, noise is deliberately added to the gradient vector before it is passed to
the optimizer to ensure privacy. While this step is crucial for protecting individual data, it also
complicates the optimization process. Specifically, the added noise alters the distribution of singular
values in the gradient matrix. For transformer-based language models, the singular values of the
gradient matrix typically decay rapidly, reflecting low matrix entropy and a strong low-rank structure
(Li et al., 2022; Zhao et al., 2024). After noise is introduced, however, the singular values decay
more slowly, leading to higher matrix entropy (Li et al., 2022). We hypothesize that this increase in
entropy makes optimization more difficult.

The singular values of the gradient matrix undergo a “phase transition” (Baik et al., 2005) when
noise is added. If the underlying signal is weak, the singular values of the noisy matrix become
indistinguishable from those of pure noise. Figure 4 illustrates this by comparing the sorted sin-
gular values of a RoBERTa layer’s gradient matrix before and after DP-SGD noise is applied. In
this weak-signal regime, the noisy gradient’s singular values closely follow the “bulk” distribution
predicted by the Marchenko–Pastur law (Marčenko & Pastur, 1967; Tao, 2012), making them es-
sentially indistinguishable from pure noise. Thus, when a low-rank signal is too small relative to
the noise, it is hidden in the noise and cannot be detected or recovered by examining the singular
values and vectors alone. This highlights a fundamental limitation: sufficiently weak signals are
undetectable in the presence of strong noise.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

However, if some singular values exceed this threshold, the largest singular values of the noisy
matrix deviate from the bulk, as shown in Figure 5. This phenomenon is known as the Baik–Ben
Arous–Péché (BBP) phase transition (Baik et al., 2005). The extent of these deviations, as well
as the alignment between the singular vectors of the noisy and original matrices, can be predicted
mathematically (Baik & Silverstein, 2006; Benaych-Georges & Nadakuditi, 2012). These properties
enable partial recovery of the original matrix from its noisy observation (Shabalin & Nobel, 2013;
Gavish & Donoho, 2014).

In this paper, we propose a post-processing algorithm for DP-SGD that leverages the mentioned
matrix recovery techniques from random matrix theory to reduce the entropy of the gradient matrix,
restore its low-rank structure, and improve the alignment between the noisy and original gradients.
To evaluate our approach, we apply it to DP-SGD fine-tuning of RoBERTa (Liu et al., 2019) on
GLUE tasks (Wang et al., 2019). We compare the sample efficiency of our method to the current
state-of-the-art (Yu et al., 2021), demonstrating that our approach can improve the sample efficiency
of DP-SGD fine-tuning for language models. While our method may not always achieve the highest
possible utility, it can substantially reduce training time when optimal performance is not required.

2 PRELIMINARIES

2.1 DIFFERENTIAL PRIVACY

Differential privacy is a framework to quantify and measure the maximum possible privacy risks an
algorithm with sensitive training dataset may have. For a pair (ϵ, δ), this formalism asks any learning
algorithmM to have similar outputs for two datasets differing only in one element. Intuitively, the
output of the learning algorithm should not change much whether it sees a particular example or not.
This intuition can be formulated mathematically in the concept of approximate differential privacy.

2.1.1 APPROXIMATE DIFFERENTIAL PRIVACY

Definition 1. Two sets are called neighboring sets if they differ only in inclusion or exclusion of
exactly one element.
Definition 2. A randomized algorithmM is said to satisfy (ϵ, δ) differential privacy, if for any two
neighboring datasets D and D′ and for any event E, the following holds

P(M(D) ∈ E) ≤ exp(ϵ)P(M(D′) ∈ E) + δ (1)

.

In practice, it is usual to have δ in the order of |D|−1 (Abadi et al., 2016). In NLP applications, ϵ
usually takes values between 0.5 and 8 (Yu et al., 2021; Li et al., 2021).

2.1.2 DP-SGD

DP-SGD is a popular method of training deep learning models with approximate differential privacy
guarantees. This method is a modification of the popular first order SGD algorithm.

DP-SGD works by modifying the gradient before passing it to the optimizer. It has two main parts
1. per example gradient clipping and 2. noise addition. There are two hyper-parameters associated
with each of them, the clipping threshold, C, which controls the maximum per example gradient
norm, and the noise multiplier, σ, which when multiplied by C, controls the standard deviation of
the isotropic zero mean Gaussian noise added to the sum of the clipped gradients (Abadi et al.,
2016).

In standard SGD, for a batch of data {xi}i∈B ⊂ D, the batch gradient is computed as:

gB =
1

B

∑
i∈B

gi =
1

B

∑
i∈B
∇f(θ, xi)

In DP-SGD, each individual gradient is first clipped so that its norm does not exceed the threshold C.
The clipped gradients are then summed, and Gaussian noise with entries drawn fromN (0, σ2C2) is
added. Finally, the result is averaged over the batch:

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

ḡB =
∑
i∈B

clip(gi, C)

g̃B =
1

B
(ḡB +w) , wj ∼ N (0, σ2C2)

(2)

This new gradient will then be fed to the optimizing algorithm of the choice, e.g. SGD or Adam(W).
While σ and C are hyper-parameters, the constant σ is selected based on the privacy guarantees
desired for the model (ϵ, δ), the number of training steps, sampling rate (B

|D|). The method for
computing the necassiry σ based on the privacy gaurantees is called the privacy accountant. For this
work, we use the privacy accountant of Gopi et al. (2021) which currently is the most tight privacy
accountant.

Algorithm 1 DP-SGD (with Denoising)
Require: Dataset D, loss function f(θ, x), model parameters θ, sampling rate ρ, clipping norm C,

noise multiplier σ, optimizer O, number of steps T , Denoising function Denoise(·)
for t← 1 to T do

Sample a batch B from D using Poisson sampling with rate ρ
for each i ∈ B do

Compute per-example gradient gi ← ∇θf(θ, xi)
Clip gradient: clip(gi, C)← gi/max(1, ∥gi∥2/C)

end for
Aggregate clipped gradients: ḡ ←

∑
i∈B clip(gi, C)

Draw noise vector w with i.i.d. entries from N (0, σ2C2)
Compute noisy average: g̃ ← (ḡ +w)/|B|
Denoise the gradient: ĝ ← Denoise(g̃)
Update optimizer state: O ← UpdateState(O, ĝ)
Update parameters: θ ← UpdateParameters(θ,O)

end for

2.1.3 POST PROCESSING INVARIANCE

A fundamental property of differential privacy is its invariance under post-processing. This means
that no adversary, regardless of the method applied to the output of a differentially private algorithm,
can reduce its privacy guarantees or extract more information about the original dataset. In other
words, post-processing cannot make the output less private, providing strong protection against
attempts to compromise privacy. While previous work has leveraged this property to improve the
utility of the DP-SGD algorithm (Zhang et al., 2024; Balle & Wang, 2018), none have utilized results
from random matrix theory for the post-processing function. To our knowledge, this is the first work
to apply such results in the context of DP-SGD.

2.2 SINGULAR VALUE DISTRIBUTION OF GRADIENTS

The gradients of linear layers of neural networks in training, when viewed as a linear operator,
exhibit a low rank structure (Li et al., 2022), (Zhao et al., 2024). Viewing the singular values of the
gradient operator, this translates to a rapid decay in the singular values of the gradient matrix. This
is a well known phenomenon in the literature, and has been observed in many different settings, e.g.
(Li et al., 2022), (Zhao et al., 2024). While this has been used to explain why differential privacy
works so well in deep models with large parameter counts contrary to theoretical expectations (Li
et al., 2022), it has not been used to improve the sample efficiency of differentially private training.
In this work, we use this property to improve the sample efficiency of differentially private training
by using low rank matrix estimation techniques to denoise the gradients before passing them to the
optimizer.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

2.3 LOW RANK MATRIX ESTIMATIONS

Low rank matrix reconstruction is a rich sub-field of signal processing (Donoho et al., 2018; Gavish
& Donoho, 2014; Shabalin & Nobel, 2013). Assuming the rank of the signal matrix X ∈ Rm×n is
k, we can use the SVD decomposition to write it as

X =

k∑
i=1

λiuiv
T
i

where λis are non-increasing singular values, and ui ∈ Rm, vi ∈ Rn are orthonormal vectors.

Then, a noise matrix with entries drawn from N (0, σ2) is added to get the noisy matrix X̃:

X̃ = X +∆, ∆ij
i.i.d.∼ N (0, σ2)

The goal is to estimate the original matrix X from the noisy observation X̃ . We write the SVD
decomposition of X̃ in the notation

X̃ =

min(m,n)∑
i=1

λ̃iũiṽ
T
i

Note that the noisy version may (and usulaly does) have more than k non-zero components.

2.3.1 EFFECT OF NOISE ON SINGULAR VALUES AND SINGULAR VECTORS: A PHASE
TRANSITION

With the mentioned notation we have

λ̃i ≈

Fσ,n,m(λi) =

√(
λi +

σ2n
λi

)(
λi +

σ2m
λi

)
if λi > σ 4

√
mn

σ(
√
m+

√
n) if λi ≤ σ 4

√
mn

(3)

This is an increase in the value of the singular value, which is usual in random matrix theory. It is
important to note that these results are typically stated in the asymptotic regime, where the matrix di-
mensions grow to infinity and the noise variance may scale with the dimensions, often under specific
assumptions on the ratio m/n. In practical, finite-dimensional settings, these approximations may
incur some error. The precise rate of this error in finite dimensions is not addressed here and could
be an interesting direction for further study. The derivation of these results from their asymptotic
forms is postponed to the appendix A.2.

Also, assuming all of the eignvalues of X are distinct, and if λi > σ 4
√
mn, following Lemma 3 of

Gavish & Donoho (2014) or proposition 9 of Shabalin & Nobel (2013), we can write

|⟨ui, ũj⟩|2 ≈


λ4
i −mnσ4

λ4
i +mλ2

iσ
2

i = j

0 i ̸= j
, (4)

and

|⟨vi, ṽj⟩|2 ≈


λ4
i −mnσ4

λ4
i + nλ2

iσ
2

i = j

0 i ̸= j
. (5)

However if λi ≤ σ 4
√
mn, then

|⟨ui, ũj⟩|2 ≈ |⟨vi, ṽj⟩|2 ≈ 0 (6)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

2.3.2 MATRIX DENOISING

Matrix denoising methods aim to recover the underlying signal matrix X from its noisy observation
X̃ by leveraging the low-rank structure of the signal. Many of these methods shrink the singular
values of the noisy matrix. One such approach is the so-called optimal method discussed in Shabalin
& Nobel (2013); Donoho et al. (2018), which outputs a low-rank matrix.

Optimal Denoising The mentioned optimal estimator for the signal matrix can be written as

X̂optimal =

r∑
i=1

ηiũiṽ
T
i (7)

where, following Shabalin & Nobel (2013), the optimal coefficients are

ηi = λ̂i ·

√
λ̂4
i −mnσ4

λ̂4
i +mλ̂2

iσ
2
·

√
λ̂4
i −mnσ4

λ̂4
i + nλ̂2

iσ
2
, where λ̂i = F−1

σ,n,m(λ̃i) (8)

for all i such that λ̃i > σ(
√
m +

√
n), and zero otherwise. It has been shown to achieve the best

possible mean squared error (MSE) under certain conditions, particularly when the noise is Gaussian
and the signal is low-rank.

Computational Overhead Although the additional computation required for matrix denoising
may seem significant, with careful implmenetation and also utilizing the parallelizable nature of the
optimal denoising algorithm, the overhead can be kept minimal. We draw readers attention to three
properties that can be leveraged to reduce the computational overhead. 1) First, the fact that in equa-
tion 7, the F−1

σ,n,m(λ̃i) can be computed independently for each singular value, and the same applies
to the computation of ηi. 2) Second, the SVD computation, which is the most computationally ex-
pensive part of the algorithm, can be computed in a batched manner for all the layers of the neural
network with similar dimensions. And 3) Third, by utilizing approximate methods when accept-
able, the SVD computation can be further accelerated. While if implmeneted naı̈vely, the overhead
can be just short of 3% of the total training time, combining the mentioned strategies, the compu-
tational overhead of the denoising step can be reduced to less than 1% of the total training time in
our experiments (Table 1). The efficient implementation is available as part of the supplementary
material.

Table 1: Training time in seconds for different methods of DP-SGD fine-tuning of RoBERTa on
SST-2 dataset with the setting of section 4. The overhead is computed as the percentage increase in
training time compared to regular DP-SGD.

Model Method Train Time Overhead

RoBERTa Base
Regular DP-SGD 1846 –
Naı̈ve denoising implementation 1899 2.87%
Efficient denoising implementation 1861 0.81%

RoBERTa Large
Regular DP-SGD 5658 –
Naı̈ve denoising implementation 5781 2.17%
Efficient denoising implementation 5700 0.74%

3 METHODOLOGY

In this section, we introduce our post-processing method, which leverages equations 7 and 8 to de-
noise the gradients produced by DP-SGD before they are passed to the optimizer. First, we establish
that the slower convergence observed with DP-SGD (compared to non-private training) is primarily
caused by the added Gaussian noise, not by gradient clipping. Although prior work often attributes

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

the loss gap between DP-SGD and non-private training to clipping (Bu et al., 2023), these are dis-
tinct phenomena. Figure 1 shows that the final validation loss is similar for DP-SGD with a zero
noise multiplier (σ = 0) and for DP-SGD using the noise level required for privacy; however, con-
vergence toward that final loss is significantly slower when noise is added. This indicates that the
added noise is the main driver of DP-SGD’s slower convergence. This is why we focus on denoising
the gradients in our method. More similar experiments comparing clipping alone versus DP-SGD
can be found in appendix B.

Figure 1: Comparison of validation loss between DP-SGD and training using per-sample clipping
only (no noise injected). This is for training RoBERTa base model on sst-2 dataset. The Setting are
similar to what is described in 4, except that for only clipping method, we do not add the gaussian
noise and only perform the per-sample clipping. It is evident that the slowdown in convergence is
more pronounced for DP-SGD than for clipping alone.

3.1 FRAMEWORK

We apply the denoising method by aiming to increase the alignment between the denoised gradient
and the clipped gradient. Specifically, our objective is to construct a denoising function that, given
the noisy gradient as input, produces an output that is more closely aligned with the clipped gradient.
Using the notation from Section 2.1.2, we seek a denoising function Denoise(·) such that

cos(Denoise(g̃), ḡ) > cos(g̃, ḡ)

where cos(a, b) = aT b
∥a∥2∥b∥2

is the cosine similarity between two vectors a and b.

For tracking this value for evaluation purposes, we define the Improvement at step t as

Improvement(t) = cos(Denoise(g̃t), ḡt)− cos(g̃t, ḡt)

If we can come up with such a denoising function, we hope to improve the sample efficiency of
DP-SGD by making the noisy gradients more closely resemble the true (clipped) gradients. Having
such a denoising function, we can change the DP-SGD algorithm as in Algorithm ??.

We expect that if the improvement at each step t is consistently non negative, Improvement(t) ≥
0, then the denoising function is effectively aligning the noisy gradients with the true (clipped)
gradients, leading to faster convergence of the DP-SGD algorithm. It is important to note that
the improvement function is only used for evaluation porpuses and is not used for the algorithm
itself, as doing so would violate the differential privacy criteria. The following sections will detail
the implementation of the denoising function which are mainly based on the results reviewed in
Section 2.3.2. The guiding principle behind adapting the matrix denoising methods to our task is
that the denoiser should increase alignment with the (private) clipped gradient, while itself using no
additional private information. This principle helps us in two design choices. One gives us a way to
adapt the asymptotic formulas to finite dimension, and the other helps us to generalize the denoising
algorithm from operating on a single matrix to operating on a collection of matrices (the layers of
the neural network).

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

3.2 DENOISING FUNCTION

The denoising function we propose is basically application of the denoising functions in section
2.3.2 to the linear components of the noisy gradient g̃. Supposing W is a layer of our neural network
θ, the restriction of the (clipped) gradient to W is a matrix

∑
x∈B clip(∇θf(θ, x), C) |W= ḡ |W . If

we consider all the different layers of the neural network, the parameters of the neural network can
be partitioned as

θ = W1 ×W2 × . . .×WL

where L is the number of layers in the network. Then, we can write

ḡ = (ḡ |W1
, ḡ |W2

, . . . , ḡ |WL
)

g̃ = (g̃ |W1
, g̃ |W2

, . . . , g̃ |WL
)

With this notation, we can define the denoising function as seperate application of the denoising
functions to each layer’s gradient:

Denoise(g̃) = (Denoise(g̃ |W1
),Denoise(g̃ |W2

), . . . ,Denoise(g̃ |WL
))

Where if a layer Wi is not a linear layer, we simply set Denoise(g̃Wi) = g̃Wi . With this notation,
we can also define the per-layer improvement as

Improvementi(t) = cos(Denoise(g̃t |Wi), ḡt |Wi)− cos(g̃t |Wi , ḡt |Wi).

For linear layers, we modify the so called “optimal” denoising method in two ways.

• To adapt the assymptotic formulas to finite dimension we only apply optimal denoising
if the singular values of the noisy layer gradient are larger than a preset multiple of σ(

√
n+√

m), where n,m are dimensions of that linear layer. When the singular value is larger than
the required threshold, we apply the optimal denoising function.

• To keep the gradient norm the same and also making sure the per-layer alignment
improvement will result in whole graident improvement, we rescale the denoised per-
layer graidnet so that its ℓ2 norm is equal to the noisy version g̃ 7→ ||g̃||

||ĝoptimal|| ĝoptimal.

So for linear layers and the hyperparameter κ we have

Denoise(g̃ |W) =

g̃ |W , if λ1(g̃ |W) < κσ(
√
n+
√
m)

||g̃||
||ĝoptimal|| ĝoptimal, otherwise

(9)

3.2.1 WHY THRESHOLD IS NEEDED AND WHY THIS SPECIFIC VALUE?

It is important to recognize that the results in Section 2.3.2 are derived in asymptotic settings. For
instance, the theory predicts that if all singular values of the signal matrix are less than σ 4

√
nm, or

equivalently, if all singular values of the noisy matrix are less than σ(
√
n +
√
m), then the inner

products between the left (or right) singular vectors of the signal and noisy matrices should be zero.
In that case, the optimal denosing algorithm returns the zero matrix as the optimum result and states
that it is the best one can get. However, in practice and for finite-dimensional matrices, this is not
true, and the noisy gradient, even if its singular value are small, usually still has some positive cosine
similarity with the original gradient. As a result, the denoising algorithm does not always improve
the alignment between the noisy and per-layer clipped gradients.

Fortunately, we identified a simple RMT-based criterion to decide when to apply the denoiser.
Concretely, we only denoise a layer if the largest singular value of its noisy gradient exceeds
κσ(
√
n+
√
m). Choosing κ = 1 prevents denoising in cases where the optimal estimator would re-

turn the zero matrix. This threshold is motivated by the phase transition in equation 3: σ(
√
n+
√
m)

is the maximal singular value of a pure-noise matrix (signal equal to zero). Thus, RMT indicates
when denoising can meaningfully improve alignment; if the estimator would output the zero matrix,
the theoretical prediction is that there is no signal to recover.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Our observations show that for correct value of κ, denoising tends to improve the alignment, other-
wise it may reduce the alignment . For choosing the value of κ, we tuned it on the SST dataset while
training the RoBERTa-base model by choosing the best value from the set {1.01, 1.02, 1.05, 1.1},
and used the same value for all the other model/datset pairs. We choose this set to have values
greater than 1 to avoid the cases where denoising outputs zero matrix. Also, we want to keep the
values as close to 1 as possible to have more layers denoised. The trade-off here is to have a big
enough κ so the denoising improves the alignment, and to have it small enough so that we get enough
per-layer gradients denoised to get the most out of the alignment improvement. The best value we
found was κ = 1.02 (Figure 2). We also like to emphasis that while we could have tuned κ for
each model/dataset pair, we refrained from doing so to show the robustness of our method to this
hyperparameter. The value κ = 1.02 worked well accross all the model/dataset pairs we tried.

Figure 2: Effect of different values of κ on the per-layer improvements when training RoBERTa
base model on sst-2 dataset. The Setting are similar to what is described in 4. It is evident that
κ = 1.02 is the smallest κ which has dominantly positive per-layer improvement.

3.2.2 WHY NORM CORRECTION IS NEEDED?

The scope in which the denoising function from the RMT works is to improve the alignment between
the noisy and clipped per-layer gradients. There is no extension of the RMT method to a combination
of different layers, and the relative scaling between them. For generalizing to a method for improving
alignment of the whole gradient vector, we are going to use the following theorem, which states that
if we improve the alignment of each component of a vector, and keep their norms the same, then the
overall alignment will also improve.

Theorem 1. Let x = (x1, . . . , xc) ∈ Rn be a target vector, with xi ∈ Rni and
∑c

i=1 ni = n. Let
y = (y1, . . . , yc), y

′ = (y′1, . . . , y
′
c) ∈ Rn be estimations of x, with yi, y

′
i ∈ Rni . If we have

(i) cos(yi, xi) ≤ cos(y′i, xi), or all i ∈ {1, . . . , c}. and

(ii) ∥yi∥ = ∥y′i∥, for all i ∈ {1, . . . , c}.

Then, we have cos(y, x) ≤ cos(y′, x).

A proof for this thorem is provided in the appendix D. In our case, the target vector is the clipped
gradient ḡ, and the two estimations are the noisy gradient g̃ and the denoised gradient Denoise(g̃).
It is worth noting that this theorem does not make any assumptions about the nature of the vectors
involved, for example if they have any matrix structure at all, and is a general result about cosine
similarity and vector norms and is not related to low-rank structure. Also, contrary to the results in
section 2.3.2, this theorem is exact and does not rely on any asymptotic approximations or proba-
bilistic arguments.

On another note, the assumption (ii) in theorem 1 is the reason we need to do the norm correction in
equation 9. Without this correction, even if the per-layer alignment improves, there is no guarantee
that the overall alignment will also improve. To see the effect of the norm correction, we have done

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

abalation studies for the effect of norm correction. The results for the case of training RoBERTa base
model on SST-2 dataset are presented in figure 3. It is evident that without the norm correction, the
improvement is not consistent, and even negative. This shows the importance of the norm correction
step in our denoising function. More abalation results can be found in the appendix D.

Figure 3: Comparison of whole gradient improvement when using norm correction and not using
it. This is for training RoBERTa base model on sst-2 dataset. The Setting are similar to what is
described in 4. It is evident that using norm correction results in more consistent improvement.

Also, on the last note, we like to note that the norm of the denosied gradient in this method is
exactly the nosie of the noisy gradient. This will prevent any possible issues with convergence of
the optimizer due to unexpected changes in the gradient norm.

4 EXPERIMENTS

In this section, we present the evaluation method and the experiment results we had. To evaluate our
main goal of improving the sample efficiency of DP-SGD, we compared the performance of DP-
SGD with and without our denoising method across different datasets from the GLUE benchmark
(Wang et al., 2019) and two sizes of the RoBERTa model (Liu et al., 2019).

Because our goal is to find a fast converging method, with possible trade-off in the final performance,
we count the number of training steps each method needs to reach some certain (validation) accuracy
thresholds. We set these thresholds to be 95% and 90% of the SOTA results for the private training
of the same models on the same datasets. The SOTA results are taken from Yu et al. (2021).

For epsilon, we also follow the same setup as Yu et al. (2021), which is 6.7 for all datasets, and
compute the required noise multiplier using the privacy accountant of Gopi et al. (2021) in each
case so that the total privacy loss at 400 steps is 6.7.

We keep every other hyper-parameter the same as Yu et al. (2021), including batch size, learning
rate, weight decay, and clipping norm. Looking at the tables 2 and 3, we can see that our method
consistently improves the sample efficiency of DP-SGD across all datasets and model sizes. Im-
provements range from 20% to 100% in the number of steps required to reach 90% and 95% of
the SOTA performance. Also, we achieved higher performance in five out of eight cases for the final
accuracy at 400 steps.

We also report additional language-generation experiments on the E2E benchmark (Novikova et al.,
2017) and DART (Nan et al., 2021) using Qwen3 and Llama3.2 models (Team, 2025; Grattafiori
et al., 2024) (see Appendix E for hyperparameters and more details). After 50 training steps (Table
4), our denoising method outperforms the baseline in 49 of 50 model/dataset/metric combinations,
demonstrating substantial sample-efficiency gains under tight iteration budgets. These experiments
use models of up to 4B parameters, indicating the approach scales to larger models.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Task Method Final Acc. SOTA Steps Speedup
(at 400 steps) (at 20 epochs) 90% 95% 90% 95%

SST
Ours 92.4

92.5
150 150

67% 67%
Baseline 92.5 250 250

QNLI
Ours 84.6

87.5
200 300

100% -
Baseline 80.0 400 –

MNLI
Ours 80.0

83.5
250 400

40% -
Baseline 77.6 350 –

QQP
Ours 83.1

85.7
150 250

67% 40%
Baseline 81.9 250 350

Table 2: Comparison of Ours and Baseline on GLUE tasks when training Roberta Base. Final
accuracy, SOTA reference, number of steps needed to reach 90% and 95% of SOTA, and speedups
(only for Ours) are reported.

Task Method Final Acc. SOTA Steps Speedup
(at 400 steps) (at 20 epochs) 90% 95% 90% 95%

SST
Ours 93.8

95.3
150 150 33% 67%

Baseline 93.9 200 250

QNLI
Ours 88.5

90.8
150 250 33% 20%

Baseline 89.2 200 300

MNLI
Ours 85.6

87.8
200 250 25% 20%

Baseline 85.3 250 300

QQP
Ours 84.7

87.4
150 250 33% 20%

Baseline 84.1 200 300

Table 3: Comparison of Ours and Baseline on GLUE tasks with RoBERTa Large. Final accuracy,
SOTA reference, steps to reach 90% and 95% of SOTA, and speedups (only for Ours) are reported.

5 LIMITATIONS AND FUTURE WORK

One major limitation of our method is that it does not always produce the best final performance
decpite the fastest convergence. In some experiments, the baseline achieves slightly higher final ac-
curacy than our method. This is particularly puzzling given the consistently positive improvement in
cosine similarity between the denoised and noisy gradients relative to the clipped gradients. Further
investigation is needed to understand this discrepancy and to identify possible remedies.

6 REPRODUCIBILITY STATEMENT

All the necessary code and hyperparameters for reproducing the results in this paper has been made
available in the supplementary material.

REFERENCES

Martin Abadi, Andy Chu, Ian Goodfellow, H Brendan McMahan, Ilya Mironov, Kunal Talwar, and
Li Zhang. Deep learning with differential privacy. In Proceedings of the 2016 ACM SIGSAC
conference on computer and communications security, pp. 308–318, 2016.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Jinho Baik and Jack W Silverstein. Eigenvalues of large sample covariance matrices of spiked
population models. Journal of multivariate analysis, 97(6):1382–1408, 2006.

Jinho Baik, Gérard Ben Arous, and Sandrine Péché. Phase transition of the largest eigenvalue for
nonnull complex sample covariance matrices. 2005.

Borja Balle and Yu-Xiang Wang. Improving the Gaussian mechanism for differential privacy:
Analytical calibration and optimal denoising. In Jennifer Dy and Andreas Krause (eds.), Pro-
ceedings of the 35th International Conference on Machine Learning, volume 80 of Proceed-
ings of Machine Learning Research, pp. 394–403. PMLR, 10–15 Jul 2018. URL https:
//proceedings.mlr.press/v80/balle18a.html.

Florent Benaych-Georges and Raj Rao Nadakuditi. The singular values and vectors of low rank
perturbations of large rectangular random matrices. Journal of Multivariate Analysis, 111:120–
135, 2012.

Zhiqi Bu, Hua Wang, Zongyu Dai, and Qi Long. On the convergence and calibration of deep learning
with differential privacy. Transactions on machine learning research, 2023:https–openreview,
2023.

Nicholas Carlini, Florian Tramer, Eric Wallace, Matthew Jagielski, Ariel Herbert-Voss, Katherine
Lee, Adam Roberts, Tom Brown, Dawn Song, Ulfar Erlingsson, et al. Extracting training data
from large language models. In 30th USENIX security symposium (USENIX Security 21), pp.
2633–2650, 2021.

Nicholas Carlini, Steve Chien, Milad Nasr, Shuang Song, Andreas Terzis, and Florian Tramer. Mem-
bership inference attacks from first principles. In 2022 IEEE symposium on security and privacy
(SP), pp. 1897–1914. IEEE, 2022.

David L Donoho, Matan Gavish, and Iain M Johnstone. Optimal shrinkage of eigenvalues in the
spiked covariance model. Annals of statistics, 46(4):1742, 2018.

Cynthia Dwork, Aaron Roth, et al. The algorithmic foundations of differential privacy. Foundations
and trends® in theoretical computer science, 9(3–4):211–407, 2014.

Matan Gavish and David L Donoho. The optimal hard threshold for singular values is 4/
√
3. IEEE

Transactions on Information Theory, 60(8):5040–5053, 2014.

Sivakanth Gopi, Yin Tat Lee, and Lukas Wutschitz. Numerical composition of differential privacy.
Advances in Neural Information Processing Systems, 34:11631–11642, 2021.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd
of models. arXiv preprint arXiv:2407.21783, 2024.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. ICLR, 1(2):3, 2022.

Xuechen Li, Florian Tramer, Percy Liang, and Tatsunori Hashimoto. Large language models can be
strong differentially private learners. arXiv preprint arXiv:2110.05679, 2021.

Xuechen Li, Daogao Liu, Tatsunori B Hashimoto, Huseyin A Inan, Janardhan Kulkarni, Yin-Tat
Lee, and Abhradeep Guha Thakurta. When does differentially private learning not suffer in high
dimensions? Advances in Neural Information Processing Systems, 35:28616–28630, 2022.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining
approach. arXiv preprint arXiv:1907.11692, 2019.

Vladimir A Marčenko and Leonid Andreevich Pastur. Distribution of eigenvalues for some sets of
random matrices. Mathematics of the USSR-Sbornik, 1(4):457, 1967.

11

https://proceedings.mlr.press/v80/balle18a.html
https://proceedings.mlr.press/v80/balle18a.html

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Linyong Nan, Dragomir Radev, Rui Zhang, Amrit Rau, Abhinand Sivaprasad, Chiachun Hsieh,
Xiangru Tang, Aadit Vyas, Neha Verma, Pranav Krishna, et al. Dart: Open-domain structured
data record to text generation. In Proceedings of the 2021 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technologies, pp.
432–447, 2021.

Jekaterina Novikova, Ondřej Dušek, and Verena Rieser. The e2e dataset: New challenges for end-
to-end generation. arXiv preprint arXiv:1706.09254, 2017.

Andrey A Shabalin and Andrew B Nobel. Reconstruction of a low-rank matrix in the presence of
gaussian noise. Journal of Multivariate Analysis, 118:67–76, 2013.

Terence Tao. Topics in random matrix theory, volume 132. American Mathematical Soc., 2012.

Qwen Team. Qwen3 technical report, 2025. URL https://arxiv.org/abs/2505.09388.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R. Bowman.
Glue: A multi-task benchmark and analysis platform for natural language understanding. In
International Conference on Learning Representations, 2019.

Da Yu, Saurabh Naik, Arturs Backurs, Sivakanth Gopi, Huseyin A Inan, Gautam Kamath, Janardhan
Kulkarni, Yin Tat Lee, Andre Manoel, Lukas Wutschitz, et al. Differentially private fine-tuning
of language models. arXiv preprint arXiv:2110.06500, 2021.

Xinwei Zhang, Zhiqi Bu, Mingyi Hong, and Meisam Razaviyayn. Doppler: Differentially private
optimizers with low-pass filter for privacy noise reduction. Advances in neural information pro-
cessing systems, 37:41826–41851, 2024.

Jiawei Zhao, Zhenyu Zhang, Beidi Chen, Zhangyang Wang, Anima Anandkumar, and Yuandong
Tian. Galore: Memory-efficient llm training by gradient low-rank projection. arXiv preprint
arXiv:2403.03507, 2024.

A RANDOM MATRIX THEORY BACKGROUND

We have included some additional figures and derivations for the random matrix theory results used
in this paper.

A.1 LOW RANK STRUCTURE IN GRADIENTS OF LARGE LANGUAGE MODELS

Figure 4: Sorted singular values of the gradient matrix for a RoBERTa layer, before and after adding
DP-SGD noise. When the signal singular values are smaller than the red line, the singular values of
the noisy matrix are indistinguishable from pure noise.

12

https://arxiv.org/abs/2505.09388

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Figure 5: Sorted singular values of the gradient matrix for a RoBERTa layer, before and after adding
DP-SGD noise. When some signal singular values exceed the red line, the largest singular values of
the noisy matrix deviate from the bulk.

A.2 FINITE DIMENSIONAL DERIVATION OF RANDOM MATRIX THEORY RESULTS

In the usual random matrix theory literature, the results in Shabalin & Nobel (2013); Donoho et al.
(2018); Gavish & Donoho (2014) are stated in the asymptotic regime, where the matrix dimensions
grow to infinity and the noise variance may scale with the dimensions. In this section we want to
state those results in their original form, and explain the derivation of equations 3, 4, and 5 from
their asymptotic forms.

The setup in Shabalin & Nobel (2013); Donoho et al. (2018) is as follows. We have a sequence of
matrices Xn ∈ Rmn×n with mn/n → β as n → ∞. The rank of the signal matrix is fixed, i.e.
rank(Xn) = r for all n. The singular values of the signal matrix are fixed, i.e. the non-zero singular
values of Xn are λ1 > λ2 > . . . > λr > 0 for all n. Then, we add a noise matrix with i.i.d. entries
from N (0, 1/n) to get the noisy matrix. In these settings, the results in Shabalin & Nobel (2013);
Gavish & Donoho (2014) state that

lim
n→∞

yn,i
a.s.
=


√(

λi +
1

λi

)(
λi +

β

λi

)
λi > β1/4

1 +
√
β λi ≤ β1/4

(10)

where yn,i is the i-th singular value of the noisy matrix. If we want to change this into the finite
dimensional form, we can start form a noise matrix with i.i.d. entries from N (0, σ2) instead of
N (0, 1/n). Then, if we work with the matrix Y

σ
√
n

, then, the new noise matrix will have the desired

distribution. Using the equation 10 for the matrix Y
σ
√
n

, and substituting β = m/n, we get to the
equation 3. Similar arguments can be used to derive equations 4 and 5 from their asymptotic forms
in Shabalin & Nobel (2013).

B WHY DENOISING IS NEEDED?

As discussed in introductory paragraph of section 3, the slowdown in convergence of DP-SGD can
be attributed to two main factors: the per-sample gradient clipping and the addition of noise. In this
appendix, we present more empirical evidence to support this claim in figure 6.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Figure 6: Comparison between validation loss curves of DP-SGD with and without noise addition.
The experiments are conducted on the SST-2 and MNLI dataset using the RoBERTa family models.
The results clearly indicate that the addition of noise significantly slows down the convergence of
the training process compared to the scenario where only gradient clipping is applied. We also see
significant gap between the two curves in terms of final loss achieved, for some of the model/dataset
pairs .

C ADDITIONAL RESULTS ON WHY THRESHOLD IS NEEDED.

Here we include additional hyperparameter sweeps for κ on different model/dataset pairs. The
results are presented in figures 7, 8, and 9. Also, scatter plot of layer improvement vs λ1

σ(
√
n+

√
m)

for different layer dimensionality is presented in figure 10 to further justify our choice of threshold.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Figure 7: Effect of different values of κ on the per-layer improvements when training RoBERTa
large model on SST-2 dataset. The Setting are similar to what is described in 4.

Figure 8: Effect of different values of κ on the per-layer improvements when training RoBERTa
base model on MNLI dataset. The Setting are similar to what is described in 4.

D ADDITIONAL RESULTS ON WHY NORM CORRECTION IS NEEDED.

In this appendix, we give a proof of theorem 1, as well as additional experimental results showing
the abalation of norm correction in our denoising function.

D.1 PROOF OF THEOREM 1

Proof. Since the blocks are disjoint and ∥yi∥ = ∥y′i∥ for all i, we can write

⟨y, x⟩ =

c∑
i=1

⟨yi, xi⟩ and ∥y∥2 =

c∑
i=1

∥yi∥2 =

c∑
i=1

∥y′i∥2 = ∥y′∥2.

For each block, cosine similarity is

cos(yi, xi) =
⟨yi, xi⟩
∥yi∥∥xi∥

.

Assumption (i) and the norm equality (ii) imply
⟨yi, xi⟩ = ∥yi∥∥xi∥ cos(yi, xi) ≤ ∥y′i∥∥xi∥ cos(y′i, xi) = ⟨y′i, xi⟩.

Summing over all i gives ⟨y, x⟩ ≤ ⟨y′, x⟩. Using the equality of global norms, we obtain

cos(y, x) =
⟨y, x⟩
∥y∥ ∥x∥

≤ ⟨y′, x⟩
∥y′∥ ∥x∥

= cos(y′, x).

Thus cos(y, x) ≤ cos(y′, x), as claimed.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Figure 9: Effect of different values of κ on the per-layer improvements when training RoBERTa
large model on MNLI dataset. The Setting are similar to what is described in 4.

Figure 10: Scatter plot of layer improvement vs λ1

σ(
√
n+

√
m)

for different layer dimensionality. The
vertical yellow line shows the threshold κ we used in our experiments. We want the yellow line
in a position to have lots of points on top right side, and few points on the bottom right side (and
preferably few on top left side).

D.2 ADDITIONAL NORM CORRECTION ABALATION RESULTS

For the sake of completeness, we calarify what we mean by the abalation. Instead of the equation 9,
we use the denoised gradient without the norm correction, i.e.,

Denoiseunscaled(g̃ |W) =

{
g̃ |W , if λ1(g̃ |W) < κσ(

√
n+
√
m)

ĝoptimal, otherwise

Other than the 3, we also have the results for training both RoBERTa base and large models on
MNLI dataset, as well as RoBERTa large model on SST-2 dataset. These results are presented in
figures 6. It is evident from these results that without the norm correction, the improvement is not
consistent, and can even be negative in some cases. Also, it is evident that with the norm correction,
the improvement is consistently positive. This shows the importance of the norm correction step in
our denoising function.

E ADDITIONAL LANGUAGE GENERATION EXPERIMENTS

In this appendix, we present additional experiments on language generation tasks, specifically on
the E2E benchmark (Novikova et al., 2017) and DART (Nan et al., 2021) datasets. We used the

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Figure 11: Improvement in cosine similarity between denoised and noisy gradients with respect
to clipped gradients over training steps for different datasets. The positive values indicate that
the denoising method consistently enhances the alignment between the noisy and clipped gradi-
ents throughout the training process.

Figure 12: Comparison of whole gradient improvement when using norm correction and not using
it. The Settings are similar to what is described in 4. It is evident that using norm correction results
in more consistent improvement.

models from Qwen3 (Team, 2025) and Llama3.2 (Grattafiori et al., 2024) family. For training these
models, we used LoRA (Hu et al., 2022) with rank 32. We used a learning rate of 2e − 4, batch
size of 64, and clipping norm of 1.0. The privacy budget ϵ was set to 5.4 for all experiments,
and the noise multiplier was calculated using the privacy accountant from Gopi et al. (2021) to
ensure a total privacy loss of 5.4 at 400 training steps. For generating text during evaluation, we
used the same setting as in Yu et al. (2021). For the denoising, we used the same κ = 1.02 as
in all other experiments, showing the robustness of our method to this hyperparameter. Similar to
experiments on the GLUE benchmark datasets, we see significant improvements in performance

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

after a limited number of training steps. Here, we present the results after 50 training steps to
highlight the sample efficiency of our denoising method. In table 4, we can see that out of the 50
different model/dataset/metric combinations, the denoised models outperformed the baseline in 49
cases, demonstrating the effectiveness of our denoising method in enhancing model performance on
language generation tasks under differential privacy constraints.

The final performance of the models after 400 steps are reported in table 5. In the metrics after 400
steps, out of the 50 different model/dataset/metric combinations, the denoised models outperformed
the baseline in 35 cases, showing that our method not only improves sample efficiency but also leads
to better final performance in many scenarios. This, however, is still an area for further investigation
to understand the cases where the baseline outperforms the denoised models at the later steps.

Dataset Model Size Variant BLEU ROUGE-L METEOR NIST CIDEr
E2E Qwen 0.6B baseline 23.17 46.78 0.509 2.34 0.67

denoised 37.35 53.52 0.628 4.60 1.11
E2E Qwen 1.7B baseline 36.01 53.57 0.609 4.64 1.08

denoised 36.95 54.42 0.624 4.71 1.14
E2E Qwen 4B baseline 40.00 55.19 0.659 4.83 1.27

denoised 40.88 55.74 0.663 5.03 1.36
E2E Llama 1B baseline 22.15 44.24 0.476 2.59 0.47

denoised 36.33 52.86 0.626 4.62 1.13
E2E Llama 3B baseline 10.96 25.22 0.268 0.93 0.22

denoised 26.33 44.36 0.516 3.48 0.64
DART Qwen 0.6B baseline 14.66 33.44 0.323 0.91 0.59

denoised 23.58 46.46 0.462 2.87 0.84
DART Qwen 1.7B baseline 21.77 46.98 0.483 4.23 0.86

denoised 33.29 51.95 0.579 5.26 1.26
DART Qwen 4B baseline 21.74 44.47 0.522 3.84 0.86

denoised 21.78 46.98 0.484 4.22 0.86
DART Llama 1B baseline 8.88 37.38 0.368 2.86 0.41

denoised 13.81 43.12 0.454 3.68 0.73
DART Llama 3B baseline 6.12 30.08 0.319 2.13 0.26

denoised 9.47 37.33 0.375 2.95 0.47

Table 4: Comparison of baseline vs. denoised models on E2E and DART datasets after 50 steps.
Bold indicates the better value within each pair.

F USE OF LLMS

We have utilized large language models (LLMs) to assist in editing and refining the manuscript.
LLMs were used to improve the clarity, coherence, and overall quality of the writing, ensuring that
the content is presented in a clear and accessible manner.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Dataset Model Size Variant BLEU ROUGE-L METEOR NIST CIDEr
E2E Qwen 0.6B baseline 38.77 53.57 0.661 4.83 1.17

denoised 38.94 55.07 0.668 4.87 1.20
E2E Qwen 1.7B baseline 40.00 55.70 0.661 4.91 1.22

denoised 40.05 55.73 0.670 4.92 1.23
E2E Qwen 4B baseline 40.58 56.47 0.678 5.00 1.32

denoised 40.44 56.33 0.676 4.99 1.28
E2E Llama 1B baseline 37.06 54.94 0.629 4.65 1.21

denoised 39.70 55.29 0.662 4.93 1.30
E2E Llama 3B baseline 39.02 54.68 0.659 4.89 1.25

denoised 39.64 54.83 0.682 4.91 1.29
DART Qwen 0.6B baseline 25.99 50.44 0.595 3.38 1.01

denoised 25.43 50.23 0.510 3.37 1.02
DART Qwen 1.7B baseline 31.07 52.63 0.572 4.77 1.26

denoised 30.98 52.89 0.581 4.93 1.26
DART Qwen 4B baseline 29.70 52.22 0.571 4.63 1.22

denoised 34.82 54.71 0.594 5.29 1.38
DART Llama 1B baseline 20.03 46.40 0.466 3.91 0.79

denoised 19.41 46.85 0.479 3.95 0.81
DART Llama 3B baseline 23.56 48.01 0.512 4.60 1.00

denoised 21.51 44.25 0.461 3.80 0.87

Table 5: Comparison of baseline vs. denoised models on E2E and DART datasets. Bold indicates
the better value within each pair.

19

	Introduction
	Preliminaries
	Differential Privacy
	Approximate Differential Privacy
	DP-SGD
	Post processing invariance

	Singular value distribution of gradients
	Low rank matrix estimations
	Effect of noise on singular values and singular vectors: a phase transition
	Matrix Denoising

	Methodology
	Framework
	Denoising Function
	Why threshold is needed and why this specific value?
	Why norm correction is needed?

	Experiments
	Limitations and Future Work
	Reproducibility Statement
	Random Matrix Theory Background
	Low rank structure in gradients of large language models
	Finite dimensional derivation of random matrix theory results

	Why denoising is needed?
	Additional results on why threshold is needed.
	Additional results on Why norm correction is needed.
	Proof of Theorem 1
	Additional norm correction abalation results

	Additional language generation experiments
	Use of LLMs

